1
|
Neirinck J, Buysse M, Brdickova N, Perez-Andres M, De Vriendt C, Kerre T, Haerynck F, Bossuyt X, van Dongen JJM, Orfao A, Hofmans M, Bonroy C, Kalina T. The EuroFlow PIDOT external quality assurance scheme: enhancing laboratory performance evaluation in immunophenotyping of rare lymphoid immunodeficiencies. Clin Chem Lab Med 2025; 63:621-635. [PMID: 39423371 DOI: 10.1515/cclm-2024-0749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES The development of External Quality Assessment Schemes (EQAS) for clinical flow cytometry (FCM) is challenging in the context of rare (immunological) diseases. Here, we introduce a novel EQAS monitoring the primary immunodeficiency Orientation Tube (PIDOT), developed by EuroFlow, in both a 'wet' and 'dry' format. This EQAS provides feedback on the quality of individual laboratories (i.e., accuracy, reproducibility and result interpretation), while eliminating the need for sample distribution. METHODS In the wet format, marker staining intensities (MedFIs) within landmark cell populations in PIDOT analysis performed on locally collected healthy control (HC) samples, were compared to EQAS targets. In the dry format, participants analyzed centrally distributed PIDOT flow cytometry data (n=10). RESULTS We report the results of six EQAS rounds across 20 laboratories in 11 countries. The wet format (212 HC samples) demonstrated consistent technical performance among laboratories (median %rCV on MedFIs=34.5 %; average failure rate 17.3 %) and showed improvement upon repeated participation. The dry format demonstrated effective proficiency of participants in cell count enumeration (range %rCVs 3.1-7.1 % for the major lymphoid subsets), and in identifying lymphoid abnormalities (79.3 % alignment with reference). CONCLUSIONS The PIDOT-EQAS allows laboratories, adhering to the standardized EuroFlow approach, to monitor interlaboratory variations without the need for sample distribution, and provides them educational support to recognize rare clinically relevant immunophenotypic patterns of primary immunodeficiencies (PID). This EQAS contributes to quality improvement of PID diagnostics and can serve as an example for future flow cytometry EQAS in the context of rare diseases.
Collapse
Affiliation(s)
- Jana Neirinck
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, University Hospital Ghent, Ghent, Belgium
| | - Malicorne Buysse
- Department of Laboratory Medicine, University Hospital Ghent, Ghent, Belgium
| | - Naděžda Brdickova
- CLIP Cytometry, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Martín Perez-Andres
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca (USAL), Department of Medicine, IBSAL and CIBERONC, University of Salamanca, Salamanca, Spain
- Cancer Research Centre (Instituto de Biologıa Molecular y Celular del Cancer (IBMCC), USAL-CSIC; CIBERONC CB16/12/00400), Institute for Biomedical Research of Salamanca (IBSAL), Department of Medicine and Cytometry Service (NUCLEUS Research Support Platform), University of Salamanca (USAL), Salamanca, Spain
| | - Ciel De Vriendt
- Department of Haematology, University Hospital Ghent, Ghent, Belgium
| | - Tessa Kerre
- Department of Haematology, University Hospital Ghent, Ghent, Belgium
| | - Filomeen Haerynck
- Department of Pediatric Pulmonology and Immunology and PID Research Laboratory, University Hospital Ghent, Ghent, Belgium
| | - Xavier Bossuyt
- Department of Laboratory Medicine, University Hospital Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Jacques J M van Dongen
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca (USAL), Department of Medicine, IBSAL and CIBERONC, University of Salamanca, Salamanca, Spain
- Cancer Research Centre (Instituto de Biologıa Molecular y Celular del Cancer (IBMCC), USAL-CSIC; CIBERONC CB16/12/00400), Institute for Biomedical Research of Salamanca (IBSAL), Department of Medicine and Cytometry Service (NUCLEUS Research Support Platform), University of Salamanca (USAL), Salamanca, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca (USAL), Department of Medicine, IBSAL and CIBERONC, University of Salamanca, Salamanca, Spain
- Cancer Research Centre (Instituto de Biologıa Molecular y Celular del Cancer (IBMCC), USAL-CSIC; CIBERONC CB16/12/00400), Institute for Biomedical Research of Salamanca (IBSAL), Department of Medicine and Cytometry Service (NUCLEUS Research Support Platform), University of Salamanca (USAL), Salamanca, Spain
| | - Mattias Hofmans
- Department of Laboratory Medicine, University Hospital Ghent, Ghent, Belgium
| | - Carolien Bonroy
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, University Hospital Ghent, Ghent, Belgium
| | - Tomas Kalina
- CLIP Cytometry, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
2
|
Itakura T, Sasaki H, Hosoya T, Umezawa N, Saito T, Iwai H, Hasegawa H, Sato H, Hirakawa A, Imai K, Morio T, Kimura N, Yasuda S. The role of TRECs/KRECs as immune indicators that reflect immunophenotypes and predict the risk of infection in systemic autoimmune diseases. Immunol Med 2025:1-12. [PMID: 39895338 DOI: 10.1080/25785826.2025.2460275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025] Open
Abstract
T cell receptor rearrangement excision circles (TRECs) and immunoglobulin κ-deleting recombination excision circles (KRECs) represent the lymphopoiesis capacity, widely used for newborn screening of inborn errors of immunity. To clarify the significance of TRECs and KRECs as immune indicators in patients with systemic autoimmune diseases, we prospectively evaluated TREC and KREC levels with qPCR, lymphocyte phenotypes with flow cytometry, along with lymphocyte counts and serum immunoglobulin levels in peripheral blood samples from newly diagnosed patients. Each variable was assessed before immunosuppressive treatments (baseline), 3-, 6-, and 12-months after the treatment. Severe infections were recorded until 6 months after treatment. Among 35 patients, TREC and KREC levels were associated positively with the proportion of recent thymic emigrants, naïve T and B cells at all the timepoints. TREC and KREC levels decreased after treatment. The ratios of TREC and KREC levels under treatment to baseline were significantly lower in patients with severe infection than those without. In conclusion, TREC and KREC levels reflect peripheral blood immunophenotypes, specifically recent-emigrated T and B cells, in patients under treatment-naïve and immunosuppressive conditions. The longitudinal changes in TREC and KREC levels were beneficial markers for predicting the risk of severe infection during immunosuppressive treatments.
Collapse
Affiliation(s)
- Takuji Itakura
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Hirokazu Sasaki
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Tadashi Hosoya
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Natsuka Umezawa
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Tetsuya Saito
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Hideyuki Iwai
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | | | - Hiroyuki Sato
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Naoki Kimura
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Tomomasa D, Nishimura M, Ohya A, Tanita K, Wakatsuki R, Watanabe R, Miyamoto S, Hoshino A, Kamiya T, Isoda T, Kaneko S, Shimizu M, Hijikata A, Eguchi K, Ishimura M, Maeda Y, Izawa K, Meguro T, Fujimoto K, Ishikita-Murayama E, Suzuki K, Okura E, Uehara T, Takayama T, Okada S, Takagi M, Morio T, Marsh RA, Kanegane H. Comprehensive flow cytometry-based diagnosis of XIAP deficiency. Clin Exp Immunol 2025; 219:uxaf020. [PMID: 40128104 PMCID: PMC12062573 DOI: 10.1093/cei/uxaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/21/2025] [Accepted: 03/22/2025] [Indexed: 03/26/2025] Open
Abstract
Deficiency of X-linked inhibitor of apoptosis protein (XIAP) is an X-linked recessive inborn error of immunity characterized by abnormal immune responses leading to inflammatory bowel disease and hemophagocytic lymphohistiocytosis. Although XIAP protein expression analysis by flow cytometry (XIAP flow) is commonly used to diagnose XIAP deficiency, certain variants may not affect the protein expression, thereby complicating the diagnostic process. XIAP is crucial for the nucleotide-binding and oligomerization domain 2 (NOD2) signaling pathway. In this study, we aimed to perform a comprehensive analysis of nine patients diagnosed with XIAP deficiency through genetic testing. In addition to XIAP flow, we employed a previously reported method utilizing muramyl dipeptide (MDP) stimulation, a specific agonist of NOD2, to quantitatively evaluate the downstream tumor necrosis factor-alpha (TNFα) production by flow cytometry in patient monocytes (MDP flow). The median mean fluorescence intensity in healthy controls with XIAP flow was 711 (95% confidence interval [CI], 653-815) compared to 195 (95% CI, 161-386) in patients with XIAP deficiency (P < 0.0001). The median percentage of TNFα-producing monocytes in controls with MDP flow was 29.1% (95% CI, 19.6-53.7), while in patients it was 0.34% (95% CI, 0.18-0.82) (P = 0.0008). The receiver operating characteristic curves demonstrated that both XIAP flow and MDP flow exhibited 100% sensitivity and specificity. Taken together, combining XIAP flow and MDP flow analyses allows for a highly accurate diagnosis.
Collapse
Affiliation(s)
- Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Madoka Nishimura
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
- Department of Pediatrics, Graduate School of Medical Sciences Kumamoto University, Kumamoto, Japan
| | - Ayami Ohya
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kay Tanita
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Ryosuke Wakatsuki
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Ryohei Watanabe
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Satoshi Miyamoto
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Akihiro Hoshino
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Takahiro Kamiya
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
- Clinical Research Center, Institute of Science Tokyo Hospital, Tokyo, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Shuya Kaneko
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Masaki Shimizu
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Atsushi Hijikata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukako Maeda
- Department of Pediatrics, Faculty of Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Faculty of Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takaaki Meguro
- Department of Allergy and Clinical Immunology, Shizuoka Children’s Hospital, Shizuoka, Japan
| | | | - Etsuko Ishikita-Murayama
- Department of Hematology/Oncology, Gunma Children’s Medical Center, Gunma, Japan
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kyogo Suzuki
- Department of Hematology and Oncology, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
| | - Eri Okura
- Department of Pediatrics, Shinshu University School of Medicine, Nagano, Japan
| | - Tomoko Uehara
- Department of Pediatrics, Naha City Hospital, Okinawa, Japan
| | - Tomotada Takayama
- General Pediatrics, Okinawa Prefectural Nanbu Medical Center & Children’s Medical Center, Okinawa, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
- Laboratory of Immunology and Molecular Medicine, Institute of Science Tokyo, Tokyo, Japan
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Tomomasa D, Takagi M, Watanabe R, Wakatsuki R, Miyamoto S, Hoshino A, Kamiya T, Isoda T, Kobayashi A, Kosaki K, Sakura F, Asano T, Uchiyama T, Okada S, Morio T, Kanegane H. Prolonged diagnostic journey in delayed-onset adenosine deaminase deficiency. Clin Immunol 2025; 270:110405. [PMID: 39592026 DOI: 10.1016/j.clim.2024.110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Adenosine deaminase (ADA) deficiency typically presents as a severe combined immunodeficiency in early infancy, although its onset may be delayed in some cases. We encountered two patients diagnosed with ADA deficiency in adulthood. In addition to previously reported cases, we aimed to identify and characterize the clinical and immunological features associated with delayed- and late-onset ADA deficiency. Both patients presented with pneumonia and hypothyroidism during early childhood. The patients were subsequently treated with periodic immunoglobulin replacement and levothyroxine therapy. They experienced recurrent infections, including pneumonia and shingles, and were diagnosed with ADA deficiency in adulthood. A literature review revealed that patients diagnosed after the age of 10 years had a median interval of 18 years from disease onset to diagnosis. Patients with combined immunodeficiency and recurrent lower respiratory tract infections or autoimmune diseases require early measurement of ADA activity or genetic analysis.
Collapse
Affiliation(s)
- Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Masatoshi Takagi
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Institute of Science Tokyo, Tokyo, Japan
| | - Ryohei Watanabe
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Ryosuke Wakatsuki
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Satoshi Miyamoto
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Akihiro Hoshino
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Takahiro Kamiya
- Clinical Research Center, Institute of Science Tokyo, Tokyo, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Anju Kobayashi
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Fumiaki Sakura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan; Kazusa DNA Research Institute, Chiba, Japan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Toru Uchiyama
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Tomoda T, Nishimura A, Kamiya T, Inoue K, Katano H, Iida S, Hoshino A, Isoda T, Imai K, Kajiwara M, Takagi M, Kanegane H, Hanaoka N, Morio T. Immune reconstitution and cidofovir administration rescue human adenovirus hepatitis after allogeneic hematopoietic cell transplantation. Transpl Immunol 2024; 86:102093. [PMID: 39032616 DOI: 10.1016/j.trim.2024.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Human adenovirus infection (HAdV) may be fatal in patients undergoing allogeneic hematopoietic cell transplantation (HCT). Cidofovir is effective in only a part of the post-HCT HAdV infection. Therefore, posttransplant immune reconstitution is important for HAdV clearance. We describe the detailed immune reconstitution and response of adenovirus-specific T cells in a patient with inborn errors of immunity who had disseminated HAdV infection with hepatitis post-HCT and was treated with cidofovir. Though the patient received cidofovir for only 19 days starting from Day 72 after HCT because of renal dysfunction, we observed T-cell reconstitution, a decrease in HAdV copy number, and amelioration of the symptoms of HAdV infection after Day 90. We initially observed expanded NK and CD8+CD45RO+ memory subsets and later gradual increase of naïve T cells eveloped after cessation of cidofovir treatment. An increase in adenovirus-specific IFN-γ secretion from 2 to 4 months after HCT was confirmed by ELISpot assay. The progression of immune reconstitution and cidofovir treatment are considered to have contributed to survival in this patient. Optimization of transplantation methods, prompt appropriate antiviral medication, and virus-specific T-cell therapy would be necessary as the better strategy for systemic HAdV infection.
Collapse
Affiliation(s)
- Takahiro Tomoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Center for Transfusion Medicine and Cell Therapy, Tokyo Medical and Dental University (TMDU) Hospital, Tokyo, Japan
| | - Akira Nishimura
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahiro Kamiya
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Clinical Research Center, Tokyo Medical and Dental University (TMDU) Hospital, Tokyo, Japan.
| | - Kumi Inoue
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Akihiro Hoshino
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Michiko Kajiwara
- Center for Transfusion Medicine and Cell Therapy, Tokyo Medical and Dental University (TMDU) Hospital, Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nozomu Hanaoka
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
6
|
Utsumi T, Tsumura M, Yashiro M, Kato Z, Noma K, Sakura F, Kagawa R, Mizoguchi Y, Karakawa S, Ohnishi H, Cunningham-Rundles C, Arkwright PD, Kobayashi M, Kanegane H, Bogunovic D, Boisson B, Casanova JL, Asano T, Okada S. Exclusive Characteristics of the p.E555K Dominant-Negative Variant in Autosomal Dominant E47 Deficiency. J Clin Immunol 2024; 44:167. [PMID: 39073655 PMCID: PMC11286708 DOI: 10.1007/s10875-024-01758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Transcription factor 3 (TCF3) encodes 2 transcription factors generated by alternative splicing, E12 and E47, which contribute to early lymphocyte differentiation. In humans, autosomal dominant (AD) E47 transcription factor deficiency is an inborn error of immunity characterized by B-cell deficiency and agammaglobulinemia. Only the recurrent de novo p.E555K pathogenic variant has been associated with this disease and acts via a dominant-negative (DN) mechanism. In this study, we describe the first Asian patient with agammaglobulinemia caused by the TCF3 p.E555K variant and provide insights into the structure and function of this variant. METHODS TCF3 variant was identified by inborn errors of immunity-related gene panel sequencing. The variant E555K was characterized by alanine scanning of the E47 basic region and comprehensive mutational analysis focused on position 555. RESULTS The patient was a 25-year-old male with B-cell deficiency, agammaglobulinemia, and mild facial dysmorphic features. We confirmed the diagnosis of AD E47 transcription factor deficiency by identifying a heterozygous missense variant, c.1663 G>A; p.E555K, in TCF3. Alanine scanning of the E47 basic region revealed the structural importance of position 555. Comprehensive mutational analysis focused on position 555 showed that only the glutamate-to-lysine substitution had a strong DN effect. 3D modeling demonstrated that this variant not only abolished hydrogen bonds involved in protein‒DNA interactions, but also inverted the charge on the surface of the E47 protein. CONCLUSIONS Our study reveals the causative mutation hotspot in the TCF3 DN variant and highlights the weak negative selection associated with the TCF3 gene.
Collapse
Affiliation(s)
- Takanori Utsumi
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masato Yashiro
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Zenichiro Kato
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
- Structural Medicine, United Graduate School of Drug Discovery and Medical Information Science, Gifu University, Gifu, Japan
| | - Kosuke Noma
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Fumiaki Sakura
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Reiko Kagawa
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Charlotte Cunningham-Rundles
- Division of Allergy and Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Masao Kobayashi
- Japanese Red Cross Chugoku-Shikoku Block Blood Center, Hiroshima, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute (HHMI), New York, NY, USA
| | - Takaki Asano
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
7
|
Tahiat A, Belbouab R, Yagoubi A, Hakem S, Fernini F, Keddari M, Belhadj H, Touri S, Aggoune S, Stoddard J, Niemela J, Zerifi F, Melzi S, Aboura R, Saad-Djaballah A, Ferhani Y, Ketfi A, Messaoudi H, Bencharif Madani T, Benhacine Z, Dehimi A, Okka K, Amroune F, Fellahi M, Bendahmane C, Khoulani R, Oukil A, Soufane A, Bourelaf I, Boubidi C, Boukhenfouf N, Amine Ifri M, Khelafi N, Boudiaf H, Khelifi Touhami T, Meçabih F, Boucelma M, Zelaci A, Gacem O, Ladj MS, Mekki A, Bensaadi N, Benhalima M, Zeroual Z, Bioud B, Benameur M, Bouhdjila R, Bouzerar Z, Ibsaine O, Maouche H, Kedji L, Smati L, Boukari R, Lambert C, Rosenzweig SD, Notarangelo LD, Djenouhat K. Flow cytometry-based diagnostic approach for inborn errors of immunity: experience from Algeria. Front Immunol 2024; 15:1402038. [PMID: 39072316 PMCID: PMC11273131 DOI: 10.3389/fimmu.2024.1402038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Purpose In this study, we retrospectively reviewed the use of flow cytometry (FCM) in the diagnosis of inborn errors of immunity (IEIs) at a single center in Algeria. Sharing insights into our practical experience, we present FCM based diagnostic approaches adapted to different clinical scenarios. Methods Between May 2017 and February 2024, pediatric and adult patients presenting with clinical features suggestive of immunodeficiency were subjected to FCM evaluation, including lymphocyte subset analysis, detection of specific surface or intracellular proteins, and functional analysis of immune cells. Results Over a nearly seven-year period, our laboratory diagnosed a total of 670 patients (372 (55.5%) males and 298 (44.5%) females), distributed into 70 different IEIs belonging to 9 different categories of the International Union of Immunological Societies classification. FCM was used to diagnose and categorize IEI in 514 patients (76.7%). It provided direct diagnostic insights for IEIs such as severe combined immunodeficiency, Omenn syndrome, MHC class II deficiency, familial hemophagocytic lymphohistiocytosis, and CD55 deficiency. For certain IEIs, including hyper-IgE syndrome, STAT1-gain of function, autoimmune lymphoproliferative syndrome, and activated PI3K delta syndrome, FCM offered suggestive evidence, necessitating subsequent genetic testing for confirmation. Protein expression and functional assays played a crucial role in establishing definitive diagnoses for various disorders. To setup such diagnostic assays at high and reproducible quality, high level of expertise is required; in house reference values need to be determined and the parallel testing of healthy controls is highly recommended. Conclusion Flow cytometry has emerged as a highly valuable and cost-effective tool for diagnosing and studying most IEIs, particularly in low-income countries where access to genetic testing can be limited. FCM analysis could provide direct diagnostic insights for most common IEIs, offer clues to the underlying genetic defects, and/or aid in narrowing the list of putative genes to be analyzed.
Collapse
Affiliation(s)
- Azzeddine Tahiat
- Department of Medical Biology, Rouiba Hospital, University of Algiers 1, Algiers, Algeria
| | - Reda Belbouab
- Department of Pediatrics, Mustapha University Hospital, University of Algiers 1, Algiers, Algeria
| | - Abdelghani Yagoubi
- Pediatric Gastroenterology, Centre Algérois de Pédiatrie, Algiers, Algeria
| | - Saliha Hakem
- Department of Pediatrics, Mustapha University Hospital, University of Algiers 1, Algiers, Algeria
| | - Faiza Fernini
- Department of Pediatrics, Mustapha University Hospital, University of Algiers 1, Algiers, Algeria
| | - Malika Keddari
- Department of Pediatrics, Mustapha University Hospital, University of Algiers 1, Algiers, Algeria
| | - Hayet Belhadj
- Department of Pediatrics, Central Hospital of the Army, Algiers, Algeria
| | - Souad Touri
- Department of Pediatrics, Blida University Hospital, University of Blida, Blida, Algeria
| | - Samira Aggoune
- Department of Pediatrics, El-Harrach Hospital, University of Algiers 1, Algiers, Algeria
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Julie Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Farida Zerifi
- Department of Pediatrics, Ain Taya Hospital, University of Algiers 1, Algiers, Algeria
| | - Souhila Melzi
- Department of Pediatrics, Bab El-Oued University Hospital, University of Algiers 1, Algiers, Algeria
| | - Rawda Aboura
- Department of Pediatrics, Bab El-Oued University Hospital, University of Algiers 1, Algiers, Algeria
| | - Amina Saad-Djaballah
- Department of Pediatrics, Bologhine Hospital, University of Algiers 1, Algiers, Algeria
| | - Yacine Ferhani
- Department of Pediatrics, Mustapha University Hospital, University of Algiers 1, Algiers, Algeria
| | - Abdalbasset Ketfi
- Department of Pneumology, Rouiba Hospital, University of Algiers 1, Algiers, Algeria
| | - Hassen Messaoudi
- Department of Internal Medicine, Rouiba Hospital, University of Algiers 1, Algiers, Algeria
| | - Tahar Bencharif Madani
- Department of Pediatrics, Mansourah Hospital, University of Constantine, Constantine, Algeria
| | - Zouleikha Benhacine
- Department of Pediatrics, Constantine University Hospital, University of Constantine, Constantine, Algeria
| | - Abdelhak Dehimi
- Department of Pediatrics, Setif University Hospital, University of Setif, Setif, Algeria
| | - Kamelia Okka
- Department of Pediatrics, Setif University Hospital, University of Setif, Setif, Algeria
| | - Fairouz Amroune
- Department of Pediatrics, Setif University Hospital, University of Setif, Setif, Algeria
| | - Meriem Fellahi
- Department of Pediatrics, Setif University Hospital, University of Setif, Setif, Algeria
| | | | - Radia Khoulani
- Department of Pediatrics, Meftah Hospital, Blida, Algeria
| | - Asma Oukil
- Department of Medical Biology, Rouiba Hospital, University of Algiers 1, Algiers, Algeria
| | - Asma Soufane
- Department of Medical Biology, Rouiba Hospital, University of Algiers 1, Algiers, Algeria
| | - Imene Bourelaf
- Department of Medical Biology, Rouiba Hospital, University of Algiers 1, Algiers, Algeria
| | - Chahynez Boubidi
- Department of Pediatrics A, Hussein Dey University Hospital, University of Algiers 1, Algiers, Algeria
| | | | | | | | - Houda Boudiaf
- Department of Pediatric Oncology, Mustapha University Hospital, University of Algiers 1, Algiers, Algeria
| | | | - Fethi Meçabih
- Department of Immunology, Institut Pasteur d’Algérie, University of Algiers 1, Algiers, Algeria
| | - Malika Boucelma
- Department of Internal Medicine, Kouba Hospital, University of Algiers 1, Algiers, Algeria
| | - Amara Zelaci
- Department of Pediatrics, El Oued Hospital, El Oued, Algeria
| | - Ourida Gacem
- Department of Pediatrics, Birtraria Hospital El Biar, University of Algiers 1, Algiers, Algeria
| | - Mohamed Samir Ladj
- Department of Pediatrics, Birtraria Hospital El Biar, University of Algiers 1, Algiers, Algeria
| | - Azzedine Mekki
- Department of Pediatrics B, Hussein Dey University Hospital, University of Algiers 1, Algiers, Algeria
| | - Nadia Bensaadi
- Department of Pediatrics, Tizi Ouzou University Hospital, University of Tizi Ouzou, Tizi Ouzou, Algeria
| | - Malika Benhalima
- Algiers Faculty of Pharmacy, University of Algiers 1, Algiers, Algeria
| | - Zoulikha Zeroual
- Department of Pediatrics A, Hussein Dey University Hospital, University of Algiers 1, Algiers, Algeria
| | - Belkacem Bioud
- Department of Pediatrics, Setif University Hospital, University of Setif, Setif, Algeria
| | - Mustapha Benameur
- Department of Internal Medicine, Rouiba Hospital, University of Algiers 1, Algiers, Algeria
| | - Rachid Bouhdjila
- Department of Pediatrics, Constantine University Hospital, University of Constantine, Constantine, Algeria
| | - Zahir Bouzerar
- Department of Pediatrics, Bab El-Oued University Hospital, University of Algiers 1, Algiers, Algeria
| | - Ouardia Ibsaine
- Department of Pediatrics, Ain Taya Hospital, University of Algiers 1, Algiers, Algeria
| | - Hachemi Maouche
- Department of Pediatrics, El-Harrach Hospital, University of Algiers 1, Algiers, Algeria
| | - Leila Kedji
- Department of Pediatrics, Blida University Hospital, University of Blida, Blida, Algeria
| | - Leila Smati
- Department of Pediatrics, Bologhine Hospital, University of Algiers 1, Algiers, Algeria
| | - Rachida Boukari
- Department of Pediatrics, Mustapha University Hospital, University of Algiers 1, Algiers, Algeria
| | - Claude Lambert
- Cytometry Unit, Immunology Laboratory, Saint-Etienne University Hospital, Saint-Étienne, Lyon, France
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Luigi D. Notarangelo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kamel Djenouhat
- Department of Medical Biology, Rouiba Hospital, University of Algiers 1, Algiers, Algeria
| |
Collapse
|
8
|
Guo M, Ma Y, Cai K, Liu X, Liu W, Wang F, Qu N, Liu S. A novel hemizygous CD40L mutation of X-linked hyper IgM syndromes and compound heterozygous DOCK8 mutations of hyper IgE syndromes in two Chinese families. Immunogenetics 2024; 76:165-173. [PMID: 38587548 DOI: 10.1007/s00251-024-01340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
X-linked hyper-immunoglobulin M (X-HIGM) syndrome and autosomal recessive hyper-immunoglobulin E syndrome (HIES) are rare inborn errors of immunity characterized by recurrent infections due to immune system impairment. In this study, we identified a novel hemizygous CD40 ligand (CD40L) mutation and compound heterozygous dedicator of cytokinesis-8 (DOCK8) mutations in two Han Chinese families with X-HIGM and HIES, respectively. We aimed to investigate the association between their genotypes and phenotypes. Genomic DNA was extracted from peripheral blood samples obtained from the families. Whole exome sequencing and Sanger sequencing were performed to identify and verify pathogenic variants in the two families. Clinical analyses of the probands were also performed. A novel hemizygous mutation of CD40L in exon 2 (c.257delA) was identified in the first proband, resulting in the substitution of glycine with glutamic acid at codon 86 of the protein. This leads to premature termination of translation at downstream codon 9 (p.E86Gfs*9). Sanger sequencing confirmed that the variant was inherited from the mother. The second proband carried two novel compound heterozygous mutations in DOCK8: one at exon 14 (c.1546C > G) inherited from the father, and the other at intron 41 (c.5355 + 6C > T; splicing) inherited from the mother. This study enhances our understanding of the pathogenetic mutation spectrum of CD40L and DOCK8 genes, facilitating the prenatal diagnosis of X-HIGM and HIES and enabling timely treatment of patients.
Collapse
Affiliation(s)
- Mingzhen Guo
- Department of Laboratory, Women and Children's Hospital, Affiliated to Qingdao University, Qingdao, 266034, Shandong, China
| | - Yuanxuan Ma
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
- Department of Medical Genetics, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Kangxi Cai
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiuxiang Liu
- Neonatal Intensive Care Unit, Women and Children's Hospital, Affiliated to Qingdao University, Qingdao, 266034, Shandong, China
| | - Wenmiao Liu
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
- Department of Medical Genetics, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Fengqi Wang
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
- Department of Medical Genetics, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Niyan Qu
- Pediatric Intensive Care Unit, Women and Children's Hospital, Affiliated to Qingdao University, 6 Tongfu Road, Qingdao, 266034, Shandong, China.
| | - Shiguo Liu
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
- Department of Medical Genetics, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China.
| |
Collapse
|
9
|
Miyamoto S, Niizato D, Tomomasa D, Nishimura A, Hoshino A, Kamiya T, Isoda T, Takagi M, Kajiwara M, Azumi S, Hirabayashi S, Sakamoto K, Kishimoto K, Miyamura T, Umeda K, Hirose A, Keino D, Yanagimachi M, Kanda K, Sakai Y, Ikawa Y, Watanabe K, Tanaka K, Mori T, Ichinohe T, Sakaguchi H, Morio T, Kanegane H. Allogeneic Hematopoietic cell Transplantation Using Alemtuzumab in Asian Patients with Inborn Errors of Immunity. J Clin Immunol 2024; 44:126. [PMID: 38773000 DOI: 10.1007/s10875-024-01734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
Alemtuzumab is used with reduced-toxicity conditioning (RTC) in allogeneic hematopoietic cell transplantation (HCT), demonstrating efficacy and feasibility for patients with inborn errors of immunity (IEI) in Western countries; however, the clinical experience in Asian patients with IEI is limited. We retrospectively analyzed patients with IEI who underwent the first allogeneic HCT with alemtuzumab combined with RTC regimens in Japan. A total of 19 patients were included and followed up for a median of 18 months. The donors were haploidentical parents (n = 10), matched siblings (n = 2), and unrelated bone marrow donors (n = 7). Most patients received RTC regimens containing fludarabine and busulfan and were treated with 0.8 mg/kg alemtuzumab with intermediate timing. Eighteen patients survived and achieved stable engraftment, and no grade 3-4 acute graft-versus-host disease was observed. Viral infections were observed in 11 patients (58%) and 6 of them presented symptomatic. The median CD4+ T cell count was low at 6 months (241/µL) but improved at 1 year (577/µL) after HCT. Whole blood cells continued to exhibit > 80% donor type in most cases; however, 3/10 patients exhibited poor donor chimerism only among T cells and also showed undetectable levels of T-cell receptor recombination excision circles (TRECs) at 1 year post-HCT. This study demonstrated the efficacy and safety of alemtuzumab; however, patients frequently developed viral infections and slow reconstitution or low donor chimerism in T cells, emphasizing the importance of monitoring viral status and T-cell-specific chimerism. (238 < 250 words).
Collapse
Affiliation(s)
- Satoshi Miyamoto
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Daiki Niizato
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akira Nishimura
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akihiro Hoshino
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Takahiro Kamiya
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masatoshi Takagi
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Michiko Kajiwara
- Center for Transfusion Medicine and Cell Therapy, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Shohei Azumi
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Shinsuke Hirabayashi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Kenichi Sakamoto
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Kenji Kishimoto
- Department of Hematology and Oncology, Kobe Children's Hospital, Hyogo, Japan
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Katsutsugu Umeda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ayana Hirose
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Kanagawa, Japan
| | - Dai Keino
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Kanagawa, Japan
| | - Masakatsu Yanagimachi
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Kanagawa, Japan
| | - Kaori Kanda
- Department of Pediatrics, Gifu Municipal Hospital, Gifu, Japan
| | - Yuta Sakai
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Yasuhiro Ikawa
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Keisuke Tanaka
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takehiko Mori
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hirotoshi Sakaguchi
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
10
|
Tomomasa D, Lee BH, Hirata Y, Inoue Y, Majima H, Imanaka Y, Asano T, Katakami T, Lee J, Hijikata A, Worakitchanon W, Yang X, Wang X, Watanabe A, Kamei K, Kageyama Y, Seo GH, Fujimoto A, Casanova JL, Puel A, Morio T, Okada S, Kanegane H. Inherited CARD9 Deficiency Due to a Founder Effect in East Asia. J Clin Immunol 2024; 44:121. [PMID: 38758287 PMCID: PMC11736695 DOI: 10.1007/s10875-024-01724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Autosomal recessive CARD9 deficiency can underly deep and superficial fungal diseases. We identified two Japanese patients, suffering from superficial and invasive Candida albicans diseases, carrying biallelic variants of CARD9. Both patients, in addition to another Japanese and two Korean patients who were previously reported, carried the c.820dup CARD9 variant, either in the homozygous (two patients) or heterozygous (three patients) state. The other CARD9 alleles were c.104G > A, c.1534C > T and c.1558del. The c.820dup CARD9 variant has thus been reported, in the homozygous or heterozygous state, in patients originating from China, Japan, or South Korea. The Japanese, Korean, and Chinese patients share a 10 Kb haplotype encompassing the c.820dup CARD9 variant. This variant thus originates from a common ancestor, estimated to have lived less than 4,000 years ago. While phaeohyphomycosis caused by Phialophora spp. was common in the Chinese patients, none of the five patients in our study displayed Phialophora spp.-induced disease. This difference between Chinese and our patients probably results from environmental factors. (161/250).
Collapse
Affiliation(s)
- Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Beom Hee Lee
- Department of Pediatrics, Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| | - Yuki Hirata
- Department of Opthalmology, Shonan Fujisawa Tokushukai Hospital, Kanagawa, Japan
| | - Yuzaburo Inoue
- Department of General Medical Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidetaka Majima
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yusuke Imanaka
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima, Japan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takashi Katakami
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | - Jina Lee
- Department of Pediatrics, Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Atsushi Hijikata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Wittawin Worakitchanon
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Xi Yang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaowen Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yasufumi Kageyama
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | | | - Akihiro Fujimoto
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, UMR 1163, INSERM, Necker Hospital for Sick Children, 75015, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- University Paris Cité, Imagine Institute, 75015, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, UMR 1163, INSERM, Necker Hospital for Sick Children, 75015, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- University Paris Cité, Imagine Institute, 75015, Paris, France
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
11
|
Hosaka S, Imagawa K, Yano Y, Lin L, Shiono J, Takahashi-Igari M, Hara H, Hayashi D, Imai H, Morita A, Fukushima H, Takada H. The CXCL10-CXCR3 axis plays an important role in Kawasaki disease. Clin Exp Immunol 2024; 216:104-111. [PMID: 37952216 PMCID: PMC10929692 DOI: 10.1093/cei/uxad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/25/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
The precise pathogenesis of Kawasaki disease remains unknown. In an attempt to elucidate the pathogenesis of KD through the analysis of acquired immunity, we comprehensively examined the immunophenotypic changes in immune cells such as lymphocytes and monocytes along with various cytokines, focusing on differences between pre- and post- treatment samples. We found high levels of CXCL9 and CXCL10 chemokines that decreased with treatment, which coincided with a post-treatment expansion of Th1 cells expressing CXCR3. Our results show that the CXCL10-CXCR3 axis plays an important role in the pathogenesis of KD.
Collapse
Affiliation(s)
- Sho Hosaka
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba City, Japan
| | - Kazuo Imagawa
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba City, Japan
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Yusuke Yano
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba City, Japan
- Department of Pediatric Cardiology, Ibaraki Children’s Hospital, Mito City, Japan
| | - Lisheng Lin
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
- Department of Pediatric Cardiology, Ibaraki Children’s Hospital, Mito City, Japan
| | - Junko Shiono
- Department of Pediatric Cardiology, Ibaraki Children’s Hospital, Mito City, Japan
| | | | - Hideki Hara
- Department of Pediatrics, Tsukuba Medical Center Hospital, Tsukuba City, Japan
| | - Daisuke Hayashi
- Department of Pediatrics, Tsukuba Medical Center Hospital, Tsukuba City, Japan
| | - Hironori Imai
- Department of Pediatrics, Tsukuba Medical Center Hospital, Tsukuba City, Japan
| | - Atsushi Morita
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba City, Japan
| | - Hiroko Fukushima
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba City, Japan
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba City, Japan
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| |
Collapse
|
12
|
Tsubata T, Umezawa N, Yasumi T, Kanegane H, Yasuda S. Impaired development of B cells with PRF1 variants in an adult. Scand J Rheumatol 2024; 53:74-76. [PMID: 37750299 DOI: 10.1080/03009742.2023.2256090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Affiliation(s)
- T Tsubata
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - N Umezawa
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - T Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - H Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - S Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
13
|
Luo Y, Acevedo D, Vlagea A, Codina A, García-García A, Deyà-Martínez A, Martí-Castellote C, Esteve-Solé A, Alsina L. Changes in Treg and Breg cells in a healthy pediatric population. Front Immunol 2023; 14:1283981. [PMID: 38077340 PMCID: PMC10704817 DOI: 10.3389/fimmu.2023.1283981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
The interpretation of clinical diagnostic results in suspected inborn errors of immunity, including Tregopathies, is hampered by the lack of age-stratified reference values for regulatory T cells (Treg) in the pediatric population and a consensus on which Treg immunophenotype to use. Regulatory B cells (Breg) are an important component of the regulatory system that have been poorly studied in the pediatric population. We analyzed (1) the correlation between the three immunophenotypic definitions of Treg (CD4+CD25hiCD127low, CD4+CD25hiCD127lowFoxP3+, CD4+CD25hiFoxP3+), and with CD4+CD25hi and (2) the changes in Treg and Breg frequencies and their maturation status with age. We performed peripheral blood immunophenotyping of Treg and Breg (CD19+CD24hiCD38hi) by flow cytometry in 55 healthy pediatric controls. We observed that Treg numbers varied depending on the definition used, and the frequency ranged between 3.3-9.7% for CD4+CD25hiCD127low, 0.07-1.6% for CD4+CD25hiCD127lowFoxP3+, and 0.24-2.83% for CD4+CD25hiFoxP3+. The correlation between the three definitions of Treg was positive for most age ranges, especially between the two intracellular panels and with CD4+CD25hi vs CD4+CD25hiCD127low. Treg and Breg frequencies tended to decline after 7 and 3 years onwards, respectively. Treg's maturation status increased with age, with a decline of naïve Treg and an increase in memory/effector Treg from age 7 onwards. Memory Breg increased progressively from age 3 onwards. In conclusion, the number of Treg frequencies spans a wide range depending on the immunophenotypic definition used despite a good level of correlation exists between them. The decline in numbers and maturation process with age occurs earlier in Breg than in Treg.
Collapse
Affiliation(s)
- Yiyi Luo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Daniel Acevedo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Anna Codina
- Biobanco Pediátrico para la Investigación Hospital Sant Joan de Déu, Barcelona, Spain
| | - Ana García-García
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Angela Deyà-Martínez
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Celia Martí-Castellote
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Medical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Itakura T, Sasaki H, Hosoya T, Yamaguchi T, Mimori E, Saimon Y, Iwai H, Umezawa N, Kawata D, Kimura N, Kurata M, Shimizu M, Yasuda S. A novel gain-of-function missense variant in PLCG2 associated with autoinflammation and hypergammaglobulinaemia. Rheumatology (Oxford) 2023; 62:e319-e321. [PMID: 37094224 DOI: 10.1093/rheumatology/kead193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Affiliation(s)
- Takuji Itakura
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokazu Sasaki
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadashi Hosoya
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taiki Yamaguchi
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Erika Mimori
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yukino Saimon
- Department of Rheumatology, Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Iwai
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Natsuka Umezawa
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Kawata
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoki Kimura
- Department of Lifetime Clinical Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Masaki Shimizu
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
15
|
Umezawa N, Sasaki H, Furusawa H, Kawata D, Hata C, Yasuda S. Development of vasculitis in a case with severe asthma treated with benralizumab and low-dose corticosteroid. Allergol Int 2023; 72:179-181. [PMID: 36088219 DOI: 10.1016/j.alit.2022.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 01/25/2023] Open
Affiliation(s)
- Natsuka Umezawa
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Hirokazu Sasaki
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Haruhiko Furusawa
- Department of Respiratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Daisuke Kawata
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chiina Hata
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
16
|
Cavannaugh C, Ochs HD, Buchbinder D. Diagnosis and clinical management of Wiskott-Aldrich syndrome: current and emerging techniques. Expert Rev Clin Immunol 2022; 18:609-623. [PMID: 35533396 DOI: 10.1080/1744666x.2022.2074400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Wiskott-Aldrich syndrome (WAS) serves as the prototype of how variants in a gene which encodes a protein central to actin cytoskeletal homeostasis can manifest clinically in a variety of ways including infection, atopy, autoimmunity, inflammation, bleeding, neutropenia, non-malignant lymphoproliferation, and malignancy. Despite the discovery of the WAS gene almost 30 years ago, our understanding of the pathophysiological mechanisms underlying WAS continues to unfold. AREAS COVERED This review will provide an overview of the approach to the diagnosis of WAS as well as the management of its associated complications. Advances in the use of allogeneic hematopoietic stem cell transplantation (HSCT) and gene therapy as well as the associated challenges unique to WAS will be discussed. EXPERT OPINION Basic research, combined with clinical research focusing on longitudinal analysis of WAS patients, will help clarify determinants that influence WAS pathogenesis as well as clinical complications and outcomes. Advances in curative approaches including the use of alternative donor HSCT for WAS continue to evolve. Gene therapy employing safer and more effective protocols ensuring full correction of WAS will provide life-saving benefit to WAS patients that are unable to undergo HSCT.
Collapse
Affiliation(s)
- Corey Cavannaugh
- Department of Pediatrics University of California at Irvine 333 The City Blvd. West Suite 800 Orange, CA 92868
| | - Hans D Ochs
- Department of Pediatrics University of Washington and Seattle Children's Research Institute Seattle, WA 98105
| | - David Buchbinder
- Division of Hematology Children's Hospital of Orange County 1201 La Veta Avenue Orange, CA 92868
| |
Collapse
|
17
|
Kaushik S, Selvanathan P, Soni GV. Customized low-cost high-throughput amplifier for electro-fluidic detection of cell volume changes in point-of-care applications. PLoS One 2022; 17:e0267207. [PMID: 35442970 PMCID: PMC9020695 DOI: 10.1371/journal.pone.0267207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Physical parameters of the pathogenic cells, like its volume, shape, and stiffness, are important biomarkers for diseases, chemical changes within the cell, and overall cell health. The response of pathogenic bacteria and viruses to different chemical disinfectants is studied widely. Some of the routinely employed techniques to measure these changes require elaborate and expensive equipment which limits any study to a non-mobile research lab facility. Recently, we showed a micropore-based electro-fluidic technique to have great promise in measuring subtle changes in cell volumes at high throughput and resolution. This method, however, requires commercial amplifiers, which makes this technique expensive and incompatible for in-field use. In this paper, we develop a home-built amplifier to make this technique in-field compatible and apply it to measure changes in bacterial volumes upon exposure to alcohol. First, we introduce our low-cost and portable transimpedance amplifier and characterize the maximum range, absolute error percentage, and RMS noise of the amplifier in the measured current signal, along with the amplifier's bandwidth, and compared these characteristics with the commercial amplifiers. Using our home-built amplifier, we demonstrate a high throughput detection of ~1300 cells/second and resolve cell diameter changes down to 1 μm. Finally, we demonstrate measurement of cell volume changes in E. coli bacteria when exposed to ethanol (5% v/v), which is otherwise difficult to measure via imaging techniques. Our low-cost amplifier (~100-fold lower than commercial alternatives) is battery-run, completely portable for point-of-care applications, and the electro-fluidic devices are currently being tested for in-field applications.
Collapse
|
18
|
Shiraki M, Williams E, Yokoyama N, Shinoda K, Nademi Z, Matsumoto K, Nihira H, Honda Y, Izawa K, Nishikomori R, Slatter MA, Cant AJ, Gennery AR, Ohnishi H, Kanegane H. Hematopoietic Cell Transplantation Ameliorates Autoinflammation in A20 Haploinsufficiency. J Clin Immunol 2021; 41:1954-1956. [PMID: 34427832 DOI: 10.1007/s10875-021-01124-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023]
Affiliation(s)
- Mayuka Shiraki
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, , 501-1194, Japan
| | - Eleri Williams
- Children's Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, UK
| | | | | | - Zohreh Nademi
- Children's Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kana Matsumoto
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Hiroshi Nihira
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshitaka Honda
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Mary A Slatter
- Children's Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, UK.,Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Andrew J Cant
- Children's Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Children's Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, UK.,Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, , 501-1194, Japan. .,Clinical Genetics Center, Gifu University Hospital, Gifu, Japan.
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
19
|
Sato D, Moriya K, Nakano T, Miyagawa C, Katayama S, Niizuma H, Sasahara Y, Kure S. Refractory T-cell/histiocyte-rich large B-cell lymphoma in a patient with ataxia-telangiectasia caused by novel compound heterozygous variants in ATM. Int J Hematol 2021; 114:735-741. [PMID: 34424493 DOI: 10.1007/s12185-021-03203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive chromosomal breakage syndrome caused by mutation of the ATM (A-T mutated) gene, which encodes a protein kinase that has a major role in the cellular response to DNA damage. Approximately, 10% of A-T patients develop lymphoid malignancies. Deaths caused by extreme sensitivity to chemotherapy for malignancy have been reported, and cancer treatment in A-T is extraordinarily difficult, needing careful monitoring and individualized protocols. We report the case of a 12-year-old girl with A-T diagnosed at the age of 3 in association with IgA deficiency and recurrent pulmonary infections. Sanger sequencing revealed compound heterozygosity of the ATM gene, which bore two novel mutations. At the age of 12, she developed stage IV T-cell/histiocyte-rich large B-cell lymphoma. The tumor was resistant to chemotherapy, and she unfortunately died of cardiac insufficiency and multiple organ failure induced by rapid progression of the disease. The treatment approach for children with A-T and advanced-stage B-non-Hodgkin lymphoma must be refined.
Collapse
Affiliation(s)
- Daichi Sato
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Kunihiko Moriya
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| | - Tomohiro Nakano
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Chihiro Miyagawa
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Saori Katayama
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Hidetaka Niizuma
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| |
Collapse
|
20
|
Wang W, Li H, Zhang L, Jiang W, Shen L, Fan G. Clinical applications of monitoring immune status with 90 immune cell subsets in human whole blood by 10-color flow cytometry. Int J Lab Hematol 2021; 43:1132-1144. [PMID: 33870648 DOI: 10.1111/ijlh.13541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/19/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The immune system may involve and predict the different prognosis and therapy consequences. So, it's important to monitor and evaluate the immune status before and after treatments. METHODS Flow cytometry is the best technology to perform immune monitoring, because it can detect immune cells using small amount of sample in a short time. The whole blood is the ideal sample for immune status monitoring, since it includes almost all the immune cells and it's relatively easy to obtain and less invasive than bone marrow or lymph node. RESULTS Here we developed and validated a 10-color panel with only four tubes containing 29 antibodies to monitor 90 immune cell subsets in 2 ml whole blood samples. The major immune cell populations detected by our panel included T cell subsets (CD3+ total T, Th, Tc, Treg, CD8hi , CD8low , αβTCR, γδTCR, naïve, and memory T), T cell activation markers (CD25, CD69, and HLA-DR) and one immune checkpoint PD1, B cell subsets (B1, switched memory, non-switched, naïve B, and CD27- IgD- B cells), neutrophils, basophils, four monocytic cell subsets, dendritic cells (pDCs and mDCs), and four NK cell subsets. These panels of antibodies had been applied to monitor immune status (percentage and absolute number) in total 303 cases with various diseases, such as leukemia (AML, CML, MM, and ALL), lymphoma (B cells and NK/T cells), cancers (colon, lung, prostate, and breast), immune deficiencies, and autoimmune diseases. CONCLUSION We provided proof of feasibility for clinical monitoring immune status and guiding immunotherapy by multicolor flow cytometry testing.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Clinical laboratory, Xinhua hospital, Shanghai Jiaotong University of Medicine School, Shanghai, China
| | - Haibo Li
- Department of Pathology, Oregon Health and Science University, Portland, OR, USA
| | - Lihua Zhang
- Department of Clinical laboratory, Xinhua hospital, Shanghai Jiaotong University of Medicine School, Shanghai, China
| | - Wenli Jiang
- Department of Clinical laboratory, Xinhua hospital, Shanghai Jiaotong University of Medicine School, Shanghai, China
| | - Lisong Shen
- Department of Clinical laboratory, Xinhua hospital, Shanghai Jiaotong University of Medicine School, Shanghai, China
| | - Guang Fan
- Department of Pathology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
21
|
Totsune E, Nakano T, Moriya K, Sato D, Suzuki D, Miura A, Katayama S, Niizuma H, Kanno J, van Zelm MC, Imai K, Kanegane H, Sasahara Y, Kure S. Case Report: Infantile-Onset Fulminant Type 1 Diabetes Mellitus Caused by Novel Compound Heterozygous LRBA Variants. Front Immunol 2021; 12:677572. [PMID: 33912197 PMCID: PMC8072023 DOI: 10.3389/fimmu.2021.677572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Lipopolysaccharide-responsive beige-like anchor (LRBA) deficiency is a subtype of common variable immune deficiency (CVID). Numerous case reports and cohort studies have described a broad spectrum of clinical manifestations and variable disease phenotypes, including immune dysregulation, enteropathy, and recurrent infections. Although LRBA deficiency is an autosomal recessive primary immunodeficiency resulting in a phenotype similar to CVID, it is a monogenic disease and separate from CVID. Recently, in a report of monogenic primary immunodeficiency disorder associated with CVID and autoimmunity, the most common mutated gene was LRBA. We report the case of a girl who presented with fulminant type 1 diabetes at age 7 months. She later experienced recurrent bacterial infections with neutropenia and idiopathic thrombocytopenic purpura. Clinical genome sequencing revealed compound heterozygosity of the LRBA gene, which bore two novel mutations. A genetic basis should be considered in the differential diagnosis for very young patients with fulminant autoimmunity, and the diagnostic work-up should include evaluation of markers of immunodeficiency.
Collapse
Affiliation(s)
- Eriko Totsune
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Nakano
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kunihiko Moriya
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daichi Sato
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Dai Suzuki
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akinobu Miura
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Katayama
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hidetaka Niizuma
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Kanno
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Menno C van Zelm
- Department of Immunology and Pathology, Monash University and Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
22
|
Inherited CARD9 Deficiency in a Child with Invasive Disease Due to Exophiala dermatitidis and Two Older but Asymptomatic Siblings. J Clin Immunol 2021; 41:975-986. [PMID: 33558980 DOI: 10.1007/s10875-021-00988-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/02/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE Autosomal recessive CARD9 deficiency predisposes patients to invasive fungal disease. Candida and Trichophyton species are major causes of fungal disease in these patients. Other CARD9-deficient patients display invasive diseases caused by other fungi, such as Exophiala spp. The clinical penetrance of CARD9 deficiency regarding fungal disease is surprisingly not complete until adulthood, though the age remains unclear. Moreover, the immunological features of genetically confirmed yet asymptomatic individuals with CARD9 deficiency have not been reported. METHODS Identification of CARD9 mutations by gene panel sequencing and characterization of the cellular phenotype by quantitative PCR, immunoblot, luciferase reporter, and cytometric bead array assays were performed. RESULTS Gene panel sequencing identified compound heterozygous CARD9 variants, c.1118G>C (p.R373P) and c.586A>G (p.K196E), in a 4-year-old patient with multiple cerebral lesions and systemic lymphadenopathy due to Exophiala dermatitidis. The p.R373P is a known disease-causing variant, whereas the p.K196E is a private variant. Although the patient's siblings, a 10-year-old brother and an 8-year-old sister, were also compound heterozygous, they have been asymptomatic to date. Normal CARD9 mRNA and protein expression were found in the patient's CD14+ monocytes. However, these cells exhibited markedly impaired pro-inflammatory cytokine production in response to fungal stimulation. Monocytes from both asymptomatic siblings displayed the same cellular phenotype. CONCLUSIONS CARD9 deficiency should be considered in previously healthy patients with invasive Exophiala dermatitidis disease. Asymptomatic relatives of all ages should be tested for CARD9 deficiency. Detecting cellular defects in asymptomatic individuals is useful for diagnosing CARD9 deficiency.
Collapse
|
23
|
Kadowaki S, Hashimoto K, Nishimura T, Kashimada K, Kadowaki T, Kawamoto N, Imai K, Okada S, Kanegane H, Ohnishi H. Functional analysis of novel A20 variants in patients with atypical inflammatory diseases. Arthritis Res Ther 2021; 23:52. [PMID: 33549127 PMCID: PMC7866758 DOI: 10.1186/s13075-021-02434-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/31/2021] [Indexed: 12/29/2022] Open
Abstract
Background A20 haploinsufficiency (HA20) is an early-onset autoinflammatory disease caused by mutations in the TNFAIP3 gene, which encodes the protein A20. Numerous truncating mutations in the TNFAIP3 gene have been reported in HA20 patients, whereas fewer missense variants have had their pathogenicity confirmed. Here, we evaluated the pathogenic significance of three previously unreported missense variants of the TNFAIP3 gene in suspected cases of HA20. Methods We obtained the clinical features and immunological data of three patients with missense variants (Glu192Lys, Ile310Thr, and Gln709Arg) of unknown significance of TNFAIP3. We then performed in vitro functional assays including analysis of nuclear factor (NF)-κB reporter gene activity, detection of A20 expression and phosphorylation of A20 by IκB kinase β (IKKβ), and K63-deubiquitination assay using TNFAIP3-deficient HEK293 cells. Three known pathogenic missense mutations reported previously were also investigated. Results The inhibitory effect on NF-κB reporter gene activity was significantly disrupted by A20 Glu192Lys and the three known mutations. The variants Ile310Thr and Gln709Arg did not show a difference from the wild type in any of the assays performed in this study. Conclusions Among the three variants in the TNFAIP3 gene, Glu192Lys was interpreted as being likely pathogenic, but Ile310Thr and Gln709Arg as being not pathogenic (uncertain significance and likely benign, respectively), based on the American College of Medical Genetics and Genomics standards and guidelines. Our study highlights the necessity of performing in vitro functional assays, notably, NF-κB reporter gene assay, to evaluate the pathogenicity of TNFAIP3 missense variants for the accurate diagnosis of HA20. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02434-w.
Collapse
Affiliation(s)
- Saori Kadowaki
- Department of Pediatrics, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Kunio Hashimoto
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toyoki Nishimura
- Division of Pediatrics, Developmental and Urological-Reproductive Medicine Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomonori Kadowaki
- Department of Pediatrics, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.,Department of Pediatrics, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Norio Kawamoto
- Department of Pediatrics, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan. .,Clinical Genetics Center, Gifu University Hospital, Gifu, Japan.
| |
Collapse
|
24
|
Nishimura A, Aoki Y, Ishiwata Y, Ichimura T, Ueyama J, Kawahara Y, Tomoda T, Inoue M, Matsumoto K, Inoue K, Hiroki H, Ono S, Yamashita M, Okano T, Tanaka-Kubota M, Ashiarai M, Miyamoto S, Miyawaki R, Yamagishi C, Tezuka M, Okawa T, Hoshino A, Endo A, Yasuhara M, Kamiya T, Mitsuiki N, Ono T, Isoda T, Yanagimachi M, Tomizawa D, Nagasawa M, Mizutani S, Kajiwara M, Takagi M, Kanegane H, Imai K, Morio T. Hematopoietic Cell Transplantation with Reduced Intensity Conditioning Using Fludarabine/Busulfan or Fludarabine/Melphalan for Primary Immunodeficiency Diseases. J Clin Immunol 2021; 41:944-957. [PMID: 33527309 DOI: 10.1007/s10875-021-00966-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE The purpose of our study was to compare the safety and efficacy of hematopoietic cell transplantation (HCT) using fludarabine (Flu)-based reduced intensity conditioning (RIC) with busulfan (BU) or melphalan (Mel) for primary immunodeficiency diseases (PID). METHODS We retrospectively analyzed transplant outcome, including engraftment, chimerism, immune reconstitution, and complications in 15 patients with severe combined immunodeficiency (SCID) and 27 patients with non-SCID PID. The patients underwent Flu-based RIC-HCT with BU (FluBU: 7 SCID, 16 non-SCID) or Mel (FluMel: 8 SCID, 11 non-SCID). The targeted low-dose BU with therapeutic drug monitoring was set to 30 mg hour/L for SCID. RESULTS The 2-year overall survival of all patients was 79.6% and that of patients with SCID in the FluBU and FluMel groups was 100% and 62.5%, respectively. In the FluBU group, all seven patients achieved engraftment, good immune reconstitution, and long-term survival. All five patients receiving umbilical cord blood transplantation achieved complete or high-level mixed chimerism and sufficient specific IgG production. In the FluMel group, six of eight patients achieved complete or high-level mixed chimerism. Viral reactivation or new viral infection occurred in one FluBU group patient and four FluMel group patients. In the non-SCID group, 10 of 11 patients (91%) who received FluMel achieved complete or high-level mixed chimerism but had variable outcomes. Patients with WAS (2/2 patients), NEMO deficiency (2/2 patients), and X-linked hyper IgM syndrome (2/3 patients) who received FluBU achieved complete or high-level mixed chimerism and long-term survival. CONCLUSIONS RIC-HCT with FluBU is a safe and effective strategy for obtaining high-level donor chimerism, immune reconstitution including B cell function, and long-term survival in patients with SCID. In patients with non-SCID PID, the results varied according to the subtype of the disease. Further prospective studies are required to optimize the conditioning regimen for non-SCID PID.
Collapse
Affiliation(s)
- Akira Nishimura
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Aoki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasuyoshi Ishiwata
- Department of Hospital Pharmacy, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takuya Ichimura
- Department of Pediatrics, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Junichi Ueyama
- Department of Pediatrics, Tottori University Hospital, Tottori, Japan
| | - Yuta Kawahara
- Department of Pediatrics, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Takahiro Tomoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Maiko Inoue
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuaki Matsumoto
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kento Inoue
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Haruka Hiroki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shintaro Ono
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mari Tanaka-Kubota
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Miho Ashiarai
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoshi Miyamoto
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Reiji Miyawaki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chika Yamagishi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mari Tezuka
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Teppei Okawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akihiro Hoshino
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akifumi Endo
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masato Yasuhara
- Department of Pharmacokinetics and Pharmacodynamics, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahiro Kamiya
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Toshiaki Ono
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masakatsu Yanagimachi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Daisuke Tomizawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masayuki Nagasawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shuki Mizutani
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Michiko Kajiwara
- Department of Transfusion Medicine and Cell Therapy, Tokyo Medical and Dental University (TMDU), Medical Hospital, Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Child Health and Development, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohsuke Imai
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan. .,Department of Community Pediatrics, Perinatal, and Maternal Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
25
|
Tanita K, Sakura F, Nambu R, Tsumura M, Imanaka Y, Ohnishi H, Kato Z, Pan J, Hoshino A, Suzuki K, Yasutomi M, Umetsu S, Okada C, Takagi M, Imai K, Ohara O, Muise AM, Okada S, Morio T, Kanegane H. Clinical and Immunological Heterogeneity in Japanese Patients with Gain-of-Function Variants in STAT3. J Clin Immunol 2021; 41:780-790. [PMID: 33501615 DOI: 10.1007/s10875-021-00975-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/18/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Germline loss-of-function variants in the signal transducer and activator of transcription 3 (STAT3) gene result in autosomal dominant hyper IgE syndrome, whereas somatic gain-of-function (GOF) variants in STAT3 are associated with some malignancies. In addition, germline GOF variants in STAT3 are linked to disorders involving autoimmunity and lymphoproliferation. In this study, we describe five Japanese families with germline GOF variants in STAT3, including three novel variants. We also present the clinical and immunological characteristics of these patients. METHODS Eight patients from five families were enrolled in this study. We performed genetic and immunological analyses, and collected the associated clinical information. RESULTS We identified five heterozygous variants in STAT3 using whole-exome sequencing and target gene sequencing. Two of these (E286G and T716M) were previously reported and three (K348E, E415G, and G618A) were novel. A STAT3 reporter assay revealed that all of the variants were GOF. However, the immunological and clinical characteristics among the patients were highly variable. CONCLUSION Patients with STAT3 GOF variants exhibited clinical and immunological heterogeneity with incomplete penetrance.
Collapse
Affiliation(s)
- Kay Tanita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Fumiaki Sakura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ryusuke Nambu
- Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, Saitama, Japan.,SickKids Inflammatory Bowel Disease Center, The Hospital for Sick Children, Toronto, ON, Canada.,Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yusuke Imanaka
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Zenichiro Kato
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan.,Structural Medicine, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Jie Pan
- SickKids Inflammatory Bowel Disease Center, The Hospital for Sick Children, Toronto, ON, Canada.,Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Akihiro Hoshino
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Koji Suzuki
- Department of Pediatrics, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Motoko Yasutomi
- Department of Pediatrics, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shuichiro Umetsu
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama-shi Tobu Hospital, Yokohama, Kanagawa, Japan
| | - Chizuru Okada
- Hiroshima Chuodori Children Clinic, Hiroshima, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, Japan.,Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Alexo M Muise
- SickKids Inflammatory Bowel Disease Center, The Hospital for Sick Children, Toronto, ON, Canada.,Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Pediatrics, Institute of Medical Science and Biochemistry, University of Toronto, the Hospital for Sick Children, Toronto, ON, Canada
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
26
|
Goda S, Hayakawa S, Karakawa S, Okada S, Kawaguchi H, Kobayashi M. Possible involvement of regulatory T cell abnormalities and variational usage of TCR repertoire in children with autoimmune neutropenia. Clin Exp Immunol 2020; 204:1-13. [PMID: 33289074 DOI: 10.1111/cei.13559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 01/16/2023] Open
Abstract
Autoimmune neutropenia (AIN) in childhood is characterized by chronic neutropenia and positivity for anti-neutrophil antibodies, resulting in the excessive destruction of neutrophils. In this study, we investigated the involvement of regulatory T cells (Tregs ) in the pathogenesis of AIN in childhood. Tregs have been classified into three subpopulations based on the expressions of CD45RA and forkhead box protein 3 (FoxP3): resting Tregs , activated Tregs and non-suppressive Tregs . The frequency of activated Tregs (CD4+ CD25+ FoxP3high CD45RA- T cells) as well as that of total Tregs (CD4+ CD25+ FoxP3+ T cells) in peripheral blood was significantly decreased in patients with AIN. Analysis of the T cell receptor (TCR)-Vβ repertoire of CD4+ T cells revealed skewed usages in patients with AIN compared with that observed in age-matched control subjects. Regarding T cell subsets, the use of four of 24 TCR-Vβ families in Tregs and one in conventional T cells were increased in patients with AIN. The number of patients with AIN who showed skewed usages of TCR-Vβ family in conventional and Tregs was significantly higher than that reported in control subjects. When the preference between Tregs and conventional T cells in each TCR-Vβ family was individually compared, different use was prominently observed in the TCR-Vβ 9 family in patients with AIN. These results suggest that the quantitative abnormalities of Tregs and the skew of the TCR-Vβ repertoire in CD4+ T cells, including Tregs and conventional T cells, may be related to autoantibody production through a human neutrophil antigen-reactive T cell clone.
Collapse
Affiliation(s)
- S Goda
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - S Hayakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - S Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - S Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - H Kawaguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - M Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
27
|
Renner ED, Krätz CE, Orange JS, Hagl B, Rylaarsdam S, Notheis G, Durandy A, Torgerson TR, Ochs HD. Class Switch Recombination Defects: impact on B cell maturation and antibody responses. Clin Immunol 2020; 222:108638. [PMID: 33276124 DOI: 10.1016/j.clim.2020.108638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
To assess how B cell phenotype analysis correlates with antigen responses in patients with class switch recombination defects (CSRD) we quantified memory B cells by flow-cytometry and immunized CSRD patients with the neoantigen bacteriophage phiX174 (phage). CSRD patients showed uniformly absent or markedly reduced switched memory B cells (IgM-IgD-CD27+). CD40L patients had reduced CD27+ memory B cells (both non-switched and switched). In NEMO patients, results varied depending on the IKKγ gene variant. Three of four AID patients had normal percentages of CD27+ memory B cells while CD27+IgM-IgD- switched memory B cells were markedly reduced in all AID patients. Antibody response to phage was remarkably decreased with lack of memory amplification and class-switching in immunized CD40L, UNG deficient, and NEMO patients. Distinct B-cell phenotype pattern correlated with abnormal antibody responses to a T-cell dependent neoantigen, representing a powerful tool to identify CSRD patients.
Collapse
Affiliation(s)
- Ellen D Renner
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Carolin E Krätz
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Jordan S Orange
- Columbia University, Department of Pediatrics, New York, United States of America
| | - Beate Hagl
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Stacey Rylaarsdam
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA
| | - Gundula Notheis
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Anne Durandy
- Laboratory of Human Lymphohaematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Troy R Torgerson
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA
| | - Hans D Ochs
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
28
|
Linskens E, Diks AM, Neirinck J, Perez-Andres M, De Maertelaere E, Berkowska MA, Kerre T, Hofmans M, Orfao A, van Dongen JJM, Haerynck F, Philippé J, Bonroy C. Improved Standardization of Flow Cytometry Diagnostic Screening of Primary Immunodeficiency by Software-Based Automated Gating. Front Immunol 2020; 11:584646. [PMID: 33224147 PMCID: PMC7667243 DOI: 10.3389/fimmu.2020.584646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023] Open
Abstract
Background Multiparameter flow cytometry (FC) is essential in the diagnostic work-up and classification of primary immunodeficiency (PIDs). The EuroFlow PID Orientation tube (PIDOT) allows identification of all main lymphocyte subpopulations in blood. To standardize data analysis, tools for Automated Gating and Identification (AG&I) of the informative cell populations, were developed by EuroFlow. Here, we evaluated the contribution of these innovative AG&I tools to the standardization of FC in the diagnostic work-up of PID, by comparing AG&I against expert-based (EuroFlow-standardized) Manual Gating (MG) strategy, and its impact on the reproducibility and clinical interpretation of results. Methods FC data files from 44 patients (13 CVID, 12 PID, 19 non-PID) and 26 healthy donor (HD) blood samples stained with PIDOT were analyzed in parallel by MG and AG&I, using Infinicyt™ software (Cytognos). For comparison, percentage differences in absolute cell counts/µL were calculated for each lymphocyte subpopulation. Data files showing differences >20% were checked for their potential clinical relevance, based on age-matched percentile (p5-p95) reference ranges. In parallel, intra- and inter-observer reproducibility of MG vs AG&I were evaluated in a subset of 12 samples. Results The AG&I approach was able to identify the vast majority of lymphoid events (>99%), associated with a significantly higher intra- and inter-observer reproducibility compared to MG. For most HD (83%) and patient (68%) samples, a high degree of agreement (<20% numerical differences in absolute cell counts/µL) was obtained between MG and the AG&I module. This translated into a minimal impact (<5% of observations) on the final clinical interpretation. In all except three samples, extended expert revision of the AG&I approach revealed no error. In the three remaining samples aberrant maturation and/or abnormal marker expression profiles were seen leading in all three cases to numerical alarms by AG&I. Conclusion Altogether, our results indicate that replacement of MG by the AG&I module would be associated with a greater reproducibility and robustness of results in the diagnostic work-up of patients suspected of PID. However, expert revision of the results of AG&I of PIDOT data still remains necessary in samples with numerical alterations and aberrant B- and T-cell maturation and/or marker expression profiles.
Collapse
Affiliation(s)
- Eleni Linskens
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Annieck M Diks
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Jana Neirinck
- Department of Diagnostic Science, Ghent University, Ghent, Belgium
| | - Martín Perez-Andres
- Cancer Research Centre (IBMCC, USAL-CSIC; CIBERONC CB16/12/00400), Department of Medicine and Cytometry Service (NUCLEUS Research Support Platform), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain.,Translational and Clinical Research Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca (USAL), Department of Medicine, IBSAL and CIBERONC, University of Salamanca, Salamanca, Spain
| | | | - Magdalena A Berkowska
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Tessa Kerre
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Mattias Hofmans
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Alberto Orfao
- Cancer Research Centre (IBMCC, USAL-CSIC; CIBERONC CB16/12/00400), Department of Medicine and Cytometry Service (NUCLEUS Research Support Platform), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain.,Translational and Clinical Research Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca (USAL), Department of Medicine, IBSAL and CIBERONC, University of Salamanca, Salamanca, Spain
| | - Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Filomeen Haerynck
- Department of Pediatric Pulmonology and Immunology and PID Research Laboratory, Ghent University Hospital, Ghent, Belgium
| | - Jan Philippé
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Diagnostic Science, Ghent University, Ghent, Belgium
| | - Carolien Bonroy
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Diagnostic Science, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Yeh TW, Okano T, Naruto T, Yamashita M, Okamura M, Tanita K, Du L, Pan-Hammarström Q, Mitsuiki N, Okada S, Kanegane H, Imai K, Morio T. APRIL-dependent lifelong plasmacyte maintenance and immunoglobulin production in humans. J Allergy Clin Immunol 2020; 146:1109-1120.e4. [DOI: 10.1016/j.jaci.2020.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022]
|
30
|
Moeini Shad T, Yousefi B, Amirifar P, Delavari S, Rae W, Kokhaei P, Abolhassani H, Aghamohammadi A, Yazdani R. Variable Abnormalities in T and B Cell Subsets in Ataxia Telangiectasia. J Clin Immunol 2020; 41:76-88. [PMID: 33052516 DOI: 10.1007/s10875-020-00881-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ataxia-telangiectasia (AT) is a rare genetic condition, caused by biallelic deleterious variants in the ATM gene, and has variable immunological abnormalities. This study aimed to examine immunologic parameters reflecting cell development, activation, proliferation, and class switch recombination (CSR) and determine their relationship to the clinical phenotype in AT patients. METHODS In this study, 40 patients with a confirmed diagnosis of AT from the Iranian immunodeficiency registry center and 28 age-sex matched healthy controls were enrolled. We compared peripheral B and T cell subsets and T cell proliferation response to CD3/CD28 stimulation in AT patients with and without CSR defects using flow cytometry. RESULTS A significant decrease in naïve, transitional, switched memory, and IgM only memory B cells, along with a sharp increase in the marginal zone-like and CD21low B cells was observed in the patients. We also found CD4+ and CD8+ naïve, central memory, and terminally differentiated effector memory CD4+ (TEMRA) T cells were decreased. CD4+ and CD8+ effector memory, CD8+ TEMRA, and CD4+ regulatory T cells were significantly elevated in our patients. CD4+ T cell proliferation was markedly impaired compared to the healthy controls. Moreover, immunological investigations of 15 AT patients with CSR defect revealed a significant reduction in the marginal zone, switched memory, and more intense defects in IgM only memory B cells, CD4+ naïve and central memory T cells. CONCLUSION The present study revealed that patients with AT have a broad spectrum of cellular and humoral deficiencies. Therefore, a detailed evaluation of T and B cell subsets increases understanding of the disease in patients and the risk of infection.
Collapse
Affiliation(s)
- Tannaz Moeini Shad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Amirifar
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - William Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Parviz Kokhaei
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Primary Immunodeficiencies, Iran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Costabile M, Nguyen H, Kenyon A. Manipulating leukocyte populations to mimic immune disease states: a novel active approach to teaching flow cytometry to undergraduate immunology students. ADVANCES IN PHYSIOLOGY EDUCATION 2020; 44:247-253. [PMID: 32412385 DOI: 10.1152/advan.00032.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flow cytometry detects and measures the physical and chemical characteristics of cells or particles. In medical laboratories, flow cytometers are used to quantify changes in cell populations associated with disease states, such as AIDS. While a powerful technique, it is challenging to teach the principles of flow cytometry to undergraduate students. One approach is to have students process and analyze a patient sample. However, this is not possible when the patient has an infectious disease. Here we report a two-stage approach to address this challenge. Magnetic beads were used to manipulate leukocytes cell populations in healthy blood to mimic the phenotype of eight immune disease conditions. The cells were then stained against cell surface markers for cell populations and analyzed by flow cytometry. The second stage focused on teaching flow cytometry over 2 wk. Week 1 involved a lecture, followed by a laboratory session where students learned how to stain a blood sample. In week 2, students worked in a computer pool to analyze the previously generated data and determine the immunological status of a control and patient sample. Using this approach, all students achieved 100% correct diagnosis of both control and patient samples. Student feedback via a questionnaire was overwhelmingly positive, and student perceived knowledge of flow cytometry increased after the session significantly. We effectively mimicked several disease states, eliminating the need to source patient samples, yet still teaching undergraduate students the principles of flow cytometry.
Collapse
Affiliation(s)
- Maurizio Costabile
- University of South Australia, School of Pharmacy and Medical Sciences, Adelaide, Australia
- Centre for Cancer Biology, University of South Australia, and SA Pathology, Adelaide, South Australia, Australia
| | - Hong Nguyen
- University of South Australia, School of Pharmacy and Medical Sciences, Adelaide, Australia
| | - Amanda Kenyon
- University of South Australia, School of Pharmacy and Medical Sciences, Adelaide, Australia
| |
Collapse
|
32
|
Kadowaki T, Ohnishi H, Kawamoto N, Kadowaki S, Hori T, Nishimura K, Kobayashi C, Shigemura T, Ogata S, Inoue Y, Hiejima E, Izawa K, Matsubayashi T, Matsumoto K, Imai K, Nishikomori R, Ito S, Kanegane H, Fukao T. Immunophenotyping of A20 haploinsufficiency by multicolor flow cytometry. Clin Immunol 2020; 216:108441. [PMID: 32335289 DOI: 10.1016/j.clim.2020.108441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/27/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022]
Abstract
Haploinsufficiency of A20 (HA20) causes inflammatory disease resembling Behçet's disease; many cases have been reported, including some that are complicated with autoimmune diseases. This study aims to clarify the immunophenotype of patients with HA20 by analyzing lymphocyte subsets using multicolor flow cytometry. The patients with HA20 previously diagnosed in a nationwide survey were compared by their cell subpopulations. In total, 27 parameters including regulatory T cells (Tregs), double-negative T cells (DNTs), and follicular helper T cells (TFHs) were analyzed and compared with the reference values in four age groups: 0-1, 2-6, 7-19, and ≥20 years. The Tregs of patients with HA20 tended to increase in tandem with age-matched controls at all ages. In addition, patients ≥20 years had increased DNTs compared with controls, whereas TFHs significantly increased in younger patients. In HA20 patients, the increase in DNTs and TFHs may contribute to the development of autoimmune diseases.
Collapse
Affiliation(s)
- Tomonori Kadowaki
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Pediatrics, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Norio Kawamoto
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Saori Kadowaki
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomohiro Hori
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kenichi Nishimura
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chie Kobayashi
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tomonari Shigemura
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shohei Ogata
- Department of Pediatrics, Kitasato University Hospital, Sagamihara, Japan
| | - Yuzaburo Inoue
- Department of Allergy and Rheumatology, Chiba Children's Hospital, Chiba, Japan
| | - Eitaro Hiejima
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | | | - Kazuaki Matsumoto
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Shuichi Ito
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Toshiyuki Fukao
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
33
|
Kalina T, Bakardjieva M, Blom M, Perez-Andres M, Barendregt B, Kanderová V, Bonroy C, Philippé J, Blanco E, Pico-Knijnenburg I, Paping JHMP, Wolska-Kuśnierz B, Pac M, Tkazcyk J, Haerynck F, Akar HH, Formánková R, Freiberger T, Svatoň M, Šedivá A, Arriba-Méndez S, Orfao A, van Dongen JJM, van der Burg M. EuroFlow Standardized Approach to Diagnostic Immunopheneotyping of Severe PID in Newborns and Young Children. Front Immunol 2020; 11:371. [PMID: 32265901 PMCID: PMC7096355 DOI: 10.3389/fimmu.2020.00371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
The EuroFlow PID consortium developed a set of flow cytometry tests for evaluation of patients with suspicion of primary immunodeficiency (PID). In this technical report we evaluate the performance of the SCID-RTE tube that explores the presence of recent thymic emigrants (RTE) together with T-cell activation status and maturation stages and discuss its applicability in the context of the broader EuroFlow PID flow cytometry testing algorithm for diagnostic orientation of PID of the lymphoid system. We have analyzed peripheral blood cells of 26 patients diagnosed between birth and 2 years of age with a genetically defined primary immunodeficiency disorder: 15 severe combined immunodeficiency (SCID) patients had disease-causing mutations in RAG1 or RAG2 (n = 4, two of them presented with Omenn syndrome), IL2RG (n = 4, one of them with confirmed maternal engraftment), NHEJ1 (n = 1), CD3E (n = 1), ADA (n = 1), JAK3 (n = 3, two of them with maternal engraftment) and DCLRE1C (n = 1) and 11 other PID patients had diverse molecular defects [ZAP70 (n = 1), WAS (n = 2), PNP (n = 1), FOXP3 (n = 1), del22q11.2 (DiGeorge n = 4), CDC42 (n = 1) and FAS (n = 1)]. In addition, 44 healthy controls in the same age group were analyzed using the SCID-RTE tube in four EuroFlow laboratories using a standardized 8-color approach. RTE were defined as CD62L+CD45RO-HLA-DR-CD31+ and the activation status was assessed by the expression of HLA-DR+. Naïve CD8+ T-lymphocytes and naïve CD4+ T-lymphocytes were defined as CD62L+CD45RO-HLA-DR-. With the SCID-RTE tube, we identified patients with PID by low levels or absence of RTE in comparison to controls as well as low levels of naïve CD4+ and naïve CD8+ lymphocytes. These parameters yielded 100% sensitivity for SCID. All SCID patients had absence of RTE, including the patients with confirmed maternal engraftment or oligoclonally expanded T-cells characteristic for Omenn syndrome. Another dominant finding was the increased numbers of activated CD4+HLA-DR+ and CD8+HLA-DR+ lymphocytes. Therefore, the EuroFlow SCID-RTE tube together with the previously published PIDOT tube form a sensitive and complete cytometric diagnostic test suitable for patients suspected of severe PID (SCID or CID) as well as for children identified via newborn screening programs for SCID with low or absent T-cell receptor excision circles (TRECs).
Collapse
Affiliation(s)
- Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Marina Bakardjieva
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Maartje Blom
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Martin Perez-Andres
- Department of Medicine-Serv. Cytometry, Cancer Research Center (IBMCC-CSIC/USAL), University of Salamanca, Salamanca, Spain
| | - Barbara Barendregt
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Veronika Kanderová
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Carolien Bonroy
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jan Philippé
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Elena Blanco
- Department of Medicine-Serv. Cytometry, Cancer Research Center (IBMCC-CSIC/USAL), University of Salamanca, Salamanca, Spain
| | - Ingrid Pico-Knijnenburg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jitse H M P Paping
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Malgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Jakub Tkazcyk
- Department of Pediatrics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Filomeen Haerynck
- PID Research Lab, Department of Pediatric Pulmonology and Immunology, Ghent University Hospital, Ghent, Belgium
| | - Himmet Haluk Akar
- Department of Pediatric Immunology and Allergy, Kanuni Sultan Süleyman Training and Research Hospital, Istanbul Health Sciences University, Istanbul, Turkey
| | - Renata Formánková
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia.,Medical Faculty, Masaryk University, Brno, Czechia
| | - Michael Svatoň
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Anna Šedivá
- Department of Immunology, University Hospital Motol, Prague, Czechia
| | - Sonia Arriba-Méndez
- Servicio de Pediatría, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine-Serv. Cytometry, Cancer Research Center (IBMCC-CSIC/USAL), University of Salamanca, Salamanca, Spain
| | - Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Mirjam van der Burg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
34
|
Moriya K, Suzuki T, Uchida N, Nakano T, Katayama S, Irie M, Rikiishi T, Niizuma H, Okada S, Imai K, Sasahara Y, Kure S. Ruxolitinib treatment of a patient with steroid-dependent severe autoimmunity due to STAT1 gain-of-function mutation. Int J Hematol 2020; 112:258-262. [PMID: 32180118 DOI: 10.1007/s12185-020-02860-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 01/01/2023]
Abstract
Signal transducer and activator of transcription 1 gain-of-function (STAT1 GOF) mutations are the most common cause of chronic mucocutaneous candidiasis (CMC). We report the effect of oral ruxolitinib, an inhibitor of Janus kinase (JAK) family tyrosine kinases, on the clinical and immune status of a 3-year-old male with steroid-dependent severe autoimmunity due to a STAT1 GOF T385M mutation. The patient's susceptibility to infection improved with antimicrobial prophylaxis and immunoglobulin replacement therapy, but he continued to exhibit severely disabling symptoms of autoimmunity. More than one-third of patients with STAT1 GOF mutations present with autoimmune manifestations, and this patient's mutation was reported to cause CMC with autoimmunity. We analyzed the interleukin (IL)-17A and IFN-γ levels and immunophenotype by flow cytometry before and during treatment with ruxolitinib. The peripheral IL-17A level did not increase, but the IFN-γ level decreased after 4 months of therapy. The STAT1 phosphorylation level decreased significantly upon stimulation of patient cells with IFN-γ. Clinically, cytomegalovirus reactivation occurred, but was controlled. No other adverse effect was noted. We report the potential of JAK1/2 inhibition with ruxolitinib for both CMC and steroid-dependent autoimmunity. However, long-term administration is necessary, as the effect is not sustained after treatment is discontinued.
Collapse
Affiliation(s)
- Kunihiko Moriya
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| | - Tasuku Suzuki
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Nao Uchida
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Tomohiro Nakano
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Saori Katayama
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Masahiro Irie
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Takeshi Rikiishi
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Hidetaka Niizuma
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| |
Collapse
|
35
|
Cabral-Marques O, Schimke LF, de Oliveira EB, El Khawanky N, Ramos RN, Al-Ramadi BK, Segundo GRS, Ochs HD, Condino-Neto A. Flow Cytometry Contributions for the Diagnosis and Immunopathological Characterization of Primary Immunodeficiency Diseases With Immune Dysregulation. Front Immunol 2019; 10:2742. [PMID: 31849949 PMCID: PMC6889851 DOI: 10.3389/fimmu.2019.02742] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022] Open
Abstract
Almost 70 years after establishing the concept of primary immunodeficiency disorders (PIDs), more than 320 monogenic inborn errors of immunity have been identified thanks to the remarkable contribution of high-throughput genetic screening in the last decade. Approximately 40 of these PIDs present with autoimmune or auto-inflammatory symptoms as the primary clinical manifestation instead of infections. These PIDs are now recognized as diseases of immune dysregulation. Loss-of function mutations in genes such as FOXP3, CD25, LRBA, IL-10, IL10RA, and IL10RB, as well as heterozygous gain-of-function mutations in JAK1 and STAT3 have been reported as causative of these disorders. Identifying these syndromes has considerably contributed to expanding our knowledge on the mechanisms of immune regulation and tolerance. Although whole exome and whole genome sequencing have been extremely useful in identifying novel causative genes underlying new phenotypes, these approaches are time-consuming and expensive. Patients with monogenic syndromes associated with autoimmunity require faster diagnostic tools to delineate therapeutic strategies and avoid organ damage. Since these PIDs present with severe life-threatening phenotypes, the need for a precise diagnosis in order to initiate appropriate patient management is necessary. More traditional approaches such as flow cytometry are therefore a valid option. Here, we review the application of flow cytometry and discuss the relevance of this powerful technique in diagnosing patients with PIDs presenting with immune dysregulation. In addition, flow cytometry represents a fast, robust, and sensitive approach that efficiently uncovers new immunopathological mechanisms underlying monogenic PIDs.
Collapse
Affiliation(s)
- Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Nadia El Khawanky
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Freiburg im Breisgau, Germany.,Precision Medicine Theme, The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Rodrigo Nalio Ramos
- INSERM U932, SiRIC Translational Immunotherapy Team, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | | | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, WA, United States
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
van Dongen JJM, van der Burg M, Kalina T, Perez-Andres M, Mejstrikova E, Vlkova M, Lopez-Granados E, Wentink M, Kienzler AK, Philippé J, Sousa AE, van Zelm MC, Blanco E, Orfao A. EuroFlow-Based Flowcytometric Diagnostic Screening and Classification of Primary Immunodeficiencies of the Lymphoid System. Front Immunol 2019; 10:1271. [PMID: 31263462 PMCID: PMC6585843 DOI: 10.3389/fimmu.2019.01271] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/17/2019] [Indexed: 12/16/2022] Open
Abstract
Guidelines for screening for primary immunodeficiencies (PID) are well-defined and several consensus diagnostic strategies have been proposed. These consensus proposals have only partially been implemented due to lack of standardization in laboratory procedures, particularly in flow cytometry. The main objectives of the EuroFlow Consortium were to innovate and thoroughly standardize the flowcytometric techniques and strategies for reliable and reproducible diagnosis and classification of PID of the lymphoid system. The proposed EuroFlow antibody panels comprise one orientation tube and seven classification tubes and corresponding databases of normal and PID samples. The 8-color 12-antibody PID Orientation tube (PIDOT) aims at identification and enumeration of the main lymphocyte and leukocyte subsets; this includes naïve pre-germinal center (GC) and antigen-experienced post-GC memory B-cells and plasmablasts. The seven additional 8(-12)-color tubes can be used according to the EuroFlow PID algorithm in parallel or subsequently to the PIDOT for more detailed analysis of B-cell and T-cell subsets to further classify PID of the lymphoid system. The Pre-GC, Post-GC, and immunoglobulin heavy chain (IgH)-isotype B-cell tubes aim at identification and enumeration of B-cell subsets for evaluation of B-cell maturation blocks and specific defects in IgH-subclass production. The severe combined immunodeficiency (SCID) tube and T-cell memory/effector subset tube aim at identification and enumeration of T-cell subsets for assessment of T-cell defects, such as SCID. In case of suspicion of antibody deficiency, PIDOT is preferably directly combined with the IgH isotype tube(s) and in case of SCID suspicion (e.g., in newborn screening programs) the PIDOT is preferably directly combined with the SCID T-cell tube. The proposed ≥8-color antibody panels and corresponding reference databases combined with the EuroFlow PID algorithm are designed to provide fast, sensitive and cost-effective flowcytometric diagnosis of PID of the lymphoid system, easily applicable in multicenter diagnostic settings world-wide.
Collapse
Affiliation(s)
- Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Tomas Kalina
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Charles University, Prague, Czechia
| | - Martin Perez-Andres
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), CB/16/12/00233, Instituto Carlos III, Madrid, Spain
| | - Ester Mejstrikova
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Charles University, Prague, Czechia
| | - Marcela Vlkova
- Institute of Clinical Immunology and Allergology, St. Anne's University Hospital Brno, Masaryk University, Brno, Czechia
| | | | | | - Anne-Kathrin Kienzler
- Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jan Philippé
- Department of Laboratory Medicine, University Hospital Ghent, Ghent, Belgium
| | - Ana E Sousa
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Menno C van Zelm
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Immunology and Pathology, Central Clinical School, Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Elena Blanco
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), CB/16/12/00233, Instituto Carlos III, Madrid, Spain
| | - Alberto Orfao
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), CB/16/12/00233, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Kumaki E, Tanaka K, Imai K, Aoki-Nogami Y, Ishiguro A, Okada S, Kanegane H, Ishikawa F, Morio T. Atypical SIFD with novel TRNT1 mutations: a case study on the pathogenesis of B-cell deficiency. Int J Hematol 2019; 109:382-389. [PMID: 30758723 DOI: 10.1007/s12185-019-02614-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/14/2022]
Abstract
Mutation in the gene encoding tRNA nucleotidyl transferase, CCA-adding 1 (TRNT1), an enzyme essential for the synthesis of the 3'-terminal CCA sequence in tRNA molecules, results in a disorder that features sideroblastic anemia, B-cell immunodeficiency, periodic fever, and developmental delay. Mutations in TRNT1 are also linked to phenotypes including retinitis pigmentosa, cataracts, and cardiomyopathy. To date, it has remained unclear how defective TRNT1 is linked to B-cell deficiency. Here we report the case of a 12-year-old boy without sideroblastic anemia who harbors novel compound heterozygous mutations in TRNT1. Immunophenotypic analysis revealed severely decreased levels of B cells and follicular helper T cells. In the bone marrow, B-cell maturation stopped at the CD19+CD10+CD20+/- pre-B-cell stage. Severe combined immunodeficiency mice transplanted with bone marrow hematopoietic stem cells from the patient showed largely normal B-cell engraftment and differentiation in the bone marrow and periphery at 24 weeks post-transplantation, comparable to those in mouse transplanted with healthy hematopoietic stem cells. Biochemical analysis revealed augmented endoplasmic reticulum (ER) stress response in activated T cells. Peripheral B-cell deficiency of TRNT1 deficiency may be associated with augmented ER stress in immature B cells in the bone marrow.
Collapse
Affiliation(s)
- Eri Kumaki
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Keisuke Tanaka
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Aoki-Nogami
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Akira Ishiguro
- Center for Postgraduate Education and Training, National Center for Child Health and Development, Tokyo, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Fumihiko Ishikawa
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
38
|
Two Prenatal Cases of Hyper-IgE Syndrome. J Clin Immunol 2019; 39:15-18. [DOI: 10.1007/s10875-018-0588-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
|
39
|
Sasaki H, Takamura A, Kawahata K, Takashima T, Imai K, Morio T, Kohsaka H. Peripheral blood lymphocyte subset repertoires are biased and reflect clinical features in patients with dermatomyositis. Scand J Rheumatol 2018; 48:225-229. [DOI: 10.1080/03009742.2018.1530371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- H Sasaki
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - A Takamura
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - K Kawahata
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - T Takashima
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - K Imai
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - T Morio
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - H Kohsaka
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
40
|
Kamae C, Imai K, Kato T, Okano T, Honma K, Nakagawa N, Yeh TW, Noguchi E, Ohara A, Shigemura T, Takahashi H, Takakura S, Hayashi M, Honma A, Watanabe S, Shigemori T, Ohara O, Sasaki H, Kubota T, Morio T, Kanegane H, Nonoyama S. Clinical and Immunological Characterization of ICF Syndrome in Japan. J Clin Immunol 2018; 38:927-937. [PMID: 30353301 DOI: 10.1007/s10875-018-0559-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/03/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is a rare autosomal recessive primary immunodeficiency. Hypogammaglobulinemia is a major manifestation of ICF syndrome, but immunoglobulin replacement therapy does not seem to be effective for some ICF patients. Therefore, we aimed to reassess the immunological characteristics of this syndrome. METHODS Eleven Japanese patients with ICF syndrome were enrolled. We performed whole-exome sequencing in four cases and homozygosity mapping using SNP analysis in two. We evaluated their clinical manifestations and immunological status. RESULTS We newly diagnosed six ICF patients who had tentatively been diagnosed with common variable immunodeficiency. We identified two novel mutations in the DNMT3B gene and one novel mutation in the ZBTB24 gene. All patients showed low serum IgG and/or IgG2 levels and were treated by periodic immunoglobulin replacement therapy. Three of the six patients showed worse results of the mitogen-induced lymphocyte proliferation test. Analyses of lymphocyte subpopulations revealed that CD19+CD27+ memory B cells were low in seven of nine patients, CD3+ T cells were low in three patients, CD4/8 ratio was inverted in five patients, CD31+ recent thymic emigrant cells were low in two patients, and CD19+ B cells were low in four patients compared with those in the normal controls. ICF2 patients showed lower proportions of CD19+ B cells and CD16+56+ NK cells and significantly higher proportions of CD3+ T cells than ICF1 patients. T cell receptor excision circles were undetectable in two patients. Despite being treated by immunoglobulin replacement therapy, three patients died of influenza virus, fatal viral infection with persistent Epstein-Barr virus infection, or JC virus infection. One of three dead patients showed normal intelligence with mild facial anomaly. Two patients presented with autoimmune or inflammatory manifestations. Infectious episodes decreased in three patients who were started on trimethoprim-sulfamethoxazole and/or antifungal drugs in addition to immunoglobulin replacement therapy. These patients might have suffered from T cell immunodeficiency. CONCLUSION These results indicate that patients with ICF syndrome have a phenotype of combined immunodeficiency. Thus, to achieve a better prognosis, these patients should be treated as having combined immunodeficiency in addition to receiving immunoglobulin replacement therapy.
Collapse
Affiliation(s)
- Chikako Kamae
- Department of Pediatrics, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-0042, Japan.
- Department of Pediatrics, Self Defense Forces Central Hospital, Tokyo, Japan.
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tamaki Kato
- Department of Pediatrics, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-0042, Japan
- Department of Pediatrics, Self Defense Forces Central Hospital, Tokyo, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kenichi Honma
- Department of Pediatrics, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-0042, Japan
| | - Noriko Nakagawa
- Department of Pediatrics, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-0042, Japan
- Department of Pediatrics, Self Defense Forces Central Hospital, Tokyo, Japan
| | - Tzu-Wen Yeh
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Emiko Noguchi
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Ohara
- Department of Pediatrics, Toho University School of Medicine, Tokyo, Japan
| | - Tomonari Shigemura
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroshi Takahashi
- Department of Neurology, National Hospital Organization, Tottori Medical Center, Tottori, Japan
| | - Shunichi Takakura
- Department of Infectious Diseases, Okinawa Chubu Hospital, Uruma, Japan
| | | | - Aoi Honma
- Department of Pediatrics, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Seiichi Watanabe
- Department of Pediatrics, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Tomoko Shigemori
- Department of Pediatrics, Nippon Medical School Tama Nagayama Hospital, Tama, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeo Kubota
- Faculty of Child Studies, Seitoku University, Matsudo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-0042, Japan
| |
Collapse
|
41
|
Hoshino A, Tanita K, Kanda K, Imadome KI, Shikama Y, Yasumi T, Imai K, Takagi M, Morio T, Kanegane H. High frequencies of asymptomatic Epstein-Barr virus viremia in affected and unaffected individuals with CTLA4 mutations. Clin Immunol 2018; 195:45-48. [DOI: 10.1016/j.clim.2018.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/07/2018] [Accepted: 07/22/2018] [Indexed: 11/25/2022]
|
42
|
Bravo García-Morato M, Aracil Santos FJ, Briones AC, Blázquez Moreno A, Del Pozo Maté Á, Domínguez-Soto Á, Beato Merino MJ, Del Pino Molina L, Torres Canizales J, Marin AV, Vallespín García E, Feito Rodríguez M, Plaza López Sabando D, Jiménez-Reinoso A, Mozo Del Castillo Y, Sanz Santaeufemia FJ, de Lucas-Laguna R, Cárdenas PP, Casamayor Polo L, Coronel Díaz M, Valés-Gómez M, Roldán Santiago E, Ferreira Cerdán A, Nevado Blanco J, Corbí ÁL, Reyburn HT, Regueiro JR, López-Granados E, Rodríguez Pena R. New human combined immunodeficiency caused by interferon regulatory factor 4 (IRF4) deficiency inherited by uniparental isodisomy. J Allergy Clin Immunol 2018; 141:1924-1927.e18. [PMID: 29408330 DOI: 10.1016/j.jaci.2017.12.995] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/01/2017] [Accepted: 12/27/2017] [Indexed: 01/01/2023]
Affiliation(s)
- María Bravo García-Morato
- Department of Immunology, Hospital Universitario La Paz, Madrid, Spain; Lymphocyte Pathophysiology Group, La Paz Institute of Biomedical Research, IdiPAZ, Madrid, Spain.
| | | | - Alejandro Contreras Briones
- Department of Microbiology I (Immunology), School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Alfonso Blázquez Moreno
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ángela Del Pozo Maté
- Institute of Medical and Molecular Genetics (INGEMM), Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | - Lucía Del Pino Molina
- Department of Immunology, Hospital Universitario La Paz, Madrid, Spain; Lymphocyte Pathophysiology Group, La Paz Institute of Biomedical Research, IdiPAZ, Madrid, Spain
| | - Juan Torres Canizales
- Department of Immunology, Hospital Universitario La Paz, Madrid, Spain; Lymphocyte Pathophysiology Group, La Paz Institute of Biomedical Research, IdiPAZ, Madrid, Spain
| | - Ana Victoria Marin
- Department of Microbiology I (Immunology), School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Elena Vallespín García
- Institute of Medical and Molecular Genetics (INGEMM), Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | - Anaïs Jiménez-Reinoso
- Department of Microbiology I (Immunology), School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | | | | | | | - Paula P Cárdenas
- Department of Microbiology I (Immunology), School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | | | | | - Mar Valés-Gómez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Antonio Ferreira Cerdán
- Department of Immunology, Hospital Universitario La Paz, Madrid, Spain; Lymphocyte Pathophysiology Group, La Paz Institute of Biomedical Research, IdiPAZ, Madrid, Spain
| | - Julián Nevado Blanco
- Institute of Medical and Molecular Genetics (INGEMM), Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Ángel L Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Hugh T Reyburn
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José Ramón Regueiro
- Department of Microbiology I (Immunology), School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Eduardo López-Granados
- Department of Immunology, Hospital Universitario La Paz, Madrid, Spain; Lymphocyte Pathophysiology Group, La Paz Institute of Biomedical Research, IdiPAZ, Madrid, Spain
| | - Rebeca Rodríguez Pena
- Department of Immunology, Hospital Universitario La Paz, Madrid, Spain; Lymphocyte Pathophysiology Group, La Paz Institute of Biomedical Research, IdiPAZ, Madrid, Spain
| |
Collapse
|
43
|
Flow cytometry-based diagnosis of primary immunodeficiency diseases. Allergol Int 2018; 67:43-54. [PMID: 28684198 DOI: 10.1016/j.alit.2017.06.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/09/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022] Open
Abstract
Primary immunodeficiencies (PIDs) are a heterogeneous group of inherited diseases of the immune system. The definite diagnosis of PID is ascertained by genetic analysis; however, this takes time and is costly. Flow cytometry provides a rapid and highly sensitive tool for diagnosis of PIDs. Flow cytometry can evaluate specific cell populations and subpopulations, cell surface, intracellular and intranuclear proteins, biologic effects associated with specific immune defects, and certain functional immune characteristics, each being useful for the diagnosis and evaluation of PIDs. Flow cytometry effectively identifies major forms of PIDs, including severe combined immunodeficiency, X-linked agammaglobulinemia, hyper IgM syndromes, Wiskott-Aldrich syndrome, X-linked lymphoproliferative syndrome, familial hemophagocytic lymphohistiocytosis, autoimmune lymphoproliferative syndrome, IPEX syndrome, CTLA 4 haploinsufficiency and LRBA deficiency, IRAK4 and MyD88 deficiencies, Mendelian susceptibility to mycobacterial disease, chronic mucocuneous candidiasis, and chronic granulomatous disease. While genetic analysis is the definitive approach to establish specific diagnoses of PIDs, flow cytometry provides a tool to effectively evaluate patients with PIDs at relatively low cost.
Collapse
|
44
|
Okano T, Nishikawa T, Watanabe E, Watanabe T, Takashima T, Yeh TW, Yamashita M, Tanaka-Kubota M, Miyamoto S, Mitsuiki N, Takagi M, Kawano Y, Mochizuki Y, Imai K, Kanegane H, Morio T. Maternal T and B cell engraftment in two cases of X-linked severe combined immunodeficiency with IgG1 gammopathy. Clin Immunol 2017; 183:112-120. [PMID: 28780374 DOI: 10.1016/j.clim.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/21/2017] [Accepted: 08/01/2017] [Indexed: 01/12/2023]
Abstract
X-linked severe combined immunodeficiency (X-SCID), caused by defects in the common gamma chain, is typically characterized by T and NK cell defects with the presence of B cells. T cell dysfunction and impaired class-switch recombination of B cells mean that patients typically have defects in class-switched immunoglobulins (IgG, IgA, and IgE) with detectable IgM. Here, we describe two patients with X-SCID with IgG1 gammopathy, in whom we identified maternal T and B cell engraftment. Exclusively, maternal B cells were found among the IgD-CD27+ class-switched memory B cells, whereas the patients' B cells remained naïve. In vitro stimulation with CD40L+IL-21 revealed that peripheral blood cells from both patients produced only IgG1. Class-switched maternal B cells had restricted receptor repertoires with various constant regions and few somatic hypermutations. In conclusion, engrafted maternal B cells underwent class-switch recombination and produced immunoglobulin, causing hypergammaglobulinemia in patients with X-SCID.
Collapse
Affiliation(s)
- Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takuro Nishikawa
- Department of Pediatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eri Watanabe
- Laboratory of Diagnostic Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takehiro Takashima
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tzu-Wen Yeh
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mari Tanaka-Kubota
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoshi Miyamoto
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masatoshi Takagi
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoshifumi Kawano
- Department of Pediatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshiki Mochizuki
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|