1
|
Zhu P, Lan Q. Preparation and Performance of a Grid-Based PCL/TPU@MWCNTs Nanofiber Membrane for Pressure Sensor. SENSORS (BASEL, SWITZERLAND) 2025; 25:3201. [PMID: 40431992 PMCID: PMC12115918 DOI: 10.3390/s25103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/12/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025]
Abstract
The intrinsic trade-off among sensitivity, response speed, and measurement range continues to hinder the wider adoption of flexible pressure sensors in areas such as medical diagnostics and gesture recognition. In this work, we propose a grid-structured polycaprolactone/thermoplastic-polyurethane nanofiber pressure sensor decorated with multi-walled carbon nanotubes (PCL/TPU@MWCNTs). By introducing a gradient grid membrane, the strain distribution and reconstruction of the conductive network can be modulated, thereby alleviating the conflict between sensitivity, response speed, and operating range. First, static mechanical simulations were performed to compare the mechanical responses of planar and grid membranes, confirming that the grid architecture offers superior sensitivity. Next, PCL/TPU@MWCNT nanofiber membranes were fabricated via coaxial electrospinning followed by vacuum-filtration and assembled into three-layer planar and grid piezoresistive pressure sensors. Their sensing characteristics were evaluated by simple index-finger motions and slide the mouse wheel identified. Within 0-34 kPa, the sensitivities of the planar and grid sensors reached 1.80 kPa-1 and 2.24 kPa-1, respectively; in the 35-75 kPa range, they were 1.03 kPa-1 and 1.27 kPa-1. The rise/decay times of the output signals were 10.53 ms/11.20 ms for the planar sensor and 9.17 ms/9.65 ms for the grid sensor. Both sensors successfully distinguished active index-finger bending at 0-0.5 Hz. The dynamic range of the grid sensor during the extension motion of the index finger is 105 dB and, during the scrolling mouse motion, is 55 dB, affording higher measurement stability and a broader operating window, fully meeting the requirements for high-precision hand-motion recognition.
Collapse
Affiliation(s)
- Ping Zhu
- School Instrument and Electronics, North University of China, Taiyuan 030051, China;
| | | |
Collapse
|
2
|
Deshpande PP, Chan-Jobe R, Kemppainen J, Odegard GM, Keles O. Optimizing Epoxy Nanocomposites with Oxidized Graphene Quantum Dots for Superior Mechanical Performance: A Molecular Dynamics Approach. ACS OMEGA 2025; 10:14209-14220. [PMID: 40256520 PMCID: PMC12004152 DOI: 10.1021/acsomega.5c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/04/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Due to their excellent mechanical properties, epoxy composites are widely used in low-density applications. However, the brittle epoxy matrix often serves as the principal failure point. Matrix enhancements can be achieved by optimizing polymer combinations to maximize intermolecular interactions or by introducing fillers. While nanofillers such as clay, rubber, carbon nanotubes, and nanoplatelets enhance mechanical properties, they can lead to issues like agglomeration, voids, and poor load transfer. Quantum dots, being the smallest nanofillers, offer higher dispersion and the potential to promote intermolecular interactions, enhancing stiffness, strength, and toughness simultaneously. This study employed molecular dynamics simulations to design graphene quantum dot (GQD) reinforced epoxy nanocomposites. By functionalizing GQDs with oxygen-based groups-hydroxyl, epoxide, carboxyl, and mixed chemistries-their effects on the mechanical properties of nanocomposites were systematically evaluated. Results show that hydroxyl-functionalized GQDs provide optimal performance, increasing stiffness and yield strength by 18.4 and 56.1%, respectively. Structural analysis reveals that these GQDs promote a closely packed molecular configuration, resulting in reduced free volume.
Collapse
Affiliation(s)
- Prathamesh P. Deshpande
- Department
of Chemical and Materials Engineering, San
Jose State University, San Jose, California 95192, United States
| | - Robert Chan-Jobe
- Department
of Chemical and Materials Engineering, San
Jose State University, San Jose, California 95192, United States
| | - Josh Kemppainen
- Department
of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Gregory M. Odegard
- Department
of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ozgur Keles
- Department
of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
3
|
Özder MN, Yelkenci A, Kucak M, Altinbay A, Ustündag CB, Ciftci F. Development and Characterization of a Polycaprolactone/Graphene Oxide Scaffold for Meniscus Cartilage Regeneration Using 3D Bioprinting. Pharmaceutics 2025; 17:346. [PMID: 40143010 PMCID: PMC11944685 DOI: 10.3390/pharmaceutics17030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Meniscus injuries represent a critical challenge in orthopedic medicine due to the limited self-healing capacity of the tissue. This study presents the development and characterization of polycaprolactone/graphene oxide (PCL/GO) scaffolds fabricated using 3D bioprinting technology for meniscus cartilage regeneration. Methods: GO was incorporated at varying concentrations (1%, 3%, 5% w/w) to enhance the bioactivity, mechanical, thermal, and rheological properties of PCL scaffolds. Results: Rheological analyses revealed that GO significantly improved the storage modulus (G') from 36.1 Pa to 97.1 Pa and the yield shear stress from 97.2 Pa to 507.1 Pa, demonstrating enhanced elasticity and flow resistance. Mechanical testing showed that scaffolds with 1% GO achieved an optimal balance, with an elastic modulus of 614 MPa and ultimate tensile strength of 46.3 MPa, closely mimicking the native meniscus's mechanical behavior. FTIR analysis confirmed the successful integration of GO into the PCL matrix without disrupting its chemical integrity, while DSC analysis indicated improved thermal stability, with increases in melting temperatures. SEM analysis demonstrated a roughened surface morphology conducive to cellular adhesion and proliferation. Fluorescence microscopy using DAPI staining revealed enhanced cell attachment and regular nuclear distribution on PCL/GO scaffolds, particularly at lower GO concentrations. Antibacterial assays exhibited larger inhibition zones against E. coli and S. aureus, while cytotoxicity tests confirmed the biocompatibility of the PCL/GO scaffolds with fibroblast cells. Conclusions: This study highlights the potential of PCL/GO 3D-printed scaffolds as biofunctional platforms for meniscus tissue engineering, combining favorable mechanical, rheological, biological, and antibacterial properties.
Collapse
Affiliation(s)
- Melike Nur Özder
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Istanbul 34210, Turkey; (M.N.Ö.); (C.B.U.)
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mine Kucak
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aylin Altinbay
- Department of Metallurgical and Material Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Cem Bülent Ustündag
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Istanbul 34210, Turkey; (M.N.Ö.); (C.B.U.)
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul 34210, Turkey
| | - Fatih Ciftci
- Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| |
Collapse
|
4
|
Zhang J, Fu S, Hu C, Yuan X, Zhou X. Strong and tough bioplastics prepared by in-situ polymerization of ε-caprolactone-oligomers in lignocellulosic nanofiber network. Int J Biol Macromol 2025; 293:138890. [PMID: 39722388 DOI: 10.1016/j.ijbiomac.2024.138890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Cellulose biocomposites have emerged as attractive alternatives to fossil-based plastics because of their excellent renewability and biodegradability; however, their water resistance and mechanical properties remain challenging. Herein, a cellulose- containing bioplastic with high a reinforcement content, water stability, and toughness is reported. Lignin-containing cellulose nanofibers (LCNF) were prepared by pretreating eucalyptus wood powder with a deep eutectic solvent and high-pressure homogenization. Then, the pre-synthesized ε-caprolactone oligomers were in-situ polymerized in LCNF. The interaction of LCNF with ε-caprolactone-oligomers in the LCNF-crosslinked polycaprolactone (LCNF-PCL) bioplastic resulted in excellent mechanical properties (tensile strength: 76.59 MPa; toughness: 9.82 MJ m-3). The LCNF-PCL bioplastic also demonstrated excellent water stability (wet tensile strength: 34.21 MPa; water absorption: <5 %), thermal stability, and UV protection. This approach may provide a potential method for utilizing lignocellulosic resources to develop environmentally friendly bioplastics with good toughness and water stability.
Collapse
Affiliation(s)
- Jinlong Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China; South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, PR China.
| | - Chuanshuang Hu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510640, PR China
| | - Xi Yuan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Xuepei Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| |
Collapse
|
5
|
Kołodziej A, Świętek M, Hlukhaniuk A, Horák D, Wesełucha-Birczyńska A. Raman spectroscopic investigation of polymer based magnetic multicomponent scaffolds. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124800. [PMID: 39024784 DOI: 10.1016/j.saa.2024.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Scaffolds acting as an artificial matrix for cell proliferation are one of the bone tissue engineering approaches to the treatment of bone tissue defects. In the presented study, novel multicomponent scaffolds composed of a poly(ε-caprolactone) (PCL), phenolic compounds such as tannic (TA) and gallic acids (GA), and nanocomponents such as silica-coated magnetic iron oxide nanoparticles (MNPs-c) and functionalized multi-walled carbon nanotubes (CNTs) have been produced as candidates for such artificial substitutes. Well-developed interconnected porous structures were observed using scanning electron microscopy (SEM). Raman spectra showed that the highly crystalline nature of PCL was reduced by the addition of nanoadditives. In the case of scaffolds containing MNPs-c and TA, the formation of a Fe-TA complex was concluded because characteristic bands of chelation of the Fe3+ ion by phenolic catechol oxygen appeared. It was found that the necessary conditions for the crystallization of the PCL/MNPs-c/TA are for the catechol groups to be able to penetrate the porous silica shell of MNPs-c, as during experiment with MNPs-c and TA without polymer, no such complexation was observed. Moreover, the number of catechol groups, the spatial structure and molecular size of this phenolic compound are also crucial for complexation process because GA does not form complexes. Therefore, the PCL/CNTs/MNPs-c/TA scaffolds are interesting candidates to consider for their possible medical applications.
Collapse
Affiliation(s)
- Anna Kołodziej
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Małgorzata Świętek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Sq. 2, 162 06 Prague 6, Czech Republic
| | - Anna Hlukhaniuk
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Sq. 2, 162 06 Prague 6, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Sq. 2, 162 06 Prague 6, Czech Republic
| | | |
Collapse
|
6
|
Farshi Azhar F, Ahmadi M, Khoshmaram L. Chitosan-graphene quantum dot-based molecular imprinted polymer for oxaliplatin release. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2115-2136. [PMID: 38885181 DOI: 10.1080/09205063.2024.2366645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Molecularly imprinted polymers (MIPs) have garnered the interest of researchers in the drug delivery due to their advantages, such as exceptional durability, stability, and selectivity. In this study, a biocompatible MIP drug adsorption and delivery system with high loading capacity and controlled release, was prepared based on chitosan (CS) and graphene quantum dots (GQDs) as the matrix, and the anticancer drug oxaliplatin (OXAL) as the template. Additionally, samples without the drug (non-imprinted polymers, NIPs) were created for comparison. GQDs were produced using the hydrothermal method, and samples underwent characterization through FTIR, XRD, FESEM, and TGA. Various experiments were conducted to determine the optimal pH for drug adsorption, along with kinetic and isotherm studies, selectivity assessments, in vitro drug release and kinetic evaluations. The highest drug binding capacity was observed at pH 6.5. The results indicated the Lagergren-first-order kinetic model (with rate constant of 0.038 min-1) and the Langmuir isotherm (with maximum adsorption capacity of 17.15 mg g-1) exhibited better alignment with the experimental data. The developed MIPs displayed significant selectivity towards OXAL, by an imprinting factor of 2.88, in comparison to two similar drugs (cisplatin and carboplatin). Furthermore, the analysis of the drug release profile showed a burst release for CS-Drug (87% within 3 h) at pH 7.4, where the release from the CS-GQD-Drug did not occur at pH 7.4 and 10; instead, the release was observed at pH 1.2 in a controlled manner (100% within 28 h). Consequently, this specific OXAL adsorption and delivery system holds promise for cancer treatment.
Collapse
Affiliation(s)
- Fahimeh Farshi Azhar
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Maryam Ahmadi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Leila Khoshmaram
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
7
|
Muñoz-Gonzalez AM, Leal-Marin S, Clavijo-Grimaldo D, Glasmacher B. Graphene-enhanced PCL electrospun nanofiber scaffolds for cardiac tissue engineering. Int J Artif Organs 2024; 47:633-641. [PMID: 39113566 PMCID: PMC11487899 DOI: 10.1177/03913988241266088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 10/17/2024]
Abstract
Cardiovascular diseases, particularly myocardial infarction, have significant healthcare challenges due to the limited regenerative capacity of injured heart tissue. Cardiac tissue engineering (CTE) offers a promising approach to repairing myocardial damage using biomaterials that mimic the heart's extracellular matrix. This study investigates the potential of graphene nanopowder (Gnp)-enhanced polycaprolactone (PCL) scaffolds fabricated via electrospinning to improve the properties necessary for effective cardiac repair. This work aimed to analyze scaffolds with varying graphene concentrations (0.5%, 1%, 1.5%, and 2% by weight) to determine their morphological, chemical, mechanical, and biocompatibility characteristics. The results presented that incorporating graphene improves PCL scaffolds' mechanical properties and cellular interactions. The optimal concentration of 1% graphene significantly enhanced mechanical properties and biocompatibility, promoting cell adhesion and proliferation. These findings suggest that Gnp-enhanced PCL scaffolds at this concentration can serve as a potent substrate for CTE providing insights into designing more effective biomaterials for myocardial restoration.
Collapse
Affiliation(s)
| | - Sara Leal-Marin
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Dianney Clavijo-Grimaldo
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Faculty of Medicine, Grupo INPAC. Fundación Universitaria Sanitas, Bogotá, Colombia
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
8
|
Salehi S, Boddohi S, Adel Ghiass M, Behmanesh M. Microfluidic preparation and optimization of (Kollicoat ® IR-b-PCL) polymersome for co-delivery of Nisin-Curcumin in breast cancer application. Int J Pharm 2024; 660:124371. [PMID: 38908809 DOI: 10.1016/j.ijpharm.2024.124371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
This work aimed to develop amphiphilic nanocarriers such as polymersome based diblock copolymer of Kollicoat ® IR -block-poly(ε-caprolactone) (Kollicoat ® IR-b-PCL) for potential co-delivery of Nisin (Ni) and Curcumin (CUR) for treatment of breast cancer. To generate multi-layered nanocarriers of uniform size and morphology, microfluidics was used as a new technology. In order to characterise and optimize polymersome, design of experiments (Design-Expert) software with three levels full factorial design (3-FFD) method was used. Finally, the optimized polymersome was produced with a spherical morphology, small particle size (dH < 200 nm), uniform size distribution (PDI < 0.2), and high drug loading efficiency (Ni 78 % and CUR 93 %). Furthermore, the maximum release of Ni and CUR was found to be roughly 60 % and 80 % in PBS, respectively. Cytotoxicity assays showed a slight cytotoxicity of Ni and CUR -loaded polymersome (N- Ni /CUR) towards normal cells while demonstrating inhibitory activity against cancer cells compared to the free drugs. Also, the apoptosis assays and cellular uptake confirmed the obtained results from cytotoxic analysis. In general, this study demonstrated a microfluidic approach for preparation and optimization of polymersome for co-delivery of two drugs into cancer cells.
Collapse
Affiliation(s)
- Sahar Salehi
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Soheil Boddohi
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Adel Ghiass
- Tissue Engineering Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Ghanem AF, Yassin MA, Cosquer R, Gouanvé F, Espuche E, Abdel Rehim MH. Polycaprolactone composite films infused with hyperbranched polyester/reduced graphene oxide: influence on biodegradability, gas/water transport and antimicrobial properties for sustainable packaging. RSC Adv 2024; 14:5740-5753. [PMID: 38362077 PMCID: PMC10864823 DOI: 10.1039/d3ra08948g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
Biodegradable polymers have gained great interest as ecofriendly packaging materials. However, addition of suitable fillers to the polymer matrix enhances their barrier and mechanical properties besides gaining new features such as bactericidal activity. This work deals with investigation of mechanical, gas/water transport properties and biodegradability performance of films based on polycaprolactone (PCL) reinforced by 1wt% of reduced graphene oxide (RGO) or modified graphene (mRG). To achieve this goal, nanosheets of RGO were firstly prepared then their surfaces were modified through in situ polymerization of hyperbranched polyester (PES) to obtain mRG. Then PCL was loaded with both fillers, and the nanocomposite films were prepared by a casting technique. Studying of the thermal properties of the films showed that the addition of RGO or mRG had no influence on the crystallinity of the PCL matrix. Although the mechanical characteristics of the PCL did not change when either filler was added, there was an increase in permeability and diffusivity in the presence of the fillers regardless of their composition. Nevertheless, the nanocomposites demonstrated antimicrobial properties against S. aureus and E. coli as models for Gram-positive and Gram-negative bacteria, respectively. The biodegradability test performed on the prepared film PCL, and those containing 1% of the filler, PCL/RGO, and PCL/mRG, emphasized that the film degradation became pronounced after three months for all samples.
Collapse
Affiliation(s)
- Ahmed F Ghanem
- Packing and Packaging Materials Department, National Research Centre Giza Egypt
| | - Mohamed A Yassin
- Packing and Packaging Materials Department, National Research Centre Giza Egypt
- Advanced Materials and Nanotechnology Lab., Center of Excellence, National Research Centre Giza Egypt
| | - Raphael Cosquer
- UMR CNRS 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1 69622 Villeurbanne Cedex France
| | - Fabrice Gouanvé
- UMR CNRS 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1 69622 Villeurbanne Cedex France
| | - Eliane Espuche
- UMR CNRS 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1 69622 Villeurbanne Cedex France
| | - Mona H Abdel Rehim
- Packing and Packaging Materials Department, National Research Centre Giza Egypt
| |
Collapse
|
10
|
Rahmani D, Azari Torbat N, Boddohi S. Synthesis and characterization of pH-responsive PCL-PVA polymersome for dual delivery to breast cancer cells. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
11
|
Kołodziej A, Wesełucha-Birczyńska A, Długoń E, Świętek M, Gubernat M, Skalniak Ł, Błażewicz M. A study of the interactions between human osteoblast-like cells and polymer composites with functionalized graphene derivatives using 2D correlation spectroscopy (2D-COS). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121862. [PMID: 36122465 DOI: 10.1016/j.saa.2022.121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/22/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
In response to the growing need for development of modern biomaterials for applications in regenerative medicine strategies, the research presented here investigated the biological potential of two types of polymer nanocomposites. Graphene oxide (GO) and partially reduced graphene oxide (rGO) were incorporated into a poly(ε-caprolactone) (PCL) matrix, creating PCL/GO and PCL/rGO nanocomposites in the form of membranes. Proliferation of osteoblast-like cells (human U-2 OS cell line) on the surface of the studied materials confirmed their biological activity. Fluorescence microscopy was able to distinguish the different patterns of interaction between cells (depending on the type of material) after 15 days of the test run. Raman micro-spectroscopy and two-dimensional correlation spectroscopy (2D-COS) applied to Raman spectra distinguished the nature of cell-material interactions after only 8 days. Combination of these two techniques (Raman micro-spectroscopy and 2D-COS analysis) facilitated identification of a much more complex cellular response (especially from proteins) on the surface of PCL/GO. The presented approach can be regarded as a method for early study of the bioactivity of membrane materials.
Collapse
Affiliation(s)
- Anna Kołodziej
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Elżbieta Długoń
- Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| | - Małgorzata Świętek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Sq. 2, 162 06 Prague, Czech Republic
| | - Maciej Gubernat
- Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| | - Łukasz Skalniak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marta Błażewicz
- Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| |
Collapse
|
12
|
Chen L, Wang CF, Liu C, Chen S. Facile Access to Fabricate Carbon Dots and Perspective of Large-Scale Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022:e2206671. [PMID: 36479832 DOI: 10.1002/smll.202206671] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Carbon dots (CDs), fluorescent carbon nanoparticles with particle sizes < 10 nm, are constantly being developed for potential large-scale applications. Recently, methods allow CD synthesis to be carried out on large-scale preparation in a controlled fashion are potentially important for multiple disciplines, including bottom-up strategy, top-down method. In this review, the recent progresses in the research of the methods for large-scale production of CDs and their functionalization are summarized. Especially, the methods of CD synthesis, such as large-scale preparation, hydrothermal/solvothermal, microwave-assisted, magnetic hyperthermia microfluidic and other methods, along with functionalization of CDs, are summarized in detail. By promising applications of CDs, there are three aspects have been already reported, such as enhancing mechanical properties, flame retardancy, and energy storage. Also, future development of CDs is prospected.
Collapse
Affiliation(s)
- Lintao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional, Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional, Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Chang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional, Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional, Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
13
|
Joy A, Unnikrishnan G, Megha M, Haris M, Thomas J, Kolanthai E, Muthuswamy S. Design of biocompatible polycaprolactone-based nanocomposite loaded with graphene oxide/strontium nanohybrid for biomedical applications. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Vallin A, Battegazzore D, Damonte G, Fina A, Monticelli O. On the Development of Nanocomposite Covalent Associative Networks Based on Polycaprolactone and Reduced Graphite Oxide. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3744. [PMID: 36364519 PMCID: PMC9654163 DOI: 10.3390/nano12213744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
In this work, the development of nanocomposite systems based on reduced graphite oxide (rGO) was combined with the development of crosslinked materials characterized by dynamic covalent bonds, i.e., a covalent associative network, starting from ad-hoc synthesized hydroxyl terminated polycaprolactone (PCL-OH). The crosslinking reaction was carried out using methylenediphenyl diisocyanate (MDI) to create systems capable of bond exchanges via transesterification and transcarbamoylation reactions, in the presence of stannous octoate as a catalyst. The above materials were prepared at two different temperatures (120 and 200 °C) and two PCL-OH:MDI ratios. FT-IR measurements proved the formation of urethane bonds in all the prepared samples. Crosslinking was demonstrated by contacting the samples with a solvent capable of dissolving the star-shaped PCL. These tests showed a significant increase in the crosslinked fraction with increasing the temperature and the PCL-OH:MDI ratio. In order to evidence the effect of crosslinking on rGO dispersion and the final properties of the material, a nanocomposite sample was also prepared using a linear commercial PCL, with the nanofiller mixed under the same conditions used to develop the crosslinked systems. The dispersion of rGO, which was investigated using FE-SEM measurements, was similar in the different systems prepared, indicating that the crosslinking process had a minor effect on the dispersibility of the nanofiller. As far as the thermal properties are concerned, the DSC measurements of the prepared samples showed that the crosslinking leads to a decrease in the crystallinity of the polymer, a phenomenon which was particularly evident in the sample prepared at 200 °C with a PCL-OH: MDI ratio of 1:1.33 and was related to the decrease in the polymer chain mobility. Moreover, rGO was found to act as a nucleating agent and increase the crystallization temperature of the nanocomposite sample based on linear commercial PCL, while the contribution of rGO in the crosslinked nanocomposite samples was minor. Rheological measurements confirmed the crosslinking of the PCL-OH system which generates a solid-like behavior depending on the PCL-OH:MDI ratio used. The presence of rGO during crosslinking generated a further huge increase in the viscosity of the melt with a remarkable solid-like behavior, confirming a strong interaction between rGO and crosslinked PCL. Finally, the prepared nanocomposites exhibited self-healing and recyclability properties, thus meeting the requirements for sustainable materials.
Collapse
Affiliation(s)
- Alberto Vallin
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Daniele Battegazzore
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino-Sede di Alessandria, Viale Teresa Michel, 5, 15121 Alessandria, Italy
| | - Giacomo Damonte
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Alberto Fina
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino-Sede di Alessandria, Viale Teresa Michel, 5, 15121 Alessandria, Italy
| | - Orietta Monticelli
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genoa, Italy
| |
Collapse
|
15
|
Oliaei E, Olsén P, Lindström T, Berglund LA. Highly reinforced and degradable lignocellulose biocomposites by polymerization of new polyester oligomers. Nat Commun 2022; 13:5666. [PMID: 36167843 PMCID: PMC9515094 DOI: 10.1038/s41467-022-33283-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/11/2022] [Indexed: 12/03/2022] Open
Abstract
Unbleached wood fibers and nanofibers are environmentally friendly bio-based candidates for material production, in particular, as reinforcements in polymer matrix biocomposites due to their low density and potential as carbon sink during the materials production phase. However, producing high reinforcement content biocomposites with degradable or chemically recyclable matrices is troublesome. Here, we address this issue with a new concept for facile and scalable in-situ polymerization of polyester matrices based on functionally balanced oligomers in pre-formed lignocellulosic networks. The idea enabled us to create high reinforcement biocomposites with well-dispersed mechanically undamaged fibers or nanocellulose. These degradable biocomposites have much higher mechanical properties than analogs in the literature. Reinforcement geometry (fibers at 30 µm or fibrils at 10–1000 nm diameter) influenced the polymerization and degradation of the polyester matrix. Overall, this work opens up new pathways toward environmentally benign materials in the context of a circular bioeconomy. Cellulose biocomposites from nanocellulose or plant fibers with polymer matrix are often not degradable and suffer from insufficient mechanical properties to replace established materials. Here, the authors demonstrate the fabrication of hydrolytically degradable polymers through in-situ polymerization of new functionally balanced oligomers within high-content lignocellulose reinforcement networks.
Collapse
Affiliation(s)
- Erfan Oliaei
- RISE Bioeconomy and health, Stockholm, Sweden.,Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Peter Olsén
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| | | | - Lars A Berglund
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
16
|
Xu Z, Bai J, Rao C, Wu M, Sun S, Chen J, Mao C. Facile Preparation of Silver‐decorated Graphene in Polyvinylidene Fluoride for Highly Enhanced Thermal Conductivity. ChemistrySelect 2022. [DOI: 10.1002/slct.202200827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhaosheng Xu
- School of Chemistry and Chemical Engineering Anhui University Hefei Anhui 230601 China
| | - Jia‐qi Bai
- School of Chemistry and Chemical Engineering Anhui University Hefei Anhui 230601 China
| | - Changlv Rao
- School of Chemistry and Chemical Engineering Anhui University Hefei Anhui 230601 China
| | - Mingyuan Wu
- School of Chemistry and Chemical Engineering Anhui University Hefei Anhui 230601 China
| | - Song Sun
- School of Chemistry and Chemical Engineering Anhui University Hefei Anhui 230601 China
| | - Jingshuai Chen
- School of Chemistry and Chemical Engineering Anhui University Hefei Anhui 230601 China
| | - Chang‐Jie Mao
- School of Chemistry and Chemical Engineering Anhui University Hefei Anhui 230601 China
| |
Collapse
|
17
|
Massoudi S, Bagheri M, Beygi Khosrowshahi Y, Hosseini M. Antibacterial and cytotoxicity assessment of poly (N-vinyl imidazole)/nitrogen-doped graphene quantum dot nanocomposite hydrogels. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Poddar D, Singh A, Bansal S, Thakur S, Jain P. Direct synthesis of Poly(Ԑ-Caprolactone)-block-poly (glycidyl methacrylate) copolymer and its usage as a potential nano micelles carrier for hydrophobic drugs. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Mukherjee D, Bhatt S. Biocomposite-based nanostructured delivery systems for treatment and control of inflammatory lung diseases. Nanomedicine (Lond) 2022; 17:845-863. [PMID: 35477308 DOI: 10.2217/nnm-2021-0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diseases related to the lungs are among the most prevalent medical problems threatening human life. The treatment options and therapeutics available for these diseases are hindered by inadequate drug concentrations at pathological sites, a dearth of cell-specific targeting and different biological barriers in the alveoli or conducting airways. Nanostructured delivery systems for lung drug delivery have been significant in addressing these issues. The strategies used include surface engineering by altering the material structure or incorporation of specific ligands to reach prespecified targets. The unique characteristics of nanoparticles, such as controlled size and distribution, surface functional groups and therapeutic release triggering capabilities, are tailored to specific requirements to overcome the major therapeutic barriers in pulmonary diseases. In the present review, the authors intend to deliver significant up-to-date research in nanostructured therapies in inflammatory lung diseases with an emphasis on biocomposite-based nanoparticles.
Collapse
Affiliation(s)
- Dhrubojyoti Mukherjee
- Department of Pharmaceutics, Faculty of Pharmacy, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India
| | - Shvetank Bhatt
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh, 474005, India
| |
Collapse
|
20
|
Enderami SE, Shafiei SS, Shamsara M, Enderami SE, Rostamian Tabari A. Evaluation of Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cell on Highly Porous Polycaprolactone Scaffold Reinforced With Layered Double Hydroxides Nanoclay. Front Bioeng Biotechnol 2022; 10:805969. [PMID: 35284421 PMCID: PMC8909131 DOI: 10.3389/fbioe.2022.805969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
In recent decades, bone tissue engineering has had an effective role in introducing orthopedic implants. In this regard, polymeric scaffolds reinforced with bioactive nanomaterials can offer great potential in tissue engineering implants for replacing bone loss in patients. In this study, the thermally induced phase separation method was used to fabricate three-dimensional highly porous scaffolds made of layered double hydroxide (LDH)/polycaprolactone (PCL) nanocomposites with varied LDH contents ranging from 0.1 wt.% to 10 wt.%. The Phase identification, morphology, and elemental composition were studied using X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. Interconnected pores ranging from 5 to 150 µm were detected in all samples. The results revealed that the inclusion of LDH to PCL scaffold reinforced mechanical strength and compressive modulus increased from 0.6418 to 1.3251 for the pure PCL and PCL + LDH (1 Wt.%) scaffolds, respectively. Also, thermal stability, degradation rate, and biomineralization especially in comparison with the pure PCL were enhanced. Adhesion, viability, and proliferation of human bone marrow-derived mesenchymal stem cells (hBMSCs) seeded on PCL + LDH scaffolds were improved as compared to the pure PCL. Furthermore, the addition of LDH resulted in the increased mineral deposition as well as expression of ALP and RUNX2 osteogenic genes in terms of differentiation. All in all, our findings revealed that PCL + LDH (1 Wt.%) scaffold might be an ideal choice for 3D scaffold design in bone tissue engineering approaches.
Collapse
Affiliation(s)
- Seyedeh Elnaz Enderami
- Stem Cell and Regenerative Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyedeh Sara Shafiei
- Stem Cell and Regenerative Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- *Correspondence: Seyedeh Sara Shafiei,
| | - Mehdi Shamsara
- National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abolfazl Rostamian Tabari
- Stem Cell and Regenerative Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
21
|
Fabrication of PLA/PCL/Graphene Nanoplatelet (GNP) Electrically Conductive Circuit Using the Fused Filament Fabrication (FFF) 3D Printing Technique. MATERIALS 2022; 15:ma15030762. [PMID: 35160709 PMCID: PMC8836401 DOI: 10.3390/ma15030762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023]
Abstract
For the purpose of fabricating electrically conductive composites via the fused filament fabrication (FFF) technique whose properties were compared with injection-moulded properties, poly(lactic acid) (PLA) and polycaprolactone (PCL) were mixed with different contents of graphene nanoplatelets (GNP). The wettability, morphological, rheological, thermal, mechanical, and electrical properties of the 3D-printed samples were investigated. The microstructural images showed the selective localization of the GNPs in the PCL nodules that are dispersed in the PLA phase. The electrical resistivity results using the four-probes method revealed that the injection-moulded samples are insulators, whereas the 3D-printed samples featuring the same graphene content are semiconductors. Varying the printing raster angles also exerted an influence on the electrical conductivity results. The electrical percolation threshold was found to be lower than 15 wt.%, whereas the rheological percolation threshold was found to be lower than 10 wt.%. Furthermore, the 20 wt.% and 25 wt.% GNP composites were able to connect an electrical circuit. An increase in the Young’s modulus was shown with the percentage of graphene. As a result, this work exhibited the potential of the FFF technique to fabricate biodegradable electrically conductive PLA-PCL-GNP composites that can be applicable in the electronic domain.
Collapse
|
22
|
Homaeigohar S, Boccaccini AR. Nature-Derived and Synthetic Additives to poly(ɛ-Caprolactone) Nanofibrous Systems for Biomedicine; an Updated Overview. Front Chem 2022; 9:809676. [PMID: 35127651 PMCID: PMC8807494 DOI: 10.3389/fchem.2021.809676] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
As a low cost, biocompatible, and bioresorbable synthetic polymer, poly (ɛ-caprolactone) (PCL) is widely used for different biomedical applications including drug delivery, wound dressing, and tissue engineering. An extensive range of in vitro and in vivo tests has proven the favourable applicability of PCL in biomedicine, bringing about the FDA approval for a plethora of PCL made medical or drug delivery systems. This popular polymer, widely researched since the 1970s, can be readily processed through various techniques such as 3D printing and electrospinning to create biomimetic and customized medical products. However, low mechanical strength, insufficient number of cellular recognition sites, poor bioactivity, and hydrophobicity are main shortcomings of PCL limiting its broader use for biomedical applications. To maintain and benefit from the high potential of PCL, yet addressing its physicochemical and biological challenges, blending with nature-derived (bio)polymers and incorporation of nanofillers have been extensively investigated. Here, we discuss novel additives that have been meant for enhancement of PCL nanofiber properties and thus for further extension of the PCL nanofiber application domain. The most recent researches (since 2017) have been covered and an updated overview about hybrid PCL nanofibers is presented with focus on those including nature-derived additives, e.g., polysaccharides and proteins, and synthetic additives, e.g., inorganic and carbon nanomaterials.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
23
|
Abstract
Iron oxide nanoparticles were employed to fabricate a soft tissue scaffold with enhanced physicochemical and biological characteristics. Growth promotion effect of L-lysine coated magnetite (Lys@Fe3O4) nanoparticles on the liver cell lines was proved previously. So, in the current experiment these nanoparticles were employed to fabricate a soft tissue scaffold with growth promoting effect on the liver cells. Lys@Fe3O4 nanoparticles were synthesized via co-precipitation reaction. Resulted particles were ~7 nm in diameter and various concentrations (3, 5, and 10 wt%) of these nanoparticles were used to fabricate nanocomposite PCL fibers. Electrospinning technique was employed and physicochemical characteristics of the resulted nanofibers were evaluated. Electron micrographs and EDX-mapping analysis showed that nanoparticles were well dispersed in the PCL fibers and no bead structure were formed. As expected, incorporation of Lys@Fe3O4 to the PCL nanofibers resulted in a reduction in hydrophobicity of the scaffold. Nanocomposite scaffolds were shown increased tensile strength with increasing concentration of employed nanoparticles. In contrast to PCL scaffold, nearly 150% increase in the cell viability was observed after 3-days exposure to the nanocomposite scaffolds. This study indicates that incorporation of magnetite nanoparticles in the PCL fibers make them more prone to cell attachment. However, incorporated nanoparticles can provide the attached cells with valuable iron element and consequently promote the cells growth rate. Based on the results, magnetite enriched PCL nanofibers could be introduced as a scaffold to enhance the biological performance for liver tissue engineering purposes.
Collapse
|
24
|
Nabgui A, El Assimi T, El Meziane A, Luinstra GA, Raihane M, Gouhier G, Thébault P, Draoui K, Lahcini M. Synthesis and antibacterial behavior of bio-composite materials-based on poly(ε-caprolactone)/bentonite. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Awasthi GP, Kaliannagounder VK, Park J, Maharjan B, Shin M, Yu C, Park CH, Kim CS. Assembly of porous graphitic carbon nitride nanosheets into electrospun polycaprolactone nanofibers for bone tissue engineering. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Elias E, Sarathchandran C, Joseph S, Zachariah AK, Thomas J, Devadasan D, G. Souza F, Thomas S. Photoassisted degradation of rhodamine B using poly(
ε
‐caprolactone) based nanocomposites: Mechanistic and kinetic features. J Appl Polym Sci 2021. [DOI: 10.1002/app.50612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eldho Elias
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
| | - C. Sarathchandran
- Department of Science, Amrita School of Engineering Amrita Vishwa Vidyapeetham Chennai India
| | - Saju Joseph
- International and Interuniversity Centre for Nanoscience and Nanotechnology Mahatma Gandhi University Kottayam Kerala India
| | - Ajesh K. Zachariah
- Post Graduate and Research Department of Chemistry Mar Thoma College Tiruvalla Kerala India
| | - Jince Thomas
- International and Interuniversity Centre for Nanoscience and Nanotechnology Mahatma Gandhi University Kottayam Kerala India
| | - Dineep Devadasan
- School of Environmental Sciences Mahatma Gandhi University Kottayam Kerala India
| | - Fernando G. Souza
- Programa de Engenharia Civil, COPPE Universidade Federal de Rio de Janeiro, Centro de Tecnologia – Cidade Universitaria, av. Horacio Macedo Rio de Janeiro Brazil
| | - Sabu Thomas
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
- International and Interuniversity Centre for Nanoscience and Nanotechnology Mahatma Gandhi University Kottayam Kerala India
| |
Collapse
|
27
|
Sarabiyan Nejad S, Razzaghi D, Rezaei M, Bagheri M, Babaie A, Abbasi F. Preparation and characterization of electrospun shape memory polyurethane/graphene quantum dot nanocomposite scaffolds for tissue engineering. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1941954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sanaz Sarabiyan Nejad
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Donya Razzaghi
- Faculty of Polymer Engineering, Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Mostafa Rezaei
- Faculty of Polymer Engineering, Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Massuomeh Bagheri
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Amin Babaie
- Faculty of Polymer Engineering, Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Farhang Abbasi
- Faculty of Polymer Engineering, Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
28
|
Birer M, Acartürk F. Telmisartan loaded polycaprolactone/gelatin-based electrospun vascular scaffolds. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1915785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mehmet Birer
- Department of Pharmaceutical Technology, Gazi University Faculty of Pharmacy, Ankara, Turkey
| | - Füsun Acartürk
- Department of Pharmaceutical Technology, Gazi University Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
29
|
Ahmad Wsoo M, Izwan Abd Razak S, Shahir S, Ahmed Abdullah Al‐Moalemi H, Rafiq Abdul Kadir M, Hasraf Mat Nayan N. Development of prolonged drug delivery system using electrospun cellulose acetate/polycaprolactone nanofibers: Future subcutaneous implantation. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mohammed Ahmad Wsoo
- Department of Biosciences, Faculty of Science Universiti Teknologi Malaysia Skudai Malaysia
- Department of Chemistry, College of Science University of Raparin Rania Iraq
| | - Saiful Izwan Abd Razak
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering Universiti Teknologi Malaysia Skudai Malaysia
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia Skudai Malaysia
| | - Shafinaz Shahir
- Department of Biosciences, Faculty of Science Universiti Teknologi Malaysia Skudai Malaysia
| | | | - Mohammed Rafiq Abdul Kadir
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering Universiti Teknologi Malaysia Skudai Malaysia
| | | |
Collapse
|
30
|
Anbarasan R, Meenarathi B, Parthasarathy V. Structural and Thermal Studies of Fluorescein and Rhodamin6G Grafted Diblock Copolymers. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01978-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Voniatis C, Barczikai D, Gyulai G, Jedlovszky-Hajdu A. Fabrication and characterisation of electrospun Polycaprolactone/Polysuccinimide composite meshes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
A Raman Spectroscopic Analysis of Polymer Membranes with Graphene Oxide and Reduced Graphene Oxide. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5010020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, despite significant advances in the field of biomaterials for tissue engineering applications, novel bone substituents still need refinement so they can be successfully implemented into the medical treatment of bone fractures. Generally, a scaffold made of synthetic polymer blended with nanofillers was proven to be a very promising biomaterial for tissue engineering, however the choice of components for the said scaffold remains questionable. The objects of the presented study were novel composites consisting of poly(ε-caprolactone) (PCL) and two types of graphene materials: graphene oxide (GO) and partially reduced graphene oxide (rGO). The technique of choice, that was used to characterize the obtained composites, was Raman micro-spectroscopy. It revealed that the composite PCL/GO differs substantially from the PCL/rGO composite. The incorporation of the GO particles into the polymer influenced the structure organisation of the polymeric matrix more significantly than rGO. The crystallinity parameters confirmed that the level of crystallinity is generally higher in the PCL/GO membrane in comparison to PCL/rGO (and even in raw PCL) that leads to the conclusion that the GO acts as a nucleation agent enhancing the crystallization of PCL. Interestingly, the characteristics of the studied nanofillers, for example: the level of the organisation (D/G ratio) and the in-plane size of the nano-crystallites (La) almost do not differ. However, they have an ability to influence polymeric matrix differently.
Collapse
|