1
|
Chen X, Wu MN, Chen QY, Li P, Wang MY, Li J, Xin XF, Mao YB. Arabidopsis perceives caterpillar oral secretion to increase resistance by reactive oxygen species-enhanced glucosinolate hydrolysis. THE NEW PHYTOLOGIST 2025; 246:1304-1318. [PMID: 40051091 DOI: 10.1111/nph.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/29/2025] [Indexed: 04/11/2025]
Abstract
In Arabidopsis, the outbreaks of reactive oxygen species (ROS) occur upon pathogen recognition by pattern- and effector-triggered immunity (PTI and ETI, respectively), which plays a significant role in disease resistance. Here, we found that Arabidopsis also experiences two outbreaks of ROS (oral secretion (OS)-induced ROS (ROSOS)) upon the perception of OS from cotton bollworm (Helicoverpa armigera) and other lepidopterans. Oral secretion-induced ROS burst requires the PTI machinery, including BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1) and BOTRYTIS-INDUCED KINASE1 (BIK1). Oral secretion-induced ROS are primarily produced by respiratory burst oxidase homologue D (RBOHD) in the apoplast, and the double mutant, rbohdf, exhibits reduced resistance to lepidopterans. Insect biting rather than wounding induces the gene expressions of plant defense-associated respiratory burst and toxin catabolic processes, facilitating the breakdown of leaf glucosinolates into bioactive intermediates, like sulforaphane, thereby impeding insect herbivory. Our investigation demonstrates that Arabidopsis perceives insect OS in a BAK1-BIK1-dependent manner and employs RBOHD to produce ROS in the apoplast, thereby enhancing its insect resistance by accelerating glucosinolate hydrolysis.
Collapse
Affiliation(s)
- Xueying Chen
- National Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200241, China
| | - Man-Ni Wu
- National Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiu-Yi Chen
- National Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Pai Li
- National Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mu-Yang Wang
- National Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiancai Li
- National Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ying-Bo Mao
- National Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
2
|
Li B, Luo M, Liu X, Shi W, Qi J, Zhou S, Wang G. The Spodoptera frugiperda L-aminoacylase degrades fatty acid-amino acid conjugates and promotes larvae growth on Zea mays. Commun Biol 2025; 8:641. [PMID: 40263587 PMCID: PMC12015422 DOI: 10.1038/s42003-025-08048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Oral secretions (OS) contain diverse functional molecules that play important roles in the molecular interactions between insect herbivores and their host plants. Components of OS have been hypothesized to facilitate adaptation of specialized herbivores towards their preferred hosts. In this study, we identified an L-aminoacylase-encoding gene, SfruACY, that was preferentially up-regulated in the salivary glands of Spodoptera frugiderpa larvae when feeding on maize leaves compared to artificial diet. The protein product was confirmed to catalyze the in vitro degradation of fatty acid-amino acid conjugates (FACs), the classic plant defense elicitors commonly found in the OS of lepidopteran caterpillars. Generation of a homozygous SfruACY knock-out line with the CRISPR-Cas9 technology further revealed that the activity of this gene could promote the growth of S. frugiperda larvae on maize leaves but was not required for larvae growth on artificial diet. Finally, comparative transcriptomic analyses of maize leaves showed more pronounced inducible defense responses when attacked by the SfruACY knocked-out larvae than the wildtype intruders. These experimental evidences support that the inducible expression of SfruACY by maize leaf diet in the salivary glands of S. frugiperda larvae can lower the FAC contents in their OS, and hence facilitate larvae growth likely by inducing weaker plant defense responses. Our findings provide a mechanistic explanation for a longstanding observation that S. frugiperda larvae induce weaker plant defense responses, and shed light on transcriptional regulation as a potential mean for insect herbivores to adapt towards their preferred host plant species.
Collapse
Affiliation(s)
- Bin Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Entomology, China Agricultural University, Beijing, China
| | - Mei Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Xiaofeng Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Wangpeng Shi
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Entomology, China Agricultural University, Beijing, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
3
|
Endo Y, Tanaka M, Uemura T, Tanimura K, Desaki Y, Ozawa R, Bonzano S, Maffei ME, Shinya T, Galis I, Arimura G. Spider mite tetranins elicit different defense responses in different host habitats. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70046. [PMID: 40038832 PMCID: PMC11880414 DOI: 10.1111/tpj.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 03/06/2025]
Abstract
Spider mites (Tetranychus urticae) are a major threat to economically important crops. Here, we investigated the potential of tetranins, in particular Tet3 and Tet4, as T. urticae protein-type elicitors that stimulate plant defense. Truncated Tet3 and Tet4 proteins showed efficacy in activating the defense gene pathogenesis-related 1 (PR1) and inducing phytohormone production in leaves of Phaseolus vulgaris. In particular, Tet3 caused a drastically higher Ca2+ influx in leaves, but a lower reactive oxygen species (ROS) generation compared to other tetranins, whereas Tet4 caused a low Ca2+ influx and a high ROS generation in the host plants. Such specific and non-specific elicitor activities were examined by knockdown of Tet3 and Tet4 expressions in mites, confirming their respective activities and in particular showing that they function additively or synergistically to induce defense responses. Of great interest is the fact that Tet3 and Tet4 expression levels were higher in mites on their preferred host, P. vulgaris, compared to the levels in mites on the less-preferred host, Cucumis sativus, whereas Tet1 and Tet2 were constitutively expressed regardless of their host. Furthermore, mites that had been hosted on C. sativus induced lower levels of PR1 expression, Ca2+ influx and ROS generation, i.e., Tet3- and Tet4-responsive defense responses, in both P. vulgaris and C. sativus leaves compared to the levels induced by mites that had been hosted on P. vulgaris. Taken together, these findings show that selected tetranins respond to variable host cues that may optimize herbivore fitness by altering the anti-mite response of the host plant.
Collapse
Affiliation(s)
- Yukiko Endo
- Department of Biological Science and Technology, Faculty of Advanced EngineeringTokyo University of ScienceTokyo125‐8585Japan
| | - Miku Tanaka
- Department of Biological Science and Technology, Faculty of Advanced EngineeringTokyo University of ScienceTokyo125‐8585Japan
| | - Takuya Uemura
- Department of Biological Science and Technology, Faculty of Advanced EngineeringTokyo University of ScienceTokyo125‐8585Japan
| | - Kaori Tanimura
- Department of Biological Science and Technology, Faculty of Advanced EngineeringTokyo University of ScienceTokyo125‐8585Japan
| | - Yoshitake Desaki
- Department of Biological Science and Technology, Faculty of Advanced EngineeringTokyo University of ScienceTokyo125‐8585Japan
| | - Rika Ozawa
- Center for Ecological ResearchKyoto UniversityOtsu520‐2113Japan
| | - Sara Bonzano
- Department of Life Sciences and Systems Biology, Plant Physiology UnitUniversity of TurinTurin10135Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO) Regione GonzoleOrbassano10043TorinoItaly
| | - Massimo E. Maffei
- Department of Life Sciences and Systems Biology, Plant Physiology UnitUniversity of TurinTurin10135Italy
| | - Tomonori Shinya
- Institute of Plant Science and Resources (IPSR)Okayama UniversityKurashiki710‐0046Japan
| | - Ivan Galis
- Institute of Plant Science and Resources (IPSR)Okayama UniversityKurashiki710‐0046Japan
| | - Gen‐ichiro Arimura
- Department of Biological Science and Technology, Faculty of Advanced EngineeringTokyo University of ScienceTokyo125‐8585Japan
| |
Collapse
|
4
|
Hawley AJ, Bhandari S, Radulovic PW, Borisova N, Henry G, Holets T, Sabbagh C, Scearbo M, Suarez G, Merkler DJ. The identification of insect specific iAANAT inhibitors. Arch Biochem Biophys 2025; 764:110282. [PMID: 39734060 DOI: 10.1016/j.abb.2024.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
An important aspect of food security is the development of innovative insecticides, particularly ones that specifically target insect pests and exhibit minimal toxicity to mammals. The insect arylalkylamine N-acyltransferases (iAANATs) could serve as targets for novel insecticides that satisfy these criteria. There exists a wealth of structural and biochemical information for the iAANATs and iAANAT knockdown experiments show that these enzymes are critical to insect health. Herein, we have expressed, purified, and characterized two new iAANATs, one from Apis mellifera (honey bee, AmNAT1) and another from Diaphorina citri (Asian citrus psyllid, DcNAT). We discovered that diminazene, a compound used to treat livestock for trypanosomiasis and babesiosis, inhibits AmNAT1, DcNAT, and D. melanogaster DmAgmNAT with modest affinity, Ki values ranging from 0.8 μM to 200 μM. We found a series of guanidines, amidines, and a hydroxamate, structurally related to diminazene, also inhibit the iAANATs, including camostat, gabexate, nafamostate, and panobinostat. Significantly, we found DmAgmNAT is far more susceptible to inhibition by four of these five of these compounds. In particular, camostat, nafamostat, and gabexate inhibit DmAgmNAT with Ki values of 0.2-30 μM, but no inhibition of AmNAT1 and DcNAT was observed at 500 μM for any of the three. These results show that a species-specific inhibitor targeted against an iAANAT is a real possibility. Also, we report that adipoyl-CoA is a substrate for AmNAT1 and DcNAT and that succinoyl-CoA is a substrate for DcNAT. These results contribute to a growing body of data suggesting that N-dicarboxyacyl-amines are metabolites in insects and other organisms.
Collapse
Affiliation(s)
- Aidan J Hawley
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Suzeeta Bhandari
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Peter W Radulovic
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Natalia Borisova
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Gabrielle Henry
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Tyler Holets
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Christian Sabbagh
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Matthew Scearbo
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Gabriela Suarez
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
5
|
Wang Y, Zhu C, Chen G, Li X, Zhu M, Alariqi M, Hussian A, Ma W, Lindsey K, Zhang X, Nie X, Jin S. Cotton Bollworm (H. armigera) Effector PPI5 Targets FKBP17-2 to Inhibit ER Immunity and JA/SA Responses, Enhancing Insect Feeding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407826. [PMID: 39352314 PMCID: PMC11600268 DOI: 10.1002/advs.202407826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Indexed: 11/28/2024]
Abstract
The cotton bollworm causes severe mechanical damage to plants during feeding and leaves oral secretions (OSs) at the mechanical wounds. The role these OSs play in the invasion of plants is still largely unknown. Here, a novel H. armigera effector peptidyl prolyl trans-isomerase 5 (PPI5) was isolated and characterized. PPI5 induces the programmed cell death (PCD) due to the unfolded protein response (UPR) in tobacco leaf. We reveal that PPI5 is important for the growth and development of cotton bollworm on plants, as it renders plants more susceptible to feeding. The GhFKBP17-2, was identified as a host target for PPI5 with peptidyl-prolyl isomerase (PPIase) activity. CRISPR/Cas9 knock-out cotton mutant (CR-GhFKBP17-1/3), VIGS (TRV: GhFKBP17-2) and overexpression lines (OE-GhFKBP17-1/3) were created and the data indicate that GhFKBP17-2 positively regulates endoplasmic reticulum (ER) stress-mediated plant immunity in response to cotton bollworm infestation. We further confirm that PPI5 represses JA and SA levels by downregulating the expression of JA- and SA-associated genes, including JAZ3/9, MYC2/3, JAR4, PR4, LSD1, PAD4, ICS1 and PR1/5. Taken together, our results reveal that PPI5 reduces plant defense responses and makes plants more susceptible to cotton bollworm infection by targeting and suppressing GhFKBP17-2 -mediated plant immunity.
Collapse
Affiliation(s)
- Yaxin Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Chuanying Zhu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Gefei Chen
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Xuke Li
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Mingjv Zhu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Muna Alariqi
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Amjad Hussian
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Weihua Ma
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| | - Xianlong Zhang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction CorpsAgricultural CollegeShihezi UniversityShiheziXinjiang832003P. R. China
| | - Shuangxia Jin
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| |
Collapse
|
6
|
Maruoka T, Shirai Y, Daimon T, Fujii R, Dannoura M, Seidl-Adams I, Mori N, Yoshinaga N. Knock-Out of ACY-1 Like Gene in Spodoptera litura Supports the Notion that FACs Improve Nitrogen Metabolism. J Chem Ecol 2024; 50:573-580. [PMID: 38913104 PMCID: PMC11493783 DOI: 10.1007/s10886-024-01512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/25/2024]
Abstract
Volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and N-linolenoyl-L-glutamine were originally identified in the regurgitant of Spodoptera exigua larvae. These fatty acid amino acid conjugates (FACs) are known to be elicitors that induce plants to release volatile compounds which in turn attract natural enemies of the larvae such as parasitic wasps. FAC concentrations are regulated by enzymatic biosynthesis and hydrolysis in the intestine of Lepidoptera larvae. It has been proposed that FAC metabolism activates glutamine synthetase and plays an important role in nitrogen metabolism in larvae. In this study, we identified candidate genes encoding a FACs hydrolase in Spodoptera litura using genomic information of various related lepidopteran species in which FACs hydrolases have been reported. We analyzed the importance of FAC hydrolysis on caterpillar performance with CRISPR/Cas9 knock outs. Larvae of strains with an inactive FACs hydrolase excreted FACs in their feces. They absorbed 30% less nitrogen from the diet compared to WT caterpillars resulting in a reduction of their body weight of up to 40% compared to wild type caterpillars. These results suggest that the hydrolysis of FACs is an important metabolism for insects and that FACs are important for larval growth.
Collapse
Affiliation(s)
- Tsuyoshi Maruoka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Yu Shirai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Takaaki Daimon
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Rei Fujii
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Masako Dannoura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | | | - Naoki Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Naoko Yoshinaga
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan.
| |
Collapse
|
7
|
Prajapati VK, Vijayan V, Vadassery J. Secret Weapon of Insects: The Oral Secretion Cocktail and Its Modulation of Host Immunity. PLANT & CELL PHYSIOLOGY 2024; 65:1213-1223. [PMID: 38877965 DOI: 10.1093/pcp/pcae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/04/2024]
Abstract
Plants and insects have co-existed for almost 400 million years and their interactions can be beneficial or harmful, thus reflecting their intricate co-evolutionary dynamics. Many herbivorous arthropods cause tremendous crop loss, impacting the agro-economy worldwide. Plants possess an arsenal of chemical defenses that comprise diverse secondary metabolites that help protect against harmful herbivorous arthropods. In response, the strategies that herbivores use to cope with plant defenses can be behavioral, or molecular and/or biochemical of which salivary secretions are a key determinant. Insect salivary secretions/oral secretions (OSs) play a crucial role in plant immunity as they contain several biologically active elicitors and effector proteins that modulate plants' defense responses. Using this oral secretion cocktail, insects overcome plant natural defenses to allow successful feeding. However, a lack of knowledge of the nature of the signals present in oral secretion cocktails has resulted in reduced mechanistic knowledge of their cellular perception. In this review, we discuss the latest knowledge on herbivore oral secretion derived elicitors and effectors and various mechanisms involved in plant defense modulation. Identification of novel herbivore-released molecules and their plant targets should pave the way for understanding the intricate strategies employed by both herbivorous arthropods and plants in their interactions.
Collapse
Affiliation(s)
| | - Vishakh Vijayan
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | |
Collapse
|
8
|
Kallure GS, Sahoo SS, Kale RS, Barvkar VT, Kontham R, Giri AP. Aminoacylase efficiently hydrolyses fatty acid amino acid conjugates of Helicoverpa armigera potentially to increase the pool of glutamine. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104070. [PMID: 38176573 DOI: 10.1016/j.ibmb.2024.104070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
One of the most prevalent bioactive molecules present in the oral secretion (OS) of lepidopteran insects is fatty acid amino acid conjugates (FACs). Insect dietary components have influence on the synthesis and retaining the pool of FACs in the OS. We noted differential and diet-specific accumulation of FACs in the OS of Helicoverpa armigera by using Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry. Interestingly, we identified FACs hydrolyzing enzyme aminoacylase (HaACY) in the OS of H. armigera through proteomic analysis. Next, we have cloned, expressed, and purified active recombinant HaACY in the bacterial system. Recombinant HaACY hydrolyzes all the six identified FACs in the OS of H. armigera larvae fed on host and non-host plants and releases respective fatty acid and glutamine. In these six FACs, fatty acid moieties vary while amino acid glutamine was common. Glutamine obtained upon hydrolysis of FACs by HaACY might serve as an amino acid pool for insect growth and development. To understand the substrate choices of HaACY, we chemically synthesized, purified, and characterized all the six FACs. Interestingly, rHaACY also shows hydrolysis of synthetic FACs into respective fatty acid and glutamine. Our results underline the importance of diet on accumulation of FACs and role of aminoacylase(s) in regulating the level of FACs and glutamine.
Collapse
Affiliation(s)
- Gopal S Kallure
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Shubhranshu Shekhar Sahoo
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Rutuja S Kale
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Ravindar Kontham
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
9
|
Wang W, Rui H, Yu L, Jin N, Liu W, Guo C, Cheng Y, Lou Y. Four-Chlorophenoxyacetic Acid Treatment Induces the Defense Resistance of Rice to White-Backed Planthopper Sogatella furcifera. Int J Mol Sci 2023; 24:15722. [PMID: 37958711 PMCID: PMC10648403 DOI: 10.3390/ijms242115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chemical elicitors can increase plant defense against herbivorous insects and pathogens. The use of synthetic chemical elicitors is likely to be an alternative to traditional pesticides for crop pest control. However, only a few synthetic chemicals are reported to protect plants by regulating signaling pathways, increasing the levels of defense metabolites and interfering with insect feeding. Here, we found that the exogenous application of a phenoxycarboxylic compound, 4-chlorophenoxyacetic acid (4-CPA), can induce chemical defenses to protect rice plants from white-backed planthoppers (WBPH, Sogatella furcifera). Four-CPA was rapidly taken up by plant roots and degraded to 4-chlorophenol (4-CP). Four-CPA treatment modulated the activity of peroxidase (POD) and directly induced the deposition of lignin-like polymers using hydrogen peroxide (H2O2) as the electron acceptor. The polymers, which are thought to prevent the planthopper's stylet from reaching the phloem, were broken down by WBPH nymphs. Meanwhile, 4-CPA increased the levels of flavonoids and phenolamines (PAs). The increased flavonoids and PAs, together with the degradation product of the polymers, avoided nymphal feeding and prolonged the nymphal period for 1 day. These results indicate that 4-CPA has the potential to be used as a chemical elicitor to protect rice from planthoppers. Moreover, these findings also open a pathway for molecule structure design of phenoxycarboxylic compounds as chemical elicitors.
Collapse
Affiliation(s)
- Wanwan Wang
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, Taizhou University, Taizhou 225300, China; (H.R.); (L.Y.); (W.L.); (C.G.); (Y.C.)
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Haiyun Rui
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, Taizhou University, Taizhou 225300, China; (H.R.); (L.Y.); (W.L.); (C.G.); (Y.C.)
| | - Lei Yu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, Taizhou University, Taizhou 225300, China; (H.R.); (L.Y.); (W.L.); (C.G.); (Y.C.)
| | - Nuo Jin
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Wan Liu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, Taizhou University, Taizhou 225300, China; (H.R.); (L.Y.); (W.L.); (C.G.); (Y.C.)
| | - Chen Guo
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, Taizhou University, Taizhou 225300, China; (H.R.); (L.Y.); (W.L.); (C.G.); (Y.C.)
| | - Yumeng Cheng
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, Taizhou University, Taizhou 225300, China; (H.R.); (L.Y.); (W.L.); (C.G.); (Y.C.)
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
10
|
Kutty NN, Mishra M. Dynamic distress calls: volatile info chemicals induce and regulate defense responses during herbivory. FRONTIERS IN PLANT SCIENCE 2023; 14:1135000. [PMID: 37416879 PMCID: PMC10322200 DOI: 10.3389/fpls.2023.1135000] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 07/08/2023]
Abstract
Plants are continuously threatened by a plethora of biotic stresses caused by microbes, pathogens, and pests, which often act as the major constraint in crop productivity. To overcome such attacks, plants have evolved with an array of constitutive and induced defense mechanisms- morphological, biochemical, and molecular. Volatile organic compounds (VOCs) are a class of specialized metabolites that are naturally emitted by plants and play an important role in plant communication and signaling. During herbivory and mechanical damage, plants also emit an exclusive blend of volatiles often referred to as herbivore-induced plant volatiles (HIPVs). The composition of this unique aroma bouquet is dependent upon the plant species, developmental stage, environment, and herbivore species. HIPVs emitted from infested and non-infested plant parts can prime plant defense responses by various mechanisms such as redox, systemic and jasmonate signaling, activation of mitogen-activated protein (MAP) kinases, and transcription factors; mediate histone modifications; and can also modulate the interactions with natural enemies via direct and indirect mechanisms. These specific volatile cues mediate allelopathic interactions leading to altered transcription of defense-related genes, viz., proteinase inhibitors, amylase inhibitors in neighboring plants, and enhanced levels of defense-related secondary metabolites like terpenoids and phenolic compounds. These factors act as deterrents to feeding insects, attract parasitoids, and provoke behavioral changes in plants and their neighboring species. This review presents an overview of the plasticity identified in HIPVs and their role as regulators of plant defense in Solanaceous plants. The selective emission of green leaf volatiles (GLVs) including hexanal and its derivatives, terpenes, methyl salicylate, and methyl jasmonate (MeJa) inducing direct and indirect defense responses during an attack from phloem-sucking and leaf-chewing pests is discussed. Furthermore, we also focus on the recent developments in the field of metabolic engineering focused on modulation of the volatile bouquet to improve plant defenses.
Collapse
|
11
|
Zeng J, Ye W, Hu W, Jin X, Kuai P, Xiao W, Jian Y, Turlings TCJ, Lou Y. The N-terminal subunit of vitellogenin in planthopper eggs and saliva acts as a reliable elicitor that induces defenses in rice. THE NEW PHYTOLOGIST 2023; 238:1230-1244. [PMID: 36740568 DOI: 10.1111/nph.18791] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Vitellogenins (Vgs) are critical for the development and fecundity of insects. As such, these essential proteins can be used by plants to reliably sense the presence of insects. We addressed this with a combination of molecular and chemical analyses, genetic transformation, bioactivity tests, and insect performance assays. The small N-terminal subunit of Vgs of the planthopper Nilaparvata lugens (NlVgN) was found to trigger strong defense responses in rice when it enters the plants during feeding or oviposition by the insect. The defenses induced by NlVgN not only decreased the hatching rate of N. lugens eggs, but also induced volatile emissions in plants, which rendered them attractive to a common egg parasitoid. VgN of other planthoppers triggered the same defenses in rice. We further show that VgN deposited during planthopper feeding compared with during oviposition induces a somewhat different response, probably to target the appropriate developmental stage of the insect. We also confirm that NlVgN is essential for planthopper growth, development, and fecundity. This study demonstrates that VgN in planthopper eggs and saliva acts as a reliable and unavoidable elicitor of plant defenses. Its importance for insect performance precludes evolutionary adaptions to prevent detection by rice plants.
Collapse
Affiliation(s)
- Jiamei Zeng
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenfeng Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Wenhui Hu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaochen Jin
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peng Kuai
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenhan Xiao
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yukun Jian
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
12
|
Tumlinson JH. Complex and Beautiful: Unraveling the Intricate Communication Systems Among Plants and Insects. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:1-12. [PMID: 35834769 DOI: 10.1146/annurev-ento-021622-111028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
My research focuses on elucidating the chemical communication systems linking plants, herbivores, and natural enemies. My interests in integrating chemistry and agriculture led to my graduate studies in the emerging field of chemical ecology. My thesis research resulted in the identification, synthesis, and application of boll weevil sex pheromones. My research group subsequently developed chemical lures for more than 20 species of pest insects. I then shifted my focus to some of the first studies of the chemical signals produced by plants being attacked by herbivores. When insects feed, elicitors in the insects' oral secretions, such as volicitin, a fatty acid-amino acid conjugate elicitor, stimulate plants to release volatile organic compounds. Parasitoid wasps learn to associate these species-specific volatiles with their herbivore hosts. These volatiles also prime nearby plants to activate a faster and higher defense response upon attack. Throughout my career, I have collaborated with scientists from diverse disciplines to tackle fundamental questions in chemical ecology and create innovative solutions for insect management. Our collaborative research has fundamentally changed and improved our understanding of the ongoing coevolution of plants, their herbivores, and the natural enemies that attack those herbivores.
Collapse
Affiliation(s)
- James H Tumlinson
- Department of Entomology, Center for Chemical Ecology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
13
|
Grover S, Shinde S, Puri H, Palmer N, Sarath G, Sattler SE, Louis J. Dynamic regulation of phenylpropanoid pathway metabolites in modulating sorghum defense against fall armyworm. FRONTIERS IN PLANT SCIENCE 2022; 13:1019266. [PMID: 36507437 PMCID: PMC9732255 DOI: 10.3389/fpls.2022.1019266] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Plants undergo dynamic metabolic changes at the cellular level upon insect infestation to better defend themselves. Phenylpropanoids, a hub of secondary plant metabolites, encompass a wide range of compounds that can contribute to insect resistance. Here, the role of sorghum (Sorghum bicolor) phenylpropanoids in providing defense against the chewing herbivore, fall armyworm (FAW), Spodoptera frugiperda, was explored. We screened a panel of nested association mapping (NAM) founder lines against FAW and identified SC1345 and Ajabsido as most resistant and susceptible lines to FAW, respectively, compared to reference parent, RTx430. Gene expression and metabolomic studies suggested that FAW feeding suppressed the expression level of genes involved in monolignol biosynthetic pathway and their associated phenolic intermediates at 10 days post infestation. Further, SC1345 genotype displayed elevated levels of flavonoid compounds after FAW feeding for 10 days, suggesting a diversion of precursors from lignin biosynthesis to the flavonoid pathway. Additionally, bioassays with sorghum lines having altered levels of flavonoids provided genetic evidence that flavonoids are crucial in providing resistance against FAW. Finally, the application of FAW regurgitant elevated the expression of genes associated with the flavonoid pathway in the FAW-resistant SC1345 genotype. Overall, our study indicates that a dynamic regulation of the phenylpropanoid pathway in sorghum plants imparts resistance against FAW.
Collapse
Affiliation(s)
- Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Sanket Shinde
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Heena Puri
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nathan Palmer
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE, United States
| | - Gautam Sarath
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE, United States
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE, United States
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
14
|
Twidle AM, Barker D, Pilkington LI, Fedrizzi B, Suckling DM. Identification of herbivore-induced plant volatiles from selected Rubus species fed upon by raspberry bud moth (Heterocrossa rubophaga) larvae. PHYTOCHEMISTRY 2022; 202:113325. [PMID: 35843359 DOI: 10.1016/j.phytochem.2022.113325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Heterocrossa rubophaga (raspberry bud moth) feed on a range of Rubus species, including commercial berryfruit crops where they are a pest. This study aimed to characterize the responses of native and non-native Rubus species to feeding by raspberry bud moth larvae. In a laboratory environment, in situ headspace volatiles of three Rubus species were collected from healthy plants and those fed upon by raspberry bud moth. Rubus cissoides (bush lawyer), the native host of raspberry bud moth, gave a limited response to larval feeding with green leaf volatiles (GLVs) representing the only new headspace constituents of the infested plants. The non-native hosts, Rubus ursinus var. loganobaccus cv Boysenberry (Boysenberry), and Rubus fruticosus (blackberry), gave strong responses to raspberry bud moth herbivory, releasing a number of unique nitrogenous compounds in conjunction with the GLVs. The nitrogenous compounds were identified as 2-methylbutanenitrile, (Z)- and (E)- 2-methylbutanal O-methyloxime, benzyl nitrile, (Z)- and (E)- phenylacetaldehyde O-methyloxime and indole. The four methyloximes and 2-methylbutanenitrile were confirmed by synthesis. Field collected phenology data showed that raspberry bud moth were active year round on both bush lawyer and blackberry.
Collapse
Affiliation(s)
- Andrew M Twidle
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 4704, Christchurch Mail Centre, Christchurch, 8140, New Zealand; School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - David Barker
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Lisa I Pilkington
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Bruno Fedrizzi
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - David M Suckling
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 4704, Christchurch Mail Centre, Christchurch, 8140, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
15
|
Jones AC, Felton GW, Tumlinson JH. The dual function of elicitors and effectors from insects: reviewing the 'arms race' against plant defenses. PLANT MOLECULAR BIOLOGY 2022; 109:427-445. [PMID: 34618284 DOI: 10.1007/s11103-021-01203-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
This review provides an overview, analysis, and reflection on insect elicitors and effectors (particularly from oral secretions) in the context of the 'arms race' with host plants. Following injury by an insect herbivore, plants rapidly activate induced defenses that may directly or indirectly affect the insect. Such defense pathways are influenced by a multitude of factors; however, cues from the insect's oral secretions are perhaps the most well studied mediators of such plant responses. The relationship between plants and their insect herbivores is often termed an 'evolutionary arms race' of strategies for each organism to either overcome defenses or to avoid attack. However, these compounds that can elicit a plant defense response that is detrimental to the insect may also benefit the physiology or metabolism of an insect species. Indeed, several insect elicitors of plant defenses (such as the fatty acid-amino acid conjugate, volicitin) are known to enhance an insect's ability to obtain nutritionally important compounds from plant tissue. Here we re-examine the well-known elicitors and effectors from chewing insects to demonstrate not only our incomplete understanding of the specific biochemical and molecular cascades involved in these interactions but also to consider the role of these compounds for the insect species itself. Finally, this overview discusses opportunities for research in the field of plant-insect interactions by utilizing tools such as genomics and proteomics to integrate the future study of these interactions through ecological, physiological, and evolutionary disciplines.
Collapse
Affiliation(s)
- Anne C Jones
- Biological Sciences Department, Virginia Polytechnic State and University, Blacksburg, VA, USA.
| | - Gary W Felton
- Entomology Department, Pennsylvania State University, University Park, PA, USA
| | - James H Tumlinson
- Entomology Department, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
16
|
Snoeck S, Guayazán-Palacios N, Steinbrenner AD. Molecular tug-of-war: Plant immune recognition of herbivory. THE PLANT CELL 2022; 34:1497-1513. [PMID: 35026025 PMCID: PMC9048929 DOI: 10.1093/plcell/koac009] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/07/2022] [Indexed: 05/22/2023]
Abstract
Plant defense responses against insect herbivores are induced through wound-induced signaling and the specific perception of herbivore-associated molecular patterns (HAMPs). In addition, herbivores can deliver effectors that suppress plant immunity. Here we review plant immune recognition of HAMPs and effectors, and argue that these initial molecular interactions upon a plant-herbivore encounter mediate and structure effective resistance. While the number of distinct HAMPs and effectors from both chewing and piercing-sucking herbivores has expanded rapidly with omics-enabled approaches, paired receptors and targets in the host are still not well characterized. Herbivore-derived effectors may also be recognized as HAMPs depending on the host plant species, potentially through the evolution of novel immune receptor functions. We compile examples of HAMPs and effectors where natural variation between species may inform evolutionary patterns and mechanisms of plant-herbivore interactions. Finally, we discuss the combined effects of wounding and HAMP recognition, and review potential signaling hubs, which may integrate both sensing functions. Understanding the precise mechanisms for plant sensing of herbivores will be critical for engineering resistance in agriculture.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Biology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
17
|
Kallure GS, Kumari A, Shinde BA, Giri AP. Characterized constituents of insect herbivore oral secretions and their influence on the regulation of plant defenses. PHYTOCHEMISTRY 2022; 193:113008. [PMID: 34768189 DOI: 10.1016/j.phytochem.2021.113008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/09/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
For more than 350 million years, there have been ongoing dynamic interactions between plants and insects. In several cases, insects cause-specific feeding damage with ensuing herbivore-associated molecular patterns that invoke characteristic defense responses. During feeding on plant tissue, insects release oral secretions (OSs) containing a repertoire of molecules affecting plant defense (effectors). Some of these OS components might elicit a defense response to combat insect attacks (elicitors), while some might curb the plant defenses (suppressors). Few reports suggest that the synthesis and function of OS components might depend on the host plant and associated microorganisms. We review these intricate plant-insect interactions, during which there is a continuous exchange of molecules between plants and feeding insects along with the associated microorganisms. We further provide a list of commonly identified inducible plant produced defensive molecules released upon insect attack as well as in response to OS treatments of the plants. Thus, we describe how plants specialized and defense-related metabolism is modulated at innumerable phases by OS during plant-insect interactions. A molecular understanding of these complex interactions will provide a means to design eco-friendly crop protection strategies.
Collapse
Affiliation(s)
- Gopal S Kallure
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Archana Kumari
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Balkrishna A Shinde
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Department of Biotechnology, Shivaji University, Vidya Nagar, Kolhapur, 416004, Maharashtra, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
18
|
El-Sayed AM, Ganji S, Unelius CR, Gemeno C, Ammagarahalli B, Butler RC, Hoffmann C. Feeding Volatiles of Larval Sparganothis pilleriana (Lepidoptera: Tortricidae) Attract Heterospecific Adults of the European Grapevine Moth. ENVIRONMENTAL ENTOMOLOGY 2021; 50:1286-1293. [PMID: 34551073 DOI: 10.1093/ee/nvab088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 06/13/2023]
Abstract
Plants release volatiles in response to caterpillar feeding. These herbivore-induced plant volatiles (HIPVs) attract natural enemies of the herbivores and repel or attract conspecific adult herbivores in a tri-trophic interaction which has been considered to be an indirect plant defense against herbivores. Recently, we demonstrated the attraction of male and female European grapevine moth, Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae) to a blend of phenylacetonitrile and acetic acid, two compounds identified as HIPVs in heterospecific apple-leafroller interactions. The ecological basis of our findings is not clearly understood. Thus, this work was undertaken to investigate HIPVs in the grapevine-leafroller interaction and study the response of heterospecific adults L. botrana, to these volatiles. We collected headspace volatiles emitted from uninfested grapevines and grapevines infested with larvae of a generalist herbivore, the grapevine leafroller moth, Sparganothis pilleriana (Denis & Schiffermüller), and analyzed them using gas chromatography/mass spectrometry. Infested grape leaves released three compounds (phenylacetonitrile, indole, and 2-phenylethanol) not found from uninfested leaves. Nine different blends, comprising a full factorial set of the three compounds with each blend containing acetic acid, were tested in a field-cage trial. Only lures containing phenylacetonitrile caused a significant increase in trap catches compared to the other lures and blank traps. Electroantennographic tests show that L. botrana can detect the compounds. The results confirm our hypothesis that phenylacetonitrile is released during grapevines infestation with herbivores, and attracts adult L. botrana.
Collapse
Affiliation(s)
- Ashraf M El-Sayed
- The New Zealand Institute for Plant and Food Research Limited, Gerald Street, Lincoln 7608, New Zealand
| | - Suresh Ganji
- Faculty of Health and Life Sciences, Linnaeus University, SE-391 82 Kalmar,Sweden
| | - C Rikard Unelius
- Faculty of Health and Life Sciences, Linnaeus University, SE-391 82 Kalmar,Sweden
| | - César Gemeno
- Department of Crop and Forest Sciences, University of Lleida Agotecnio-CERCA-Center, 25198 Lleida,Spain
| | - Byrappa Ammagarahalli
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague 16500,Czech Republic
| | - Ruth C Butler
- The New Zealand Institute for Plant and Food Research Limited, Gerald Street, Lincoln 7608, New Zealand
| | - Christoph Hoffmann
- Julius Kühn-Institute-Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Laboratory of Zoology and Integrated Production in Viticulture, D-76833 Siebeldingen, Germany
| |
Collapse
|
19
|
Mann L, Laplanche D, Turlings TCJ, Desurmont GA. A comparative study of plant volatiles induced by insect and gastropod herbivory. Sci Rep 2021; 11:23698. [PMID: 34880284 PMCID: PMC8654843 DOI: 10.1038/s41598-021-02801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022] Open
Abstract
Insect and gastropod herbivores are major plant consumers and their importance in the evolution of plant defensive traits is broadly recognized. However, their respective effects on plant responses have rarely been compared. Here we focused on plant volatile emissions (VOCs) following herbivory and compared the effects of herbivory by caterpillars of the generalist insect Spodoptera littoralis and by generalist slugs of the genus Arion on the VOCs emissions of 14 cultivated plant species. Results revealed that plants consistently produced higher amounts of volatiles and responded more specifically to caterpillar than to slug herbivory. Specifically, plants released on average 6.0 times more VOCs (total), 8.9 times more green leaf volatiles, 4.2 times more terpenoids, 6.0 times more aromatic hydrocarbons, and 5.7 times more other VOCs in response to 1 cm2 of insect damage than to 1 cm2 of slug damage. Interestingly, four of the plant species tested produced a distinct blend of volatiles following insect damage but not slug damage. These findings may result from different chemical elicitors or from physical differences in herbivory by the two herbivores. This study is an important step toward a more inclusive view of plant responses to different types of herbivores.
Collapse
Affiliation(s)
- Leslie Mann
- Institute of Biology, University of Neuchâtel, 11 Rue Emile-argand, 2000, Neuchâtel, Switzerland.,University of Canterbury, Christchurch, New Zealand
| | - Diane Laplanche
- Institute of Biology, University of Neuchâtel, 11 Rue Emile-argand, 2000, Neuchâtel, Switzerland
| | - Ted C J Turlings
- Institute of Biology, University of Neuchâtel, 11 Rue Emile-argand, 2000, Neuchâtel, Switzerland
| | - Gaylord A Desurmont
- Institute of Biology, University of Neuchâtel, 11 Rue Emile-argand, 2000, Neuchâtel, Switzerland. .,European Biological Control Laboratory (EBCL USDA ARS), Montferrier-sur-lez, France.
| |
Collapse
|
20
|
Poretsky E, Ruiz M, Ahmadian N, Steinbrenner AD, Dressano K, Schmelz EA, Huffaker A. Comparative analyses of responses to exogenous and endogenous antiherbivore elicitors enable a forward genetics approach to identify maize gene candidates mediating sensitivity to herbivore-associated molecular patterns. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1295-1316. [PMID: 34564909 DOI: 10.1111/tpj.15510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Crop damage by herbivorous insects remains a significant contributor to annual yield reductions. Following attack, maize (Zea mays) responds to herbivore-associated molecular patterns (HAMPs) and damage-associated molecular patterns (DAMPs), activating dynamic direct and indirect antiherbivore defense responses. To define underlying signaling processes, comparative analyses between plant elicitor peptide (Pep) DAMPs and fatty acid-amino acid conjugate (FAC) HAMPs were conducted. RNA sequencing analysis of early transcriptional changes following Pep and FAC treatments revealed quantitative differences in the strength of response yet a high degree of qualitative similarity, providing evidence for shared signaling pathways. In further comparisons of FAC and Pep responses across diverse maize inbred lines, we identified Mo17 as part of a small subset of lines displaying selective FAC insensitivity. Genetic mapping for FAC sensitivity using the intermated B73 × Mo17 population identified a single locus on chromosome 4 associated with FAC sensitivity. Pursuit of multiple fine-mapping approaches further narrowed the locus to 19 candidate genes. The top candidate gene identified, termed FAC SENSITIVITY ASSOCIATED (ZmFACS), encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) that belongs to the same family as a rice (Oryza sativa) receptor gene previously associated with the activation of induced responses to diverse Lepidoptera. Consistent with reduced sensitivity, ZmFACS expression was significantly lower in Mo17 as compared to B73. Transient heterologous expression of ZmFACS in Nicotiana benthamiana resulted in a significantly increased FAC-elicited response. Together, our results provide useful resources for studying early elicitor-induced antiherbivore responses in maize and approaches to discover gene candidates underlying HAMP sensitivity in grain crops.
Collapse
Affiliation(s)
- Elly Poretsky
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Miguel Ruiz
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nazanin Ahmadian
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Keini Dressano
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Eric A Schmelz
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alisa Huffaker
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
21
|
Krempl C, Joußen N, Reichelt M, Kai M, Vogel H, Heckel DG. Consumption of gossypol increases fatty acid-amino acid conjugates in the cotton pests Helicoverpa armigera and Heliothis virescens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21843. [PMID: 34490676 DOI: 10.1002/arch.21843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Gossypol is a toxic sesquiterpene dimer produced by cotton plants which deters herbivory by insects and vertebrates. Two highly reactive aldehyde groups contribute to gossypol toxicity by cross-linking herbivore proteins. We identified another consequence of consuming gossypol in two insect pests of cotton: increased amounts of fatty acid-amino acid conjugates (FACs). Eight different FACs in the feces of larval Helicoverpa armigera and Heliothis virescens increased when larvae consumed artificial diet containing gossypol, but not a gossypol derivative lacking free aldehyde groups (SB-gossypol). FACs are produced by joining plant-derived fatty acids with amino acids of insect origin in the larval midgut tissue by an unknown conjugase, and translocated into the gut lumen by an unknown transporter. FACs are hydrolyzed back into fatty acids and amino acids by an aminoacylase (L-ACY-1) in the gut lumen. The equilibrium level of FACs in the lumen is determined by a balance between conjugation and hydrolysis, which may differ among species. When heterologously expressed, L-ACY-1 of H. armigera but not H. virescens was inhibited by gossypol; consistent with the excretion of more FACs in the feces by H. armigera. FACs are known to benefit the plant host by inducing anti-herbivore defensive responses, and have been hypothesized to benefit the herbivore by acting as a surfactant and increasing nitrogen uptake efficiency. Thus in addition to its direct toxic effects, gossypol may negatively impact insect nitrogen uptake efficiency and amplify the signal used by the plant to elicit release of volatile compounds that attract parasitoids.
Collapse
Affiliation(s)
- Corinna Krempl
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicole Joußen
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Marco Kai
- Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
22
|
Davoodi J, Majidi S, Jahani M, Tayarani-Najaran Z, Golmohammadzadeh S, Kamali H. Implementation of design of experiments for optimization of forced degradation conditions and development of a stability-indicating high-performance liquid chromatography method for sepiwhite. J Sep Sci 2021; 44:4299-4312. [PMID: 34669262 DOI: 10.1002/jssc.202100388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022]
Abstract
Sepiwhite is a novel anti-pigmenting agent that is derived from fatty acid and phenylalanine and used for hyperpigmentation induced by light exposure or inflammation. In this study, a simple and validated high-performance liquid chromatography method for the quantitation of sepiwhite was developed. Optimized forced degradation of sepiwhite at thermal, acid/base, photolysis, oxidative, and heavy metal ions conditions were evaluated and the effect of each of them on production of specific 10%-30% degradants was studied by the approach of design of experiments. Sepiwhite accelerated study was conducted and toxicity of sepiwhite at each condition was tested. An optimized high-performance liquid chromatography method was validated by a face-centered central composition design. Ten different degradants were identified from sepiwhite and degradation behavior under different conditions was studied. Sepiwhite and its degradant products show no cytotoxicity. This optimized high-performance liquid chromatography method can be applied for quality control assay and sepiwhite degradation behavior may be considered in the manufacturing of sepiwhite products.
Collapse
Affiliation(s)
- Javid Davoodi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Majidi
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Jahani
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Golmohammadzadeh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Ling X, Gu S, Tian C, Guo H, Degen T, Turlings TCJ, Ge F, Sun Y. Differential Levels of Fatty Acid-Amino Acid Conjugates in the Oral Secretions of Lepidopteran Larvae Account for the Different Profiles of Volatiles. PEST MANAGEMENT SCIENCE 2021; 77:3970-3979. [PMID: 33866678 DOI: 10.1002/ps.6417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plants have evolved sophisticated defense responses to insect herbivore attack, which often involve elicitors in the insects' oral secretions. The major eliciting compounds in insect oral secretions across different species and their potency in inducing volatile emissions have not yet been fully characterized and compared. RESULTS Seven lepidopteran insects with variable duration of association with maize were selected, five species known as pests for a long time (Ostrinia furnacalis, Spodoptera exigua, Spodoptera litura, Mythimna separata, and Helicoverpa armigera) and two newly emerging pests (Athetis lepigone and Athetis dissimilis). Oral secretions of the newly emerging pests have the highest total contents of Fatty Acid-Amino Acid Conjugates (FACs), and their relative composition was well separated from that of the other five species in principal compound analysis. Redundancy analyses suggested that higher quantity of FACs was mainly responsible for the increases in maize volatiles, of which (E)-3,8-dimethyl-1,4,7-nonatriene (DMNT) and (E, E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) were the most strongly inducible compounds. Adding FACs to the oral secretion of S. litura larvae significantly increased the emissions of TMTT and DMNT, confirming the key role of FACs in inducing volatile emissions in maize plants. Additional experiments with artificial diet spiked with linolenic acid suggested that variation in FACs is due to differences in internal FAC degradation and fatty acid excretion. CONCLUSION Compared with two newly emerging pests A. lepigone and A. dissimilis, the long-term pests could diminish the volatile emission by maize through reducing the FAC content in their oral secretions, which may lower the risk of attracting natural enemies.
Collapse
Affiliation(s)
- Xiaoyu Ling
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Shimin Gu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Caihong Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Thomas Degen
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, Neuchâtel, Switzerland
| | - Ted C J Turlings
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, Neuchâtel, Switzerland
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Arce CM, Besomi G, Glauser G, Turlings TCJ. Caterpillar-Induced Volatile Emissions in Cotton: The Relative Importance of Damage and Insect-Derived Factors. FRONTIERS IN PLANT SCIENCE 2021; 12:709858. [PMID: 34413869 PMCID: PMC8369242 DOI: 10.3389/fpls.2021.709858] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/28/2021] [Indexed: 05/25/2023]
Abstract
In response to herbivore attack, plants release large amounts of volatiles that can serve as attractants for the natural enemies of the attacking herbivores. Such responses are typically triggered by damage- and insect-associated factors. Cotton plants are somewhat peculiar because they release specific blends of volatiles in two waves in response to caterpillar attack. They first emit constitutively stored volatile compounds, and after about 24 h a second wave that includes various de novo synthesized compounds. The relative importance of damage-associated and insect associated-factors in this induction of cotton volatile emissions is not yet fully clear. We evaluated how cotton plants respond to mechanical damage and to the application of the oral secretion from the generalist lepidopteran pest Spodoptera exigua, by measuring the local and systemic emissions of volatile compounds from their leaves. Our results confirm that cotton plants respond to damage-associated molecular patterns (DAMPs) as well as to herbivore-associated molecular patterns (HAMPs) present in the caterpillars' oral secretion. Interestingly, a stronger response was observed for cotton plants that were treated with oral secretion from cotton-fed caterpillars than those fed on maize. We tested the possibility that volicitin, a common fatty acid-derived elicitor in caterpillar regurgitant plays a role in this difference. Volicitin and volicitin-like compounds were detected in equal amounts in the oral secretion of S. exigua fed on either cotton or maize leaves. We conclude that other elicitors must be involved. The identification of these eliciting cues is expected to contribute to the development of novel strategies to enhance the resistance of cotton plants to insect pests.
Collapse
Affiliation(s)
- Carla M. Arce
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Gaia Besomi
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ted C. J. Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
25
|
Noman A, Aqeel M, Islam W, Khalid N, Akhtar N, Qasim M, Yasin G, Hashem M, Alamri S, Al-Zoubi OM, Jalees MM, Al-Sadi A. Insects-plants-pathogens: Toxicity, dependence and defense dynamics. Toxicon 2021; 197:87-98. [PMID: 33848517 DOI: 10.1016/j.toxicon.2021.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
In a natural ecosystem, the pathogen-plant-insect relationship has diverse implications for each other. The pathogens as well as insect-pests consume plant tissues as their feed that mostly results in damage. In turn, plant species have evolved specialized defense system to not only protect themselves but reduce the damage also. Such tripartite interactions involve toxicity, metabolic modulations, resistance etc. among all participants of interaction. These attributes result in selection pressure among participants. Coevolution of such traits reveals need to focus and unravel multiple hidden aspects of insect-plant-pathogen interactions. The definite modulations during plant responses to biotic stress and the operating defense network against herbivores are vital to research areas. Different types of plant pathogens and herbivores are tackled with various changes in plants, e.g. changes in genes expression, glucosinolate metabolism detoxification, signal transduction, cell wall modifications, Ca2+dependent signaling. It is essential to clarify which chemical in plants can work as a defense signal or weapon in plant-pathogen-herbivore interactions. In spite of increased knowledge regarding signal transduction pathways regulating growth-defense balance, much more is needed to unveil the coordination of growth rate with metabolic modulations in bi-trophic interactions. Here, we addressed plant-pathogen-insect interaction for toxicity as well as dependnce along with plant defense dynamics against pathogens and insects with broad range effects at the physio-biochemical and molecular level. We have reviewed interfaces in plant-pathogen-insect research to show pulsating regulation of plant immunity for attuning survival and ecological equilibrium. An improved understanding of the systematic foundation of growth-defense stability has vital repercussions for enhancing crop yield, including insights into uncoupling of host-parasite tradeoffs for ecological and environmental sustainability.
Collapse
Affiliation(s)
- Ali Noman
- Department of Botany, Government College University, Faisalabad, 38040, Pakistan.
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| | - Waqar Islam
- College of Geography, Fujian Normal University, Fuzhou, PR China
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Noreen Akhtar
- Department of Botany, Government College for Women University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Ghulam Yasin
- Institute of Pure and Applied Biology, Bahau Din Zakria University Multan Pakistan, Pakistan
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Saad Alamri
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | | | - Muhammad Moazam Jalees
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences. Bahawalpur, Pakistan
| | - Abdullah Al-Sadi
- College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat. Sultanate of Oman, Oman
| |
Collapse
|
26
|
Roeber VM, Bajaj I, Rohde M, Schmülling T, Cortleven A. Light acts as a stressor and influences abiotic and biotic stress responses in plants. PLANT, CELL & ENVIRONMENT 2021; 44:645-664. [PMID: 33190307 DOI: 10.1111/pce.13948] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 05/18/2023]
Abstract
Light is important for plants as an energy source and a developmental signal, but it can also cause stress to plants and modulates responses to stress. Excess and fluctuating light result in photoinhibition and reactive oxygen species (ROS) accumulation around photosystems II and I, respectively. Ultraviolet light causes photodamage to DNA and a prolongation of the light period initiates the photoperiod stress syndrome. Changes in light quality and quantity, as well as in light duration are also key factors impacting the outcome of diverse abiotic and biotic stresses. Short day or shady environments enhance thermotolerance and increase cold acclimation. Similarly, shade conditions improve drought stress tolerance in plants. Additionally, the light environment affects the plants' responses to biotic intruders, such as pathogens or insect herbivores, often reducing growth-defence trade-offs. Understanding how plants use light information to modulate stress responses will support breeding strategies to enhance crop stress resilience. This review summarizes the effect of light as a stressor and the impact of the light environment on abiotic and biotic stress responses. There is a special focus on the role of the different light receptors and the crosstalk between light signalling and stress response pathways.
Collapse
Affiliation(s)
- Venja M Roeber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Ishita Bajaj
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Mareike Rohde
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
27
|
Park KC, McNeill MR, Suckling DM, Unelius CR. Olfactory Receptor Neurons for Plant Volatiles and Pheromone Compounds in the Lucerne Weevil, Sitona discoideus. J Chem Ecol 2020; 46:250-263. [PMID: 32048118 PMCID: PMC7142041 DOI: 10.1007/s10886-020-01160-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/19/2019] [Accepted: 01/31/2020] [Indexed: 11/29/2022]
Abstract
Antennal olfactory receptor neurons (ORNs) for pheromone-related and plant volatile compounds were identified and characterized in the lucerne weevil, Sitona discoideus (Gyllenhal), using the single sensillum recording technique. Our study using five pheromone-related compounds and 42 plant volatile compounds indicates that S. discoideus have highly specialized ORNs for pheromone and plant volatile compounds. Different groups of ORNs present in both males and females of S. discoideus were highly sensitive to 4-methylheptane-3,5-dione (diketone) and four isomers (RR, RS, SR and SS) of 5-hydroxy-4-methylheptan-3-one, respectively. Our results also indicate that male S. discoideus, using the sensory input from antennal ORNs, can distinguish both diketone and the RR-isomer from others, and RS- and SS-isomers from others, although it was unclear if they can distinguish between RS-isomer and SS-isomer, or between diketone and the SR-isomer. It also appeared that female S. discoideus could distinguish between RS-isomer and SS-isomers. The antennae of S. discoideus thus contain sex-specific sets of ORNs for host- and non-host plant volatile compounds. Both sexes of S. discoideus have highly sensitive and selective ORNs for some green-leaf volatiles, such as (Z)-3-hexenol and (E)-2-hexenal. In contrast, male antennae of S. discoideus house three distinct groups of ORNs specialized for myrcene and (E)-β-ocimene, 2-phenylethanol, and phenylacetaldehyde, respectively, whereas female antennae contain three groups of ORNs specialized for (±)-linalool and (±)-α-terpineol, myrcene and (E)-β-ocimene, (±)-1-octen-3-ol, and 3-octanone. Our results suggest that S. discoideus use a multi-component pheromone communication system, and a sex-specific set of ORNs with a narrow range of response spectra for host-plant location.
Collapse
Affiliation(s)
- Kye Chung Park
- The New Zealand Institute for Plant and Food Research Limited, Christchurch, 8140, New Zealand
| | - Mark R McNeill
- AgResearch Limited, Private Bag 4749, Christchurch, 8140, New Zealand
| | - David M Suckling
- The New Zealand Institute for Plant and Food Research Limited, Christchurch, 8140, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - C Rikard Unelius
- The New Zealand Institute for Plant and Food Research Limited, Christchurch, 8140, New Zealand. .,Faculty of Health and Life Sciences, Linnaeus University, 391 82, Kalmar, Sweden.
| |
Collapse
|
28
|
Mas F, Horner R, Cazères S, Alavi M, Suckling DM. Odorant-Based Detection and Discrimination of Two Economic Pests in Export Apples. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:134-143. [PMID: 31588516 DOI: 10.1093/jee/toz254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Indexed: 06/10/2023]
Abstract
Detection of pest infestations in fresh produce traded internationally could offer improved prospects for reducing the movement of unwanted pests. Because immature stages of some pests can be difficult to find visually, other cues such as herbivore-induced volatiles that can potentially be detected at the early stages of infestation are worth investigating. In this study, we artificially infested postharvested apples (Malus × domestica 'Royal Gala') with two economic apple pests, the specialist codling moth (CM, Cydia pomonella Linnaeus, Lepidoptera: Tortricidae) and the generalist Queensland fruit fly (QFF, Bactrocera tryoni, Froggatt, Diptera: Tephritidae) and collected volatile organic compounds (VOCs) over time (days 0, 6, and 14-15). In both infestation experiments, we found a strong and significant interaction between time and treatment. Apples infested with the QFF emitted lower total amounts of VOCs than uninfested apples, whereas apples infested with the CM released similar total amounts of VOCs. Apples infested with CM had increases in several hexyl and butyl esters, which were particularly noticeable after 15 d. In contrast, changes in ethyl esters were characteristics of QFF infestation and could be detected from day 6. Our multilevel and multivariate statistical analysis identified specific volatile biomarkers for each species at each sampling time that can be used to design a new tool for remote detection and surveillance of these invasive pests in harvested apples. Nevertheless, other information such as the cultivar as well as the storage condition needs to be taken into consideration to increase accuracy of future odorant-based sensors for pest identification.
Collapse
Affiliation(s)
- Flore Mas
- The New Zealand Institute for Plant and Food Research Limited, Biosecurity Group, PB, Christchurch, New Zealand
- Better Border Biosecurity (B3) (http://b3nz.org)
| | - Rachael Horner
- The New Zealand Institute for Plant and Food Research Limited, Biosecurity Group, PB, Christchurch, New Zealand
- Better Border Biosecurity (B3) (http://b3nz.org)
| | - Sylvie Cazères
- Institut Agronomique néo-Calédonien, Laboratoire d'Entomologie Appliquée, Station de Recherches Fruitières de Pocquereux, La Foa, New Caledonia, France
| | - Maryam Alavi
- The New Zealand Institute for Plant and Food Research Limited, Biosecurity Group, PB, Christchurch, New Zealand
| | - David Maxwell Suckling
- The New Zealand Institute for Plant and Food Research Limited, Biosecurity Group, PB, Christchurch, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Better Border Biosecurity (B3) (http://b3nz.org)
| |
Collapse
|
29
|
Grissett L, Ali A, Coble AM, Logan K, Washington B, Mateson A, McGee K, Nkrumah Y, Jacobus L, Abraham E, Hann C, Bequette CJ, Hind SR, Schmelz EA, Stratmann JW. Survey of Sensitivity to Fatty Acid-Amino Acid Conjugates in the Solanaceae. J Chem Ecol 2020; 46:330-343. [PMID: 31989490 DOI: 10.1007/s10886-020-01152-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 12/17/2022]
Abstract
Plants perceive insect herbivores via a sophisticated surveillance system that detects a range of alarm signals, including herbivore-associated molecular patterns (HAMPs). Fatty acid-amino acid conjugates (FACs) are HAMPs present in oral secretions (OS) of lepidopteran larvae that induce defense responses in many plant species. In contrast to eggplant (Solanum melongena), tomato (S. lycopersicum) does not respond to FACs present in OS from Manduca sexta (Lepidoptera). Since both plants are found in the same genus, we tested whether loss of sensitivity to FACs in tomato may be a domestication effect. Using highly sensitive MAP kinase (MAPK) phosphorylation assays, we demonstrate that four wild tomato species and the closely related potato (S. tuberosum) do not respond to the FACs N-linolenoyl-L-glutamine and N-linolenoyl-L-glutamic acid, excluding a domestication effect. Among other genera within the Solanaceae, we found that bell pepper (Capsicum annuum) is responsive to FACs, while there is a differential responsiveness to FACs among tobacco (Nicotiana) species, ranging from strong responsiveness in N. benthamiana to no responsiveness in N. knightiana. The Petunia lineage is one of the oldest lineages within the Solanaceae and P. hybrida was responsive to FACs. Collectively, we demonstrate that plant responsiveness to FACs does not follow simple phylogenetic relationships in the family Solanaceae. Instead, sensitivity to FACs is a dynamic ancestral trait present in monocots and eudicots that was repeatedly lost during the evolution of Solanaceae species. Although tomato is insensitive to FACs, we found that other unidentified factors in M. sexta OS induce defenses in tomato.
Collapse
Affiliation(s)
- Laquita Grissett
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,Fred Hutchinson Cancer Research Center, University of Washington School of Dentistry, Seattle, WA, USA
| | - Azka Ali
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Anne-Marie Coble
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Khalilah Logan
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Brandon Washington
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Abigail Mateson
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Kelsey McGee
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Yaw Nkrumah
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Leighton Jacobus
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Evelyn Abraham
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,Department of Plant Biology, Pennsylvania State University, University Park, PA, USA
| | - Claire Hann
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Carlton J Bequette
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,R.J. Reynolds Tobacco, Winston-Salem, NC, USA
| | - Sarah R Hind
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Johannes W Stratmann
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
30
|
Uemura T, Arimura GI. Current opinions about herbivore-associated molecular patterns and plant intracellular signaling. PLANT SIGNALING & BEHAVIOR 2019; 14:e1633887. [PMID: 31230525 PMCID: PMC6768233 DOI: 10.1080/15592324.2019.1633887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 06/09/2023]
Abstract
Elicitor-associated compounds included in oral secretions of herbivorous arthropods, defined as herbivore-associated molecular patterns (HAMPs), induce defense responses in plants. Recognition of HAMPs by the host plants triggers the activation of downstream intracellular and intercellular signaling, resulting in the production of defensive secondary metabolites and volatile emissions to defend against herbivore attack. Thus far, several chemical classes of HAMPs, e.g., fatty acid-amino acid conjugates, peptides, enzymes, and oligosaccharides, have been characterized from not only plant-chewing arthropod herbivores but also plant-sucking arthropod herbivores. Here, we introduce the latest insights about HAMPs and the HAMPs-induced defense signaling network in host plants.
Collapse
Affiliation(s)
- Takuya Uemura
- Department of Biological Science & Technology, Faculty of Industrial Science & Technology, Tokyo University of Science, Tokyo, Japan
| | - Gen-Ichiro Arimura
- Department of Biological Science & Technology, Faculty of Industrial Science & Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
31
|
Hu L, Ye M, Kuai P, Ye M, Erb M, Lou Y. OsLRR-RLK1, an early responsive leucine-rich repeat receptor-like kinase, initiates rice defense responses against a chewing herbivore. THE NEW PHYTOLOGIST 2018; 219:1097-1111. [PMID: 29878383 DOI: 10.1111/nph.15247] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/01/2018] [Indexed: 05/20/2023]
Abstract
Plants are constantly exposed to a variety of environmental stresses, including herbivory. How plants perceive herbivores on a molecular level is poorly understood. Leucine-rich repeat receptor-like kinases (LRR-RLKs), the largest subfamily of RLKs, are essential for plants to detect external stress signals, and may therefore also be involved in herbivore perception. Here, we employed RNA interference silencing, phytohormone profiling and complementation, as well as herbivore resistance assays, to investigate the requirement of an LRR-RLK for the initiation of rice (Oryza sativa) defenses against the chewing herbivore striped stem borer (SSB) Chilo suppressalis. We discovered a plasma membrane-localized LRR-RLK, OsLRR-RLK1, whose transcription is strongly up-regulated by SSB attack and treatment with oral secretions of Spodoptera frugiperda. OsLRR-RLK1 acts upstream of mitogen-activated protein kinase (MPK) cascades, and positively regulates defense-related MPKs and WRKY transcription factors. Moreover, OsLRR-RLK1 is a positive regulator of SSB-elicited, but not wound-elicited, levels of jasmonic acid and ethylene, trypsin protease inhibitor activity and plant resistance towards SSB. OsLRR-RLK1 therefore plays an important role in herbivory-induced defenses of rice. Given the well-documented role of LRR-RLKs in the perception of stress-related molecules, we speculate that OsLRR-RLK1 may be involved in the perception of herbivory-associated molecular patterns.
Collapse
Affiliation(s)
- Lingfei Hu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Meng Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Peng Kuai
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Miaofen Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
32
|
Aljbory Z, Chen MS. Indirect plant defense against insect herbivores: a review. INSECT SCIENCE 2018; 25:2-23. [PMID: 28035791 DOI: 10.1111/1744-7917.12436] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 05/09/2023]
Abstract
Plants respond to herbivore attack by launching 2 types of defenses: direct defense and indirect defense. Direct defense includes all plant traits that increase the resistance of host plants to insect herbivores by affecting the physiology and/or behavior of the attackers. Indirect defense includes all traits that by themselves do not have significant direct impact on the attacking herbivores, but can attract natural enemies of the herbivores and thus reduce plant loss. When plants recognize herbivore-associated elicitors, they produce and release a blend of volatiles that can attract predators, parasites, and other natural enemies. Known herbivore-associated elicitors include fatty acid-amino acid conjugates, sulfur-containing fatty acids, fragments of cell walls, peptides, esters, and enzymes. Identified plant volatiles include terpenes, nitrogenous compounds, and indoles. In addition, constitive traits including extrafloral nectars, food bodies, and domatia can be further induced to higher levels and attract natural enemies as well as provide food and shelter to carnivores. A better understanding of indirect plant defense at global and componential levels via advanced high throughput technologies may lead to utilization of indirect defense in suppression of herbivore damage to plants.
Collapse
Affiliation(s)
- Zainab Aljbory
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Ming-Shun Chen
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
33
|
Luo S, Zhang X, Wang J, Jiao C, Chen Y, Shen Y. Plant ion channels and transporters in herbivory-induced signalling. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:111-131. [PMID: 32291026 DOI: 10.1071/fp16318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/06/2016] [Indexed: 06/11/2023]
Abstract
In contrast to many biotic stresses that plants face, feeding by herbivores produces unique mechanical and chemical signatures. Plants have evolved effective systems to recognise these mechanical stimuli and chemical elicitors at the plasma membrane (PM), where this recognition generates ion fluxes, including an influx of Ca2+ that elicits cellular Ca2+ signalling, production of reactive oxygen species (ROS), and variation in transmembrane potential. These signalling events also function in propagation of long-distance signals (Ca2+ waves, ROS waves, and electrical signals), which contribute to rapid, systemic induction of defence responses. Recent studies have identified several candidate channels or transporters that likely produce these ion fluxes at the PM. Here, we describe the important roles of these channels/transporters in transduction or transmission of herbivory-induced early signalling events, long-distance signals, and jasmonic acid and green leaf volatile signalling in plants.
Collapse
Affiliation(s)
- Shuitian Luo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinfei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chunyang Jiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
34
|
Sobhy IS, Miyake A, Shinya T, Galis I. Oral Secretions Affect HIPVs Induced by Generalist (Mythimna loreyi) and Specialist (Parnara guttata) Herbivores in Rice. J Chem Ecol 2017; 43:929-943. [DOI: 10.1007/s10886-017-0882-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 01/08/2023]
|
35
|
Cheng Q, Gu S, Liu Z, Wang CZ, Li X. Expressional divergence of the fatty acid-amino acid conjugate-hydrolyzing aminoacylase 1 (L-ACY-1) in Helicoverpa armigera and Helicoverpa assulta. Sci Rep 2017; 7:8721. [PMID: 28821781 PMCID: PMC5562920 DOI: 10.1038/s41598-017-09185-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022] Open
Abstract
How FACs-producing generalist and specialist herbivores regulate their FACs-hydrolyzing enzyme L-ACY-1 to balance FACs’ beneficial vs. detrimental effects remains unknown. To address this question, we compared L-ACY-1 expression in Helicoverpa armigera and Helicoverpa assulta, a pair of closely related sibling species differing mainly in their host range, by the same sets of hostplants, protein to digestible carbohydrate (P:C) ratios, or allelochemical. L-ACY-1 expression remained low/unchanged in H. armigera, but was induced by hot pepper fruits and repressed by cotton bolls in H. assulta. The representative allelochemicals of the tested hostplants significantly (capsaicin) or insignificantly (gossypol and nicotine) induced L-ACY-1 expression in H. armigera, but insignificantly inhibited (capsaicin and gossypol) or induced (nicotine) it in H. assulta. L-ACY-1 expression remained low/unaltered on balanced (P50:C50 and P53:C47) or protein-biased diets and induced on carbohydrate-biased diets in H. armigera, but was at the highest level on balanced diets and reduced on either protein- or carbohydrate-biased diets in H. assulta. Furthermore, L-ACY-1 expression was significantly higher in H. assulta than in H. armigera for most of feeding treatments. Such expressional divergences suggest that FACs are utilized mainly for removal of excessive nitrogen in generalists but for nitrogen assimilation in specialists.
Collapse
Affiliation(s)
- Qian Cheng
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shaohua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianchun Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Department of Entomology and BIO5 Institute, The University of Arizona, Tucson, 85721, AZ, USA.
| |
Collapse
|
36
|
Suckling DM, El-Sayed AM. Caterpillar-Induced Plant Volatiles Attract Adult Tortricidae. J Chem Ecol 2017; 43:487-492. [PMID: 28477139 DOI: 10.1007/s10886-017-0847-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/09/2017] [Accepted: 04/13/2017] [Indexed: 11/28/2022]
Abstract
Binary and ternary combinations of volatile organic compounds identified earlier from caterpillar-infested apple foliage caught more than one thousand individuals of both sexes of several adult tortricid leafroller species in several days of trials conducted in apple orchards in southern British Columbia. A series of combinations with phenylacetonitrile, benzyl alcohol, and/or 2-phenylethanol and acetic acid enabled substantial catches of both sexes of eye-spotted budmoth, Spilonota ocellana, oblique-banded leafroller, Choristoneura rosaceana and three-lined leafroller, Pandemis limitata. These findings suggest that new monitoring aides can be developed to seasonally track populations, enabling practical applications in surveillance of female leafroller populations for the first time. It may also be possible to develop suppression tools based on combinations of kairomone compounds originally identified from leafroller larval-damaged apple trees, given the level of attraction. The discovery of these adult tortricid attractants (aromatic compounds plus acetic acid) raises new ecological questions about evolved direct plant defences against herbivores. Larval feeding-induced attraction of adult herbivores produces signals that are potentially harmful to the plant by increasing herbivory in the same family and probably feeding guild, but evidence for effects on plant fitness is needed.
Collapse
Affiliation(s)
- D M Suckling
- The New Zealand Institute for Plant & Food Research Limited, Gerald Street, Lincoln, 7608, New Zealand. .,School of Biological Sciences, University of Auckland, Tamaki Campus, Building, Auckland, 733, New Zealand.
| | - A M El-Sayed
- The New Zealand Institute for Plant & Food Research Limited, Gerald Street, Lincoln, 7608, New Zealand
| |
Collapse
|
37
|
Bi QR, Hou JJ, Yang M, Shen Y, Qi P, Feng RH, Dai Z, Yan BP, Wang JW, Shi XJ, Wu WY, Guo DA. A Strategy Combining Higher Energy C-Trap Dissociation with Neutral Loss- and Product Ion-Based MS n Acquisition for Global Profiling and Structure Annotation of Fatty Acids Conjugates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:443-451. [PMID: 27924497 DOI: 10.1007/s13361-016-1558-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Fatty acids conjugates (FACs) are ubiquitous but found in trace amounts in the natural world. They are composed of multiple unknown substructures and side chains. Thus, FACs are difficult to be analyzed by traditional mass spectrometric methods. In this study, an integrated strategy was developed to global profiling and targeted structure annotation of FACs in complex matrix by LTQ Orbitrap. Dicarboxylic acid conjugated bufotoxins (DACBs) in Venenum bufonis (VB) were used as model compounds. The new strategy (abbreviated as HPNA) combined higher-energy C-trap dissociation (HCD) with product ion- (PI), neutral loss- (NL) based MSn (n ≥ 3) acquisition in both positive-ion mode and negative-ion mode. Several advantages are presented. First, various side chains were found under HCD in negative-ion mode, which included both known and unknown side chains. Second, DACBs with multiple side chains were simultaneously detected in one run. Compared with traditional quadrupole-based mass method, it greatly increased analysis throughput. Third, the fragment ions of side chain and steroids substructure could be obtained by PI- and NL-based MSn acquisition, respectively, which greatly increased the accuracy of the structure annotation of DACBs. In all, 78 DACBs have been discovered, of which 68 were new compounds; 25 types of substructure formulas and seven dicarboxylic acid side chains were found, especially five new side chains, including two saturated dicarboxylic acids [(azelaic acid (C9) and sebacic acid (C10)] and three unsaturated dicarboxylic acids (u-C8, u-C9, and u-C10). All these results greatly enriched the structures of DACBs in VB. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Qi-Rui Bi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai, 201203, China
- The College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Jin-Jun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai, 201203, China
| | - Min Yang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai, 201203, China
| | - Yao Shen
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai, 201203, China
| | - Peng Qi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai, 201203, China
| | - Rui-Hong Feng
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai, 201203, China
| | - Zhuo Dai
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai, 201203, China
| | - Bing-Peng Yan
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai, 201203, China
- The College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian-Wei Wang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai, 201203, China
- The College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Jian Shi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai, 201203, China
- The College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Wan-Ying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai, 201203, China.
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai, 201203, China.
- The College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
38
|
Nakata R, Kimura Y, Aoki K, Yoshinaga N, Teraishi M, Okumoto Y, Huffaker A, Schmelz EA, Mori N. Inducible De Novo Biosynthesis of Isoflavonoids in Soybean Leaves by Spodoptera litura Derived Elicitors: Tracer Techniques Aided by High Resolution LCMS. J Chem Ecol 2016; 42:1226-1236. [PMID: 27826811 DOI: 10.1007/s10886-016-0786-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/18/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
Isoflavonoids are a characteristic family of natural products in legumes known to mediate a range of plant-biotic interactions. For example, in soybean (Glycine max: Fabaceae) multiple isoflavones are induced and accumulate in leaves following attack by Spodoptera litura (Lepidoptera: Noctuidae) larvae. To quantitatively examine patterns of activated de novo biosynthesis, soybean (Var. Enrei) leaves were treated with a combination of plant defense elicitors present in S. litura gut content extracts and L-α-[13C9, 15N]phenylalanine as a traceable isoflavonoid precursor. Combined treatments promoted significant increases in 13C-labeled isoflavone aglycones (daidzein, formononetin, and genistein), 13C-labeled isoflavone 7-O-glucosides (daidzin, ononin, and genistin), and 13C-labeled isoflavone 7-O-(6″-O-malonyl-β-glucosides) (malonyldaidzin, malonylononin, and malonylgenistin). In contrast levels of 13C-labeled flavones and flavonol (4',7-dihydroxyflavone, kaempferol, and apigenin) were not significantly altered. Curiously, application of fatty acid-amino acid conjugate (FAC) elicitors present in S. litura gut contents, namely N-linolenoyl-L-glutamine and N-linoleoyl-L-glutamine, both promoted the induced accumulation of isoflavone 7-O-glucosides and isoflavone 7-O-(6″-O-malonyl-β-glucosides), but not isoflavone aglycones in the leaves. These results demonstrate that at least two separate reactions are involved in elicitor-induced soybean leaf responses to the S. litura gut contents: one is the de novo biosynthesis of isoflavone conjugates induced by FACs, and the other is the hydrolysis of the isoflavone conjugates to yield isoflavone aglycones. Gut content extracts alone displayed no hydrolytic activity. The quantitative analysis of isoflavone de novo biosynthesis, with respect to both aglycones and conjugates, affords a useful bioassay system for the discovery of additional plant defense elicitor(s) in S. litura gut contents that specifically promote hydrolysis of isoflavone conjugates.
Collapse
Affiliation(s)
- Ryu Nakata
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan
| | - Yuki Kimura
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan
| | - Kenta Aoki
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan
| | - Naoko Yoshinaga
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan
| | - Masayoshi Teraishi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan
| | - Yutaka Okumoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, 92093-0380, USA
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, 92093-0380, USA
| | - Naoki Mori
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan.
| |
Collapse
|
39
|
El-Sayed AM, Knight AL, Byers JA, Judd GJR, Suckling DM. Caterpillar-induced plant volatiles attract conspecific adults in nature. Sci Rep 2016; 6:37555. [PMID: 27892474 PMCID: PMC5124949 DOI: 10.1038/srep37555] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/01/2016] [Indexed: 11/30/2022] Open
Abstract
Plants release volatiles in response to caterpillar feeding that attract natural enemies of the herbivores, a tri-trophic interaction which has been considered an indirect plant defence against herbivores. The caterpillar-induced plant volatiles have been reported to repel or attract conspecific adult herbivores. To date however, no volatile signals that either repel or attract conspecific adults under field conditions have been chemically identified. Apple seedlings uniquely released seven compounds including acetic acid, acetic anhydride, benzyl alcohol, benzyl nitrile, indole, 2-phenylethanol, and (E)-nerolidol only when infested by larvae of the light brown apple moth, Epiphyas postvittana. In field tests in New Zealand, a blend of two of these, benzyl nitrile and acetic acid, attracted a large number of conspecific male and female adult moths. In North America, male and female adults of the tortricid, oblique-banded leafroller, Choristoneura rosaceana, were most attracted to a blend of 2-phenylethanol and acetic acid. Both sexes of the eye-spotted bud moth, Spilonota ocellana, were highly attracted to a blend of benzyl nitrile and acetic acid. This study provides the first identification of caterpillar-induced plant volatiles that attract conspecific adult herbivores under natural conditions, challenging the expectation of herbivore avoidance of these induced volatiles.
Collapse
Affiliation(s)
- Ashraf M El-Sayed
- The New Zealand Institute for Plant &Food Research Limited, Gerald Street, 7608, Lincoln, New Zealand
| | - Alan L Knight
- USDA-ARS, Agricultural Research Service 5230 Konnowac Pass Rd, Wapato, WA, 98951-9651, USA
| | - John A Byers
- Department of Entomology Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem Rehovot, Israel
| | - Gary J R Judd
- Agriculture and Agri-Food Canada 4200 Highway 97 Box 5000, Summerland, British Columbia V0H 1Z0, Canada
| | - David M Suckling
- The New Zealand Institute for Plant &Food Research Limited, Gerald Street, 7608, Lincoln, New Zealand.,School of Biological Sciences, University of Auckland Tamaki Campus, Building 733, Auckland, New Zealand
| |
Collapse
|
40
|
Oates CN, Denby KJ, Myburg AA, Slippers B, Naidoo S. Insect Gallers and Their Plant Hosts: From Omics Data to Systems Biology. Int J Mol Sci 2016; 17:E1891. [PMID: 27869732 PMCID: PMC5133890 DOI: 10.3390/ijms17111891] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 12/30/2022] Open
Abstract
Gall-inducing insects are capable of exerting a high level of control over their hosts' cellular machinery to the extent that the plant's development, metabolism, chemistry, and physiology are all altered in favour of the insect. Many gallers are devastating pests in global agriculture and the limited understanding of their relationship with their hosts prevents the development of robust management strategies. Omics technologies are proving to be important tools in elucidating the mechanisms involved in the interaction as they facilitate analysis of plant hosts and insect effectors for which little or no prior knowledge exists. In this review, we examine the mechanisms behind insect gall development using evidence from omics-level approaches. The secretion of effector proteins and induced phytohormonal imbalances are highlighted as likely mechanisms involved in gall development. However, understanding how these components function within the system is far from complete and a number of questions need to be answered before this information can be used in the development of strategies to engineer or breed plants with enhanced resistance.
Collapse
Affiliation(s)
- Caryn N Oates
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag x20, Pretoria 0028, South Africa.
| | - Katherine J Denby
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag x20, Pretoria 0028, South Africa.
| | - Bernard Slippers
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag x20, Pretoria 0028, South Africa.
| | - Sanushka Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag x20, Pretoria 0028, South Africa.
| |
Collapse
|
41
|
Shinya T, Hojo Y, Desaki Y, Christeller JT, Okada K, Shibuya N, Galis I. Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice. Sci Rep 2016; 6:32537. [PMID: 27581373 PMCID: PMC5007475 DOI: 10.1038/srep32537] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022] Open
Abstract
Induced plant defense responses against insect herbivores are triggered by wounding and/or perception of herbivore elicitors from their oral secretions (OS) and/or saliva. In this study, we analyzed OS isolated from two rice chewing herbivores, Mythimna loreyi and Parnara guttata. Both types of crude OS had substantial elicitor activity in rice cell system that allowed rapid detection of early and late defense responses, i.e. accumulation of reactive oxygen species (ROS) and defense secondary metabolites, respectively. While the OS from M. loreyi contained large amounts of previously reported insect elicitors, fatty acid-amino acid conjugates (FACs), the elicitor-active P. guttata's OS contained no detectable FACs. Subsequently, elicitor activity associated with the high molecular mass fraction in OS of both herbivores was identified, and shown to promote ROS and metabolite accumulations in rice cells. Notably, the application of N-linolenoyl-Gln (FAC) alone had only negligible elicitor activity in rice cells; however, the activity of isolated elicitor fraction was substantially promoted by this FAC. Our results reveal that plants integrate various independent signals associated with their insect attackers to modulate their defense responses and reach maximal fitness in nature.
Collapse
Affiliation(s)
- Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Yoshitake Desaki
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - John T. Christeller
- The New Zealand Institute for Plant & Food Research, Palmerston North 4442, New Zealand
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
42
|
Yoshinaga N. Physiological function and ecological aspects of fatty acid-amino acid conjugates in insects†. Biosci Biotechnol Biochem 2016; 80:1274-82. [DOI: 10.1080/09168451.2016.1153956] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
In tritrophic interactions, plants recognize herbivore-produced elicitors and release a blend of volatile compounds (VOCs), which work as chemical cues for parasitoids or predators to locate their hosts. From detection of elicitors to VOC emissions, plants utilize sophisticated systems that resemble the plant–microbe interaction system. Fatty acid–amino acid conjugates (FACs), a class of insect elicitors, resemble compounds synthesized by microbes in nature. Recent evidence suggests that the recognition of insect elicitors by an ancestral microbe-associated defense system may be the origin of tritrophic interactions mediated by FACs. Here we discuss our findings in light of how plants have customized this defense to be effective against insect herbivores, and how some insects have successfully adapted to these defenses.
Collapse
Affiliation(s)
- Naoko Yoshinaga
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
LeClair G, Williams M, Silk P, Eveleigh E, Mayo P, Brophy M, Francis B. Spruce Budworm (Lepidoptera: Tortricidae) Oral Secretions II: Chemistry. ENVIRONMENTAL ENTOMOLOGY 2015; 44:1531-1543. [PMID: 26454474 DOI: 10.1093/ee/nvv149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/21/2015] [Indexed: 06/05/2023]
Abstract
As sessile organisms, plants have evolved different methods to defend against attacks and have adapted their defense measures to discriminate between mechanical damage and herbivory by insects. One of the ways that plant defenses are triggered is via elicitors from insect oral secretions (OS). In this study, we investigated the ability of second-instar (L2) spruce budworm [SBW; Choristoneura fumiferana (Clemens)] to alter the volatile organic compounds (VOCs) of four conifer species [Abies balsamea (L.) Mill., Picea mariana (Miller) B.S.P., Picea glauca (Moench) Voss, Picea rubens (Sargent)] and found that the emission profiles from all host trees were drastically changed after herbivory. We then investigated whether some of the main elicitors (fatty acid conjugates [FACs], β-glucosidase, and glucose oxidase) studied were present in SBW OS. FACs (glutamine and glutamic acid) based on linolenic, linoleic, oleic, and stearic acids were all observed in varying relative quantities. Hydroxylated FACs, such as volicitin, were not observed. Enzyme activity for β-glucosidase was also measured and found present in SBW OS, whereas glucose oxidase activity was not found in the SBW labial glands. These results demonstrate that SBW L2 larvae have the ability to induce VOC emissions upon herbivory and that SBW OS contain potential elicitors to induce these defensive responses. These data will be useful to further evaluate whether these elicitors can separately induce the production of specific VOCs and to investigate whether and how these emissions benefit the plant.
Collapse
|
44
|
Kant MR, Jonckheere W, Knegt B, Lemos F, Liu J, Schimmel BCJ, Villarroel CA, Ataide LMS, Dermauw W, Glas JJ, Egas M, Janssen A, Van Leeuwen T, Schuurink RC, Sabelis MW, Alba JM. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. ANNALS OF BOTANY 2015; 115:1015-51. [PMID: 26019168 PMCID: PMC4648464 DOI: 10.1093/aob/mcv054] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/12/2015] [Accepted: 04/24/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence. SCOPE The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to exploitative competition and facilitation within ecological communities "inhabiting" a plant. CONCLUSIONS Herbivores have evolved diverse strategies, which are not mutually exclusive, to decrease the negative effects of plant defences in order to maximize the conversion of plant material into offspring. Numerous adaptations have been found in herbivores, enabling them to dismantle or bypass defensive barriers, to avoid tissues with relatively high levels of defensive chemicals or to metabolize these chemicals once ingested. In addition, some herbivores interfere with the onset or completion of induced plant defences, resulting in the plant's resistance being partly or fully suppressed. The ability to suppress induced plant defences appears to occur across plant parasites from different kingdoms, including herbivorous arthropods, and there is remarkable diversity in suppression mechanisms. Suppression may strongly affect the structure of the food web, because the ability to suppress the activation of defences of a communal host may facilitate competitors, whereas the ability of a herbivore to cope with activated plant defences will not. Further characterization of the mechanisms and traits that give rise to suppression of plant defences will enable us to determine their role in shaping direct and indirect interactions in food webs and the extent to which these determine the coexistence and persistence of species.
Collapse
Affiliation(s)
- M R Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - W Jonckheere
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - B Knegt
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - F Lemos
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J Liu
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - B C J Schimmel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - C A Villarroel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - L M S Ataide
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - W Dermauw
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J J Glas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - M Egas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - A Janssen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - T Van Leeuwen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - R C Schuurink
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - M W Sabelis
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
45
|
Seidl-Adams I, Richter A, Boomer KB, Yoshinaga N, Degenhardt J, Tumlinson JH. Emission of herbivore elicitor-induced sesquiterpenes is regulated by stomatal aperture in maize (Zea mays) seedlings. PLANT, CELL & ENVIRONMENT 2015; 38:23-34. [PMID: 24725255 DOI: 10.1111/pce.12347] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 06/03/2023]
Abstract
Maize seedlings emit sesquiterpenes during the day in response to insect herbivory. Parasitoids and predators use induced volatile blends to find their hosts or prey. To investigate the diurnal regulation of biosynthesis and emission of induced sesquiterpenes, we applied linolenoyl-L-glutamine (LG) to maize seedlings in the morning or evening using a cut-stem assay and tracked farnesene emission, in planta accumulation, as well as transcript levels of farnesyl pyrophosphate synthase 3 (ZmFPPS3) and terpene synthase10 (ZmTPS10) throughout the following day. Independent of time of day of LG treatment, maximum transcript levels of ZmFPPS3 and ZmTPS10 occurred within 3-4 h after elicitor application. The similarity between the patterns of farnesene emission and in planta accumulation in light-exposed seedlings in both time courses suggested unobstructed emission in the light. After evening induction, farnesene biosynthesis increased dramatically during early morning hours. Contrary to light-exposed seedlings dark-kept seedlings retained the majority of the synthesized farnesene. Two treatments to reduce stomatal aperture, dark exposure at midday, and abscisic acid treatment before daybreak, resulted in significantly reduced amounts of emitted and significantly increased amounts of in planta accumulating farnesene. Our results suggest that stomata not only play an important role in gas exchange for primary metabolism but also for indirect plant defences.
Collapse
Affiliation(s)
- I Seidl-Adams
- Center of Chemical Ecology, Entomology Department, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | | | | | | | | | | |
Collapse
|
46
|
Bosch M, Berger S, Schaller A, Stintzi A. Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sexta. BMC PLANT BIOLOGY 2014; 14:257. [PMID: 25261073 PMCID: PMC4189532 DOI: 10.1186/s12870-014-0257-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/22/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Jasmonates are involved in plant defense, participating in the timely induction of defense responses against insect herbivores from different feeding guilds and with different degrees of host specialization. It is less clear to what extent the induction of plant defense is controlled by different members of the jasmonate family and how specificity of the response is achieved. Using transgenic plants blocked in jasmonic acid (JA) biosynthesis, we previously showed that JA is required for the formation of glandular trichomes and trichome-borne metabolites as constitutive defense traits in tomato, affecting oviposition and feeding behavior of the specialist Manduca sexta. In contrast, JA was not required for the local induction of defense gene expression after wounding. In JA-deficient plants, the JA precursor oxophytodienoic acid (OPDA) substituted as a regulator of defense gene expression maintaining considerable resistance against M. sexta larvae. In this study, we investigate the contribution of JA and OPDA to defense against the generalist herbivore Spodoptera exigua. RESULTS S. exigua preferred JA-deficient over wild-type tomato plants as a host for both oviposition and feeding. Feeding preference for JA-deficient plants was caused by constitutively reduced levels of repellent terpenes. Growth and development of the larvae, on the other hand, were controlled by additional JA-dependent defense traits, including the JA-mediated induction of foliar polyphenol oxidase (PPO) activity. PPO induction was more pronounced after S. exigua herbivory as compared to mechanical wounding or M. sexta feeding. The difference was attributed to an elicitor exclusively present in S. exigua oral secretions. CONCLUSIONS The behavior of M. sexta and S. exigua during oviposition and feeding is controlled by constitutive JA/JA-Ile-dependent defense traits involving mono- and sesquiterpenes in both species, and cis-3-hexenal as an additional chemical cue for M. sexta. The requirement of jasmonates for resistance of tomato plants against caterpillar feeding differs for the two species. While the OPDA-mediated induction of local defense is sufficient to restrict growth and development of M. sexta larvae in absence of JA/JA-Ile, defense against S. exigua relied on additional JA/JA-Ile dependent factors, including the induction of foliar polyphenol oxidase activity in response to S. exigua oral secretions.
Collapse
Affiliation(s)
- Marko Bosch
- Institute of Plant Physiology and Biotechnology, University of Hohenheim (260), 70593 Stuttgart, Germany
| | - Sonja Berger
- Institute of Plant Physiology and Biotechnology, University of Hohenheim (260), 70593 Stuttgart, Germany
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim (260), 70593 Stuttgart, Germany
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim (260), 70593 Stuttgart, Germany
| |
Collapse
|
47
|
Desurmont GA, Harvey J, van Dam NM, Cristescu SM, Schiestl FP, Cozzolino S, Anderson P, Larsson MC, Kindlmann P, Danner H, Turlings TCJ. Alien interference: disruption of infochemical networks by invasive insect herbivores. PLANT, CELL & ENVIRONMENT 2014; 37:1854-65. [PMID: 24689553 DOI: 10.1111/pce.12333] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 05/09/2023]
Abstract
Insect herbivores trigger various biochemical changes in plants, and as a consequence, affect other organisms that are associated with these plants. Such plant-mediated indirect effects often involve herbivore-induced plant volatiles (HIPVs) that can be used as cues for foraging herbivores and their natural enemies, and are also known to affect pollinator attraction. In tightly co-evolved systems, the different trophic levels are expected to display adaptive response to changes in HIPVs caused by native herbivores. But what if a new herbivore invades such a system? Current literature suggests that exotic herbivores have the potential to affect HIPV production, and that plant responses to novel herbivores are likely to depend on phylogenetic relatedness between the invader and the native species. Here we review the different ways exotic herbivores can disrupt chemically mediated interactions between plants and the key users of HIPVs: herbivores, pollinators, and members of the third (i.e. predators and parasitoids) and fourth (i.e. hyperparasitoids) trophic levels. Current theory on insect invasions needs to consider that disruptive effects of invaders on infochemical networks can have a short-term impact on the population dynamics of native insects and plants, as well as exerting potentially negative consequences for the functioning of native ecosystems.
Collapse
Affiliation(s)
- Gaylord A Desurmont
- Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Murakami S, Nakata R, Aboshi T, Yoshinaga N, Teraishi M, Okumoto Y, Ishihara A, Morisaka H, Huffaker A, Schmelz EA, Mori N. Insect-induced daidzein, formononetin and their conjugates in soybean leaves. Metabolites 2014; 4:532-46. [PMID: 25000357 PMCID: PMC4192678 DOI: 10.3390/metabo4030532] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 01/14/2023] Open
Abstract
In response to attack by bacterial pathogens, soybean (Gylcine max) leaves accumulate isoflavone aglucones, isoflavone glucosides, and glyceollins. In contrast to pathogens, the dynamics of related insect-inducible metabolites in soybean leaves remain poorly understood. In this study, we analyzed the biochemical responses of soybean leaves to Spodoptera litura (Lepidoptera: Noctuidae) herbivory and also S. litura gut contents, which contain oral secretion elicitors. Following S. litura herbivory, soybean leaves displayed an induced accumulation of the flavone and isoflavone aglycones 4’,7-dihyroxyflavone, daidzein, and formononetin, and also the isoflavone glucoside daidzin. Interestingly, foliar application of S. litura oral secretions also elicited the accumulation of isoflavone aglycones (daidzein and formononetin), isoflavone 7-O-glucosides (daidzin, ononin), and isoflavone 7-O-(6’-O-malonyl-β-glucosides) (malonyldaidzin, malonylononin). Consistent with the up-regulation of the isoflavonoid biosynthetic pathway, folair phenylalanine levels also increased following oral secretion treatment. To establish that these metabolitic changes were the result of de novo biosynthesis, we demonstrated that labeled (13C9) phenylalanine was incorporated into the isoflavone aglucones. These results are consistent with the presence of soybean defense elicitors in S. litura oral secretions. We demonstrate that isoflavone aglycones and isoflavone conjugates are induced in soybean leaves, not only by pathogens as previously demonstrated, but also by foliar insect herbivory.
Collapse
Affiliation(s)
- Shinichiro Murakami
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| | - Ryu Nakata
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| | - Takako Aboshi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| | - Naoko Yoshinaga
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| | - Masayoshi Teraishi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| | - Yutaka Okumoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| | - Atsushi Ishihara
- Department of Agriculture, Tottori University, Koyama-machi 4-101, Tottori 680-8550, Japan.
| | - Hironobu Morisaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| | - Alisa Huffaker
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, USDA, 1600 S.W. 23RD Drive, Gainesville, FL 32606, USA.
| | - Eric A Schmelz
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, USDA, 1600 S.W. 23RD Drive, Gainesville, FL 32606, USA.
| | - Naoki Mori
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| |
Collapse
|
49
|
Yoshinaga N, Ishikawa C, Seidl-Adams I, Bosak E, Aboshi T, Tumlinson JH, Mori N. N-(18-hydroxylinolenoyl)-L-glutamine: a newly discovered analog of volicitin in Manduca sexta and its elicitor activity in plants. J Chem Ecol 2014; 40:484-90. [PMID: 24817386 DOI: 10.1007/s10886-014-0436-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/13/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
Abstract
Plants attacked by insect herbivores release a blend of volatile organic compounds (VOCs) that serve as chemical cues for host location by parasitic wasps, natural enemies of the herbivores. Volicitin, N-(17-hydroxylinolenoyl)-L-glutamine, is one of the most active VOC elicitors found in herbivore regurgitants. Our previous study revealed that hydroxylation on the 17th position of the linolenic acid moiety of N-linolenoyl-L-glutamine increases by more than three times the elicitor activity in corn plants. Here, we identified N-(18-hydroxylinolenoyl)-L-glutamine (18OH-volicitin) from larval gut contents of tobacco hornworm (THW), Manduca sexta. Eggplant and tobacco, two solanaceous host plants of THW larvae, and corn, a non-host plant, responded differently to this new elicitor. Eggplant and tobacco seedlings emitted twice the amount of VOCs when 18OH-volicitin was applied to damaged leaf surfaces compared to N-linolenoyl-L-glutamine, while both these fatty acid amino acid conjugates (FACs) elicited a similar response in corn seedlings. In both solanaceous plants, there was no significant difference in the elicitor activity of 17OH- and 18OH-volicitin. Interestingly, other lepidopteran species that have 17OH-type volicitin also attack solanaceous plants. These data suggest that plants have developed herbivory-detection systems customized to their herbivorous enemies.
Collapse
Affiliation(s)
- Naoko Yoshinaga
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan,
| | | | | | | | | | | | | |
Collapse
|
50
|
Yoshinaga N, Abe H, Morita S, Yoshida T, Aboshi T, Fukui M, Tumlinson JH, Mori N. Plant volatile eliciting FACs in lepidopteran caterpillars, fruit flies, and crickets: a convergent evolution or phylogenetic inheritance? Front Physiol 2014; 5:121. [PMID: 24744735 PMCID: PMC3978339 DOI: 10.3389/fphys.2014.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/13/2014] [Indexed: 12/02/2022] Open
Abstract
Fatty acid amino acid conjugates (FACs), first identified in lepidopteran caterpillar spit as elicitors of plant volatile emission, also have been reported as major components in gut tracts of Drosophila melanogaster and cricket Teleogryllus taiwanemma. The profile of FAC analogs in these two insects was similar to that of tobacco hornworm Manduca sexta, showing glutamic acid conjugates predominantly over glutamine conjugates. The physiological function of FACs is presumably to enhance nitrogen assimilation in Spodoptera litura larvae, but in other insects it is totally unknown. Whether these insects share a common synthetic mechanism of FACs is also unclear. In this study, the biosynthesis of FACs was examined in vitro in five lepidopteran species (M. sexta, Cephonodes hylas, silkworm, S. litura, and Mythimna separata), fruit fly larvae and T. taiwanemma. The fresh midgut tissues of all of the tested insects showed the ability to synthesize glutamine conjugates in vitro when incubated with glutamine and sodium linolenate. Such direct conjugation was also observed for glutamic acid conjugates in all the insects but the product amount was very small and did not reflect the in vivo FAC patterns in each species. In fruit fly larvae, the predominance of glutamic acid conjugates could be explained by a shortage of substrate glutamine in midgut tissues, and in M. sexta, a rapid hydrolysis of glutamine conjugates has been reported. In crickets, we found an additional unique biosynthetic pathway for glutamic acid conjugates. T. taiwanemma converted glutamine conjugates to glutamic acid conjugates by deaminating the side chain of the glutamine moiety. Considering these findings together with previous results, a possibility that FACs in these insects are results of convergent evolution cannot be ruled out, but it is more likely that the ancestral insects had the glutamine conjugates and crickets and other insects developed glutamic acid conjugates in a different way.
Collapse
Affiliation(s)
- Naoko Yoshinaga
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Hiroaki Abe
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Sayo Morita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Tetsuya Yoshida
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Takako Aboshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Masao Fukui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - James H Tumlinson
- Department of Entomology, Center for Chemical Ecology, Pennsylvania State University University Park, PA, USA
| | - Naoki Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| |
Collapse
|