1
|
Xie W, Donat A, Jiang S, Baranowsky A, Keller J. The emerging role of tranexamic acid and its principal target, plasminogen, in skeletal health. Acta Pharm Sin B 2024; 14:2869-2884. [PMID: 39027253 PMCID: PMC11252461 DOI: 10.1016/j.apsb.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 07/20/2024] Open
Abstract
The worldwide burden of skeletal diseases such as osteoporosis, degenerative joint disease and impaired fracture healing is steadily increasing. Tranexamic acid (TXA), a plasminogen inhibitor and anti-fibrinolytic agent, is used to reduce bleeding with high effectiveness and safety in major surgical procedures. With its widespread clinical application, the effects of TXA beyond anti-fibrinolysis have been noticed and prompted renewed interest in its use. Some clinical trials have characterized the effects of TXA on reducing postoperative infection rates and regulating immune responses in patients undergoing surgery. Also, several animal studies suggest potential therapeutic effects of TXA on skeletal diseases such as osteoporosis and fracture healing. Although a direct effect of TXA on the differentiation and function of bone cells in vitro was shown, few mechanisms of action have been reported. Here, we summarize recent findings of the effects of TXA on skeletal diseases and discuss the underlying plasminogen-dependent and -independent mechanisms related to bone metabolism and the immune response. We furthermore discuss potential novel indications for TXA application as a treatment strategy for skeletal diseases.
Collapse
Affiliation(s)
- Weixin Xie
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
2
|
Amin U, Jiang R, Raza SM, Fan M, Liang L, Feng N, Li X, Yang Y, Guo F. Gut-joint axis: Oral Probiotic ameliorates Osteoarthritis. J Tradit Complement Med 2024; 14:26-39. [PMID: 38223812 PMCID: PMC10785157 DOI: 10.1016/j.jtcme.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 06/13/2023] [Indexed: 01/16/2024] Open
Abstract
Osteoarthritis (OA) etiology is multifactorial, and its prevalence is growing globally. The Gut microbiota shapes our immune system and impacts all aspects of health and disease. The idea of utilizing probiotics to treat different conditions prevails. Concerning musculoskeletal illness and health, current data lack the link to understand the interactions between the host and microbiome. We report that S. thermophilus, L. pentosus (as probiotics), and γ-aminobutyric acid (GABA) harbour against osteoarthritis in vivo and alleviate IL-1β induced changes in chondrocytes in vitro. We examined the increased GABA concentration in mice's serum and small intestine content followed by bacterial treatment. The treatment inhibited the catabolism of cartilage and rescued mice joints from degradation. Furthermore, the anabolic markers upregulated and decreased inflammatory markers in mice knee joints and chondrocytes. This study is the first to represent GABA's chondrogenic and chondroprotective effects on joints and human chondrocytes. This data provides a foundation for future studies to elucidate the role of GABA in regulating chondrocyte cell proliferation. These findings opened future horizons to understanding the gut-joint axis and OA treatment. Thus, probiotic/GABA therapy shields OA joints in mice and could at least serve as adjuvant therapy to treat osteoarthritis.
Collapse
Affiliation(s)
- Uzma Amin
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Microbiology, Government College University, Faisalabad, 38000, Punjab, Pakistan
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Shahid Masood Raza
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Microbiology, Government College University, Faisalabad, 38000, Punjab, Pakistan
| | - Mengtian Fan
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Liang
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Naibo Feng
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Xiaoli Li
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yuyou Yang
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Fengjin Guo
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Xi Y, Wang L, Qi J, Wei B, Han X, Lu Y, Hu S, He H, Han C, Zhu Y, Hu J, Liu H, Wang J, Li L. Comprehensive transcriptomic and metabolomic analysis of the effect of feed restriction on duck sternal development. Poult Sci 2023; 102:102961. [PMID: 37604023 PMCID: PMC10465956 DOI: 10.1016/j.psj.2023.102961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 08/23/2023] Open
Abstract
Skeletal characteristics are important to the growth and development of poultry. In feeding management, constant free feeding (FF) of poultry may lead to imbalance between bone development and weight gain. Feed restriction (FR), to a certain extent, is one way to solve this problem. However, the effect of feed restriction on poultry bone development needs further elucidation at the molecular level. Therefore, in the present study, we investigated the effects of different levels of feed restriction (60% FR, 70% FR, 80% FR, and FF) on the sternum development of ducks at 7 and 8 wk old. In the seventh wk, with increasing feed restriction, the values of traits including body weight, breast muscle weight, sternal weight, keel length, and calcified keel length decreased. However, in the eighth wk, the sternum weight and keel length of ducks treated with 60% FR were unexpectedly higher than those of FF individuals, indicative of catch-up growth. Then, we conducted RNA-seq and metabolomic analysis on sterna from 7- and 8-wk-old FF and 60% FR ducks. The results identified multiple differentially expressed genes (DEGs) associated with sternum development that were influenced by feed restriction. Among them, we found that the mRNA expression levels of the chondroitin sulfate synthase 3 (CHSY3) and annexin A2 (ANXA2) which are involved in glycosaminoglycan biosynthesis and bone mineralization, had smaller changes over time under FR treatment than under FF treatment, implying that the FR treatment to a certain extent prevented the premature calcification and prolonged the development time of duck sternum. In addition, the metabolomic and integrative analyses revealed that several antiaging-related metabolites and genes were associated with sternal catch-up growth. Pyrimidine metabolism was identified as the most significant pathway in which most differential metabolites (DMs) between FF and 60% FR were enriched. The results from integrative analysis revealed that the content and expression of 4-aminobutyric acid (GABA) and its related genes showed relatively higher activity in the 60% FR group than in the FF group. The present study identifies multiple biomarkers associated with duck sternum development that are influenced by feed restriction and suggests the potential mechanism of feed restriction-associated duck sternal catch-up growth.
Collapse
Affiliation(s)
- Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Luyao Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Bin Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Xu Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Yinjuan Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Yuanchun Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China.
| |
Collapse
|
4
|
Sibgatullina G, Al Ebrahim R, Gilizhdinova K, Tokmakova A, Malomouzh A. Differentiation of Myoblasts in Culture: Focus on Serum and Gamma-Aminobutyric Acid. Cells Tissues Organs 2023; 213:203-212. [PMID: 36871556 DOI: 10.1159/000529839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
There are many facts about the possible role of gamma-aminobutyric acid (GABA) in the development and differentiation of cells not only in nervous but also in muscle tissue. In the present study, a primary culture of rat skeletal muscle myocytes was used to evaluate the correlation between the content of GABA in the cytoplasm and the processes of myocyte division and their fusion into myotubes. The effect of exogenous GABA on the processes of culture development was also estimated. Since the classical protocol for working with myocyte cultures involves the use of fetal bovine serum (FBS) to stimulate cell division (growth medium) and horse serum (HS) to activate the differentiation process (differentiation medium), the studies were carried out both in the medium with FBS and with HS. It was found that cells grown in medium supplemented with FBS contain more GABA compared to cultures growing in medium supplemented with HS. Addition of exogeneous GABA leads to a decrease in the number of myotubes formed in both media, while the addition of an amino acid to the medium supplemented with HS had a more pronounced inhibitory effect. Thus, we have obtained data indicating that GABA is able to participate in the early stages of skeletal muscle myogenesis by modulating the fusion process.
Collapse
Affiliation(s)
- Guzel Sibgatullina
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Rahaf Al Ebrahim
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Karina Gilizhdinova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Anna Tokmakova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Artem Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| |
Collapse
|
5
|
Gamma-Aminobutyric Acid (GABA) Promotes Growth in Zebrafish Larvae by Inducing IGF-1 Expression via GABA A and GABA B Receptors. Int J Mol Sci 2021; 22:ijms222011254. [PMID: 34681914 PMCID: PMC8537617 DOI: 10.3390/ijms222011254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 01/08/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) primarily increases the release of gamma-aminobutyric acid (GABA) in neurons; moreover, it is responsible for the promotion of longitudinal growth in children and adolescents. Therefore, in this study, we investigated whether exogenous GABA supplementation activates IGF-mediated growth performance. Zebrafish larvae treated with GABA at three days post fertilization (dpf) showed a significant increase in the total body length from 6 to 12 dpf through upregulation of growth-stimulating genes, including IGF-1, growth hormone-1 (GH-1), growth hormone receptor-1 (GHR-1), and cholecystokinin A (CCKA). In particular, at 9 dpf, GABA increased total body length from 3.60 ± 0.02 to 3.79 ± 0.03, 3.89 ± 0.02, and 3.92 ± 0.04 mm at concentrations of 6.25, 12.5, and 25 mM, and the effect of GABA at 25 mM was comparable to 4 mM β-glycerophosphate (GP)-treated larvae (3.98 ± 0.02 mm). Additionally, the highest concentration of GABA (50 mM) -induced death in 50% zebrafish larvae at 12 dpf. GABA also enhanced IGF-1 expression and secretion in preosteoblast MC3T3-E1 cells, concomitant with high levels of the IGF-1 receptor gene (IGF-1R). In zebrafish larvae, the GABA-induced growth rate was remarkably decreased in the presence of an IGF-1R inhibitor, picropodophyllin (PPP), which indicates that GABA-induced IGF-1 enhances growth rate via IGF-1R. Furthermore, we investigated the effect of GABA receptors on growth performance along with IGF-1 activation. Inhibitors of GABAA and GABAB receptors, namely bicuculline and CGP 46381, respectively, considerably inhibited GABA-induced growth rate in zebrafish larvae accompanied by a marked decrease in the expression of growth-stimulating genes, including IGF-1, GH-1, GHR-1, and CCKA, but not with an inhibitor of GABAC receptor, TPMPA. Additionally, IGF-1 and IGF-1R expression was impaired in bicuculline and CGP 46381-treated MC3T3-E1 cells, but not in the cells treated with TPMPA. Furthermore, treatment with bicuculline and CGP 46381 significantly downregulated GABA-induced IGF-1 release in MC3T3-E1 cells. These data indicate that GABA stimulates IGF-1 release via GABAA and GABAB receptors and leads to growth promotion performance via IGF-1R.
Collapse
|
6
|
Matuszewska A, Nowak B, Nikodem A, Merwid-Ląd A, Wiatrak B, Tomkalski T, Jędrzejuk D, Szeląg E, Sozański T, Danielewski M, Jawień P, Ceremuga I, Szandruk-Bender M, Bolanowski M, Filipiak J, Szeląg A. Antiepileptic Stiripentol May Influence Bones. Int J Mol Sci 2021; 22:7162. [PMID: 34281215 PMCID: PMC8269345 DOI: 10.3390/ijms22137162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Bone structure abnormalities are increasingly observed in patients chronically treated with antiepileptic drugs (AEDs). The majority of the available data concern older conventional AEDs, while the amount of information regarding newer AEDs, including stiripentol, is limited. The aim of the study was to assess the effect of stiripentol on bones. For 24 weeks, male Wistar rats, received 0.9% sodium chloride (control group) or stiripentol (200 mg/kg/day) (STP group). In the 16th week of the study, we detected lower serum PINP levels in the STP group compared to the control group. In the 24th week, a statistically significant lower 1,25-dihydroxyvitamin D3 level, higher inorganic phosphate level and higher neutrophil gelatinase-associated lipocalin (NGAL) levels in serum were found in the STP group compared to the control. Micro X-ray computed tomography of the tibias demonstrated lower bone volume fraction, lower trabecular thickness, higher trabecular pattern factor and a higher structure model index in the stiripentol group. Considering the results of this experiment on rats which suggests that long-term administration of stiripentol may impair the cancellous bone microarchitecture, further prospective human studies seem to be justified. However, monitoring plasma vitamin D, calcium, inorganic phosphate and kidney function in patients on long-term stiripentol therapy may be suggested.
Collapse
Affiliation(s)
- Agnieszka Matuszewska
- Department of Pharmacology, Wroclaw Medical University, ul. Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.M.-L.); (B.W.); (T.S.); (M.D.); (P.J.); (M.S.-B.); (A.S.)
| | - Beata Nowak
- Department of Pharmacology, Wroclaw Medical University, ul. Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.M.-L.); (B.W.); (T.S.); (M.D.); (P.J.); (M.S.-B.); (A.S.)
| | - Anna Nikodem
- Department of Mechanics, Materials and Biomedical Engineering, Wroclaw University of Science and Technology, ul. Ignacego Łukasiewicza 7/9, 50-371 Wrocław, Poland; (A.N.); (J.F.)
| | - Anna Merwid-Ląd
- Department of Pharmacology, Wroclaw Medical University, ul. Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.M.-L.); (B.W.); (T.S.); (M.D.); (P.J.); (M.S.-B.); (A.S.)
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, ul. Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.M.-L.); (B.W.); (T.S.); (M.D.); (P.J.); (M.S.-B.); (A.S.)
| | - Tomasz Tomkalski
- Department of Endocrinology, Diabetology and Internal Medicine, Tadeusz Marciniak Lower Silesia Specialist Hospital—Centre for Medical Emergency, ul. Gen. Augusta Emila Fieldorfa 2, 54-049 Wrocław, Poland;
| | - Diana Jędrzejuk
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, wyb. Ludwika Pasteura 4, 50-367 Wrocław, Poland; (D.J.); (M.B.)
| | - Ewa Szeląg
- Department of Maxillofacial Orthopedics and Orthodontics Institute, Wroclaw University of Science and Technology, ul. Krakowska 26, 50-425 Wrocław, Poland;
| | - Tomasz Sozański
- Department of Pharmacology, Wroclaw Medical University, ul. Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.M.-L.); (B.W.); (T.S.); (M.D.); (P.J.); (M.S.-B.); (A.S.)
| | - Maciej Danielewski
- Department of Pharmacology, Wroclaw Medical University, ul. Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.M.-L.); (B.W.); (T.S.); (M.D.); (P.J.); (M.S.-B.); (A.S.)
| | - Paulina Jawień
- Department of Pharmacology, Wroclaw Medical University, ul. Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.M.-L.); (B.W.); (T.S.); (M.D.); (P.J.); (M.S.-B.); (A.S.)
| | - Ireneusz Ceremuga
- Department of Medical Biochemistry, Wroclaw Medical University, ul. Tytusa Chałubińskiego 10, 50-368 Wrocław, Poland;
| | - Marta Szandruk-Bender
- Department of Pharmacology, Wroclaw Medical University, ul. Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.M.-L.); (B.W.); (T.S.); (M.D.); (P.J.); (M.S.-B.); (A.S.)
| | - Marek Bolanowski
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, wyb. Ludwika Pasteura 4, 50-367 Wrocław, Poland; (D.J.); (M.B.)
| | - Jarosław Filipiak
- Department of Mechanics, Materials and Biomedical Engineering, Wroclaw University of Science and Technology, ul. Ignacego Łukasiewicza 7/9, 50-371 Wrocław, Poland; (A.N.); (J.F.)
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, ul. Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.M.-L.); (B.W.); (T.S.); (M.D.); (P.J.); (M.S.-B.); (A.S.)
| |
Collapse
|
7
|
Mills DJ. The Aging GABAergic System and Its Nutritional Support. J Nutr Metab 2021; 2021:6655064. [PMID: 33986956 PMCID: PMC8093074 DOI: 10.1155/2021/6655064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 01/08/2023] Open
Abstract
Aging is associated with a decline in hormones and an associated decline in GABAergic function and calcium and ion current dysregulation. Neurosteroid hormones act as direct calcium channel blockers, or they can act indirectly on calcium channels through their interaction with GABA receptors. The calcium channel dysfunction associated with hormone loss further leads to an excitatory cell state, which can ultimately lead to cell death. The calcium theory of aging posits that cellular mechanisms, which maintain the homeostasis of cytosol Ca2+ concentration, play a key role in brain aging and that sustained changes in Ca2+ homeostasis provide the final common pathway for age-associated brain changes. There is a link between hormone loss and calcium dysregulation. Loss of calcium regulation associated with aging can lead to an excitatory cell state, primarily in the mitochondria and nerve cells, which can ultimately lead to cell death if not kept in check. A decline in GABAergic function can also be specifically tied to declines in progesterone, allopregnanolone, and DHEA levels associated with aging. This decline in GABAergic function associated with hormone loss ultimately affects GABAergic inhibition or excitement and calcium regulation throughout the body. In addition, declines in GABAergic function can also be tied to vitamin status and to toxic chemicals in the food supply. The decline in GABAergic function associated with aging has an effect on just about every body organ system. Nutritional support of the GABAergic system with supportive foods, vitamins, and GABA or similar GABA receptor ligands may address some of the GABAergic dysfunction associated with aging.
Collapse
Affiliation(s)
- Demetra J. Mills
- Patent Trial and Appeal Board Biotechnology, 5232 Capon Hill Pl, Burke, VA 22015, USA
| |
Collapse
|
8
|
Mouton JC, Duckworth RA. Maternally derived hormones, neurosteroids and the development of behaviour. Proc Biol Sci 2021; 288:20202467. [PMID: 33499795 DOI: 10.1098/rspb.2020.2467] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In a wide range of taxa, there is evidence that mothers adaptively shape the development of offspring behaviour by exposing them to steroids. These maternal effects have major implications for fitness because, by shaping early development, they can permanently alter how offspring interact with their environment. However, theory on parent-offspring conflict and recent physiological studies showing that embryos rapidly metabolize maternal steroids have placed doubt on the adaptive significance of these hormone-mediated maternal effects. Reconciling these disparate perspectives requires a mechanistic understanding of the pathways by which maternal steroids can influence neural development. Here, we highlight recent advances in developmental neurobiology and psychiatric pharmacology to show that maternal steroid metabolites can have direct neuro-modulatory effects potentially shaping the development of neural circuitry underlying ecologically relevant behavioural traits. The recognition that maternal steroids can act through a neurosteroid pathway has critical implications for our understanding of the ecology and evolution of steroid-based maternal effects. Overall, compared to the classic view, a neurosteroid mechanism may reduce the evolutionary lability of hormone-mediated maternal effects owing to increased pleiotropic constraints and frequently influence long-term behavioural phenotypes in offspring.
Collapse
Affiliation(s)
- James C Mouton
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.,Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, MRC 5503, Washington, DC 20013-7012, USA
| | - Renée A Duckworth
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
9
|
Xing A, Li X, Jiang C, Chen Y, Wu S, Zhang J, An L. As a Histone Deacetylase Inhibitor, γ-Aminobutyric Acid Upregulates GluR2 Expression: An In Vitro and In Vivo Study. Mol Nutr Food Res 2019; 63:e1900001. [PMID: 31090246 DOI: 10.1002/mnfr.201900001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/20/2019] [Indexed: 12/13/2022]
Abstract
SCOPE γ-Aminobutyric acid (GABA) possesses extensive physiological functions and can be directly obtained from foods. GABA-enriched functional foods have been developed and the commercial demands for GABA are increasing. GABA is widely recognized as a central nervous system inhibitory neurotransmitter and plays an important role in some diseases by binding to its receptors. However, some of the functions of GABA are not explained by neurotransmission or GABA receptor pathways. Therefore, this study investigates whether GABA has the potential to inhibit histone deacetylase (HDAC). METHODS AND RESULTS It is found that GABA inhibits HDAC1/2/3 expression and upregulates histone acetylation levels (Ace-H3K9/Ace-H4K12) in SH-SY5Y cells (which express GABA receptors), 3T3-L1 cells (which do not express GABA receptors), and the cerebral cortex in mice. Glutamate receptor 2 (GluR2) is a subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor and is implicated in the pathogenesis of some neurological diseases. It is also found that GABA increases GluR2 expression by inhibiting HDAC1/2 but not HDAC3. CONCLUSION A novel role for GABA is demonstrated in which it acts as an HDAC inhibitor. The present study expands the horizons for exploring the non-neurotransmitter functions of GABA.
Collapse
Affiliation(s)
- Aiping Xing
- The School of Public Health, China Medical University, Shenyang, China
| | - Xinhui Li
- The School of Public Health, China Medical University, Shenyang, China
| | - Congmin Jiang
- The School of Public Health, China Medical University, Shenyang, China
| | - Yanqiu Chen
- The School of Public Health, China Medical University, Shenyang, China
| | - Sining Wu
- The School of Public Health, China Medical University, Shenyang, China
| | - Jingzhu Zhang
- The School of Public Health, China Medical University, Shenyang, China
| | - Li An
- The School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Chen YC, Wu KC, Huang BM, So EC, Wang YK. Midazolam inhibits chondrogenesis via peripheral benzodiazepine receptor in human mesenchymal stem cells. J Cell Mol Med 2018. [PMID: 29516686 PMCID: PMC5908119 DOI: 10.1111/jcmm.13584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Midazolam, a benzodiazepine derivative, is widely used for sedation and surgery. However, previous studies have demonstrated that Midazolam is associated with increased risks of congenital malformations, such as dwarfism, when used during early pregnancy. Recent studies have also demonstrated that Midazolam suppresses osteogenesis of mesenchymal stem cells (MSCs). Given that hypertrophic chondrocytes can differentiate into osteoblast and osteocytes and contribute to endochondral bone formation, the effect of Midazolam on chondrogenesis remains unclear. In this study, we applied a human MSC line, the KP cell, to serve as an in vitro model to study the effect of Midazolam on chondrogenesis. We first successfully established an in vitro chondrogenic model in a micromass culture or a 2D high‐density culture performed with TGF‐β‐driven chondrogenic induction medium. Treatment of the Midazolam dose‐dependently inhibited chondrogenesis, examined using Alcian blue‐stained glycosaminoglycans and the expression of chondrogenic markers, such as SOX9 and type II collagen. Inhibition of Midazolam by peripheral benzodiazepine receptor (PBR) antagonist PK11195 or small interfering RNA rescued the inhibitory effects of Midazolam on chondrogenesis. In addition, Midazolam suppressed transforming growth factor‐β‐induced Smad3 phosphorylation, and this inhibitory effect could be rescued using PBR antagonist PK11195. This study provides a possible explanation for Midazolam‐induced congenital malformations of the musculoskeletal system through PBR.
Collapse
Affiliation(s)
- Yung-Ching Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - King-Chuen Wu
- Department of Nursing, Chang Gung University of Science and Technology, Chia-Yi County, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi County, Taiwan
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Edmund Cheung So
- Department of Anesthesiology, An-Nan Hospital, China Medical University, Tainan, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
11
|
Kanbara K, Otsuki Y, Watanabe M, Yokoe S, Mori Y, Asahi M, Neo M. GABA B receptor regulates proliferation in the high-grade chondrosarcoma cell line OUMS-27 via apoptotic pathways. BMC Cancer 2018. [PMID: 29514603 PMCID: PMC5842535 DOI: 10.1186/s12885-018-4149-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND High-grade chondrosarcoma, which has a high incidence of local recurrence and pulmonary metastasis despite surgical resection, is associated with poor prognosis. Therefore, new and effective adjuvant therapies are urgently required for this disease. Gamma-aminobutyric acid (GABA), which acts as a neurotrophic factor during nervous system development, is related to the proliferation and migration of certain cancer cells. The GABAergic system, which is composed of GABA, the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD), and GABA receptors, has an important function in nerve growth and development of neural crest. Therefore, the GABAergic system may play important functional roles in the proliferation of chondrosarcoma cells, which are derived from neural crest cells. We examined the anti-tumor effects of the GABAergic system on a chondrosarcoma cell line. METHODS We evaluated the underlying mechanisms of the anti-tumor effects of the GABAergic system, such as the involvement of different signaling pathways, apoptosis, and cell cycle arrest, in the high-grade chondrosarcoma cell line OUMS-27. In addition, we performed whole-cell patch-clamp recordings for Ca2+ currents and evaluated the changes in intracellular Ca2+ concentration via Ca2+ channels, which are related to the GABAB receptor in high-grade chondrosarcoma cells. RESULTS The GABAB receptor antagonist CGP had anti-tumor effects on high-grade chondrosarcoma cells in a dose-dependent manner. The activities of caspase 3 and caspase 9 were significantly elevated in CGP-treated cells compared to in untreated cells. The activity of caspase 8 did not differ significantly between untreated cells and CGP-treated cells. However, caspase 8 tended to be up-regulated in CGP-treated cells. The GABAB receptor antagonist exhibited anti-tumor effects at the G1/S cell cycle checkpoint and induced apoptosis via dual inhibition of the PI3/Akt/mTOR and MAPK signaling pathways. Furthermore, the changes in intracellular Ca2+ via GABAB receptor-related Ca2+ channels inhibited the proliferation of high-grade chondrosarcoma cells by inducing and modulating apoptotic pathways. CONCLUSIONS The GABAB receptor antagonist may improve the prognosis of high-grade chondrosarcoma by exerting anti-tumor effects via different signaling pathways, apoptosis, cell cycle arrest, and Ca2+ channels in high-grade chondrosarcoma cells.
Collapse
Affiliation(s)
- Kiyoto Kanbara
- Department of Orthopedics, Osaka Medical College Takatsuki, Daigaku-machi 2-7, Takatsuki, Osaka, 569-8686, Japan.
| | - Yoshinori Otsuki
- President of Osaka Medical College, Daigaku-machi, Takatsuki, Osaka, Japan
| | - Masahito Watanabe
- Department of Rehabilitation Sciences, Faculty of Allied Health Sciences, Kansai University of Welfare Sciences, Asahigaoka, Kashihara, Osaka, Japan
| | - Syunichi Yokoe
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Daigaku-machi, Takatsuki, Osaka, Japan
| | - Yoshiaki Mori
- Department of Rehabilitation Sciences, Faculty of Allied Health Sciences, Kansai University of Welfare Sciences, Asahigaoka, Kashihara, Osaka, Japan
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Daigaku-machi, Takatsuki, Osaka, Japan
| | - Masashi Neo
- Department of Orthopedics, Osaka Medical College Takatsuki, Daigaku-machi 2-7, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
12
|
MA JING, ZHANG YAN, WANG JUN, ZHAO TIANYU, JI PING, SONG JINLIN, ZHANG HONGMEI, LUO WENPING. Proliferative effects of gamma-amino butyric acid on oral squamous cell carcinoma cells are associated with mitogen-activated protein kinase signaling pathways. Int J Mol Med 2016; 38:305-11. [DOI: 10.3892/ijmm.2016.2597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/22/2016] [Indexed: 11/06/2022] Open
|
13
|
Stakisaitis D, Mozuraite R, Juodziukyniene N, Didziapetriene J, Uleckiene S, Matusevicius P, Valanciute A. Sodium Valproate Enhances the Urethane-Induced Lung Adenomas and Suppresses Malignization of Adenomas in Ovariectomized Female Mice. Int J Endocrinol 2015; 2015:218219. [PMID: 26491438 PMCID: PMC4600510 DOI: 10.1155/2015/218219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/12/2015] [Accepted: 05/20/2015] [Indexed: 12/11/2022] Open
Abstract
In the present study, the possible effect of sodium valproate (NaVP) on urethane-induced lung tumors in female mice has been evaluated. BALB/c mice (n = 60; 4-6 weeks old, females) were used in the following groups: (1) urethane-treated; (2) urethane-NaVP-treated; (3) only NaVP-treated; (4) control. In the same groups, ovariectomized female mice (n = 60) were investigated. Urethane was given intraperitoneally, with a total dose of 50 mg/mouse. In NaVP-treated mice groups, 0.4% aqueous solution of NaVP was offered to mice ad libitum. The duration of the experiment was 6 months. The number of tumors per mouse in ovariectomized mice and in those treated with urethane and NaVP was significantly higher than in mice treated with urethane only (8.29 ± 0.58 versus 6.0 ± 0.63, p < 0.02). No significant difference in the number of tumors per mouse was revealed while comparing the nonovariectomized urethane- and urethane-NaVP-treated groups (p = 0.13). A significant decrease of adenocarcinoma number in ovariectomized mice treated with a urethane-NaVP as compared with ovariectomized mice treated with urethane only was found (p = 0.031). NaVP together with low estrogen may have a protective effect on the malignization of adenomas in ovariectomized mice.
Collapse
Affiliation(s)
- Donatas Stakisaitis
- Laboratory of Carcinogenesis and Tumor Pathophysiology, National Cancer Institute, Vilnius University, Santariskiu 1, LT-08660 Vilnius, Lithuania
| | - Raminta Mozuraite
- Department of Histology and Embryology, Lithuanian University of Health Sciences, Mickeviciaus 9, LT-44307 Kaunas, Lithuania
| | - Nomeda Juodziukyniene
- Department of Histology and Embryology, Lithuanian University of Health Sciences, Mickeviciaus 9, LT-44307 Kaunas, Lithuania
- Veterinary Academy, Lithuanian University of Health Sciences, Tilzes 18, LT-47181 Kaunas, Lithuania
| | - Janina Didziapetriene
- Laboratory of Carcinogenesis and Tumor Pathophysiology, National Cancer Institute, Vilnius University, Santariskiu 1, LT-08660 Vilnius, Lithuania
| | - Saule Uleckiene
- Laboratory of Carcinogenesis and Tumor Pathophysiology, National Cancer Institute, Vilnius University, Santariskiu 1, LT-08660 Vilnius, Lithuania
| | - Paulius Matusevicius
- Veterinary Academy, Lithuanian University of Health Sciences, Tilzes 18, LT-47181 Kaunas, Lithuania
| | - Angelija Valanciute
- Department of Histology and Embryology, Lithuanian University of Health Sciences, Mickeviciaus 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
14
|
Gómez R, Conde J, Scotece M, López V, Lago F, Gómez Reino JJ, Gualillo O. Endogenous cannabinoid anandamide impairs cell growth and induces apoptosis in chondrocytes. J Orthop Res 2014; 32:1137-46. [PMID: 24902823 DOI: 10.1002/jor.22660] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/14/2014] [Indexed: 02/04/2023]
Abstract
Endocannabinoids has been described to be involved in articular degenerative disease by modulating nociception and immune system. However, the role of the endocannabinoid anandamide on chondrocyte cell viability is still unclear. Therefore, we decided to study anandamide's effects on chondrocytes viability and to evaluate its interactions with the catabolic factor TNF (tumor necrosis factor). Chondrocyte vitality was evaluated by MTT assay. We investigated LDH release, chromatin condensation, cleavage of focal adhesion kinase (FAK), and caspases-3, 8, and 9 activation. c-MYC mRNA levels were determined by RT-PCR. We studied by Western blot the activation patterns of AKT, AMPK, ERK, p38, and JNK kinases. Finally, we evaluate the effect of anandamide in TNF-induced caspase-3 cleavage. Anandamide decreased chondrocyte vitality independently of its receptors. It induced AMPK activation without LDH release. Anandamide induced chromatin condensation, activation of caspase-3, 8, and 9, and FAK cleavage. Surprisingly, despite anandamide inhibited cell proliferation, it increased c-MYC expression. Moreover anandamide inhibited AKT activation, whilst it induced a sustained activation of ERK, JNK, and p38. Finally, anandamide synergized with TNF-α in the cleavage of caspase-3. In conclusion, our findings suggest that anandamide, alone or in combination with TNF-α, may be a potential destructive agent in cartilage.
Collapse
Affiliation(s)
- Rodolfo Gómez
- SERGAS-IDIS, Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, The NEIRID (NeuroEndocrine Interactions in Rheumatology and Inflammatory Diseases) Laboratory, Santiago University Clinical Hospital, Research Laboratory 9, Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Sathiya S, Ganesh M, Kalaivani P, Ranju V, Janani S, Pramila B, Saravana Babu C. Prenatal exposure to lamotrigine: effects on postnatal development and behaviour in rat offspring. ISRN NEUROSCIENCE 2014; 2014:163459. [PMID: 24967313 PMCID: PMC4045557 DOI: 10.1155/2014/163459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 02/19/2014] [Indexed: 11/17/2022]
Abstract
Use of antiepileptic drugs (AEDs) in pregnancy warrants various side effects and also deleterious effects on fetal development. The present study was carried out to assess the effects of prenatal exposure to lamotrigine (LTG) on postnatal development and behavioural alterations of offspring. Adult male and female Sprague Dawley rats weighing 150-180 g b. wt. were allowed to copulate and pregnancy was confirmed by vaginal cytology. Pregnant rats were treated with LTG (11.5, 23, and 46 mg/kg, p.o) from gestational day 3 (GND 3) and this treatment continued till postnatal day 11 (PND 11). Offspring were separated from their dam on day 21 following parturition. LTG, at 46 mg/kg, p.o, produced severe clinical signs of toxicity leading to death of dam between GND 15 and 17. LTG, at 11.5 and 23 mg/kg, p.o, showed significant alterations in offspring's incisors eruption and vaginal opening when compared to age matched controls. LTG (23 mg/kg, p.o) exposed female offspring expressed hyperactive behaviour and decreased GABA-A receptor expression when compared to control rats. These results reveal that prenatal exposure to LTG may impart differential postnatal behavioural alterations between male and female rats which paves way for further investigations.
Collapse
Affiliation(s)
- Sekar Sathiya
- Centre for Toxicology and Developmental Research (CEFT), Sri Ramachandra University, Chennai, Tamil Nadu 600116, India
| | - Murugan Ganesh
- Department of Biochemistry, Sri Ramachandra University, Chennai, Tamil Nadu 600116, India
| | - Periyathambi Kalaivani
- Centre for Toxicology and Developmental Research (CEFT), Sri Ramachandra University, Chennai, Tamil Nadu 600116, India
| | - Vijayan Ranju
- Centre for Toxicology and Developmental Research (CEFT), Sri Ramachandra University, Chennai, Tamil Nadu 600116, India
| | - Srinivasan Janani
- School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology and Research Academy (SASTRA University), Thanjavur, Tamil Nadu 613402, India
| | - Bakthavachalam Pramila
- Centre for Toxicology and Developmental Research (CEFT), Sri Ramachandra University, Chennai, Tamil Nadu 600116, India
| | - Chidambaram Saravana Babu
- Centre for Toxicology and Developmental Research (CEFT), Sri Ramachandra University, Chennai, Tamil Nadu 600116, India
| |
Collapse
|
16
|
Zhang X, Zhang R, Zheng Y, Shen J, Xiao D, Li J, Shi X, Huang L, Tang H, Liu J, He J, Zhang H. Expression of gamma-aminobutyric acid receptors on neoplastic growth and prediction of prognosis in non-small cell lung cancer. J Transl Med 2013; 11:102. [PMID: 23617850 PMCID: PMC3644491 DOI: 10.1186/1479-5876-11-102] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/16/2013] [Indexed: 11/23/2022] Open
Abstract
Background Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the adult mammalian brain, but exerts physiologic effects other than that on neurotransmitter in non-neuronal peripheral tissues and organs. GABA may affect cancer growth through activation GABA receptors. We investigated the gene expression of GABA receptors in tissue of non-small cell lung cancers (NSCLC) and non-cancerous tissues, and found that the gene expression of GABA receptor phenotypes was correlated with tumorigenesis and clinical prognosis. Methods Sixty-one snap-frozen human samples of NSCLC tissues and paired non-cancerous tissues (5cm away from tumor) were analyzed. Gene expression of GABA receptors was detected by Real-time quantitative PCR (RT-qPCR). Survival times in relation to the expression of GABA receptor phenotypes were analyzed. Human NSCLC cell lines H1299, A549, H520, H460 and human bronchial epithelial cell line BEAS-2B were used to determine the phenotypes of GABA inhibitory effects on cancer cell growth. The effects of exogenous administration of GABA on H1299 cell growth were examined. Results The gene expressions were significantly higher in NSCLC tissues than in the paired non-cancerous tissues for GABAA receptor subunit α3 (GABRA3, P = 0.030); for GABAA receptor subunit epsilon (GABRE, P = 0.036); and GABAB receptor subunit 2 (GABBR2, P = 0.005). Kaplan-Meier curves showed that patients with high expression of GABBR2 gene and low expression of GABRA3 gene had a better prognosis (P < 0.05). The administration of GABA resulted in suppressed proliferation of NSCLC cell lines in a dose- and time-dependent manner. The use of the GABA receptor antagonist CGP35348 could reverse the inhibitory effect. Conclusions The pattern of GABA receptor gene phenotype expression may be involved in the regulation of tumorigenesis. A high expression of GABBR2 with a low expression of GABRA3 may predict a better outcome. The treatment with GABA attenuates cancer cell growth in vitro. The expression of GABA receptor may be not only promising genetic therapeutic targets but may also serve as valuable prognostic markers for NSCLC.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou 510080 Guangdong Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Luo W, Liu Z, Tan D, Zhang Q, Peng H, Wang Y, Tan Y. Gamma-amino butyric acid and the A-type receptor suppress decidualization of mouse uterine stromal cells by down-regulating cyclin D3. Mol Reprod Dev 2012; 80:59-69. [PMID: 23150429 DOI: 10.1002/mrd.22137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 11/07/2012] [Indexed: 12/16/2022]
Abstract
Uterine decidualization, characterized by stromal cell proliferation and differentiation into polyploid decidual cells, is critical to the establishment of pregnancy in mice, although the mechanism underlying this process remains poorly understood. This study is the first to investigate the expression of gamma-amino butyric acid (GABA) and the GABA A-type receptor π subunit (GABPR) in the early-pregnancy mouse uterus and their roles in decidualization. The expression of GABRP was detected from Day 4 to 8 of pregnancy. The effects of GABA and GABA A-type receptor on cell proliferation and apoptosis were investigated using the Cell Titer 96® AQueous One Solution Cell Proliferation Assay and flow cytometry. The levels of cyclin D3 protein were measured in cultured stromal cells artificially induced to undergo decidualization, and treated with GABA and a GABA A-type receptor agonist or antagonist, respectively, at the same time. mRNA expression of gabrp in implantation sites was lower than that in inter-implanted sites. GABA and GABRP protein were localized in the luminal and glandular epithelium, stromal cells, and decidual cells. In vitro, GABPR protein level was decreased in cultured stromal cells during the decidualization process. The addition of GABA and the GABA A-type receptor agonist Muscimol inhibited stromal cell proliferation, promoted apoptosis, and arrested cells in S-phase, followed by decreased expression of cyclin D3. These results show that in mice, GABA was actively involved in inhibiting stromal cell proliferation and suppresses decidualization progress through GABA A-type receptors by down-regulating cyclin D3 level.
Collapse
Affiliation(s)
- Wenping Luo
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Li YH, Liu Y, Li YD, Liu YH, Li F, Ju Q, Xie PL, Li GC. GABA stimulates human hepatocellular carcinoma growth through overexpressed GABAA receptor theta subunit. World J Gastroenterol 2012; 18:2704-11. [PMID: 22690081 PMCID: PMC3370009 DOI: 10.3748/wjg.v18.i21.2704] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/02/2012] [Accepted: 03/09/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the function of gamma-aminobutyric acid (GABA) and gamma-aminobutyric acid A receptor θ subunit (GABRQ) in hepatocellular carcinoma (HCC).
METHODS: Semiquantitative polymerase chain reaction was used for detecting the expression of GABRQ receptor among HCC cell line HepG2, normal liver cell line L-02, non-malignant Chang’s liver cells, 8 samples of HCC tissues and paired non-cancerous tissues. HepG2 cells were treated with GABA at serial concentrations (0, 1, 10, 20, 40 and 60 μmol/L), and their proliferating abilities were analyzed with the methyl thiazolyl tetrazolium assay, cell cycle analysis and tumor implanted in nude mice. Small interfering RNA was used for knocking down the endogenous GABRQ in HepG2. Proliferating abilities of these cells treated with or without GABA were analyzed.
RESULTS: We identified the overexpression of GABRQ in HCC cell lines and half of the tested HCC tissues. Knockdown of endogenous GABRQ expression in HepG2 attenuated HCC cell growth, suggesting its role in HCC cell viability. We studied the effect of GABA in the proliferation of GABRQ-positive cell lines in vitro and in vivo, and found that GABA increased HCC growth in a dose-dependent manner. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRQ-expressing HepG2 cells, but not GABRQ-knockdown HepG2 cells, which means that GABA stimulates HepG2 cell growth through GABRQ.
CONCLUSION: GABRQ play important roles in HCC development and progression and could be a promising molecular target for the development of new diagnostic and therapeutic strategies of HCC.
Collapse
|
19
|
Lee SH. Platform Technologies for Research on the G Protein Coupled Receptor: Applications to Drug Discovery Research. Biomol Ther (Seoul) 2011. [DOI: 10.4062/biomolther.2011.19.1.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
20
|
Zhou Z, Sun H, Li X, Li Y, Zhao S, Zhang D, Yao Z, Li J. A local GABAergic system is functionally expressed in human fallopian tube. Biochem Biophys Res Commun 2010; 398:237-41. [DOI: 10.1016/j.bbrc.2010.06.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 06/16/2010] [Indexed: 11/15/2022]
|
21
|
Schwirtlich M, Emri Z, Antal K, Máté Z, Katarova Z, Szabó G. GABA
A
and GABA
B
receptors of distinct properties affect oppositely the proliferation of mouse embryonic stem cells through synergistic elevation of intracellular Ca
2+. FASEB J 2009; 24:1218-28. [DOI: 10.1096/fj.09-143586] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marija Schwirtlich
- Laboratory of Molecular Biology and GeneticsInstitute of Experimental MedicineHungarian Academy of SciencesBudapest Hungary
| | - Zsuzsa Emri
- Department of NeurochemistryChemical Research CenterHungarian Academy of SciencesBudapest Hungary
| | - Károly Antal
- Department of NeurochemistryChemical Research CenterHungarian Academy of SciencesBudapest Hungary
| | - Zoltan Máté
- Laboratory of Molecular Biology and GeneticsInstitute of Experimental MedicineHungarian Academy of SciencesBudapest Hungary
| | - Zoya Katarova
- Laboratory of Molecular Biology and GeneticsInstitute of Experimental MedicineHungarian Academy of SciencesBudapest Hungary
| | - Gabor Szabó
- Laboratory of Molecular Biology and GeneticsInstitute of Experimental MedicineHungarian Academy of SciencesBudapest Hungary
| |
Collapse
|
22
|
Liu Y, Li YH, Guo FJ, Wang JJ, Sun RL, Hu JY, Li GC. Gamma-aminobutyric acid promotes human hepatocellular carcinoma growth through overexpressed gamma-aminobutyric acid A receptor alpha 3 subunit. World J Gastroenterol 2009. [PMID: 19084931 DOI: 10.3748/wjg.14.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
AIM To investigate the expression pattern of gamma-aminobutyric acid A (GABAA) receptors in hepatocellular carcinoma (HCC) and indicate the relationship among gamma-aminobutyric acid (GABA), gamma-aminobutyric acid A receptor alpha3 subunit (GABRA3) and HCC. METHODS HCC cell line Chang, HepG2, normal liver cell line L-02 and 8 samples of HCC tissues and paired non-cancerous tissues were analyzed with semiquantitative polymerase chain reaction (PCR) for the expression of GABAA receptors. HepG2 cells were treated with gamma-aminobutyric acid (GABA) at serial concentrations (0, 1, 10, 20, 40 and 60 micromol/L), and their proliferating abilities were analyzed with the 3-(4, 5-methylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell doubling time test, colon formation assay, cell cycle analysis and tumor planted in nude mice. Small interfering RNA was used for knocking down the endogenous GABRA3 in HepG2. Proliferating abilities of these cells treated with or without GABA were analyzed. RESULTS We identified the overexpression of GABRA3 in HCC cells. Knockdown of endogenous GABRA3 expression in HepG2 attenuated HCC cell growth, suggesting its role in HCC cell viability. We determined the in vitro and in vivo effect of GABA in the proliferation of GABRA3-positive cell lines, and found that GABA increased HCC growth in a dose-dependent manner. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRA3-expressing HepG2 cells, but not GABRA3-knockdown HepG2 cells. This means that GABA stimulates HepG2 cell growth through GABRA3. CONCLUSION GABA and GABRA3 play important roles in HCC development and progression and can be a promising molecular target for the development of new diagnostic and therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Yan Liu
- Tumor Immunobiology Laboratory of Cancer Research Institute, Central South University, Changsha 410078, Hunan Province, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Maemura K, Shiraishi N, Sakagami K, Kawakami K, Inoue T, Murano M, Watanabe M, Otsuki Y. Proliferative effects of gamma-aminobutyric acid on the gastric cancer cell line are associated with extracellular signal-regulated kinase 1/2 activation. J Gastroenterol Hepatol 2009; 24:688-96. [PMID: 19032445 DOI: 10.1111/j.1440-1746.2008.05687.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the adult mammalian brain. However, GABA is found not only in peripheral neuronal tissue, but also in many peripheral non-neuronal tissues, and is thought to have important physiological functions in addition to neurotransmission. We previously reported that GABA participates in chondrocyte proliferation. In the present study, we investigated the effects of GABA on the proliferation of a gastric cancer cell line, KATO III. METHODS Reverse transcription polymerase chain reaction and immunohistochemical analyses were performed to examine the expression of the GABA synthesis enzyme, glutamate decarboxylase (GAD), and that of the GABA(A) and GABA(B) receptor subunits. The production of GABA was confirmed by immunohistochemistry. The proliferative effect of GABA on KATO III cells was analyzed by bromodeoxyuridine incorporation assay, and the activation status of mitogen-activated protein (MAP) kinases (extracellular signal-regulated kinase [ERK]-1/2, Jun-N-terminal kinase, and p38) and the expression of cyclin D1 were analyzed by western blotting. RESULTS KATO III cells expressed GAD and GABA. More than five GABA(A) receptor subunits, including the pi subunit, were expressed in KATO III cells; however, GABA(B) receptor subunits were not seen. The addition of GABA to the medium promoted KATO III proliferation, and maximum proliferative effects were observed in the presence of 10 or 1 microM GABA. The addition of 1 microM GABA predominantly activated ERK-1/2 among the three MAP kinases in addition to increasing cyclin D1 expression. CONCLUSION GABA is able to promote KATO III cell proliferation in an autocrine or a paracrine fashion through GABA(A) receptors followed by MAP kinase activation.
Collapse
Affiliation(s)
- Kentaro Maemura
- Department of Anatomy and Cell Biology, Division of Basic Medicine I, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu Y, Li YH, Guo FJ, Wang JJ, Sun RL, Hu JY, Li GC. Gamma-aminobutyric acid promotes human hepatocellular carcinoma growth through overexpressed gamma-aminobutyric acid A receptor α3 subunit. World J Gastroenterol 2008; 14:7175-82. [PMID: 19084931 PMCID: PMC2776875 DOI: 10.3748/wjg.14.7175] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression pattern of gamma-aminobutyric acid A (GABAA) receptors in hepatocellular carcinoma (HCC) and indicate the relationship among gamma-aminobutyric acid (GABA), gamma-aminobutyric acid A receptor α3 subunit (GABRA3) and HCC.
METHODS: HCC cell line Chang, HepG2, normal liver cell line L-02 and 8 samples of HCC tissues and paired non-cancerous tissues were analyzed with semiquantitative polymerase chain reaction (PCR) for the expression of GABAA receptors. HepG2 cells were treated with gamma-aminobutyric acid (GABA) at serial concentrations (0, 1, 10, 20, 40 and 60 μmol/L), and their proliferating abilities were analyzed with the 3-(4, 5-methylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell doubling time test, colon formation assay, cell cycle analysis and tumor planted in nude mice. Small interfering RNA was used for knocking down the endogenous GABRA3 in HepG2. Proliferating abilities of these cells treated with or without GABA were analyzed.
RESULTS: We identified the overexpression of GABRA3 in HCC cells. Knockdown of endogenous GABRA3 expression in HepG2 attenuated HCC cell growth, suggesting its role in HCC cell viability. We determined the in vitro and in vivo effect of GABA in the proliferation of GABRA3-positive cell lines, and found that GABA increased HCC growth in a dose-dependent manner. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRA3-expressing HepG2 cells, but not GABRA3-knockdown HepG2 cells. This means that GABA stimulates HepG2 cell growth through GABRA3.
CONCLUSION: GABA and GABRA3 play important roles in HCC development and progression and can be a promising molecular target for the development of new diagnostic and therapeutic strategies for HCC.
Collapse
|
25
|
Expression of GABAergic system in pulmonary neuroendocrine cells and airway epithelial cells in GAD67-GFP knock-in mice. Med Mol Morphol 2008; 41:20-7. [PMID: 18470677 DOI: 10.1007/s00795-007-0391-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
Gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the brain, is also located in many peripheral nonneuronal tissues. The glutamate decarboxylase 67-green fluorescent protein (GAD67-GFP) knock-in mouse is a useful model for studying the distribution of GABAergic cells in many tissues and organs. The lungs of these mice contain cells with an intense GFP signal exclusively in the airway epithelium. We aimed to characterize the GFP-positive cells and to clarify their relationship with the GABAergic system. We identified the GFP-positive cells as pulmonary neuroendocrine cells (PNECs) by immunohistochemistry for the protein gene product 9.5 and calcitonin gene-related peptide and by ultrastructural analysis. Immunohistochemistry for GADs and GABA revealed GAD65/67 and GABA in GFP-positive PNECs. Reverse transcription-polymerase chain reaction analyses revealed mRNAs encoding the GABA(B) receptor subunits necessary for the assembly of functional receptors, R1 and R2, in the lung. GABA(B) receptor subunit R1 and R2 proteins were expressed in many airway epithelial cells including alveolar epithelial cells other than GFP-positive PNECs. The present findings demonstrated that PNECs in the airway epithelium have a GABA production system and indicated that GABA plays functional roles in airway epithelial cells through GABA(B) receptors.
Collapse
|
26
|
Mizuta K, Osawa Y, Mizuta F, Xu D, Emala CW. Functional expression of GABAB receptors in airway epithelium. Am J Respir Cell Mol Biol 2008; 39:296-304. [PMID: 18403780 DOI: 10.1165/rcmb.2007-0414oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system and exerts its actions via both ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors. The GABA(B) receptor is a dimer composed of R1 and R2 components and classically couples to the heterotrimeric G(i) protein. In addition to their location on neurons, GABA and functional GABA(B) receptors have been detected in peripheral tissue such as airway smooth muscle. We questioned whether airway epithelium expresses receptors that could respond to GABA. We detected the mRNA encoding multiple-splice variants of the GABA(B)R1 and GABA(B)R2 in total RNA isolated from native human and guinea pig airway epithelium and human airway epithelial cell lines (BEAS-2B and H441). Immunoblots identified the GABA(B)R1 and GABA(B)R2 proteins in both guinea pig airway epithelium and BEAS-2B cells. The expression of GABA(B)R1 protein was immunohistochemically localized to basal mucin-secreting and ciliated columnar epithelial cells in guinea pig trachea. Baclofen inhibited adenylyl cyclase activity, induced ERK phosphorylation and cross-regulated phospholipase C, leading to increased inositol phosphates in BEAS-2B cells in a pertussis toxin-sensitive manner, implicating G(i) protein coupling. Thus, these receptors couple to G(i) and cross-regulate the phospholipase C/inositol phosphate pathway. The second messengers of these pathways, cyclic AMP and calcium, play pivotal roles in airway epithelial cell primary functions of mucus clearance. Furthermore, the enzyme that synthesizes GABA, glutamic acid decarboxylase (GAD65/67), was also localized to airway epithelium. GABA may modulate an uncharacterized signaling cascade via GABA(B) receptors coupled to G(i) protein in airway epithelium.
Collapse
Affiliation(s)
- Kentaro Mizuta
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
27
|
Kwakowsky A, Schwirtlich M, Zhang Q, Eisenstat DD, Erdélyi F, Baranyi M, Katarova ZD, Szabó G. GAD isoforms exhibit distinct spatiotemporal expression patterns in the developing mouse lens: correlation with Dlx2 and Dlx5. Dev Dyn 2008; 236:3532-44. [PMID: 17969168 DOI: 10.1002/dvdy.21361] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter of the adult nervous system and its biosynthetic enzyme glutamic acid decarboxylase (GAD) are abundantly expressed in the embryonic nervous system and are involved in the modulation of cell proliferation, migration, and differentiation. Here we describe for the first time the expression of GABA and embryonic and adult GAD isoforms in the developing mouse lens. We show that the GAD isoforms are sequentially induced with specific spatiotemporal profiles: GAD65 and embryonic GAD isoforms prevail in primary fibers, while GAD67 is the predominant GAD expressed in the postnatal secondary fibers. This pattern correlates well with the expression of Dlx2 and Dlx5, known as upstream regulators of GAD. GABA and GAD are most abundant at the tips of elongating fibers and are absent from organelle-free cells, suggesting their involvement is primarily in shaping of the cytoskeleton during fiber elongation stages.
Collapse
Affiliation(s)
- Andrea Kwakowsky
- Department of Gene Technology and Developmental Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Inamoto T, Azuma H, Sakamoto T, Kiyama S, Ubai T, Kotake Y, Watanabe M, Katsuoka Y. Invasive ability of human renal cell carcinoma cell line Caki-2 is accelerated by gamma-aminobutyric acid, via sustained activation of ERK1/2 inducible matrix metalloproteinases. Cancer Invest 2007; 25:574-83. [PMID: 18027151 DOI: 10.1080/07357900701522471] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gamma-aminobutyric acid (GABA) was first discovered as an inhibitory neurotransmitter in the central nervous system (CNS) and has been reported to have a variety of functions, including regulation of cell division, cell differentiation and maturation, and to be involved in the development of certain cancers outside the CNS. In the present study, using the human renal cell carcinoma cell line Caki-2, we demonstrated that GABA stimulation significantly increased the expression of MMP-2 and -9 and subsequently increased the invasive activity of the cancer cells. Because MAPK signaling is one of the key regulators of MMP expression, we further evaluated MAPK signaling after stimulation with GABA. It was found that GABA stimulation promoted the phosphorylation of MAPKs, including ERK1/2, JNK, and p38. ERK1/2 phosphorylation was sustained for up to 12 h, while phosphorylation of JNK and p38 returned to the endogenous level by 30 min. It was noteworthy that the ras/raf/MEK/ERK pathway inhibitor PD98059 attenuated GABA-induced MMP-9 expression and that both PD98059 and MMP inhibitors attenuated the GABA-induced invasive activity of Caki-2 cells. Moreover, data obtained by depletion of the MEK/ERK pathway using interfering RNA transfection of Caki-2 cells clearly corroborated the above results, as both MMP-9 expression and GABA-induced invasive ability were decreased significantly. We also demonstrated that the GABA-induced increase in invasive ability via ERK1/2 up-regulation was mediated mainly through the GABA-B receptor. These results indicate that GABA stimulation promotes cancer cell invasion and that the effect is partly due to ERK1/2-dependent up-regulation of MMPs.
Collapse
Affiliation(s)
- Teruo Inamoto
- Department of Urology, Osaka Medical College, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Cheng Z, Tu C, Rodriguez L, Chen TH, Dvorak MM, Margeta M, Gassmann M, Bettler B, Shoback D, Chang W. Type B gamma-aminobutyric acid receptors modulate the function of the extracellular Ca2+-sensing receptor and cell differentiation in murine growth plate chondrocytes. Endocrinology 2007; 148:4984-92. [PMID: 17615148 DOI: 10.1210/en.2007-0653] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular calcium-sensing receptors (CaRs) and metabotropic or type B gamma-aminobutyric acid receptors (GABA-B-Rs), two closely related members of family C of the G protein-coupled receptor superfamily, dimerize in the formation of signaling and membrane-anchored receptor complexes. We tested whether CaRs and two GABA-B-R subunits (R1 and R2) are expressed in mouse growth plate chondrocytes (GPCs) by PCR and immunocytochemistry and whether interactions between these receptors influence the expression and function of the CaR and extracellular Ca(2+)-mediated cell differentiation. Both CaRs and the GABA-B-R1 and -R2 were expressed in the same zones of the growth plate and extensively colocalized in intracellular compartments and on the membranes of cultured GPCs. The GABA-B-R1 co-immunoprecipitated with the CaR, confirming a physical interaction between the two receptors in GPCs. In vitro knockout of GABA-B-R1 genes, using a Cre-lox recombination strategy, blunted the ability of high extracellular Ca(2+) concentration to activate phospholipase C and ERK1/2, suppressed cell proliferation, and enhanced apoptosis in cultured GPCs. In GPCs, in which the GABA-B-R1 was acutely knocked down, there was reduced expression of early chondrocyte markers, aggrecan and type II collagen, and increased expression of the late differentiation markers, type X collagen and osteopontin. These results support the idea that physical interactions between CaRs and GABA-B-R1s modulate the growth and differentiation of GPCs, potentially by altering the function of CaRs.
Collapse
Affiliation(s)
- Zhiqiang Cheng
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chang W, Tu C, Cheng Z, Rodriguez L, Chen TH, Gassmann M, Bettler B, Margeta M, Jan LY, Shoback D. Complex Formation with the Type B γ-Aminobutyric Acid Receptor Affects the Expression and Signal Transduction of the Extracellular Calcium-sensing Receptor. J Biol Chem 2007; 282:25030-40. [PMID: 17591780 DOI: 10.1074/jbc.m700924200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We co-immunoprecipitated the Ca(2+)-sensing receptor (CaR) and type B gamma-aminobutyric acid receptor (GABA-B-R) from human embryonic kidney (HEK)-293 cells expressing these receptors and from brain lysates where both receptors are present. CaRs extensively co-localized with the two subunits of the GABA-B-R (R1 and R2) in HEK-293 cell membranes and intracellular organelles. Coexpressing CaRs and GABA-B-R1s in HEK-293 cells suppressed the total cellular and cell surface expression of CaRs and inhibited phospholipase C activation in response to high extracellular [Ca(2+)] ([Ca(2+)](e)). In contrast, coexpressing CaRs and GABA-B-R2s enhanced CaR expression and signaling responses to raising [Ca(2+)](e). The latter effects of the GABA-B-R2 on the CaR were blunted by coexpressing the GABA-B-R1. Coexpressing the CaR with GABA-B-R1 or R2 enhanced the total cellular and cell surface expression of the GABA-B-R1 or R2, respectively. Studies with truncated CaRs indicated that the N-terminal extracellular domain of the CaR participated in the interaction of the CaR with the GABA-B-R1 and R2. In cultured mouse hippocampal neurons, CaRs co-localized with the GABA-B-R1 and R2. CaRs and GABA-B-R1s also co-immunoprecipitated from brain lysates. The expression of the CaR was increased in lysates from GABA-B-R1 knock-out mouse brains and in cultured hippocampal neurons with their GABA-B-R1 genes deleted in vitro. Thus, CaRs and GABA-B-R subunits can form heteromeric complexes in cells, and their interactions affect cell surface expression and signaling of CaR, which may contribute to extracellular Ca(2+)-dependent receptor activation in target tissues.
Collapse
Affiliation(s)
- Wenhan Chang
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, California 94121, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Osawa Y, Xu D, Sternberg D, Sonett JR, D'Armiento J, Panettieri RA, Emala CW. Functional expression of the GABAB receptor in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2006; 291:L923-31. [PMID: 16829628 DOI: 10.1152/ajplung.00185.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system and exerts its actions via both ionotropic (GABA(A)/GABA(C)) and metabotropic (GABA(B)) receptors (R). In addition to their location on neurons, GABA and functional GABA(B) receptors have been detected in nonneuronal cells in peripheral tissue. Although the GABA(B)R has been shown to function as a prejunctional inhibitory receptor on parasympathetic nerves in the lung, the expression and functional coupling of GABA(B) receptors to G(i) in airway smooth muscle itself have never been described. We detected the mRNA encoding multiple-splice variants of the GABA(B)R1 and GABA(B)R2 in total RNA isolated from native human and guinea pig airway smooth muscle and from RNA isolated from cultured human airway smooth muscle (HASM) cells. Immunoblots identified the GABA(B)R1 and GABA(B)R2 proteins in human native and cultured airway smooth muscle. The GABA(B)R1 protein was immunohistochemically localized to airway smooth muscle in guinea pig tracheal rings. Baclofen, a GABA(B)R agonist, elicited a concentration-dependent stimulation of [(35)S]GTPgammaS binding in HASM homogenates that was abrogated by the GABA(B)R antagonist CGP-35348. Baclofen also inhibited adenylyl cyclase activity and induced ERK phosphorylation in HASM. Another GABA(B)R agonist, SKF-97541, mimicked while pertussis toxin blocked baclofen's effect on ERK phosphorylation, implicating G(i) protein coupling. Functional GABA(B) receptors are expressed in HASM. GABA may modulate an uncharacterized signaling cascade via GABA(B) receptors coupled to the G(i) protein in airway smooth muscle.
Collapse
Affiliation(s)
- Yoko Osawa
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, 630 W. 168th St., P&S Box 46, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Fujimori S, Hinoi E, Takarada T, Iemata M, Takahata Y, Yoneda Y. Possible expression of a particular gamma-aminobutyric acid transporter isoform responsive to upregulation by hyperosmolarity in rat calvarial osteoblasts. Eur J Pharmacol 2006; 550:24-32. [PMID: 17022965 DOI: 10.1016/j.ejphar.2006.08.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in the brain, but widely distributed in different peripheral organs. We have previously shown the functional expression of GABA(B) receptors required for GABAergic signal input by cultured rat calvarial osteoblasts. This study focused on the possible functional expression of the machinery required for GABAergic signal termination such as GABA transporters. In rat calvarial osteoblasts cultured for 7 days, [(3)H]GABA accumulation was observed in a temperature-, sodium- and chloride-dependent manner, consisting of a single component with a K(m) value of 789.6+/-9.0 microM and a V(max) value of 4.4+/-0.1 nmol/min/mg protein, respectively. Both nipecotic and L-2,4-diaminobutyric acids significantly inhibited [(3)H]GABA accumulation in a concentration-dependent manner. Constitutive expression was seen with mRNA for the betaine/GABA transporter-1 (BGT-1) and taurine transporter (TauT), while hyperosmotic cultivation led to significant increases in both [(3)H]GABA accumulation and BGT-1 mRNA expression without affecting TauT mRNA expression. Highly immunoreactive cells were detected for the BGT-1 isoform at the surface of trabecular bone of neonatal rat tibias. Sustained exposure to GABA significantly inhibited alkaline phosphatase (ALP) activity, but not cellular viability, at concentrations above 0.1 mM in osteoblasts cultured for 3 to 28 days. Nipecotic acid not only decreased ALP activity alone, but also further decreased ALP activity in osteoblasts cultured in the presence of GABA. These results suggest that the BGT-1 isoform may be functionally expressed by rat calvarial osteoblasts to play a hitherto unidentified role in mechanisms underlying hyperosmotic regulation of osteoblastogenesis.
Collapse
Affiliation(s)
- Sayumi Fujimori
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Fujimori S, Osawa M, Iemata M, Hinoi E, Yoneda Y. Increased GABA Transport Activity in Rat Calvarial Osteoblasts Cultured under Hyperglycemic Conditions. Biol Pharm Bull 2006; 29:297-301. [PMID: 16462035 DOI: 10.1248/bpb.29.297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several independent lines of evidence indicate the direct impairment by extracellular glucose at high concentrations of different osteoblastic functions with a marked decrease in bone mass toward osteoporosis, while the underlying mechanisms are not well clarified to date. We have previously demonstrated the functional expression of the neural amino acid gamma-aminobutyric acid (GABA) signaling system including betaine/GABA transporter-1 (BGT-1) with a temperature-, sodium- and chloride-dependent activity of [(3)H]GABA accumulation in cultured rat calvarial osteoblasts. In this study, therefore, we attempted to demonstrate the possible involvement of BGT-1 isoform in bone dysfunctions due to impaired mineralization in rat calvarial osteoblasts cultured under hyperglycemic conditions. No significant change was seen in [(3)H]GABA accumulation in osteoblasts cultured for 7 d in vitro (DIV) under hyperglycemic conditions (glucose=25.5-50.5 mM) compared to those cultured in normoglycemic (glucose=5.5 mM) and hyperosmotic (mannitol=25.5-50.5 mM) conditions. In osteoblasts cultured for 14 DIV under hyperglycemic conditions, however, [(3)H]GABA accumulation was significantly increased compared to those cultured under normoglycemic and hyperosmotic conditions. Kinetic analysis revealed that hyperglycemic cultivation resulted in a significant increase in V(max) values from 2.85 nmol/min/mg protein for normoglycemic conditions to 4.17 nmol/min/mg protein for hyperglycemic conditions without affecting K(m) values. However, experimental hyperglycemia did not significantly affect the expression of mRNA for BGT-1 isoform by osteoblasts. These results suggest that GABA transport system may at least in part play a role in pathological malfunctions and abnormalities through a mechanism not directly related to gene expression in osteoblasts under hyperglycemia.
Collapse
Affiliation(s)
- Sayumi Fujimori
- Laboratory of Molecular Pharmacology, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | |
Collapse
|