1
|
Mignon J, Leyder T, Monari A, Mottet D, Michaux C. Exploration of the influence of environmental changes on the conformational and amyloidogenic landscapes of the zinc finger protein DPF3a by combining biophysical and molecular dynamics approaches. Int J Biol Macromol 2025; 310:143234. [PMID: 40250658 DOI: 10.1016/j.ijbiomac.2025.143234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/01/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
In the past few years, the double PHD fingers 3 (DPF3) protein isoforms (DPF3b and DPF3a) have been identified as new amyloidogenic intrinsically disordered proteins (IDPs). Although such discovery is coherent and promising in light of their involvement in proteinopathies, their amyloidogenic pathway remains largely unexplored. As environmental variations in pH and ionic strength are relevant to DPF3 pathophysiological landscape, we therefore enquired the effect of these physicochemical parameters on the protein structural and prone-to-aggregation properties, by focusing on the more disordered DPF3a isoform. In the present study, we exploited in vitro and in silico strategies by combining spectroscopy, microscopy, and all-atom molecular dynamics methods. Very good consistency and complementary information were found between the experiments and the simulations. Acidification unequivocally abrogated DPF3a fibrillation upon maintaining the protein in highly hydrated and expanded conformers due to extensive repulsion between positively charged regions. In contrast, alkaline pH delayed the aggregation process due to loss in intramolecular contacts and chain decompaction, the extent of which was partly reduced thanks to the compensation of negative charge by arginine side chains. Through screening attractive electrostatic interactions, high ionic strength conditions (300 and 500 mM NaCl) shifted the conformational ensemble towards more swollen, heterogeneous, and less H-bonded structures, which were responsible for slowing down the conversion into β-sheeted species and restricting the fibril elongation. For defining the self-assembly pathway of DPF3a, we unveiled that the protein amyloidogenicity intimately communicates with its conformational landscape, which is particularly sensitive to modification of its physicochemical environment. As such, understanding how to modulate DPF3a conformational ensemble will help designing novel protein-specific strategies for targeting neurodegeneration.
Collapse
Affiliation(s)
- Julien Mignon
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Tanguy Leyder
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Antonio Monari
- Université Paris Cité and CNRS, ITODYS, 75006 Paris, France.
| | - Denis Mottet
- Molecular Analysis of Gene Expression (MAGE) Laboratory, GIGA Institute, University of Liège, B34, 1 Avenue de l'Hôpital, 4000 Liège, Belgium.
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
2
|
Antonietti M, Kim CK, Granack S, Hadzijahic N, Taylor Gonzalez DJ, Herskowitz WR, Uversky VN, Djulbegovic MB. An Analysis of Intrinsic Protein Disorder in Antimicrobial Peptides. Protein J 2025; 44:175-191. [PMID: 39979561 PMCID: PMC11937183 DOI: 10.1007/s10930-025-10253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/22/2025]
Abstract
Antibiotic resistance, driven by the rise of pathogens like VRE and MRSA, poses a global health threat, prompting the exploration of antimicrobial peptides (AMPs) as alternatives to traditional antibiotics. AMPs, known for their broad-spectrum activity and structural flexibility, share characteristics with intrinsically disordered proteins, which lack a rigid structure and play diverse roles in cellular processes. This study aims to quantify the intrinsic disorder and liquid-liquid phase separation (LLPS) propensity in AMPs, advancing our understanding of their antimicrobial mechanisms and potential therapeutic applications. To investigate the propensity for intrinsic disorder and LLPS in AMPs, we compared the AMPs to the human proteome. The AMP sequences were retrieved from the AMP database (APD3), while the human proteome was obtained from the UniProt database. We analyzed amino acid composition using the Composition Profiler tool and assessed intrinsic disorder using various predictors, including PONDR® and IUPred, through the Rapid Intrinsic Disorder Analysis Online (RIDAO) platform. For LLPS propensity, we employed FuzDrop, and FuzPred was used to predict context-dependent binding behaviors. Statistical analyses, such as ANOVA and χ2 tests, were performed to determine the significance of observed differences between the two groups. We analyzed over 3000 AMPs and 20,000 human proteins to investigate differences in amino acid composition, intrinsic disorder, and LLPS potential. Composition analysis revealed distinct differences in amino acid abundance, with AMPs showing an enrichment in both order-promoting and disorder-promoting amino acids compared to the human proteome. Intrinsic disorder analysis, performed using a range of predictors, consistently demonstrated that AMPs exhibit higher levels of predicted disorder than human proteins, with significant differences confirmed by statistical tests. LLPS analysis, conducted using FuzDrop, showed that AMPs had a lower overall propensity for LLPS compared to human proteins, although specific subsets of AMPs exhibited high LLPS potential. Additionally, redox-dependent disorder predictions highlighted significant differences in how AMP and human proteins respond to oxidative conditions, further suggesting functional divergences between the two proteomes. CH-CDF plot analysis revealed that AMPs and human proteins occupy distinct structural categories, with AMPs showing a greater proportion of highly disordered proteins compared to the human proteome. These findings underscore key molecular differences between AMPs and human proteins, with implications for their antimicrobial activity and potential therapeutic applications. Our study reveals that AMPs possess a significantly higher degree of intrinsic disorder and specific subsets exhibit LLPS potential, distinguishing them from the human proteome. These molecular characteristics likely contribute to their antimicrobial function and adaptability, offering valuable insights for developing novel therapeutic strategies to combat antibiotic resistance.
Collapse
Affiliation(s)
| | - Colin K Kim
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Sydney Granack
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - David J Taylor Gonzalez
- Hamilton Eye Institute, University of Tennessee Health and Science Center, Memphis, United States
| | | | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Mak B Djulbegovic
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Fantini J, Azzaz F, Aulas A, Chahinian H, Yahi N. Preclinical assessment of a ganglioside-targeted therapy for Parkinson's disease with the first-in-class adaptive peptide AmyP53. Sci Rep 2025; 15:9144. [PMID: 40097723 PMCID: PMC11914484 DOI: 10.1038/s41598-025-94148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/12/2025] [Indexed: 03/19/2025] Open
Abstract
We propose a new concept for the treatment of Parkinson's disease (PD), which considers that its root cause, α-synuclein, is an intrinsically disordered protein (IDP) difficult to target by classic approaches. Upon binding to lipid raft gangliosides, α-synuclein shifts from random coil to α-helix, forming Ca2+-permeable oligomeric pores triggering a neurotoxicity cascade. We used the α-synuclein-ganglioside interaction as guideline to design a therapeutic peptide (AmyP53) that combines the respective flexible ganglioside-binding domains of α-synuclein and Alzheimer's β-amyloid protein. AmyP53 is an adaptive peptide, the first representant of a new therapeutic class. It acts as a competitive inhibitor of α-synuclein oligomer formation in brain cell membranes and prevents subsequent downstream synaptotoxicity, including the loss of dopaminergic neurons in an animal α-synuclein injection model of PD. It is active against both wild-type and mutant forms of α-synuclein. AmyP53 is administered intranasally without side effects. This new concept "target the target (gangliosides), not the arrow (IDP)" is distinct from classic α-synuclein centric approaches that did not cure PD so far.
Collapse
Affiliation(s)
| | - Fodil Azzaz
- Aix Marseille Univ, INSERM UA16, Marseille, France
| | | | | | - Nouara Yahi
- Aix Marseille Univ, INSERM UA16, Marseille, France
| |
Collapse
|
4
|
Fantini J, Azzaz F, Di Scala C, Aulas A, Chahinian H, Yahi N. Conformationally adaptive therapeutic peptides for diseases caused by intrinsically disordered proteins (IDPs). New paradigm for drug discovery: Target the target, not the arrow. Pharmacol Ther 2025; 267:108797. [PMID: 39828029 DOI: 10.1016/j.pharmthera.2025.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/28/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
The traditional model of protein structure determined by the amino acid sequence is today seriously challenged by the fact that approximately half of the human proteome is made up of proteins that do not have a stable 3D structure, either partially or in totality. These proteins, called intrinsically disordered proteins (IDPs), are involved in numerous physiological functions and are associated with severe pathologies, e.g. Alzheimer, Parkinson, Creutzfeldt-Jakob, amyotrophic lateral sclerosis (ALS), and type 2 diabetes. Targeting these proteins is challenging for two reasons: i) we need to preserve their physiological functions, and ii) drug design by molecular docking is not possible due to the lack of reliable starting conditions. Faced with this challenge, the solutions proposed by artificial intelligence (AI) such as AlphaFold are clearly unsuitable. Instead, we suggest an innovative approach consisting of mimicking, in short synthetic peptides, the conformational flexibility of IDPs. These peptides, which we call adaptive peptides, are derived from the domains of IDPs that become structured after interacting with a ligand. Adaptive peptides are designed with the aim of selectively antagonizing the harmful effects of IDPs, without targeting them directly but through selected ligands, without affecting their physiological properties. This "target the target, not the arrow" strategy is promised to open a new route to drug discovery for currently undruggable proteins.
Collapse
Affiliation(s)
- Jacques Fantini
- Aix-Marseille University, INSERM UA 16, Faculty of Medicine, 13015 Marseille, France.
| | - Fodil Azzaz
- Aix-Marseille University, INSERM UA 16, Faculty of Medicine, 13015 Marseille, France
| | - Coralie Di Scala
- Neuroscience Center-HiLIFE, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Anaïs Aulas
- Neuroscience Center-HiLIFE, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Henri Chahinian
- Aix-Marseille University, INSERM UA 16, Faculty of Medicine, 13015 Marseille, France
| | - Nouara Yahi
- Aix-Marseille University, INSERM UA 16, Faculty of Medicine, 13015 Marseille, France
| |
Collapse
|
5
|
Gupta V, Kumari P, Sonowal K, Sathe A, Mehta K, Salvi P. Molecular intricacies of intrinsically disordered proteins and drought stress in plants. Int J Biol Macromol 2025; 292:139314. [PMID: 39740709 DOI: 10.1016/j.ijbiomac.2024.139314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/09/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Intrinsically Disordered Proteins (IDPs) and Intrinsically Disordered Regions (IDRs) are renowned for their dynamic structural characteristics and conformational adaptability, allowing them to assume diverse conformations in response to prevailing environmental conditions. This inherent flexibility facilitates their interactions with molecular targets, enabling them to engage in numerous cellular processes without any excessive energy consumption. This adaptability is instrumental in shaping cellular complexity and enhancing adaptability. Notably, most investigations into IDPs/IDRs have concentrated on non-plant organisms, while this comprehensive review explores their multifaceted functions with a perspective of plant resilience to drought stress. Furthermore, the impact of IDPs on plant stress is discussed, highlighting their involvement in diverse biological processes extending beyond mere stress adaptation. This review incorporates a broad spectrum of methodological approaches, ranging from computational tools to experimental techniques, employed for the systematic study of IDPs. We also discussed limitations, challenges, and future directions in this dynamic and evolving field, aiming to provide insights into the unexplored facets of IDPs/IDRs in the intricate landscape of plant responses to drought stress.
Collapse
Affiliation(s)
- Vaishali Gupta
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Priya Kumari
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Kaberi Sonowal
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India; Regional Centre for Biotechnology, Faridabad 121001, India
| | - Atul Sathe
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Kritika Mehta
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India; Regional Centre for Biotechnology, Faridabad 121001, India
| | - Prafull Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India.
| |
Collapse
|
6
|
Inoue R, Oda T, Nakagawa H, Tominaga T, Ikegami T, Konuma T, Iwase H, Kawakita Y, Sato M, Sugiyama M. Revealing an origin of temperature-dependent structural change in intrinsically disordered proteins. Biophys J 2025; 124:540-548. [PMID: 39719827 PMCID: PMC11866975 DOI: 10.1016/j.bpj.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024] Open
Abstract
Intrinsically disordered proteins (IDPs) show structural changes stimulated by changes in external conditions. This study aims to reveal the temperature dependence of the structure and the dynamics of the intrinsically disordered region of the helicase-associated endonuclease for fork-structured DNA, one of the typical IDPs, using an integrative approach. Small-angle X-ray scattering (SAXS) and circular dichroism (CD) studies revealed that the radius of gyration and ellipticity at 222 nm remained constant up to 313-323 K, followed by a decline above this temperature range. NMR studies revealed the absence of a promotion of the α helix. As a result, SAXS, CD, and NMR data strongly suggest that these temperature-dependent structural changes were primarily due to a reduction in the content of the polyproline II (PPII) helix. Moreover, quasielastic neutron scattering studies revealed a slight change in the activation energy in a similar temperature range. Considering the concept of glass transition, it is posited that dynamical cooperativity between the PPII helix and water may play a significant role in these structural changes. The findings suggest that internal dynamics are crucial for regulating the structure of IDPs, highlighting the importance of considering dynamical cooperativity in future studies of protein behavior under varying temperature conditions.
Collapse
Affiliation(s)
- Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| | | | - Hiroshi Nakagawa
- J-PARC Center, JAEA, Ibaraki, Japan; Materials Sciences Research Center, JAEA, Ibaraki, Japan
| | - Taiki Tominaga
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Ibaraki, Japan
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Hiroki Iwase
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Ibaraki, Japan
| | | | - Mamoru Sato
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan; Neutron Industrial Application Promotion Center, Comprehensive Research Organization for Science and Society (CROSS), Ibaraki, Japan.
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan.
| |
Collapse
|
7
|
Walker C, Chandrasekaran A, Mansour D, Graham K, Torres A, Wang L, Lafer EM, Rangamani P, Stachowiak JC. Liquid-like condensates that bind actin promote assembly and bundling of actin filaments. Dev Cell 2025:S1534-5807(25)00032-2. [PMID: 39914390 DOI: 10.1016/j.devcel.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/30/2024] [Accepted: 01/15/2025] [Indexed: 02/12/2025]
Abstract
Biomolecular condensates perform diverse physiological functions. Previous work showed that VASP, a processive actin polymerase, forms condensates that assemble and bundle actin. Here, we show that this behavior does not require proteins with specific polymerase activity. Specifically, condensates composed of Lamellipodin, a protein that binds actin but is not an actin polymerase, were also capable of assembling actin filaments. To probe the minimum requirements for condensate-mediated actin bundling, we developed an agent-based computational model. Guided by its predictions, we hypothesized that any condensate-forming protein that binds filamentous actin could bundle filaments through multivalent crosslinking. To test this, we added a filamentous-actin-binding motif to Eps15, a condensate-forming protein that does not normally bind actin. The resulting chimera formed condensates that facilitated efficient assembly and bundling of actin filaments. Collectively, these findings broaden the family of proteins that could organize cytoskeletal filaments to include any filamentous-actin-binding protein that participates in protein condensation.
Collapse
Affiliation(s)
- Caleb Walker
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Aravind Chandrasekaran
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Mansour
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Kristin Graham
- Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Andrea Torres
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA.
| | - Jeanne C Stachowiak
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
8
|
Liu Z, Thirumalai D. Impact of Guanidinium Hydrochloride on the Shapes of Prothymosin-α and α-Synuclein Is Dramatically Different. Biochemistry 2025; 64:105-113. [PMID: 39718971 DOI: 10.1021/acs.biochem.4c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
The effects of guanidinium hydrochloride (GdmCl) on two intrinsically disordered proteins (IDPs) are investigated using simulations of the self-organized polymer-IDP (SOP-IDP) model. The impact of GdmCl is taken into account using the molecular transfer model (MTM). We show that due to the dramatic reduction in the stiffness of the highly charged Prothymosin-α (ProTα) with increasing concentration of GdmCl ([GdmCl]), the radius of gyration (Rg) decreases sharply until about 1.0 M. Above 1.0 M, ProTα expands, caused by the swelling effect of GdmCl. In contrast, Rg of α-Synuclein (αSyn) swells as continuously as [GdmCl] increases, with most of the expansion occurring at concentrations less than 0.2 M. Strikingly, the amplitude of the small-angle X-ray scattering (SAXS) profiles for ProTα increases until [GdmCl] ≈ 1.0 M and decreases beyond 1.0 M. The [GdmCl]-dependent SAXS profiles for αSyn, which has a pronounced bump at small wave vector (q ∼ 0.5 nm-1) at low [GdmCl] (≤0.2 M), monotonically decrease at all values of [GdmCl]. The contrasting behavior predicted by the combination of MTM and SOP-IDP simulations may be qualitatively understood by modeling ProTα as a strongly charged polyelectrolyte with nearly uniform density of charges along the chain contour and αSyn as a nearly neutral polymer, except near the C-terminus, where the uncompensated negatively charged residues are located. The precise predictions for the SAXS profiles as a function of [GdmCl] can be readily tested.
Collapse
Affiliation(s)
- Zhenxing Liu
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Lefebvre M, Chahinian H, La Scola B, Fantini J. Characterization and Fluctuations of an Ivermectin Binding Site at the Lipid Raft Interface of the N-Terminal Domain (NTD) of the Spike Protein of SARS-CoV-2 Variants. Viruses 2024; 16:1836. [PMID: 39772146 PMCID: PMC11680242 DOI: 10.3390/v16121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Most studies on the docking of ivermectin on the spike protein of SARS-CoV-2 concern the receptor binding domain (RBD) and, more precisely, the RBD interface recognized by the ACE2 receptor. The N-terminal domain (NTD), which controls the initial attachment of the virus to lipid raft gangliosides, has not received the attention it deserves. In this study, we combined molecular modeling and physicochemical approaches to analyze the mode of interaction of ivermectin with the interface of the NTD-facing lipid rafts of the host cell membrane. We characterize a binding area that presents point mutations and deletions in successive SARS-CoV-2 variants from the initial strain to omicron KP.3 circulating in many countries in 2024. We show that ivermectin has exceptional flexibility, allowing the drug to bind to the spike protein of all variants tested. The energy of interaction is specific to each variant, allowing a classification according to their affinity for ivermectin in the following ascending order: Omicron KP.3 < Delta < Omicron BA.5 < Alpha < Wuhan (B.1) < Omicron BA.1. The binding site of ivermectin is subject to important variations of the NTD, including the Y144 deletion. It overlaps with the ganglioside binding domain of the NTD, as demonstrated by docking and physicochemical studies. These results suggest a new mechanism of antiviral action for ivermectin based on competitive inhibition for initial virus attachment to lipid rafts. The current KP.3 variant is still recognized by ivermectin, although with an affinity slightly lower than the Wuhan strain.
Collapse
Affiliation(s)
- Marine Lefebvre
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (M.L.); (B.L.S.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France
- Department of Biology, Faculty of Medicine, Aix-Marseille University, INSERM UA16, 13015 Marseille, France;
| | - Henri Chahinian
- Department of Biology, Faculty of Medicine, Aix-Marseille University, INSERM UA16, 13015 Marseille, France;
| | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (M.L.); (B.L.S.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France
| | - Jacques Fantini
- Department of Biology, Faculty of Medicine, Aix-Marseille University, INSERM UA16, 13015 Marseille, France;
| |
Collapse
|
10
|
Uversky VN. How to drug a cloud? Targeting intrinsically disordered proteins. Pharmacol Rev 2024; 77:PHARMREV-AR-2023-001113. [PMID: 39433443 DOI: 10.1124/pharmrev.124.001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Biologically active proteins/regions without stable structure (i.e., intrinsically disordered proteins and regions (IDPs and IDRs)) are commonly found in all proteomes. They have a unique functional repertoire that complements the functionalities of ordered proteins and domains. IDPs/IDRs are multifunctional promiscuous binders capable of folding at interaction with specific binding partners on a template- or context-dependent manner, many of which undergo liquid-liquid phase separation, leading to the formation of membrane-less organelles and biomolecular condensates. Many of them are frequently related to the pathogenesis of various human diseases. All this defines IDPs/IDRs as attractive targets for the development of novel drugs. However, their lack of unique structures, multifunctionality, binding promiscuity, and involvement in unusual modes of action preclude direct use of traditional structure-based drug design approaches for targeting IDPs/IDRs, and make disorder-based drug discovery for these "protein clouds" challenging. Despite all these complexities there is continuing progress in the design of small molecules affecting IDPs/IDRs. This article describes the major structural features of IDPs/IDRs and the peculiarities of the disorder-based functionality. It also discusses the roles of IDPs/IDRs in various pathologies, and shows why the approaches elaborated for finding drugs targeting ordered proteins cannot be directly used for the intrinsic disorder-based drug design, and introduces some novel methodologies suitable for these purposes. Finally, it emphasizes that regardless of their multifunctionality, binding promiscuity, lack of unique structures, and highly dynamic nature, "protein clouds" are principally druggable. Significance Statement Intrinsically disordered proteins and regions are highly abundant in nature, have multiple important biological functions, are commonly involved in the pathogenesis of a multitude of human diseases, and are therefore considered as very attractive drug targets. Although dealing with these unstructured multifunctional protein/regions is a challenging task, multiple innovative approaches have been designed to target them by small molecules.
Collapse
|
11
|
Bhargava P, Yadav P, Barik A. Computational insights into intrinsically disordered regions in protein-nucleic acid complexes. Int J Biol Macromol 2024; 277:134021. [PMID: 39032884 DOI: 10.1016/j.ijbiomac.2024.134021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
We study transitions in intrinsically disordered regions (IDRs) upon complex formation, utilizing X-ray-solved structural dataset of protein-DNA and protein-RNA complexes, along with their available unbound protein forms. The identified IDRs are categorized into three classes: Disordered-to-Ordered (D-O), Disordered-to-Partial Ordered (D-PO) and Disordered-to-Disordered (D-D) after comparing them in unbound and complex forms. In the D-O class, IDRs form secondary structures like coils, helices, and strands upon binding to nucleic acids. Though a majority of these IDRs are present at the surface of the complexes, a significant number of IDRs are also observed at the interfaces and are involved in polar interactions. The hydrogen bonds made by the interface IDRs (B_IDRs) with phosphates and bases of nucleic acids are comparatively more than those formed with sugars. B_IDRs form more H-bonds with the ribose in protein-RNA than with the deoxyribose in protein-DNA. Among the B_IDRs, Arg and Lys prefer to interact with the major and minor grooves of DNA and RNA, respectively. Ser, however, prefers the minor groove in both the nucleic acids. Interestingly, we report 61 and 48 IDRs in 31 protein-DNA and 22 protein-RNA complexes, respectively, suggesting nucleic acid binding to proteins may also result in ordered-to-disordered transitions.
Collapse
Affiliation(s)
- Prachi Bhargava
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Paramveer Yadav
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Amita Barik
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India.
| |
Collapse
|
12
|
Dostálková A, Křížová I, Junková P, Racková J, Kapisheva M, Novotný R, Danda M, Zvonařová K, Šinkovec L, Večerková K, Bednářová L, Ruml T, Rumlová M. Unveiling the DHX15-G-patch interplay in retroviral RNA packaging. Proc Natl Acad Sci U S A 2024; 121:e2407990121. [PMID: 39320912 PMCID: PMC11459146 DOI: 10.1073/pnas.2407990121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
We explored how a simple retrovirus, Mason-Pfizer monkey virus (M-PMV) to facilitate its replication process, utilizes DHX15, a cellular RNA helicase, typically engaged in RNA processing. Through advanced genetic engineering techniques, we showed that M-PMV recruits DHX15 by mimicking cellular mechanisms, relocating it from the nucleus to the cytoplasm to aid in viral assembly. This interaction is essential for the correct packaging of the viral genome and critical for its infectivity. Our findings offer unique insights into the mechanisms of viral manipulation of host cellular processes, highlighting a sophisticated strategy that viruses employ to leverage cellular machinery for their replication. This study adds valuable knowledge to the understanding of viral-host interactions but also suggests a common evolutionary history between cellular processes and viral mechanisms. This finding opens a unique perspective on the export mechanism of intron-retaining mRNAs in the packaging of viral genetic information and potentially develop ways to stop it.
Collapse
Affiliation(s)
- Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Petra Junková
- Institute of Organic Chemistry and Biochemistry Research Centre & Gilead Sciences, Czech Academy of Sciences, 166 10Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology166 28, Prague, Czech Republic
| | - Jana Racková
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Marina Kapisheva
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Radim Novotný
- Department of Biochemistry and Microbiology, University of Chemistry and Technology166 28, Prague, Czech Republic
| | - Matěj Danda
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Karolína Zvonařová
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Larisa Šinkovec
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Kateřina Večerková
- Department of Informatics and Chemistry, University of Chemistry and Technology, 166 28Prague, Czech Republic
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20Prague, Czech Republic
| | - Lucie Bednářová
- Institute of Organic Chemistry and Biochemistry Research Centre & Gilead Sciences, Czech Academy of Sciences, 166 10Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology166 28, Prague, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| |
Collapse
|
13
|
Shult C, Gunderson K, Coffey SJ, McNally B, Brandt M, Smith L, Steczynski J, Olerich ER, Schroeder SE, Severson NJ, Hati S, Bhattacharyay S. Conformational fluidity of intrinsically disordered proteins in crowded environment: a molecular dynamics simulation study. J Biomol Struct Dyn 2024:1-13. [PMID: 39285530 PMCID: PMC11910382 DOI: 10.1080/07391102.2024.2404531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/08/2024] [Indexed: 10/15/2024]
Abstract
The class of intrinsically disordered proteins lacks stable three-dimensional structures. Their flexibility allows them to engage in a wide variety of interactions with other biomolecules thus making them biologically relevant and efficient. The intrinsic disorders of these proteins, which undergo binding-induced folding, allow alterations in their topologies while conserving their binding sites. Due to the lack of well-defined three-dimensional structures in the absence of their physiological partners, the folding and the conformational dynamics of these proteins remained poorly understood. Particularly, it is unclear how these proteins exist in the crowded intracellular milieu. In the present study, molecular dynamic simulations of two intrinsically unstructured proteins and two controls (folded proteins) were conducted in the presence and absence of molecular crowders to obtain an in-depth insight into their conformational flexibility. The present study revealed that polymer crowders stabilize the disordered proteins through enthalpic as well as entropic effects that are significantly more than their monomeric counterpart. Taken together, the study delves deep into crowding effects on intrinsically disordered proteins and provides insights into how molecular crowders induce a significantly diverse ensemble of dynamic scaffolds needed to carry out diverse functions.
Collapse
Affiliation(s)
- Carolyn Shult
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Keegan Gunderson
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Stephen J. Coffey
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Brenya McNally
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Michael Brandt
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Lucille Smith
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Joshua Steczynski
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Ethan R. Olerich
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Sydney E. Schroeder
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Nathaniel J. Severson
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Sanchita Hati
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Sudeep Bhattacharyay
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| |
Collapse
|
14
|
Young VL, McSweeney AM, Edwards MJ, Ward VK. The Disorderly Nature of Caliciviruses. Viruses 2024; 16:1324. [PMID: 39205298 PMCID: PMC11360831 DOI: 10.3390/v16081324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
An intrinsically disordered protein (IDP) or region (IDR) lacks or has little protein structure but still maintains function. This lack of structure creates flexibility and fluidity, allowing multiple protein conformations and potentially transient interactions with more than one partner. Caliciviruses are positive-sense ssRNA viruses, containing a relatively small genome of 7.6-8.6 kb and have a broad host range. Many viral proteins are known to contain IDRs, which benefit smaller viral genomes by expanding the functional proteome through the multifunctional nature of the IDR. The percentage of intrinsically disordered residues within the total proteome for each calicivirus type species can range between 8 and 23%, and IDRs have been experimentally identified in NS1-2, VPg and RdRP proteins. The IDRs within a protein are not well conserved across the genera, and whether this correlates to different activities or increased tolerance to mutations, driving virus adaptation to new selection pressures, is unknown. The function of norovirus NS1-2 has not yet been fully elucidated but includes involvement in host cell tropism, the promotion of viral spread and the suppression of host interferon-λ responses. These functions and the presence of host cell-like linear motifs that interact with host cell caspases and VAPA/B are all found or affected by the disordered region of norovirus NS1-2. The IDRs of calicivirus VPg are involved in viral transcription and translation, RNA binding, nucleotidylylation and cell cycle arrest, and the N-terminal IDR within the human norovirus RdRP could potentially drive liquid-liquid phase separation. This review identifies and summarises the IDRs of proteins within the Caliciviridae family and their importance during viral replication and subsequent host interactions.
Collapse
Affiliation(s)
| | | | | | - Vernon K. Ward
- Department of Microbiology & Immunology, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
15
|
Mirdha L. Aggregation Behavior of Amyloid Beta Peptide Depends Upon the Membrane Lipid Composition. J Membr Biol 2024; 257:151-164. [PMID: 38888760 DOI: 10.1007/s00232-024-00314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Protein aggregation plays a crucial role in the development of several neurodegenerative diseases. It is important to understand the aggregation process for the detection of the onset of these diseases. Alzheimer's Disease (AD) is one of the most prevalent neurodegenerative diseases caused by the aggregation of Aβ-40 and Aβ-42 peptides. The smaller oligomers lead to the formation of protein plaque at the neural membranes leading to memory loss and other disorders. Interestingly, aggregation takes place at the neural membranes, therefore the membrane composition seems to play an important role in the aggregation process. Despite a large number of literatures on the effect of lipid composition on protein aggregation, there are very few concise reviews that highlight the role of membrane composition in protein aggregation. In this review, we have discussed the implication of membrane composition on the aggregation of amyloid beta peptide with a special emphasis on cholesterol. We have further discussed the role of the degree of unsaturation of fatty acids and the participation of apolipoprotein E4 (ApoE4) in the onset of AD.
Collapse
Affiliation(s)
- Lipika Mirdha
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India.
| |
Collapse
|
16
|
Korkola NC, Stillman MJ. Human apo-metallothionein 1a is not a random coil: Evidence from guanidinium chloride, high temperature, and acidic pH unfolding studies. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141010. [PMID: 38490456 DOI: 10.1016/j.bbapap.2024.141010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The structures of apo-metallothioneins (apo-MTs) have been relatively elusive due to their fluxional, disordered state which has been difficult to characterize. However, intrinsically disordered protein (IDP) structures are rather diverse, which raises questions about where the structure of apo-MTs fit into the protein structural spectrum. In this paper, the unfolding transitions of apo-MT1a are discussed with respect to the effect of the chemical denaturant GdmCl, temperature conditions, and pH environment. Cysteine modification in combination with electrospray ionization mass spectrometry was used to probe the unfolding transition of apo-MT1a in terms of cysteine exposure. Circular dichroism spectroscopy was also used to monitor the change in secondary structure as a function of GdmCl concentration. For both of these techniques, cooperative unfolding was observed, suggesting that apo-MT1a is not a random coil. More GdmCl was required to unfold the protein backbone than to expose the cysteines, indicating that cysteine exposure is likely an early step in the unfolding of apo-MT1a. MD simulations complement the experimental results, suggesting that apo-MT1a adopts a more compact structure than expected for a random coil. Overall, these results provide further insight into the intrinsically disordered structure of apo-MT.
Collapse
Affiliation(s)
- Natalie C Korkola
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON N6A5B7, Canada
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON N6A5B7, Canada.
| |
Collapse
|
17
|
Smardz P, Anila MM, Rogowski P, Li MS, Różycki B, Krupa P. A Practical Guide to All-Atom and Coarse-Grained Molecular Dynamics Simulations Using Amber and Gromacs: A Case Study of Disulfide-Bond Impact on the Intrinsically Disordered Amyloid Beta. Int J Mol Sci 2024; 25:6698. [PMID: 38928405 PMCID: PMC11204378 DOI: 10.3390/ijms25126698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intrinsically disordered proteins (IDPs) pose challenges to conventional experimental techniques due to their large-scale conformational fluctuations and transient structural elements. This work presents computational methods for studying IDPs at various resolutions using the Amber and Gromacs packages with both all-atom (Amber ff19SB with the OPC water model) and coarse-grained (Martini 3 and SIRAH) approaches. The effectiveness of these methodologies is demonstrated by examining the monomeric form of amyloid-β (Aβ42), an IDP, with and without disulfide bonds at different resolutions. Our results clearly show that the addition of a disulfide bond decreases the β-content of Aβ42; however, it increases the tendency of the monomeric Aβ42 to form fibril-like conformations, explaining the various aggregation rates observed in experiments. Moreover, analysis of the monomeric Aβ42 compactness, secondary structure content, and comparison between calculated and experimental chemical shifts demonstrates that all three methods provide a reasonable choice to study IDPs; however, coarse-grained approaches may lack some atomistic details, such as secondary structure recognition, due to the simplifications used. In general, this study not only explains the role of disulfide bonds in Aβ42 but also provides a step-by-step protocol for setting up, conducting, and analyzing molecular dynamics (MD) simulations, which is adaptable for studying other biomacromolecules, including folded and disordered proteins and peptides.
Collapse
Affiliation(s)
| | | | | | | | | | - Pawel Krupa
- Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland; (P.S.); (M.M.A.); (P.R.); (M.S.L.); (B.R.)
| |
Collapse
|
18
|
Uversky VN, Madeira PP, Zaslavsky BY. What Can Be Learned from the Partitioning Behavior of Proteins in Aqueous Two-Phase Systems? Int J Mol Sci 2024; 25:6339. [PMID: 38928046 PMCID: PMC11203663 DOI: 10.3390/ijms25126339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
This review covers the analytical applications of protein partitioning in aqueous two-phase systems (ATPSs). We review the advancements in the analytical application of protein partitioning in ATPSs that have been achieved over the last two decades. Multiple examples of different applications, such as the quality control of recombinant proteins, analysis of protein misfolding, characterization of structural changes as small as a single-point mutation, conformational changes upon binding of different ligands, detection of protein-protein interactions, and analysis of structurally different isoforms of a protein are presented. The new approach to discovering new drugs for a known target (e.g., a receptor) is described when one or more previous drugs are already available with well-characterized biological efficacy profiles.
Collapse
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Pedro P. Madeira
- Centro de Investigacao em Materiais Ceramicos e Compositos, Department of Chemistry, 3810-193 Aveiro, Portugal;
| | | |
Collapse
|
19
|
Novikova OD, Rybinskaya TV, Zelepuga EA, Uversky VN, Kim NY, Chingizova EA, Menchinskaya ES, Khomenko VA, Chistyulin DK, Portnyagina OY. Formation of Amyloid-Like Conformational States of β-Structured Membrane Proteins on the Example of OMPF Porin from the Yersinia pseudotuberculosis Outer Membrane. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1079-1093. [PMID: 38981702 DOI: 10.1134/s0006297924060087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/14/2024] [Accepted: 03/31/2024] [Indexed: 07/11/2024]
Abstract
The work presents results of the in vitro and in silico study of formation of amyloid-like structures under harsh denaturing conditions by non-specific OmpF porin of Yersinia pseudotuberculosis (YpOmpF), a membrane protein with β-barrel conformation. It has been shown that in order to obtain amyloid-like porin aggregates, preliminary destabilization of its structure in a buffer solution with acidic pH at elevated temperature followed by long-term incubation at room temperature is necessary. After heating at 95°C in a solution with pH 4.5, significant conformational rearrangements are observed in the porin molecule at the level of tertiary and secondary structure of the protein, which are accompanied by the increase in the content of total β-structure and sharp decrease in the value of characteristic viscosity of the protein solution. Subsequent long-term exposure of the resulting unstable intermediate YpOmpF at room temperature leads to formation of porin aggregates of various shapes and sizes that bind thioflavin T, a specific fluorescent dye for the detection of amyloid-like protein structures. Compared to the initial protein, early intermediates of the amyloidogenic porin pathway, oligomers, have been shown to have increased toxicity to the Neuro-2aCCL-131™ mouse neuroblastoma cells. The results of computer modeling and analysis of the changes in intrinsic fluorescence during protein aggregation suggest that during formation of amyloid-like aggregates, changes in the structure of YpOmpF affect not only the areas with an internally disordered structure corresponding to the external loops of the porin, but also main framework of the molecule, which has a rigid spatial structure inherent to β-barrel.
Collapse
Affiliation(s)
- Olga D Novikova
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Tatyana V Rybinskaya
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Elena A Zelepuga
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA
| | - Nataliya Yu Kim
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Ekaterina A Chingizova
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Ekaterina S Menchinskaya
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Valentina A Khomenko
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Dmitriy K Chistyulin
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Olga Yu Portnyagina
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690021, Russia.
| |
Collapse
|
20
|
Sonaglioni D, Libera V, Tombari E, Peters J, Natali F, Petrillo C, Comez L, Capaccioli S, Paciaroni A. Dynamic Personality of Proteins and Effect of the Molecular Environment. J Phys Chem Lett 2024; 15:5543-5548. [PMID: 38752860 DOI: 10.1021/acs.jpclett.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Protein dynamics display distinct traits that are linked to their specific biological function. However, the interplay between intrinsic dynamics and the molecular environment on protein stability remains poorly understood. In this study, we investigate, by incoherent neutron scattering, the subnanosecond time scale dynamics of three model proteins: the mesophilic lysozyme, the thermophilic thermolysin, and the intrinsically disordered β-casein. Moreover, we address the influence of water, glycerol, and glucose, which create progressively more viscous matrices around the protein surface. By comparing the protein thermal fluctuations, we find that the internal dynamics of thermolysin are less affected by the environment compared to lysozyme and β-casein. We ascribe this behavior to the protein dynamic personality, i.e., to the stiffer dynamics of the thermophilic protein that contrasts the influence of the environment. Remarkably, lysozyme and thermolysin in all molecular environments reach a critical common flexibility when approaching the calorimetric melting temperature.
Collapse
Affiliation(s)
- Daniele Sonaglioni
- Physics Department, University of Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy
| | - Valeria Libera
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Elpidio Tombari
- Istituto per i Processi Chimico-Fisici del CNR, via G. Moruzzi 1, 56124 Pisa, Italy
| | - Judith Peters
- Université Grenoble Alpes, CNRS, LiPhy, 38400 St Martin d'Heres, France
- Institut Laue Langevin, 38000 Grenoble, France
- Institut Universitaire de France, 75005 Paris, France
| | - Francesca Natali
- Institut Laue Langevin, 38000 Grenoble, France
- CNR-IOM and INSIDE@ILL c/o OGG, 71 avenue des Martyrs, CEDEX 9, 38042 Grenoble, France
| | - Caterina Petrillo
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Lucia Comez
- CNR-IOM, Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Simone Capaccioli
- Physics Department, University of Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy
- Istituto per i Processi Chimico-Fisici del CNR, via G. Moruzzi 1, 56124 Pisa, Italy
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, Pisa 56126, Italy
| | - Alessandro Paciaroni
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| |
Collapse
|
21
|
Walker C, Chandrasekaran A, Mansour D, Graham K, Torres A, Wang L, Lafer EM, Rangamani P, Stachowiak JC. Liquid-like condensates that bind actin drive filament polymerization and bundling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592527. [PMID: 38826190 PMCID: PMC11142076 DOI: 10.1101/2024.05.04.592527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Liquid-like protein condensates perform diverse physiological functions. Previous work showed that VASP, a processive actin polymerase, forms condensates that polymerize and bundle actin. To minimize their curvature, filaments accumulated at the inner condensate surface, ultimately deforming the condensate into a rod-like shape, filled with a bundle of parallel filaments. Here we show that this behavior does not require proteins with specific polymerase activity. Specifically, we found that condensates composed of Lamellipodin, a protein that binds actin but is not an actin polymerase, were also capable of polymerizing and bundling actin filaments. To probe the minimum requirements for condensate-mediated actin bundling, we developed an agent-based computational model. Guided by its predictions, we hypothesized that any condensate-forming protein that binds actin could bundle filaments through multivalent crosslinking. To test this idea, we added an actin-binding motif to Eps15, a condensate-forming protein that does not normally bind actin. The resulting chimera formed condensates that drove efficient actin polymerization and bundling. Collectively, these findings broaden the family of proteins that could organize cytoskeletal filaments to include any actin-binding protein that participates in protein condensation.
Collapse
Affiliation(s)
- Caleb Walker
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Aravind Chandrasekaran
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Daniel Mansour
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Kristin Graham
- Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Andrea Torres
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Eileen M. Lafer
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Jeanne C. Stachowiak
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
22
|
Waszkiewicz R, Michaś A, Białobrzewski MK, Klepka BP, Cieplak-Rotowska MK, Staszałek Z, Cichocki B, Lisicki M, Szymczak P, Niedzwiecka A. Hydrodynamic Radii of Intrinsically Disordered Proteins: Fast Prediction by Minimum Dissipation Approximation and Experimental Validation. J Phys Chem Lett 2024; 15:5024-5033. [PMID: 38696815 PMCID: PMC11103702 DOI: 10.1021/acs.jpclett.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
The diffusion coefficients of globular and fully unfolded proteins can be predicted with high accuracy solely from their mass or chain length. However, this approach fails for intrinsically disordered proteins (IDPs) containing structural domains. We propose a rapid predictive methodology for estimating the diffusion coefficients of IDPs. The methodology uses accelerated conformational sampling based on self-avoiding random walks and includes hydrodynamic interactions between coarse-grained protein subunits, modeled using the generalized Rotne-Prager-Yamakawa approximation. To estimate the hydrodynamic radius, we rely on the minimum dissipation approximation recently introduced by Cichocki et al. Using a large set of experimentally measured hydrodynamic radii of IDPs over a wide range of chain lengths and domain contributions, we demonstrate that our predictions are more accurate than the Kirkwood approximation and phenomenological approaches. Our technique may prove to be valuable in predicting the hydrodynamic properties of both fully unstructured and multidomain disordered proteins.
Collapse
Affiliation(s)
- Radost Waszkiewicz
- Institute
of Theoretical Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
| | - Agnieszka Michaś
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Michał K. Białobrzewski
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Barbara P. Klepka
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | | | - Zuzanna Staszałek
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Bogdan Cichocki
- Institute
of Theoretical Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
| | - Maciej Lisicki
- Institute
of Theoretical Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
| | - Piotr Szymczak
- Institute
of Theoretical Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
| | - Anna Niedzwiecka
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| |
Collapse
|
23
|
Baxa MC, Lin X, Mukinay CD, Chakravarthy S, Sachleben JR, Antilla S, Hartrampf N, Riback JA, Gagnon IA, Pentelute BL, Clark PL, Sosnick TR. How hydrophobicity, side chains, and salt affect the dimensions of disordered proteins. Protein Sci 2024; 33:e4986. [PMID: 38607226 PMCID: PMC11010952 DOI: 10.1002/pro.4986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Despite the generally accepted role of the hydrophobic effect as the driving force for folding, many intrinsically disordered proteins (IDPs), including those with hydrophobic content typical of foldable proteins, behave nearly as self-avoiding random walks (SARWs) under physiological conditions. Here, we tested how temperature and ionic conditions influence the dimensions of the N-terminal domain of pertactin (PNt), an IDP with an amino acid composition typical of folded proteins. While PNt contracts somewhat with temperature, it nevertheless remains expanded over 10-58°C, with a Flory exponent, ν, >0.50. Both low and high ionic strength also produce contraction in PNt, but this contraction is mitigated by reducing charge segregation. With 46% glycine and low hydrophobicity, the reduced form of snow flea anti-freeze protein (red-sfAFP) is unaffected by temperature and ionic strength and persists as a near-SARW, ν ~ 0.54, arguing that the thermal contraction of PNt is due to stronger interactions between hydrophobic side chains. Additionally, red-sfAFP is a proxy for the polypeptide backbone, which has been thought to collapse in water. Increasing the glycine segregation in red-sfAFP had minimal effect on ν. Water remained a good solvent even with 21 consecutive glycine residues (ν > 0.5), and red-sfAFP variants lacked stable backbone hydrogen bonds according to hydrogen exchange. Similarly, changing glycine segregation has little impact on ν in other glycine-rich proteins. These findings underscore the generality that many disordered states can be expanded and unstructured, and that the hydrophobic effect alone is insufficient to drive significant chain collapse for typical protein sequences.
Collapse
Affiliation(s)
- Michael C. Baxa
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Xiaoxuan Lin
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Cedrick D. Mukinay
- Department of Chemistry & BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team (BioCAT), Center for Synchrotron Radiation Research and Instrumentation and Department of Biological and Chemical SciencesIllinois Institute of TechnologyChicagoIllinoisUSA
- Present address:
Cytiva, Fast TrakMarlboroughMAUSA
| | | | - Sarah Antilla
- Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Nina Hartrampf
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Present address:
Department of ChemistryUniversity of ZurichSwitzerland
| | - Joshua A. Riback
- Graduate Program in Biophysical ScienceUniversity of ChicagoChicagoIllinoisUSA
- Present address:
Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Isabelle A. Gagnon
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Bradley L. Pentelute
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Patricia L. Clark
- Department of Chemistry & BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Tobin R. Sosnick
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
24
|
Firouzbakht A, Haider A, Gaalswyk K, Alaeen S, Ghosh K, Gruebele M. HYPK: A marginally disordered protein sensitive to charge decoration. Proc Natl Acad Sci U S A 2024; 121:e2316408121. [PMID: 38657047 PMCID: PMC11067017 DOI: 10.1073/pnas.2316408121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
Intrinsically disordered proteins (IDPs) that lie close to the empirical boundary separating IDPs and folded proteins in Uversky's charge-hydropathy plot may behave as "marginal IDPs" and sensitively switch conformation upon changes in environment (temperature, crowding, and charge screening), sequence, or both. In our search for such a marginal IDP, we selected Huntingtin-interacting protein K (HYPK) near that boundary as a candidate; PKIα, also near that boundary, has lower secondary structure propensity; and Crk1, just across the boundary on the folded side, has higher secondary structure propensity. We used a qualitative Förster resonance energy transfer-based assay together with circular dichroism to simultaneously probe global and local conformation. HYPK shows several unique features indicating marginality: a cooperative transition in end-to-end distance with temperature, like Crk1 and folded proteins, but unlike PKIα; enhanced secondary structure upon crowding, in contrast to Crk1 and PKIα; and a cross-over from salt-induced expansion to compaction at high temperature, likely due to a structure-to-disorder transition not seen in Crk1 and PKIα. We then tested HYPK's sensitivity to charge patterning by designing charge-flipped variants including two specific sequences with identical amino acid composition that markedly differ in their predicted size and response to salt. The experimentally observed trends, also including mutants of PKIα, verify the predictions from sequence charge decoration metrics. Marginal proteins like HYPK show features of both folded and disordered proteins that make them sensitive to physicochemical perturbations and structural control by charge patterning.
Collapse
Affiliation(s)
- Arash Firouzbakht
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana Champaign, IL61801
| | - Austin Haider
- Department of Molecular and Cellular Biophysics, University of Denver, Denver, CO80210
| | - Kari Gaalswyk
- Department of Physics and Astronomy, University of Denver, Denver, CO80210
| | - Sepehr Alaeen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana Champaign, Urbana Champaign, IL61801
| | - Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, Denver, CO80210
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana Champaign, IL61801
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana Champaign, Urbana Champaign, IL61801
- Department of Physics, University of Illinois at Urbana Champaign, Urbana Champaign, IL61801
- Carle-Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana Champaign, IL61801
- Center for Advanced Study, University of Illinois Urbana Champaign, Urbana Champaign, IL61801
| |
Collapse
|
25
|
Paromov V, Uversky VN, Cooley A, Liburd LE, Mukherjee S, Na I, Dayhoff GW, Pratap S. The Proteomic Analysis of Cancer-Related Alterations in the Human Unfoldome. Int J Mol Sci 2024; 25:1552. [PMID: 38338831 PMCID: PMC10855131 DOI: 10.3390/ijms25031552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
Many proteins lack stable 3D structures. These intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains with intrinsically disordered protein regions (IDPRs) often carry out regulatory functions related to molecular recognition and signal transduction. IDPs/IDPRs constitute a substantial portion of the human proteome and are termed "the unfoldome". Herein, we probe the human breast cancer unfoldome and investigate relations between IDPs and key disease genes and pathways. We utilized bottom-up proteomics, MudPIT (Multidimensional Protein Identification Technology), to profile differentially expressed IDPs in human normal (MCF-10A) and breast cancer (BT-549) cell lines. Overall, we identified 2271 protein groups in the unfoldome of normal and cancer proteomes, with 148 IDPs found to be significantly differentially expressed in cancer cells. Further analysis produced annotations of 140 IDPs, which were then classified to GO (Gene Ontology) categories and pathways. In total, 65% (91 of 140) IDPs were related to various diseases, and 20% (28 of 140) mapped to cancer terms. A substantial portion of the differentially expressed IDPs contained disordered regions, confirmed by in silico characterization. Overall, our analyses suggest high levels of interactivity in the human cancer unfoldome and a prevalence of moderately and highly disordered proteins in the network.
Collapse
Affiliation(s)
- Victor Paromov
- Meharry Proteomics Core, RCMI Research Capacity Core, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA; (V.N.U.); (I.N.)
| | - Ayorinde Cooley
- Meharry Bioinformatics Core, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Lincoln E. Liburd
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA (S.M.)
| | - Shyamali Mukherjee
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA (S.M.)
| | - Insung Na
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA; (V.N.U.); (I.N.)
| | - Guy W. Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL 33613, USA;
| | - Siddharth Pratap
- Meharry Proteomics Core, RCMI Research Capacity Core, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
- Meharry Bioinformatics Core, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
26
|
Hsiao AS. Protein Disorder in Plant Stress Adaptation: From Late Embryogenesis Abundant to Other Intrinsically Disordered Proteins. Int J Mol Sci 2024; 25:1178. [PMID: 38256256 PMCID: PMC10816898 DOI: 10.3390/ijms25021178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Global climate change has caused severe abiotic and biotic stresses, affecting plant growth and food security. The mechanical understanding of plant stress responses is critical for achieving sustainable agriculture. Intrinsically disordered proteins (IDPs) are a group of proteins without unique three-dimensional structures. The environmental sensitivity and structural flexibility of IDPs contribute to the growth and developmental plasticity for sessile plants to deal with environmental challenges. This article discusses the roles of various disordered proteins in plant stress tolerance and resistance, describes the current mechanistic insights into unstructured proteins such as the disorder-to-order transition for adopting secondary structures to interact with specific partners (i.e., cellular membranes, membrane proteins, metal ions, and DNA), and elucidates the roles of liquid-liquid phase separation driven by protein disorder in stress responses. By comparing IDP studies in animal systems, this article provides conceptual principles of plant protein disorder in stress adaptation, reveals the current research gaps, and advises on the future research direction. The highlighting of relevant unanswered questions in plant protein disorder research aims to encourage more studies on these emerging topics to understand the mechanisms of action behind their stress resistance phenotypes.
Collapse
Affiliation(s)
- An-Shan Hsiao
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
27
|
Kumar P, Kayastha A, Singh VK, Kayastha AM. In Silico Structural and Functional Insight into the Binding Interactions of the Modeled Structure of Watermelon Urease with Urea. ACS OMEGA 2024; 9:2272-2285. [PMID: 38250402 PMCID: PMC10795036 DOI: 10.1021/acsomega.3c05993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
Urease (EC 3.5.1.5) is an amidohydrolase. This nickel-dependent metalloenzyme converts urea into NH3 and CO2. Despite their vital role in plants, the structure and function of watermelon (Citrullus lanatus) urease are unknown. We used third- and fourth-generation gene prediction algorithms to annotate the C. lanatus urease sequence in this investigation. The solved urease structure from Canavalia ensiformis (PDB ID: 4GY7) was utilized as a template model to identify the target 3-D model structure of the unknown C. lanatus urease for the first time. Cluretox, the C. lanatus urease intrinsic disordered area identical to Jaburetox, was also found. The C. lanatus urease structure was docked with urea to study atom interaction, amino acid interactions, and binding analyses in the urease-urea complex at 3.5 Å. This study found that amino acids His517, Gly548, Asp631, Ala634, Thr569, His543, Met635, His407, His490, and Ala438 of C. lanatus urease bind urea. To study the molecular basis and mode of action of C. lanatus urease, molecular dynamics simulation was performed and RMSD, RMSF, Rg, SAS, and H-bond analyses were done. The calculated binding free energy (ΔG) for the urea-urease complex at 100 ns using the MM/PBSA method is -7.61 kJ/mol. Understanding its catalytic principles helps scientists construct more efficient enzymes, tailor fertilization to boost agricultural output, and create sustainable waste management solutions.
Collapse
Affiliation(s)
- Prince Kumar
- School
of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arpan Kayastha
- Department
of Biosciences and Bioengineering, IIT Roorkee, Roorkee 247667, India
| | - Vinay Kumar Singh
- School
of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arvind M. Kayastha
- School
of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
28
|
Maleš P, Brkljača Z, Crnolatac I, Petrov D, Bakarić D. Phase-Dependent Adsorption of Myelin Basic Protein to Phosphatidylcholine Lipid Bilayers. MEMBRANES 2024; 14:15. [PMID: 38248705 PMCID: PMC10819005 DOI: 10.3390/membranes14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
The dense packing of opposite cytoplasmic surfaces of the lipid-enriched myelin membrane, responsible for the proper saltatory conduction of nerve impulses through axons, is ensured by the adhesive properties of myelin basic protein (MBP). Although preferentially interacting with negatively charged phosphatidylserine (PS) lipids, as an intrinsically disordered protein, it can easily adapt its shape to its immediate environment and thus adsorb to domains made of zwitterionic phosphatidylcholine (PC) lipids. As the molecular-level interaction pattern between MBP and PC lipid membranes suffers from scarce characterization, an experimental and computational study of multilamellar liposomes (MLVs) composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in the presence of bovine MBP is presented here. Calorimetric and temperature-dependent UV-Vis measurements identified DPPC pretransition temperature (Tp) and calorimetric enthalpy (ΔHcal) as the physicochemical parameters most responsive to the presence of MBP. Besides suggesting an increase in β-sheet fractions of structured MBP segments as DPPC lipids undergo from the gel (20 °C) to the fluid (50 °C) phase, FTIR spectra unraveled the significant contribution of lysine (Lys) residues in the adsorption pattern, especially when DPPC is in the fluid (50 °C) phase. In addition to highlighting the importance of Lys residues in the MBP adsorption on DPPC lipid bilayer, employing salt bridges (SBs) and hydrogen bonds (HBs), MD data suggest the crucial importance of the orientation of MBP with respect to the surface of the DPPC lipid bilayer.
Collapse
Affiliation(s)
- Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (P.M.); (Z.B.); (I.C.)
| | - Zlatko Brkljača
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (P.M.); (Z.B.); (I.C.)
| | - Ivo Crnolatac
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (P.M.); (Z.B.); (I.C.)
| | - Dražen Petrov
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, 1180 Vienna, Austria;
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (P.M.); (Z.B.); (I.C.)
| |
Collapse
|
29
|
Pintado-Grima C, Bárcenas O, Iglesias V, Santos J, Manglano-Artuñedo Z, Pallarès I, Burdukiewicz M, Ventura S. aSynPEP-DB: a database of biogenic peptides for inhibiting α-synuclein aggregation. Database (Oxford) 2023; 2023:baad084. [PMID: 38011719 PMCID: PMC10681447 DOI: 10.1093/database/baad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, yet effective treatments able to stop or delay disease progression remain elusive. The aggregation of a presynaptic protein, α-synuclein (aSyn), is the primary neurological hallmark of PD and, thus, a promising target for therapeutic intervention. However, the lack of consensus on the molecular properties required to specifically bind the toxic species formed during aSyn aggregation has hindered the development of therapeutic molecules. Recently, we defined and experimentally validated a peptide architecture that demonstrated high affinity and selectivity in binding to aSyn toxic oligomers and fibrils, effectively preventing aSyn pathogenic aggregation. Human peptides with such properties may have neuroprotective activities and hold a huge therapeutic interest. Driven by this idea, here, we developed a discriminative algorithm for the screening of human endogenous neuropeptides, antimicrobial peptides and diet-derived bioactive peptides with the potential to inhibit aSyn aggregation. We identified over 100 unique biogenic peptide candidates and ensembled a comprehensive database (aSynPEP-DB) that collects their physicochemical features, source datasets and additional therapeutic-relevant information, including their sites of expression and associated pathways. Besides, we provide access to the discriminative algorithm to extend its application to the screening of artificial peptides or new peptide datasets. aSynPEP-DB is a unique repository of peptides with the potential to modulate aSyn aggregation, serving as a platform for the identification of previously unexplored therapeutic agents. Database URL: https://asynpepdb.ppmclab.com/.
Collapse
Affiliation(s)
- Carlos Pintado-Grima
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Valentín Iglesias
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Jaime Santos
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Zoe Manglano-Artuñedo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Michał Burdukiewicz
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Clinical Research Centre, Medical University of Białystok, Kilińskiego 1, Białystok 15-369, Poland
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
30
|
Amith W, Dutagaci B. Complex Conformational Space of the RNA Polymerase II C-Terminal Domain upon Phosphorylation. J Phys Chem B 2023; 127:9223-9235. [PMID: 37870995 PMCID: PMC10626582 DOI: 10.1021/acs.jpcb.3c02655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/03/2023] [Indexed: 10/25/2023]
Abstract
Intrinsically disordered proteins (IDPs) have been closely studied during the past decade due to their importance in many biological processes. The disordered nature of this group of proteins makes it difficult to observe its full span of the conformational space using either experimental or computational studies. In this article, we explored the conformational space of the C-terminal domain (CTD) of RNA polymerase II (Pol II), which is also an intrinsically disordered low complexity domain, using enhanced sampling methods. We provided a detailed conformational analysis of model systems of CTD with different lengths; first with the last 44 residues of the human CTD sequence and finally the CTD model with 2-heptapeptide repeating units. We then investigated the effects of phosphorylation on CTD conformations by performing simulations at different phosphorylated states. We obtained broad conformational spaces in nonphosphorylated CTD models, and phosphorylation has complex effects on the conformations of the CTD. These complex effects depend on the length of the CTD, spacing between the multiple phosphorylation sites, ion coordination, and interactions with the nearby residues.
Collapse
Affiliation(s)
- Weththasinghage
D. Amith
- Department of Molecular and
Cell Biology, University of California,
Merced, Merced, California 95343, United States
| | - Bercem Dutagaci
- Department of Molecular and
Cell Biology, University of California,
Merced, Merced, California 95343, United States
| |
Collapse
|
31
|
Białobrzewski MK, Klepka BP, Michaś A, Cieplak-Rotowska MK, Staszałek Z, Niedźwiecka A. Diversity of hydrodynamic radii of intrinsically disordered proteins. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:607-618. [PMID: 37831084 PMCID: PMC10618399 DOI: 10.1007/s00249-023-01683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
Intrinsically disordered proteins (IDPs) form an important class of biomolecules regulating biological processes in higher organisms. The lack of a fixed spatial structure facilitates them to perform their regulatory functions and allows the efficiency of biochemical reactions to be controlled by temperature and the cellular environment. From the biophysical point of view, IDPs are biopolymers with a broad configuration state space and their actual conformation depends on non-covalent interactions of its amino acid side chain groups at given temperature and chemical conditions. Thus, the hydrodynamic radius (Rh) of an IDP of a given polymer length (N) is a sequence- and environment-dependent variable. We have reviewed the literature values of hydrodynamic radii of IDPs determined experimentally by SEC, AUC, PFG NMR, DLS, and FCS, and complement them with our FCS results obtained for a series of protein fragments involved in the regulation of human gene expression. The data collected herein show that the values of hydrodynamic radii of IDPs can span the full space between the folded globular and denatured proteins in the Rh(N) diagram.
Collapse
Affiliation(s)
- Michał K Białobrzewski
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
| | - Barbara P Klepka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
| | - Agnieszka Michaś
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
| | - Maja K Cieplak-Rotowska
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL-02093, Warsaw, Poland
- The International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Flisa 6, PL-02247, Warsaw, Poland
| | - Zuzanna Staszałek
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
| | - Anna Niedźwiecka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland.
| |
Collapse
|
32
|
Bhopatkar AA, Kayed R. Flanking regions, amyloid cores, and polymorphism: the potential interplay underlying structural diversity. J Biol Chem 2023; 299:105122. [PMID: 37536631 PMCID: PMC10482755 DOI: 10.1016/j.jbc.2023.105122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
The β-sheet-rich amyloid core is the defining feature of protein aggregates associated with neurodegenerative disorders. Recent investigations have revealed that there exist multiple examples of the same protein, with the same sequence, forming a variety of amyloid cores with distinct structural characteristics. These structural variants, termed as polymorphs, are hypothesized to influence the pathological profile and the progression of different neurodegenerative diseases, giving rise to unique phenotypic differences. Thus, identifying the origin and properties of these structural variants remain a focus of studies, as a preliminary step in the development of therapeutic strategies. Here, we review the potential role of the flanking regions of amyloid cores in inducing polymorphism. These regions, adjacent to the amyloid cores, show a preponderance for being structurally disordered, imbuing them with functional promiscuity. The dynamic nature of the flanking regions can then manifest in the form of conformational polymorphism of the aggregates. We take a closer look at the sequences flanking the amyloid cores, followed by a review of the polymorphic aggregates of the well-characterized proteins amyloid-β, α-synuclein, Tau, and TDP-43. We also consider different factors that can potentially influence aggregate structure and how these regions can be viewed as novel targets for therapeutic strategies by utilizing their unique structural properties.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
33
|
Fantini J. Lipid rafts and human diseases: why we need to target gangliosides. FEBS Open Bio 2023; 13:1636-1650. [PMID: 37052878 PMCID: PMC10476576 DOI: 10.1002/2211-5463.13612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/14/2023] Open
Abstract
Gangliosides are functional components of membrane lipid rafts that control critical functions in cell communication. Many pathologies involve raft gangliosides, which therefore represent an approach of choice for developing innovative therapeutic strategies. Beginning with a discussion of what a disease is (and is not), this review lists the major human pathologies that involve gangliosides, which includes cancer, diabetes, and infectious and neurodegenerative diseases. In most cases, the problem is due to a protein whose binding to gangliosides either creates a pathological condition or impairs a physiological function. Then, I draw up an inventory of the different molecular mechanisms of protein-ganglioside interactions. I propose to classify the ganglioside-binding domains of proteins into four categories, which I name GBD-1, GBD-2, GBD-3, and GBD-4. This structural and functional classification could help to rationalize the design of innovative molecules capable of disrupting the binding of selected proteins to gangliosides without generating undesirable effects. The biochemical specificities of gangliosides expressed in the human brain must also be taken into account to improve the reliability of animal models (or any animal-free alternative) of Alzheimer's and Parkinson's diseases.
Collapse
|
34
|
Polyansky AA, Gallego LD, Efremov RG, Köhler A, Zagrovic B. Protein compactness and interaction valency define the architecture of a biomolecular condensate across scales. eLife 2023; 12:e80038. [PMID: 37470705 PMCID: PMC10406433 DOI: 10.7554/elife.80038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/18/2023] [Indexed: 07/21/2023] Open
Abstract
Non-membrane-bound biomolecular condensates have been proposed to represent an important mode of subcellular organization in diverse biological settings. However, the fundamental principles governing the spatial organization and dynamics of condensates at the atomistic level remain unclear. The Saccharomyces cerevisiae Lge1 protein is required for histone H2B ubiquitination and its N-terminal intrinsically disordered fragment (Lge11-80) undergoes robust phase separation. This study connects single- and multi-chain all-atom molecular dynamics simulations of Lge11-80 with the in vitro behavior of Lge11-80 condensates. Analysis of modeled protein-protein interactions elucidates the key determinants of Lge11-80 condensate formation and links configurational entropy, valency, and compactness of proteins inside the condensates. A newly derived analytical formalism, related to colloid fractal cluster formation, describes condensate architecture across length scales as a function of protein valency and compactness. In particular, the formalism provides an atomistically resolved model of Lge11-80 condensates on the scale of hundreds of nanometers starting from individual protein conformers captured in simulations. The simulation-derived fractal dimensions of condensates of Lge11-80 and its mutants agree with their in vitro morphologies. The presented framework enables a multiscale description of biomolecular condensates and embeds their study in a wider context of colloid self-organization.
Collapse
Affiliation(s)
- Anton A Polyansky
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational BiologyViennaAustria
| | - Laura D Gallego
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
| | - Roman G Efremov
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussian Federation
| | - Alwin Köhler
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
- University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell BiologyViennaAustria
| | - Bojan Zagrovic
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational BiologyViennaAustria
| |
Collapse
|
35
|
Pesce F, Lindorff-Larsen K. Combining Experiments and Simulations to Examine the Temperature-Dependent Behavior of a Disordered Protein. J Phys Chem B 2023. [PMID: 37433228 DOI: 10.1021/acs.jpcb.3c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Intrinsically disordered proteins are a class of proteins that lack stable folded conformations and instead adopt a range of conformations that determine their biochemical functions. The temperature-dependent behavior of such disordered proteins is complex and can vary depending on the specific protein and environment. Here, we have used molecular dynamics simulations and previously published experimental data to investigate the temperature-dependent behavior of histatin 5, a 24-residue-long polypeptide. We examined the hypothesis that histatin 5 undergoes a loss of polyproline II (PPII) structure with increasing temperature, leading to more compact conformations. We found that the conformational ensembles generated by the simulations generally agree with small-angle X-ray scattering data for histatin 5, but show some discrepancies with the hydrodynamic radius as probed by pulsed-field gradient NMR spectroscopy, and with the secondary structure information derived from circular dichroism. We attempted to reconcile these differences by reweighting the conformational ensembles against the scattering and NMR data. By doing so, we were in part able to capture the temperature-dependent behavior of histatin 5 and to link the observed decrease in hydrodynamic radius with increasing temperature to a loss of PPII structure. We were, however, unable to achieve agreement with both the scattering and NMR data within experimental errors. We discuss different possible reasons for this including inaccuracies in the force field, differences in conditions of the NMR and scattering experiments, and issues related to the calculation of the hydrodynamic radius from conformational ensembles. Our study highlights the importance of integrating multiple types of experimental data when modeling conformational ensembles of disordered proteins and how environmental factors such as the temperature influence them.
Collapse
Affiliation(s)
- Francesco Pesce
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
36
|
Stringer M, Cubuk J, Incicco JJ, Roy D, Hall KB, Stuchell-Brereton MD, Soranno A. Excluded Volume and Weak Interactions in Crowded Solutions Modulate Conformations and RNA Binding of an Intrinsically Disordered Tail. J Phys Chem B 2023; 127:5837-5849. [PMID: 37348142 PMCID: PMC10331728 DOI: 10.1021/acs.jpcb.3c02356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/08/2023] [Indexed: 06/24/2023]
Abstract
The cellular milieu is a solution crowded with a significant concentration of different components (proteins, nucleic acids, metabolites, etc.). Such a crowded environment affects protein conformations, dynamics, and interactions. Intrinsically disordered proteins and regions are particularly sensitive to these effects. Here, we investigate the impact on an intrinsically disordered tail that flanks a folded domain, the N-terminal domain, and the RNA-binding domain of the SARS-CoV-2 nucleocapsid protein. We mimic the crowded environment of the cell using polyethylene glycol (PEG) and study its impact on protein conformations using single-molecule Förster resonance energy transfer. We found that high-molecular-weight PEG induces a collapse of the disordered N-terminal tail, whereas low-molecular-weight PEG induces a chain expansion. Our data can be explained by accounting for two opposing contributions: favorable interactions between the protein and crowder molecules and screening of excluded volume interactions. We further characterized the interaction between protein and RNA in the presence of crowding agents. While for all PEG molecules tested, we observed an increase in the binding affinity, the trend is not monotonic as a function of the degree of PEG polymerization. This points to the role of nonspecific protein-PEG interactions on binding in addition to the entropic effects due to crowding. To separate the enthalpic and entropic components of the effects, we investigated the temperature dependence of the association constants in the absence and presence of crowders. Finally, we compared the effects of crowding across mutations in the disordered region and found that the threefold difference in association constants for two naturally occurring variants of the SARS-CoV-2 nucleocapsid protein is reduced to almost identical affinities in the presence of crowders. Overall, our data provide new insights into understanding and modeling the contribution of crowding effects on disordered regions, including the impact of interactions between proteins and crowders and their interplay when binding a ligand.
Collapse
Affiliation(s)
- Madison
A. Stringer
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
- Center
for Biomolecular Condensates, Washington
University in St Louis, 1 Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Jasmine Cubuk
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
- Center
for Biomolecular Condensates, Washington
University in St Louis, 1 Brookings Drive, Saint Louis, Missouri 63130, United States
| | - J. Jeremías Incicco
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
| | - Debjit Roy
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
- Center
for Biomolecular Condensates, Washington
University in St Louis, 1 Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Kathleen B. Hall
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
| | - Melissa D. Stuchell-Brereton
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
- Center
for Biomolecular Condensates, Washington
University in St Louis, 1 Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Andrea Soranno
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
- Center
for Biomolecular Condensates, Washington
University in St Louis, 1 Brookings Drive, Saint Louis, Missouri 63130, United States
| |
Collapse
|
37
|
Paladino A, Vitagliano L, Graziano G. The Action of Chemical Denaturants: From Globular to Intrinsically Disordered Proteins. BIOLOGY 2023; 12:biology12050754. [PMID: 37237566 DOI: 10.3390/biology12050754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Proteins perform their many functions by adopting either a minimal number of strictly similar conformations, the native state, or a vast ensemble of highly flexible conformations. In both cases, their structural features are highly influenced by the chemical environment. Even though a plethora of experimental studies have demonstrated the impact of chemical denaturants on protein structure, the molecular mechanism underlying their action is still debated. In the present review, after a brief recapitulation of the main experimental data on protein denaturants, we survey both classical and more recent interpretations of the molecular basis of their action. In particular, we highlight the differences and similarities of the impact that denaturants have on different structural classes of proteins, i.e., globular, intrinsically disordered (IDP), and amyloid-like assemblies. Particular attention has been given to the IDPs, as recent studies are unraveling their fundamental importance in many physiological processes. The role that computation techniques are expected to play in the near future is illustrated.
Collapse
Affiliation(s)
- Antonella Paladino
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giuseppe Graziano
- Department of Science and Technology, University of Sannio, via Francesco de Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
38
|
Li Y, Qin J, Chen M, Sun N, Tan F, Zhang H, Zou Y, Uversky VN, Liu Y. The Moonlighting Function of Soybean Disordered Methyl-CpG-Binding Domain 10c Protein. Int J Mol Sci 2023; 24:ijms24108677. [PMID: 37240035 DOI: 10.3390/ijms24108677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) are multifunctional due to their ability to adopt different structures depending on the local conditions. The intrinsically disordered regions of methyl-CpG-binding domain (MBD) proteins play important roles in regulating growth and development by interpreting DNA methylation patterns. However, whether MBDs have a stress-protective function is far from clear. In this paper, soybean GmMBD10c protein, which contains an MBD and is conserved in Leguminosae, was predicted to be located in the nucleus. It was found to be partially disordered by bioinformatic prediction, circular dichroism and a nuclear magnetic resonance spectral analysis. The enzyme activity assay and SDS-PAGE results showed that GmMBD10c can protect lactate dehydrogenase and a broad range of other proteins from misfolding and aggregation induced by the freeze-thaw process and heat stress, respectively. Furthermore, overexpression of GmMBD10c enhanced the salt tolerance of Escherichia coli. These data validate that GmMBD10c is a moonlighting protein with multiple functions.
Collapse
Affiliation(s)
- Yanling Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jiawei Qin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Menglu Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Nan Sun
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Fangmei Tan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Hua Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yongdong Zou
- The Instrumental Analysis Center of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
39
|
Kumar A, Kumar P, Mishra PM, Giri R. Investigating the folding dynamics of NS2B protein of Zika virus. Virology 2023; 584:24-36. [PMID: 37210794 DOI: 10.1016/j.virol.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
NS2B protein of the Zika virus acts as a co-factor for NS3 protease and also involves in remodeling NS3 protease structure. Therefore, we investigated the overall dynamics of NS2B protein. We find surprising similarities between selected flavivirus NS2B model structures predicted from Alphafold2. Further, the simulated ZIKV NS2B protein structure shows a disordered cytosolic domain (residues 45-95) as a part of a full-length protein. Since only the cytosolic domain of NS2B is sufficient for the protease activity, we also investigated the conformational dynamics of only ZIKV NS2B cytosolic domain (residues 49-95) in the presence of TFE, SDS, Ficoll, and PEG using simulation and spectroscopy. The presence of TFE induces α-helix in NS2B cytosolic domain (residues 49-95). On the other hand, the presence of SDS, ficoll, and PEG does not induce secondary structural change. This dynamics study could have implications for some unknown folds of the NS2B protein.
Collapse
Affiliation(s)
- Ankur Kumar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, 175005, HP, India
| | - Prateek Kumar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, 175005, HP, India
| | - Pushpendra Mani Mishra
- School of Chemical Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, 175005, HP, India
| | - Rajanish Giri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, 175005, HP, India.
| |
Collapse
|
40
|
Sołtys K, Ożyhar A. Phase separation propensity of the intrinsically disordered AB region of human RXRβ. Cell Commun Signal 2023; 21:92. [PMID: 37143076 PMCID: PMC10157963 DOI: 10.1186/s12964-023-01113-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/25/2023] [Indexed: 05/06/2023] Open
Abstract
RXRβ is one of three subtypes of human retinoid X receptor (RXR), a transcription factor that belongs to the nuclear receptor superfamily. Its expression can be detected in almost all tissues. In contrast to other subtypes - RXRα and RXRγ - RXRβ has the longest and unique N-terminal sequence called the AB region, which harbors a ligand-independent activation function. In contrast to the functional properties of this sequence, the molecular properties of the AB region of human RXRβ (AB_hRXRB) have not yet been characterized. Here, we present a systematic biochemical and biophysical analysis of recombinant AB_hRXRB, along with in silico examinations, which demonstrate that AB_hRXRB exhibits properties of a coil-like intrinsically disordered region. AB_hRXRB possesses a flexible structure that is able to adopt a more ordered conformation under the influence of different environmental factors. Interestingly, AB_hRXRB promotes the formation of liquid-liquid phase separation (LLPS), a phenomenon previously observed for the AB region of another human subtype of RXR - RXRγ (AB_hRXRG). Although both AB regions seem to be similar in terms of their ability to induce phase separation, they clearly differ in the sensitivity to factors driving and regulating LLPS. This distinct LLPS response to environmental factors driven by the unique amino acid compositions of AB_hRXRB and AB_hRXRG can be significant for the specific modulation of the transcriptional activation of target genes by different subtypes of RXR. Video Abstract.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
41
|
Schweitzer-Stenner R. The relevance of short peptides for an understanding of unfolded and intrinsically disordered proteins. Phys Chem Chem Phys 2023; 25:11908-11933. [PMID: 37096579 DOI: 10.1039/d3cp00483j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Over the last thirty years the unfolded state of proteins has attracted considerable interest owing to the discovery of intrinsically disordered proteins which perform a plethora of functions despite resembling unfolded proteins to a significant extent. Research on both, unfolded and disordered proteins has revealed that their conformational properties can deviate locally from random coil behavior. In this context results from work on short oligopeptides suggest that individual amino acid residues sample the sterically allowed fraction of the Ramachandran plot to a different extent. Alanine has been found to exhibit a peculiarity in that it has a very high propensity for adopting polyproline II like conformations. This Perspectives article reviews work on short peptides aimed at exploring the Ramachandran distributions of amino acid residues in different contexts with experimental and computational means. Based on the thus provided overview the article discussed to what extent short peptides can serve as tools for exploring unfolded and disordered proteins and as benchmarks for the development of a molecular dynamics force field.
Collapse
|
42
|
Gingerich MA, Zhu J, Chai B, Vincent MP, Xie N, Sidarala V, Kotov NA, Sahu D, Klionsky DJ, Schnell S, Soleimanpour SA. Reciprocal regulatory balance within the CLEC16A-RNF41 mitophagy complex depends on an intrinsically disordered protein region. J Biol Chem 2023; 299:103057. [PMID: 36822331 PMCID: PMC10066562 DOI: 10.1016/j.jbc.2023.103057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/23/2023] Open
Abstract
CLEC16A is an E3 ubiquitin ligase that regulates mitochondrial quality control through mitophagy and is associated with over 20 human diseases. CLEC16A forms a complex with another E3 ligase, RNF41, and a ubiquitin-specific peptidase, USP8; however, regions that regulate CLEC16A activity or the assembly of the tripartite mitophagy regulatory complex are unknown. Here, we report that CLEC16A contains an internal intrinsically disordered protein region (IDPR) that is crucial for CLEC16A function and turnover. IDPRs lack a fixed secondary structure and possess emerging yet still equivocal roles in protein stability, interactions, and enzymatic activity. We find that the internal IDPR of CLEC16A is crucial for its degradation. CLEC16A turnover was promoted by RNF41, which binds and acts upon the internal IDPR to destabilize CLEC16A. Loss of this internal IDPR also destabilized the ubiquitin-dependent tripartite CLEC16A-RNF41-USP8 complex. Finally, the presence of an internal IDPR within CLEC16A was confirmed using NMR and CD spectroscopy. Together, our studies reveal that an IDPR is essential to control the reciprocal regulatory balance between CLEC16A and RNF41, which could be targeted to improve mitochondrial health in disease.
Collapse
Affiliation(s)
- Morgan A Gingerich
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jie Zhu
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Biaoxin Chai
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael P Vincent
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Nuli Xie
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Vaibhav Sidarala
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Debashish Sahu
- University of Michigan BioNMR Core Facility, Ann Arbor, Michigan, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Santiago Schnell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott A Soleimanpour
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Endocrinology and Metabolism Section, Medicine Service, VA Ann Arbor Health Care System, Ann Arbor, Michigan, USA.
| |
Collapse
|
43
|
Graham K, Chandrasekaran A, Wang L, Ladak A, Lafer EM, Rangamani P, Stachowiak JC. Liquid-like VASP condensates drive actin polymerization and dynamic bundling. NATURE PHYSICS 2023; 19:574-585. [PMID: 38405682 PMCID: PMC10887402 DOI: 10.1038/s41567-022-01924-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/15/2022] [Indexed: 02/27/2024]
Abstract
The organization of actin filaments into bundles is required for cellular processes such as motility, morphogenesis, and cell division. Filament bundling is controlled by a network of actin-binding proteins. Recently, several proteins that comprise this network have been found to undergo liquid-liquid phase separation. How might liquid-like condensates contribute to filament bundling? Here, we show that the processive actin polymerase and bundling protein, VASP, forms liquid-like droplets under physiological conditions. As actin polymerizes within VASP droplets, elongating filaments partition to the edges of the droplet to minimize filament curvature, forming an actin-rich ring within the droplet. The rigidity of this ring is balanced by the droplet's surface tension, as predicted by a continuum-scale computational model. However, as actin polymerizes and the ring grows thicker, its rigidity increases and eventually overcomes the surface tension of the droplet, deforming into a linear bundle. The resulting bundles contain long, parallel actin filaments that grow from their tips. Significantly, the fluid nature of the droplets is critical for bundling, as more solid droplets resist deformation, preventing filaments from rearranging to form bundles. Once the parallel arrangement of filaments is created within a VASP droplet, it propagates through the addition of new actin monomers to achieve a length that is many times greater than the initial droplet. This droplet-based mechanism of bundling may be relevant to the assembly of cellular architectures rich in parallel actin filaments, such as filopodia, stress fibers, and focal adhesions.
Collapse
Affiliation(s)
- Kristin Graham
- University of Texas at Austin, Department of Biomedical Engineering
| | | | - Liping Wang
- University of Texas Health Science Center at San Antonio, Department of Biochemistry and Structural Biology
| | - Aly Ladak
- University of Texas at Austin, Department of Biomedical Engineering
| | - Eileen M Lafer
- University of Texas Health Science Center at San Antonio, Department of Biochemistry and Structural Biology
| | - Padmini Rangamani
- University of California San Diego, Department of Mechanical and Aerospace Engineering
| | | |
Collapse
|
44
|
Romero-Pérez SP, Covarrubias AA, Campos F. A simple method to purify intrinsically disordered proteins by adjusting trichloroacetic acid concentration. Protein Expr Purif 2023; 202:106183. [PMID: 36182030 DOI: 10.1016/j.pep.2022.106183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Late embryogenic abundant proteins (LEA) are a group of proteins that accumulate during the desiccation phase of the seed and in response to water deficit in the plant. Most LEA proteins are highly hydrophilic and have physicochemical characteristics similar to those of intrinsically disordered proteins (IDPs). Although the function of LEA proteins is not fully understood, there is evidence indicating that these proteins have an important role in reducing the effects caused by water limitation. The analysis of the biochemical and physicochemical characteristics of LEA proteins is crucial to determine their function, for which it is necessary to obtain large amounts of pure protein. Within this current work, we have improved our previous TCA purification method used for basic recombinant LEA proteins to obtain acidic IDPs, the method reported here is fast and simple and is based on the enrichment of the protein of interest by boiling of the bacterial extract followed by a precipitation with different concentrations of TCA and salt. This protocol was applied to acidic and basic IDPs, represented by eight recombinant LEAs, resulting in milligram quantities of highly enriched proteins, which keep their in vitro functionality.
Collapse
Affiliation(s)
- Sofía P Romero-Pérez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos, 62210, México
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos, 62210, México
| | - Francisco Campos
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos, 62210, México.
| |
Collapse
|
45
|
AmyP53 Prevents the Formation of Neurotoxic β-Amyloid Oligomers through an Unprecedent Mechanism of Interaction with Gangliosides: Insights for Alzheimer's Disease Therapy. Int J Mol Sci 2023; 24:ijms24021760. [PMID: 36675271 PMCID: PMC9864847 DOI: 10.3390/ijms24021760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
A broad range of data identify Ca2+-permeable amyloid pores as the most neurotoxic species of Alzheimer's β-amyloid peptide (Aβ1-42). Following the failures of clinical trials targeting amyloid plaques by immunotherapy, a consensus is gradually emerging to change the paradigm, the strategy, and the target to cure Alzheimer's disease. In this context, the therapeutic peptide AmyP53 was designed to prevent amyloid pore formation driven by lipid raft microdomains of the plasma membrane. Here, we show that AmyP53 outcompetes Aβ1-42 binding to lipid rafts through a unique mode of interaction with gangliosides. Using a combination of cellular, physicochemical, and in silico approaches, we unraveled the mechanism of action of AmyP53 at the atomic, molecular, and cellular levels. Molecular dynamics simulations (MDS) indicated that AmyP53 rapidly adapts its conformation to gangliosides for an optimal interaction at the periphery of a lipid raft, where amyloid pore formation occurs. Hence, we define it as an adaptive peptide. Our results describe for the first time the kinetics of AmyP53 interaction with lipid raft gangliosides at the atomic level. Physicochemical studies and in silico simulations indicated that Aβ1-42 cannot interact with lipid rafts in presence of AmyP53. These data demonstrated that AmyP53 prevents amyloid pore formation and cellular Ca2+ entry by competitive inhibition of Aβ1-42 binding to lipid raft gangliosides. The molecular details of AmyP53 action revealed an unprecedent mechanism of interaction with lipid rafts, offering innovative therapeutic opportunities for lipid raft and ganglioside-associated diseases, including Alzheimer's, Parkinson's, and related proteinopathies.
Collapse
|
46
|
Apo-metallothionein-3 cooperatively forms tightly compact structures under physiological conditions. J Biol Chem 2023; 299:102899. [PMID: 36639030 PMCID: PMC9930159 DOI: 10.1016/j.jbc.2023.102899] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Metallothioneins (MTs) are essential mammalian metal chaperones. MT isoform 1 (MT1) is expressed in the kidneys and isoform 3 (MT3) is expressed in nervous tissue. For MTs, the solution-based NMR structure was determined for metal-bound MT1 and MT2, and only one X-ray diffraction structure on a crystallized mixed metal-bound MT2 has been reported. The structure of solution-based metalated MT3 is partially known using NMR methods; however, little is known about the fluxional de novo apo-MT3 because the structure cannot be determined by traditional methods. Here, we used cysteine modification coupled with electrospray ionization mass spectrometry, denaturing reactions with guanidinium chloride, stopped-flow methods measuring cysteine modification and metalation, and ion mobility mass spectrometry to reveal that apo-MT3 adopts a compact structure under physiological conditions and an extended structure under denaturing conditions, with no intermediates. Compared with apo-MT1, we found that this compact apo-MT3 binds to a cysteine modifier more cooperatively at equilibrium and 0.5 times the rate, providing quantitative evidence that many of the 20 cysteines of apo-MT3 are less accessible than those of apo-MT1. In addition, this compact apo-MT3 can be identified as a distinct population using ion mobility mass spectrometry. Furthermore, proposed structural models can be calculated using molecular dynamics methods. Collectively, these findings provide support for MT3 acting as a noninducible regulator of the nervous system compared with MT1 as an inducible scavenger of trace metals and toxic metals in the kidneys.
Collapse
|
47
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
48
|
Azzaz F, Yahi N, Chahinian H, Fantini J. The Epigenetic Dimension of Protein Structure Is an Intrinsic Weakness of the AlphaFold Program. Biomolecules 2022; 12:biom12101527. [PMID: 36291736 PMCID: PMC9599222 DOI: 10.3390/biom12101527] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 12/02/2022] Open
Abstract
One of the most important lessons we have learned from sequencing the human genome is that not all proteins have a 3D structure. In fact, a large part of the human proteome is made up of intrinsically disordered proteins (IDPs) which can adopt multiple structures, and therefore, multiple functions, depending on the ligands with which they interact. Under these conditions, one can wonder about the value of algorithms developed for predicting the structure of proteins, in particular AlphaFold, an AI which claims to have solved the problem of protein structure. In a recent study, we highlighted a particular weakness of AlphaFold for membrane proteins. Based on this observation, we have proposed a paradigm, referred to as “Epigenetic Dimension of Protein Structure” (EDPS), which takes into account all environmental parameters that control the structure of a protein beyond the amino acid sequence (hence “epigenetic”). In this new study, we compare the reliability of the AlphaFold and Robetta algorithms’ predictions for a new set of membrane proteins involved in human pathologies. We found that Robetta was generally more accurate than AlphaFold for ascribing a membrane-compatible topology. Raft lipids (e.g., gangliosides), which control the structural dynamics of membrane protein structure through chaperone effects, were identified as major actors of the EDPS paradigm. We conclude that the epigenetic dimension of a protein structure is an intrinsic weakness of AI-based protein structure prediction, especially AlphaFold, which warrants further development.
Collapse
|
49
|
Baidya L, Reddy G. pH Induced Switch in the Conformational Ensemble of Intrinsically Disordered Protein Prothymosin-α and Its Implications for Amyloid Fibril Formation. J Phys Chem Lett 2022; 13:9589-9598. [PMID: 36206480 DOI: 10.1021/acs.jpclett.2c01972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aggregation of intrinsically disordered proteins (IDPs) can lead to neurodegenerative diseases. Although there is experimental evidence that acidic pH promotes IDP monomer compaction leading to aggregation, the general mechanism is unclear. We studied the pH effect on the conformational ensemble of prothymosin-α (proTα), which is involved in multiple essential functions, and probed its role in aggregation using computer simulations. We show that compaction in the proTα dimension at low pH is due to the protein's collapse in the intermediate region (E41-D80) rich in glutamic acid residues, enhancing its β-sheet content. We observed by performing dimer simulations that the conformations with high β-sheet content could act as aggregation-prone (N*) states and nucleate the aggregation process. The simulations initiated using N* states form dimers within a microsecond time scale, whereas the non-N* states do not form dimers within this time scale. This study contributes to understanding the general principles of pH-induced IDP aggregation.
Collapse
Affiliation(s)
- Lipika Baidya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka560012, India
| |
Collapse
|
50
|
Membrane cholesterol modulates the dynamics and depth of penetration of κ-casein. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|