1
|
Pinilla-González V, Rojas-Solé C, Gómez-Hevia F, González-Fernández T, Cereceda-Cornejo A, Chichiarelli S, Saso L, Rodrigo R. Tapping into Nature's Arsenal: Harnessing the Potential of Natural Antioxidants for Human Health and Disease Prevention. Foods 2024; 13:1999. [PMID: 38998505 PMCID: PMC11241326 DOI: 10.3390/foods13131999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Numerous natural antioxidants commonly found in our daily diet have demonstrated significant benefits for human health and various diseases by counteracting the impact of reactive oxygen and nitrogen species. Their chemical properties enable a range of biological actions, including antihypertensive, antimicrobial, anti-inflammatory, anti-fibrotic, and anticancer effects. Despite promising outcomes from preclinical studies, ongoing debate persists regarding their reproducibility in human clinical models. This controversy largely stems from a lack of understanding of the pharmacokinetic properties of these compounds, coupled with the predominant focus on monotherapies in research, neglecting potential synergistic effects arising from combining different antioxidants. This study aims to provide an updated overview of natural antioxidants, operating under the hypothesis that a multitherapeutic approach surpasses monotherapy in efficacy. Additionally, this study underscores the importance of integrating these antioxidants into the daily diet, as they have the potential to prevent the onset and progression of various diseases. To reinforce this perspective, clinical findings pertaining to the treatment and prevention of non-alcoholic fatty liver disease and conditions associated with ischemia and reperfusion phenomena, including myocardial infarction, postoperative atrial fibrillation, and stroke, are presented as key references.
Collapse
Affiliation(s)
- Víctor Pinilla-González
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Francisca Gómez-Hevia
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Tommy González-Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Antonia Cereceda-Cornejo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| |
Collapse
|
2
|
Moradikhah F, Shabani I, Tafazzoli Shadpour M. Fabrication of a tailor-made conductive polyaniline/ascorbic acid-coated nanofibrous mat as a conductive and antioxidant cell-free cardiac patch. Biofabrication 2024; 16:035004. [PMID: 38507809 DOI: 10.1088/1758-5090/ad35e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Polyaniline (PANI) wasin-situpolymerized on nanofibrous polycaprolactone mats as cell-free antioxidant cardiac patches (CPs), providing electrical conductivity and antioxidant properties. The fabricated CPs took advantage of intrinsic and additive antioxidant properties in the presence of PANI backbone and ascorbic acid as a biocompatible dopant of PANI. The antioxidant nature of CPs may reduce the serious repercussions of oxidative stress, produced during the ischemia-reperfusion (I/R) process following myocardial infarction. The polymerization parameters were considered as aniline (60 mM, 90 mM, and 120 mM), ascorbic acid concentrations ([aniline]:[ascorbic acid] = 3:0, 3:0.5, 3:1, 3:3), and polymerization time (1 h and 3 h). Mainly, the more aniline concentrations and polymerization time, the less sheet resistance was obtained. 1,1 diphenyl-2-picrylhydrazyl (DPPH) assay confirmed the dual antioxidant properties of prepared samples. The advantage of the employedin-situpolymerization was confirmed by the de-doping/re-doping process. Non-desirable groups were excluded based on their electrical conductivity, antioxidant properties, and biocompatibility. The remained groups protected H9c2 cells against oxidative stress and hypoxia conditions. Selected CPs reduced the intracellular reactive oxygen species content and mRNA level of caspase-3 while the Bcl-2 mRNA level was improved. Also, the selected cardiac patch could attenuate the hypertrophic impact of hydrogen peroxide on H9c2 cells. Thein vivoresults of the skin flap model confirmed the CP potency to attenuate the harmful impact of I/R.
Collapse
Affiliation(s)
- Farzad Moradikhah
- Department of Biomedical Engineering, Amirkabir University of Technology, 1591634311 Tehran, Iran
| | - Iman Shabani
- Department of Biomedical Engineering, Amirkabir University of Technology, 1591634311 Tehran, Iran
| | | |
Collapse
|
3
|
Zheng H, Xu Y, Liehn EA, Rusu M. Vitamin C as Scavenger of Reactive Oxygen Species during Healing after Myocardial Infarction. Int J Mol Sci 2024; 25:3114. [PMID: 38542087 PMCID: PMC10970003 DOI: 10.3390/ijms25063114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 06/26/2024] Open
Abstract
Currently, coronary artery bypass and reperfusion therapies are considered the gold standard in long-term treatments to restore heart function after acute myocardial infarction. As a drawback of these restoring strategies, reperfusion after an ischemic insult and sudden oxygen exposure lead to the exacerbated synthesis of additional reactive oxidative species and the persistence of increased oxidation levels. Attempts based on antioxidant treatment have failed to achieve an effective therapy for cardiovascular disease patients. The controversial use of vitamin C as an antioxidant in clinical practice is comprehensively systematized and discussed in this review. The dose-dependent adsorption and release kinetics mechanism of vitamin C is complex; however, this review may provide a holistic perspective on its potential as a preventive supplement and/or for combined precise and targeted therapeutics in cardiovascular management therapy.
Collapse
Affiliation(s)
- Huabo Zheng
- Department of Cardiology, Angiology and Intensive Care, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany;
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
| | - Yichen Xu
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- Department of Histology and Embryology, Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Elisa A. Liehn
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- National Institute of Pathology “Victor Babes”, Splaiul Independentei Nr. 99-101, 050096 Bucharest, Romania
| | - Mihaela Rusu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| |
Collapse
|
4
|
Orellana-Urzúa S, Briones-Valdivieso C, Chichiarelli S, Saso L, Rodrigo R. Potential Role of Natural Antioxidants in Countering Reperfusion Injury in Acute Myocardial Infarction and Ischemic Stroke. Antioxidants (Basel) 2023; 12:1760. [PMID: 37760064 PMCID: PMC10525378 DOI: 10.3390/antiox12091760] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Stroke and acute myocardial infarction are leading causes of mortality worldwide. The latter accounts for approximately 9 million deaths annually. In turn, ischemic stroke is a significant contributor to adult physical disability globally. While reperfusion is crucial for tissue recovery, it can paradoxically exacerbate damage through oxidative stress (OS), inflammation, and cell death. Therefore, it is imperative to explore diverse approaches aimed at minimizing ischemia/reperfusion injury to enhance clinical outcomes. OS primarily arises from an excessive generation of reactive oxygen species (ROS) and/or decreased endogenous antioxidant potential. Natural antioxidant compounds can counteract the injury mechanisms linked to ROS. While promising preclinical results, based on monotherapies, account for protective effects against tissue injury by ROS, translating these models into human applications has yielded controversial evidence. However, since the wide spectrum of antioxidants having diverse chemical characteristics offers varied biological actions on cell signaling pathways, multitherapy has emerged as a valuable therapeutic resource. Moreover, the combination of antioxidants in multitherapy holds significant potential for synergistic effects. This study was designed with the aim of providing an updated overview of natural antioxidants suitable for preventing myocardial and cerebral ischemia/reperfusion injuries.
Collapse
Affiliation(s)
- Sofía Orellana-Urzúa
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | | | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| |
Collapse
|
5
|
Rodrigo R, Prieto JC, Aguayo R, Ramos C, Puentes Á, Gajardo A, Panieri E, Rojas-Solé C, Lillo-Moya J, Saso L. Joint Cardioprotective Effect of Vitamin C and Other Antioxidants against Reperfusion Injury in Patients with Acute Myocardial Infarction Undergoing Percutaneous Coronary Intervention. Molecules 2021; 26:molecules26185702. [PMID: 34577176 PMCID: PMC8468345 DOI: 10.3390/molecules26185702] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Percutaneous coronary intervention (PCI) has long remained the gold standard therapy to restore coronary blood flow after acute myocardial infarction (AMI). However, this procedure leads to the development of increased production of reactive oxygen species (ROS) that can exacerbate the damage caused by AMI, particularly during the reperfusion phase. Numerous attempts based on antioxidant treatments, aimed to reduce the oxidative injury of cardiac tissue, have failed in achieving an effective therapy for these patients. Among these studies, results derived from the use of vitamin C (Vit C) have been inconclusive so far, likely due to suboptimal study designs, misinterpretations, and the erroneous conclusions of clinical trials. Nevertheless, recent clinical trials have shown that the intravenous infusion of Vit C prior to PCI-reduced cardiac injury biomarkers, as well as inflammatory biomarkers and ROS production. In addition, improvements of functional parameters, such as left ventricular ejection fraction (LVEF) and telediastolic left ventricular volume, showed a trend but had an inconclusive association with Vit C. Therefore, it seems reasonable that these beneficial effects could be further enhanced by the association with other antioxidant agents. Indeed, the complexity and the multifactorial nature of the mechanism of injury occurring in AMI demands multitarget agents to reach an enhancement of the expected cardioprotection, a paradigm needing to be demonstrated. The present review provides data supporting the view that an intravenous infusion containing combined safe antioxidants could be a suitable strategy to reduce cardiac injury, thus improving the clinical outcome, life quality, and life expectancy of patients subjected to PCI following AMI.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
- Correspondence:
| | - Juan Carlos Prieto
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
- University of Chile Clinical Hospital, Campus Norte, Carlos Lorca Tobar 999, Independencia, Santiago 8380456, Chile; (C.R.); (A.G.)
| | - Rubén Aguayo
- Cardiology Unit, Department of Medicine, Occident Division, San Juan de Dios Hospital, Avenida Portales 3239, Santiago 8500000, Chile; (R.A.); (Á.P.)
| | - Cristóbal Ramos
- University of Chile Clinical Hospital, Campus Norte, Carlos Lorca Tobar 999, Independencia, Santiago 8380456, Chile; (C.R.); (A.G.)
| | - Ángel Puentes
- Cardiology Unit, Department of Medicine, Occident Division, San Juan de Dios Hospital, Avenida Portales 3239, Santiago 8500000, Chile; (R.A.); (Á.P.)
| | - Abraham Gajardo
- University of Chile Clinical Hospital, Campus Norte, Carlos Lorca Tobar 999, Independencia, Santiago 8380456, Chile; (C.R.); (A.G.)
| | - Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| | - Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
| | - José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| |
Collapse
|
6
|
Shabani P, Ghazizadeh Z, Gorgani-Firuzjaee S, Molazem M, Rajabi S, Vahdat S, Azizi Y, Doosti M, Aghdami N, Baharvand H. Cardioprotective effects of omega-3 fatty acids and ascorbic acid improve regenerative capacity of embryonic stem cell-derived cardiac lineage cells. Biofactors 2019; 45:427-438. [PMID: 30907984 DOI: 10.1002/biof.1501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/15/2019] [Indexed: 12/23/2022]
Abstract
One of the major issues in cell therapy of myocardial infarction (MI) is early death of engrafted cells in a harsh oxidative stress environment, which limits the potential therapeutic utility of this strategy in the clinical setting. Increasing evidence implicates beneficial effects of omega-3 fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and ascorbic acid (AA) in cardiovascular diseases, in particular their role in ameliorating fibrosis. In the current study, we aim to assess the cytoprotective role of EPA + DHA and AA in protecting embryonic stem cell (ESC)-derived cardiac lineage cells and amelioration of fibrosis. Herein, we have shown that preincubation of the cells with EPA + DHA + AA prior to H2 O2 treatment attenuated generation of reactive oxygen species (ROS) and enhanced cell viability. Gene expression analysis revealed that preincubation with EPA + DHA + AA followed by H2 O2 treatment, upregulated heme oxygenase-1 (HO-1) along with cardiac markers (GATA4, myosin heavy chain, α isoform [MYH6]), connexin 43 [CX43]) and attenuated oxidative stress-induced upregulation of fibroblast markers (vimentin and collagen type 1 [Col1]). Alterations in gene expression patterns were followed by marked elevation of cardiac troponin (TNNT2) positive cells and reduced numbers of vimentin positive cells. An injection of EPA + DHA + AA-pretreated ESC-derived cardiac lineage cells into the ischemic myocardium of a rat model of MI significantly reduced fibrosis compared to the vehicle group. This study provided evidence that EPA + DHA + AA may be an appropriate preincubation regimen for regenerative purposes. © 2019 BioFactors, 45(3):427-438, 2019.
Collapse
Affiliation(s)
- Parisa Shabani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Zaniar Ghazizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Laboratory Sciences, Faculty of Para Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Molazem
- Department of Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sarah Rajabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sadaf Vahdat
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Yaser Azizi
- Physiology Research Center, Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Doosti
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
7
|
Rodrigo R, Hasson D, Prieto JC, Dussaillant G, Ramos C, León L, Gárate J, Valls N, Gormaz JG. The effectiveness of antioxidant vitamins C and E in reducing myocardial infarct size in patients subjected to percutaneous coronary angioplasty (PREVEC Trial): study protocol for a pilot randomized double-blind controlled trial. Trials 2014; 15:192. [PMID: 24885600 PMCID: PMC4050098 DOI: 10.1186/1745-6215-15-192] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 05/09/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is the leading cause of mortality worldwide. Oxidative stress has been involved in the ischemia-reperfusion injury in AMI. It has been suggested that reperfusion accounts for up to 50% of the final size of a myocardial infarct, a part of the damage likely to be prevented.Therefore, we propose that antioxidant reinforcement through vitamins C and E supplementation should protect against the ischemia-reperfusion damage, thus decreasing infarct size.The PREVEC Trial (Prevention of reperfusion damage associated with percutaneous coronary angioplasty following acute myocardial infarction) seeks to evaluate whether antioxidant vitamins C and E reduce infarct size in patients subjected to percutaneous coronary angioplasty after AMI. METHODS/DESIGN This is a randomized, 1:1, double-blind, placebo-controlled clinical trial.The study takes place at two centers in Chile: University of Chile Clinical Hospital and San Borja Arriarán Clinical Hospital.The subjects will be 134 adults with acute myocardial infarction with indication for percutaneous coronary angioplasty.This intervention is being performed as a pilot study, involving high-dose vitamin C infusion plus oral administration of vitamin E (Vitamin-treatment group) or placebo (Control group) during the angioplasty procedure. Afterward, the Vitamin-treatment group receives oral doses of vitamins C and E, and the Control group receives placebo for 84 days after coronary angioplasty.Primary outcome is infarct size, assessed by cardiac magnetic resonance (CMR), measured 6 and 84 days after coronary angioplasty.Secondary outcomes are ejection fraction, measured 6 and 84 days after coronary angioplasty with CMR, and biomarkers for oxidative stress, antioxidant status, heart damage, and inflammation, which will be measured at baseline, at the onset of reperfusion, 6 to 8 hours after revascularization, and at hospital discharge. DISCUSSION The ischemia-reperfusion event occurring during angioplasty is known to increase myocardial infarct size. The cardioprotective benefits of high doses of vitamin C combined with vitamin E have not been fully explored. The PREVEC Trial seeks to determine the suitability of the therapeutic use of vitamins C and E against the reperfusion damage produced during angioplasty.Patient recruitment opened in February 2013. The trial is scheduled to end in March 2016. TRIAL REGISTRATION ISRCTN56034553.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Daniel Hasson
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan C Prieto
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Cardiovascular Department, University of Chile Clinical Hospital, Santiago, Chile
| | - Gastón Dussaillant
- Cardiovascular Department, University of Chile Clinical Hospital, Santiago, Chile
| | - Cristóbal Ramos
- Department of Radiology, University of Chile Clinical Hospital, Santiago, Chile
| | - Lucio León
- Cardiovascular Center, San Borja Arriarán Clinical Hospital, Santiago, Chile
| | - Javier Gárate
- Cardiovascular Center, San Borja Arriarán Clinical Hospital, Santiago, Chile
| | - Nicolás Valls
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan G Gormaz
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
8
|
Kim H, Bae S, Kim Y, Cho CH, Kim SJ, Kim YJ, Lee SP, Kim HR, Hwang YI, Kang JS, Lee WJ. Vitamin C prevents stress-induced damage on the heart caused by the death of cardiomyocytes, through down-regulation of the excessive production of catecholamine, TNF-α, and ROS production in Gulo(-/-)Vit C-Insufficient mice. Free Radic Biol Med 2013; 65:573-583. [PMID: 23886864 DOI: 10.1016/j.freeradbiomed.2013.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 02/05/2023]
Abstract
It is thought that vitamin C has protective roles on stress-induced heart damage and the development of cardiovascular diseases, but its precise role and mechanisms are unclear. In the present study, we investigated the specific mechanisms by which vitamin C leads to protecting the heart from stress-induced damage in the Gulo(-/-) mice which cannot synthesize vitamin C like humans. By exposure to stress (1h/day), the heartbeat and cardiac output in vitamin C-insufficient Gulo(-/-) mice were definitely decreased, despite a significant increase of adrenaline (ADR) and noradrenaline (NA) production. A change of cardiac structure caused by the death of cardiomyocytes and an increased expression of matrix metalloprotease (MMP)-2 and -9 were also found. Moreover, lipid peroxidation and the production of tumor necrosis factor-alpha (TNF-α) in the heart were increased. Finally, all vitamin C-insufficient Gulo(-/-) mice were expired within 2 weeks. Interestingly, all of the findings in vitamin C-insufficient Gulo(-/-) mice were completely prevented by the supplementation of a sufficient amount of vitamin C. Taken together, vitamin C insufficiency increases the risk of stress-induced cardiac damage with structural and functional changes arising from the apoptosis of cardiomyocytes.
Collapse
Affiliation(s)
- Hyemin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Seyeon Bae
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Chung-Hyun Cho
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Yong-Jin Kim
- Cardiovascular Center, Seoul National University Hospital, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Seung-Pyo Lee
- Cardiovascular Center, Seoul National University Hospital, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Hang-Rae Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Young-Il Hwang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea.
| | - Wang Jae Lee
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
9
|
Molecular basis of cardioprotective effect of antioxidant vitamins in myocardial infarction. BIOMED RESEARCH INTERNATIONAL 2013; 2013:437613. [PMID: 23936799 PMCID: PMC3726017 DOI: 10.1155/2013/437613] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/18/2013] [Indexed: 02/07/2023]
Abstract
Acute myocardial infarction (AMI) is the leading cause of mortality worldwide. Major advances in the treatment of acute coronary syndromes and myocardial infarction, using cardiologic interventions, such as thrombolysis or percutaneous coronary angioplasty (PCA) have improved the clinical outcome of patients. Nevertheless, as a consequence of these procedures, the ischemic zone is reperfused, giving rise to a lethal reperfusion event accompanied by increased production of reactive oxygen species (oxidative stress). These reactive species attack biomolecules such as lipids, DNA, and proteins enhancing the previously established tissue damage, as well as triggering cell death pathways. Studies on animal models of AMI suggest that lethal reperfusion accounts for up to 50% of the final size of a myocardial infarct, a part of the damage likely to be prevented. Although a number of strategies have been aimed at to ameliorate lethal reperfusion injury, up to date the beneficial effects in clinical settings have been disappointing. The use of antioxidant vitamins could be a suitable strategy with this purpose. In this review, we propose a systematic approach to the molecular basis of the cardioprotective effect of antioxidant vitamins in myocardial ischemia-reperfusion injury that could offer a novel therapeutic opportunity against this oxidative tissue damage.
Collapse
|
10
|
Perrino C, Schiattarella GG, Sannino A, Pironti G, Petretta MP, Cannavo A, Gargiulo G, Ilardi F, Magliulo F, Franzone A, Carotenuto G, Serino F, Altobelli GG, Cimini V, Cuocolo A, Lombardi A, Goglia F, Indolfi C, Trimarco B, Esposito G. Genetic deletion of uncoupling protein 3 exaggerates apoptotic cell death in the ischemic heart leading to heart failure. J Am Heart Assoc 2013; 2:e000086. [PMID: 23688674 PMCID: PMC3698767 DOI: 10.1161/jaha.113.000086] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Uncoupling protein 3 (ucp3) is a member of the mitochondrial anion carrier superfamily of proteins uncoupling mitochondrial respiration. In this study, we investigated the effects of ucp3 genetic deletion on mitochondrial function and cell survival under low oxygen conditions in vitro and in vivo. METHODS AND RESULTS To test the effects of ucp3 deletion in vitro, murine embryonic fibroblasts and adult cardiomyocytes were isolated from wild-type (WT, n=67) and ucp3 knockout mice (ucp3(-/-), n=70). To test the effects of ucp3 genetic deletion in vivo, myocardial infarction (MI) was induced by permanent coronary artery ligation in WT and ucp3(-/-) mice. Compared with WT, ucp3(-/-) murine embryonic fibroblasts and cardiomyocytes exhibited mitochondrial dysfunction and increased mitochondrial reactive oxygen species generation and apoptotic cell death under hypoxic conditions in vitro (terminal deoxynucleotidyl transferase-dUTP nick end labeling-positive nuclei: WT hypoxia, 70.3 ± 1.2%; ucp3(-/-) hypoxia, 85.3 ± 0.9%; P<0.05). After MI, despite similar areas at risk in the 2 groups, ucp3(-/-) hearts demonstrated a significantly larger infarct size compared with WT (infarct area/area at risk: WT, 48.2 ± 3.7%; ucp3(-/-), 65.0 ± 2.9%; P<0.05). Eight weeks after MI, cardiac function was significantly decreased in ucp3(-/-) mice compared with WT (fractional shortening: WT MI, 42.7 ± 3.1%; ucp3(-/-) MI, 24.4 ± 2.9; P<0.05), and this was associated with heightened apoptotic cell death (terminal deoxynucleotidyl transferase-dUTP nick end labeling-positive nuclei: WT MI, 0.7 ± 0.04%; ucp3(-/-) MI, 1.1 ± 0.09%, P<0.05). CONCLUSIONS Our data indicate that ucp3 levels regulate reactive oxygen species levels and cell survival during hypoxia, modulating infarct size in the ischemic heart.
Collapse
Affiliation(s)
- Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Gabriele G. Schiattarella
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Anna Sannino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Gianluigi Pironti
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Maria Piera Petretta
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Alessandro Cannavo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Giuseppe Gargiulo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Federica Ilardi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Fabio Magliulo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Anna Franzone
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Giuseppe Carotenuto
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Federica Serino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Giovanna G. Altobelli
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Vincenzo Cimini
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Assunta Lombardi
- Department of Biology, Federico II University, Naples, Italy (A.L.)
| | - Fernando Goglia
- Department of Biology Sciences, Geology and Environment, Sannio University, Benevento, Italy (F.G.)
| | - Ciro Indolfi
- Department of Cardiology, Magna Graecia University, Catanzaro, Italy (C.I.)
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
- Correspondence to: Giovanni Esposito, MD, PhD, or Cinzia Perrino, MD, PhD, Division of Cardiology, Federico II University, Via Pansini 5, 80131 Naples, Italy. E‐mail: ,
| |
Collapse
|
11
|
Cardioprotection against ischaemia/reperfusion by vitamins C and E plus n-3 fatty acids: molecular mechanisms and potential clinical applications. Clin Sci (Lond) 2012; 124:1-15. [PMID: 22963444 DOI: 10.1042/cs20110663] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of oxidative stress in ischaemic heart disease has been thoroughly investigated in humans. Increased levels of ROS (reactive oxygen species) and RNS (reactive nitrogen species) have been demonstrated during ischaemia and post-ischaemic reperfusion in humans. Depending on their concentrations, these reactive species can act either as benevolent molecules that promote cell survival (at low-to-moderate concentrations) or can induce irreversible cellular damage and death (at high concentrations). Although high ROS levels can induce NF-κB (nuclear factor κB) activation, inflammation, apoptosis or necrosis, low-to-moderate levels can enhance the antioxidant response, via Nrf2 (nuclear factor-erythroid 2-related factor 2) activation. However, a clear definition of these concentration thresholds remains to be established. Although a number of experimental studies have demonstrated that oxidative stress plays a major role in heart ischaemia/reperfusion pathophysiology, controlled clinical trials have failed to prove the efficacy of antioxidants in acute or long-term treatments of ischaemic heart disease. Oral doses of vitamin C are not sufficient to promote ROS scavenging and only down-regulate their production via NADPH oxidase, a biological effect shared by vitamin E to abrogate oxidative stress. However, infusion of vitamin C at doses high enough to achieve plasma levels of 10 mmol/l should prevent superoxide production and the pathophysiological cascade of deleterious heart effects. In turn, n-3 PUFA (polyunsaturated fatty acid) exposure leads to enhanced activity of antioxidant enzymes. In the present review, we present evidence to support the molecular basis for a novel pharmacological strategy using these antioxidant vitamins plus n-3 PUFAs for cardioprotection in clinical settings, such as post-operative atrial fibrillation, percutaneous coronary intervention following acute myocardial infarction and other events that are associated with ischaemia/reperfusion.
Collapse
|
12
|
Tripathi P, Misra MK, Pandey S. Role of l-Arginine on Dyslipidemic Conditions of Acute Myocardial Infarction Patients. Indian J Clin Biochem 2012; 27:296-9. [PMID: 26405391 PMCID: PMC4577515 DOI: 10.1007/s12291-012-0188-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/15/2012] [Indexed: 10/28/2022]
Abstract
Oxidative stress conditions associated with atherosclerosis leads to oxidative modification of low-density lipoprotein (LDL). The body's capabilities to inhibit LDL oxidation and to remove or neutralize the atherogenic oxidized LDL (ox-LDL) are limited. When the LDL cholesterol level increases in the blood, it leads to dangerous consequences like atherosclerosis, leading to myocardial infarction. The major effect of an antioxidant in the LDL environment is to prevent the formation of ox-LDL (during atherogenesis. Strategies to reduce LDL oxidation and prevent atherogenesis can involve the enrichment of arterial cells with potent antioxidants that can prevent oxidative damage to the arterial wall. The objective of this study is to evaluate the effect of l-arginine on serum lipid and cholesterol levels in the patients of acute myocardial infarction (AMI). The study consisted of 70 AMI patients and 60 healthy individuals (serving as control) age 55-65 years. Serum levels of total cholesterol, high density lipoprotein (HDL), LDL and Triglycerides were determined on day 1 and day 15 of l-arginine administration (oral dose 3 g/day). The total cholesterol/HDL and the LDL/HDL ratio were calculated and compared. As per the observations, l-arginine administration was found to improve the lipid profile of the subjects. Hence it could be used as an adjuvant therapy for AMI and as a preventive measure for the onset of the disease in the healthy elderly also.
Collapse
Affiliation(s)
- Pratima Tripathi
- />Department of Biochemistry, University of Lucknow, Lucknow, UP India
| | - M. K. Misra
- />Department of Biochemistry, University of Lucknow, Lucknow, UP India
| | - Shivani Pandey
- />Department of Biochemistry, CSM Medical University, Lucknow, 226 001 UP India
| |
Collapse
|
13
|
Rodrigo R. Prevention of postoperative atrial fibrillation: novel and safe strategy based on the modulation of the antioxidant system. Front Physiol 2012; 3:93. [PMID: 22518106 PMCID: PMC3325031 DOI: 10.3389/fphys.2012.00093] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 03/26/2012] [Indexed: 01/15/2023] Open
Abstract
Postoperative atrial fibrillation (AF) is the most common arrhythmia following cardiac surgery with extracorporeal circulation. The pathogenesis of postoperative AF is multifactorial. Oxidative stress, caused by the unavoidable ischemia-reperfusion event occurring in this setting, is a major contributory factor. Reactive oxygen species (ROS)-derived effects could result in lipid peroxidation, protein carbonylation, or DNA oxidation of cardiac tissue, thus leading to functional and structural myocardial remodeling. The vulnerability of myocardial tissue to the oxidative challenge is also dependent on the activity of the antioxidant system. High ROS levels, overwhelming this system, should result in deleterious cellular effects, such as the induction of necrosis, apoptosis, or autophagy. Nevertheless, tissue exposure to low to moderate ROS levels could trigger a survival response with a trend to reinforce the antioxidant defense system. Administration of n-3 polyunsaturated fatty acids (PUFA), known to involve a moderate ROS production, is consistent with a diminished vulnerability to the development of postoperative AF. Accordingly, supplementation of n-3 PUFA successfully reduced the incidence of postoperative AF after coronary bypass grafting. This response is due to an up-regulation of antioxidant enzymes, as shown in experimental models. In turn, non-enzymatic antioxidant reinforcement through vitamin C administration prior to cardiac surgery has also reduced the postoperative AF incidence. Therefore, it should be expected that a mixed therapy result in an improvement of the cardioprotective effect by modulating both components of the antioxidant system. We present novel available evidence supporting the hypothesis of an effective prevention of postoperative AF including a two-step therapeutic strategy: n-3 PUFA followed by vitamin C supplementation to patients scheduled for cardiac surgery with extracorporeal circulation. The present study should encourage the design of clinical trials aimed to test the efficacy of this strategy to offer new therapeutic opportunities to patients challenged by ischemia-reperfusion events not solely in heart, but also in other organs such as kidney or liver in transplantation surgeries.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of ChileSantiago, Chile
| |
Collapse
|
14
|
Tripathi P, Chandra M, Misra MK. Oral administration of L-arginine in patients with angina or following myocardial infarction may be protective by increasing plasma superoxide dismutase and total thiols with reduction in serum cholesterol and xanthine oxidase. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:231-7. [PMID: 20716909 PMCID: PMC2763261 DOI: 10.4161/oxim.2.4.9233] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Administration of L-arginine has been shown to control ischemic injury by producing nitric oxide which dilates the vessels and thus maintains proper blood flow to the myocardium. In the present study attempt has been made to determine whether oral administration of L-arginine has any effect on oxidant/antioxidant homeostasis in ischemic myocardial patients [represented by the patients of acute angina (AA) and acute myocardial infarction (MI)]. L-arginine has antioxidant and antiapoptotic properties, decreases endothelin-1 expression and improves endothelial function, thereby controlling oxidative injury caused during myocardial ischemic syndrome. Effect of L-arginine administration on the status of free radical scavenging enzymes, pro-oxidant enzyme and antioxidants viz. total thiols, carbonyl content and plasma ascorbic acid levels in the patients has been evaluated. We have observed that L-arginine administration (three grams per day for 15 days) resulted in increased activity of free radical scavenging enzyme superoxide dismutase (SOD) and increase in the levels of total thiols (T-SH) and ascorbic acid with concomitant decrease in lipid per-oxidation, carbonyl content, serum cholesterol and the activity of proxidant enzyme, xanthine oxidase (XO). These findings suggest that the supplementation of L-arginine along with regular therapy may be beneficial to the patients of ischemic myocardial syndromes.
Collapse
|
15
|
Tripathi P, Chandra M, Misra MK. Protective Role of l-Arginine Against Free-Radical Mediated Oxidative Damage in Patients with Unstable Angina. Indian J Clin Biochem 2010; 25:302-6. [PMID: 21731202 PMCID: PMC3001833 DOI: 10.1007/s12291-010-0054-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 12/30/2009] [Indexed: 01/22/2023]
Abstract
Unstable angina is a critical condition of heart resulting from narrowing of vessels supplying blood to heart. Ischemia of the myocardium leads to oxidative stress and severe tissue damage. The objective of the present study was to determine the effect of l-arginine administration on the oxidant-antioxidant homeostasis which otherwise gets imbalanced in patients with cardiovascular diseases. The results obtained, show improvement in the oxidant-antioxidant levels of the subjects upon incorporation of l-arginine. Our findings suggest that supplementation of l-arginine along with regular anti-anginal therapy may be beneficial to the patients of unstable angina.
Collapse
Affiliation(s)
| | - M. Chandra
- Department of Medicine, CSM Medical University, Lucknow, India
| | - M. K. Misra
- Department of Biochemistry, Lucknow University, Lucknow, India
| |
Collapse
|
16
|
LoPresti R, Catania A, D'Amico T, Montana M, Caruso M, Caimi G. Oxidative stress in young subjects with acute myocardial infarction: evaluation at the initial stage and after 12 months. Clin Appl Thromb Hemost 2007; 14:421-7. [PMID: 18160607 DOI: 10.1177/1076029607308406] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In 105 subjects (97 men and 8 women) aged <46 years (mean age 39.6 +/- 5.5 years), with recent acute myocardial infarction (T1), thiobarbituric acid reactive substances and total antioxidant status were determined; NO production was evaluated by measuring the nitrite and nitrate (NOx) concentration. The patients with acute myocardial infarction were subdivided according to the main risk factors, number of risk factors, and extent of coronary lesions. The evaluation was repeated after 12 months (T2). In these subjects, thiobarbituric acid reactive substances and NOx were significantly increased and total antioxidant status was significantly decreased at T1. In single risk factor, only NO metabolites were significantly lower in acute myocardial infarction subjects who smoke than in subjects who do not. Subdividing the subjects according to the number of risk factors and number of stenosed coronary vessels, there were no significant differences between the subgroups. At T2, thiobarbituric acid reactive substances and NOx were decreased and total antioxidant status was increased, but all parameters were still altered.
Collapse
Affiliation(s)
- Rosalia LoPresti
- Dipartimento di Medicina Interna, Malattie Cardiovascolari e Nefrourologiche, Università di Palermo, Policlinico-Via del Vespro 129, Palermo, Italy
| | | | | | | | | | | |
Collapse
|