1
|
Hou X, Zhang Z, Ma Y, Jin R, Yi B, Yang D, Ma L. Mechanism of hydroxysafflor yellow A on acute liver injury based on transcriptomics. Front Pharmacol 2022; 13:966759. [PMID: 36120318 PMCID: PMC9478418 DOI: 10.3389/fphar.2022.966759] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate how Hydroxysafflor yellow A (HSYA) effects acute liver injury (ALI) and what transcriptional regulatory mechanisms it may employ.Methods: Rats were randomly divided into five groups (n = 10): Control, Model, HSYA-L, HSYA-M, and HSYA-H. In the control and model groups, rats were intraperitoneally injected with equivalent normal saline, while in the HSYA groups, they were also injected with different amounts of HSYA (10, 20, and 40 mg/kg/day) once daily for eight consecutive days. One hour following the last injection, the control group was injected into the abdominal cavity with 0.1 ml/100 g of peanut oil, and the other four groups got the same amount of a peanut oil solution containing 50% CCl4. Liver indexes were detected in rats after dissection, and hematoxylin and eosin (HE) dyeing was utilized to determine HSYA’s impact on the liver of model rats. In addition, with RNA-Sequencing (RNA-Seq) technology and quantitative real-time PCR (qRT-PCR), differentially expressed genes (DEGs) were discovered and validated. Furthermore, we detected the contents of anti-superoxide anion (anti-O2−) and hydrogen peroxide (H2O2), and verified three inflammatory genes (Icam1, Bcl2a1, and Ptgs2) in the NF-kB pathway by qRT-PCR.Results: Relative to the control and HSYA groups, in the model group, we found 1111 DEGs that were up-/down-regulated, six of these genes were verified by qRT-PCR, including Tymp, Fabp7, Serpina3c, Gpnmb, Il1r1, and Creld2, indicated that these genes were obviously involved in the regulation of HSYA in ALI model. Membrane rafts, membrane microdomains, inflammatory response, regulation of cytokine production, monooxygenase activity, and iron ion binding were significantly enriched in GO analysis. KEGG analysis revealed that DEGs were primarily enriched for PPAR, retinol metabolism, NF-kB signaling pathways, etc. Last but not least, compared with the control group, the anti-O2− content was substantially decreased, the H2O2 content and inflammatory genes (Icam1, Bcl2a1, and Ptgs2) levels were considerably elevated in the model group. Compared with the model group, the anti-O2− content was substantially increased, the H2O2 content and inflammatory genes (Icam1, Bcl2a1, and Ptgs2) levels were substantially decreased in the HSYA group (p < 0.05).Conclusion: HSYA could improve liver function, inhibit oxidative stress and inflammation, and improve the degree of liver tissue damage. The RNA-Seq results further verified that HSYA has the typical characteristics of numerous targets and multiple pathway. Protecting the liver from damage by regulating the expression of Tymp, Fabp7, Serpina3c, Gpnmb, Il1r1, Creld2, and the PPAR, retinol metabolism, NF-kappa B signaling pathways.
Collapse
|
2
|
Filipović SI, Stojanović NM, Mitić KV, Ranđelović PJ, Radulović NS. Revisiting the Effect of 3 Sesquiterpenoids From Conocephalum conicum (Snake Liverwort) on Rat Spleen Lymphocyte Viability and Membrane Functioning. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221119912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previously 3 sesquiterpenoids from Conocephalum conicum (L.) Dum. (Conocephalaceae) were found to modulate lymphocyte response to different stimuli, suggesting their immunomodulatory potential. Herein we evaluated the impact of low concentrations of these sesquiterpenoids on rat splenocyte viability and membrane permeability, as well as lactate dehydrogenase (LDH) activity, in order to, possibly, shed light on their mechanism of action. After a 24 h incubation of splenocytes with the sesquiterpenoids (from 10−8 to 10−6 M), MTT and trypan blue (TB) assays, as well as histochemical staining for LDH, were performed. The tested compounds were shown not to reduce the ability of cells to metabolize MTT; however, cell membrane permeability to TB was altered, suggesting that a certain percentage of cells were dead. Histochemical staining for LDH presence releveled that only 2, out of the 3 sesquiterpenoids, decreased the staining intensity, indicating either LDH leakage or its inhibition. In conclusion, having in mind the already proven modulatory potential of the tested sesquiterpenoids, the present results suggest that through the changes in the cell membrane function and leakage/inhibition of LDH in unaltered immune cells, some of the tested compounds could be considered promising candidates for further research as anticancer agents.
Collapse
Affiliation(s)
| | | | - Katarina V. Mitić
- Institute of Physiology and Biochemistry “Ivan Ðaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Pavle J. Ranđelović
- Department of Physiology, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Niko S. Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| |
Collapse
|
3
|
Chen HJC, Yip T, Lee JK, Juliani J, Sernia C, Hill AF, Lavidis NA, Spiers JG. Restraint Stress Alters Expression of Glucocorticoid Bioavailability Mediators, Suppresses Nrf2, and Promotes Oxidative Stress in Liver Tissue. Antioxidants (Basel) 2020; 9:antiox9090853. [PMID: 32932938 PMCID: PMC7554900 DOI: 10.3390/antiox9090853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Hepatic glutathione synthesis and antioxidant protection are critically important for efficient detoxification processes in response to metabolic challenges. However, this biosynthetic pathway, regulated by nuclear factor (erythroid-derived 2)-like 2 (Nrf2), previously demonstrated paradoxical repression following exposure to glucocorticoid stress hormones in cultured hepatic cells. Therefore, the present study used an in vivo model of sub-acute psychological stress to investigate the relationship between hepatic corticosteroid regulation and antioxidant systems. Male Wistar rats were kept under control conditions or subjected to six hours of restraint stress applied for 1 or 3 days (n = 8 per group) after which the liver was isolated for assays of oxidative/nitrosative status and expression of corticosteroid regulatory and Nrf2-antioxidant response element pathway members. A single stress exposure produced a significant increase in the expression of corticosterone reactivator, 11-beta-hydroxysteroid dehydrogenase 1 (11β-Hsd1), while the 11β-Hsd2 isozyme and corticosteroid-binding globulin were down-regulated following stress, indicative of an elevated availability of active corticosterone. Exposure to restraint significantly decreased hepatic concentrations of total cysteine thiols and the antioxidant reduced glutathione on Day 1 and increased 3-nitrotyrosinated and carbonylated proteins on Day 3, suggestive of oxidative/nitrosative stress in the liver following stress exposure. Conversely, there was a sustained down-regulation of Nrf2 mRNA and protein in addition to significant reductions in downstream glutamate-cysteine ligase catalytic subunit (Gclc), the rate-limiting enzyme in glutathione synthesis, on Day 1 and 3 of stress treatment. Interestingly, other antioxidant genes including superoxide dismutase 1 and 2, and glutathione peroxidase 4 were significantly up-regulated following an episode of restraint stress. In conclusion, the results of the present study indicate that increased expression of 11β-Hsd1, indicative of elevated tissue glucocorticoid concentrations, may impair the Nrf2-dependent antioxidant response.
Collapse
Affiliation(s)
- Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Australia; (T.Y.); (J.K.L.); (C.S.); (N.A.L.)
- WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence: (H.-J.C.C.); (J.G.S.)
| | - Tsz Yip
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Australia; (T.Y.); (J.K.L.); (C.S.); (N.A.L.)
| | - Johnny K. Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Australia; (T.Y.); (J.K.L.); (C.S.); (N.A.L.)
| | - Juliani Juliani
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083, Australia; (J.J.); (A.F.H.)
| | - Conrad Sernia
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Australia; (T.Y.); (J.K.L.); (C.S.); (N.A.L.)
| | - Andrew F. Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083, Australia; (J.J.); (A.F.H.)
| | - Nickolas A. Lavidis
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Australia; (T.Y.); (J.K.L.); (C.S.); (N.A.L.)
| | - Jereme G. Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083, Australia; (J.J.); (A.F.H.)
- Correspondence: (H.-J.C.C.); (J.G.S.)
| |
Collapse
|
4
|
Fukushima T, Jintana W, Okabe S. Mixture toxicity of the combinations of silver nanoparticles and environmental pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6326-6337. [PMID: 31865577 DOI: 10.1007/s11356-019-07413-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Although toxicity of silver nanoparticles (AgNPs) has been well studied, the mixture toxicity of the combination of AgNPs and other environmental pollutants is still largely unknown. Here, we investigated the mixture toxicity of the combinations of AgNPs and common environmental pollutants such as arsenic (As), cadmium (Cd), and chromium (Cr) on human hepatoma cell line (HepG2) at noncytotoxic concentrations based on analyses of cytotoxicity, genotoxicity, reactive oxygen species (ROS) generation, and modes of cell death. In addition, DNA microarray analysis was performed to understand the cellular responses at a molecular level. AgNPs-As and AgNPs-Cd combinations exhibited synergistic effect on cytotoxicity while AgNPs-Cr showed additive effect. The AgNPs-Cd combination caused much stronger synergism than AgNPs-As combination. Based on cellular and molecular level analyses, the synergistic effect could be explained by overproduction of reactive oxygen species (ROS), which induced DNA damage and consequently apoptotic cell death. On the other hand, the additive effect caused by AgNPs-Cr could be attributed to reduction of the mixture toxicity by precipitation of Cr ions. Taken together, our results clearly demonstrated that the mixture toxicity of AgNPs with As, Cd, or Cr at noncytotoxic concentrations had different toxicity effects. Particularly, toxicogenomic approach using DNA microarray was useful to assess the mechanisms of the mixture toxicity.
Collapse
Affiliation(s)
- Toshikazu Fukushima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Wongta Jintana
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
| |
Collapse
|
5
|
Long-Chain Fatty Acids and Inflammatory Markers Coaccumulate in the Skeletal Muscle of Sarcopenic Old Rats. DISEASE MARKERS 2019; 2019:9140789. [PMID: 31354893 PMCID: PMC6636585 DOI: 10.1155/2019/9140789] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/09/2019] [Accepted: 05/09/2019] [Indexed: 01/16/2023]
Abstract
Obesity and inflammation are reportedly associated with the pathogenesis of sarcopenia, which is characterized by age-related loss of skeletal muscle mass. Intramuscular fat deposits have been found to compromise muscle integrity; however, the relevant fat compounds and their roles as mediators of muscular inflammation are not known. The aim of this study was to identify potential correlations between inflammation markers and lipid compounds that accumulate in the quadriceps muscle of previously described Sprague-Dawley (SD) rat model for high-fat diet- (HFD-) induced muscle loss. Six-month-old SD rats were continuously fed a control (CD) or HFD until the age of 21 months. Magnetic resonance imaging (MRI) revealed a significant decline in muscle cross-sectional area in male SD rats as a result of HFD, but not in female rats. Here, we developed a new procedure to quantitatively identify and classify the fatty acid methyl esters (FAMEs) in rats' quadriceps muscles from our former study using gas chromatography-mass spectrometry (GC-MS). Fatty acid analysis revealed accumulation of octadecadienoic (linoleic acid), octadecanoic (stearic acid), and octadecenoic (vaccenic acid) acids exclusively in the quadriceps muscles of male rats. The designated fatty acids were mainly incorporated into triacylglycerols (TAGs) or free fatty acids (FFAs), and their proportions were significantly elevated by consumption of a HFD. Furthermore, the number of resident immune cells and the levels of the chemokines RANTES, MCP-1, and MIP-2 were significantly increased in quadriceps muscle tissue of HFD-fed male, but not female rats. Together, HFD-induced muscle loss in aged male SD rats is associated with greater deposits of long-chain fatty acid esters and increased levels of the inflammatory markers RANTES, MCP-1, and MIP-2 in skeletal muscle tissue. This trend is further reinforced by long-term consumption of a HFD, which may provoke synergistic crosstalk between long-chain fatty acids and inflammatory pathways in sarcopenic muscle.
Collapse
|
6
|
Quan Y, Gong L, He J, Zhou Y, Liu M, Cao Z, Li Y, Peng C. Aloe emodin induces hepatotoxicity by activating NF-κB inflammatory pathway and P53 apoptosis pathway in zebrafish. Toxicol Lett 2019; 306:66-79. [PMID: 30771440 DOI: 10.1016/j.toxlet.2019.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/12/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
Abstract
The aim of this study was to investigate the hepatotoxic effect and its underlying mechanism of aloe emodin (AE). AE was docked with the targets of NF-κB inflammatory pathway and P53 apoptosis pathway respectively by using molecular docking technique. To verify the results of molecular docking and further investigate the hepatotoxicity mechanism of AE, the zebrafish Tg (fabp10: EGFP) was used as an animal model in vivo. The pathological sections of zebrafish liver were analyzed to observe the histopathological changes and Sudan black B was used to study whether there were inflammatory reactions in zebrafish liver or not. Then TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect the apoptotic signal of zebrafish liver cells, finally the mRNA expression levels as well as the protein expression levels of the targets in NF-κB and P53 pathways in zebrafish were measured by quantitative Real-Time PCR (qRT-PCR) and western blot. Molecular docking results showed that AE could successfully dock with all the targets of NF-κB and P53 pathways, and the docking scores of most of the targets were equal to or higher than that of the corresponding ligands. Pathological sections showed AE could cause zebrafish liver lesions and the result of Sudan black B staining revealed that AE blackened the liver of zebrafish with Sudan black B. Then TUNEL assay showed that a large number of dense apoptotic signals were observed in AE group, mainly distributed in the liver and yolk sac of zebrafish. The results of qRT-PCR and western blot showed that AE increased the mRNA and protein expression levels of pro-inflammatory and pro-apoptotic targets in NF-κB and P53 pathways. AE could activate the NF-κB inflammatory pathway and the P53 apoptosis pathway, and its hepatotoxic mechanism was related to activation of NF-κB-P53 inflammation-apoptosis pathways.
Collapse
Affiliation(s)
- Yunyun Quan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lihong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Junlin He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yimeng Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Meichen Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Zhixing Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
7
|
Yang D, Jiang H, Lu J, Lv Y, Baiyun R, Li S, Liu B, Lv Z, Zhang Z. Dietary grape seed proanthocyanidin extract regulates metabolic disturbance in rat liver exposed to lead associated with PPARα signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:377-387. [PMID: 29502000 DOI: 10.1016/j.envpol.2018.02.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/11/2018] [Accepted: 02/11/2018] [Indexed: 06/08/2023]
Abstract
Lead, a pervasive environmental hazard worldwide, causes a wide range of physiological and biochemical destruction, including metabolic dysfunction. Grape seed proanthocyanidin extract (GSPE) is a natural production with potential metabolic regulation in liver. This study was performed to investigate the protective role of GSPE against lead-induced metabolic dysfunction in liver and elucidate the potential molecular mechanism of this event. Wistar rats received GSPE (200 mg/kg) daily with or without lead acetate (PbA, 0.5 g/L) exposure for 56 d. According to biochemical and histopathologic analysis, GSPE attenuated lead-induced metabolic dysfunction, oxidative stress, and liver dysfunction. Liver gene expression profiling was assessed by RNA sequencing and validated by qRT-PCR. Expression of some genes in peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway was significantly suppressed in PbA group and revived in PbA + GSPE group, which was manifested by Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis and validated by western blot analysis. This study supports that dietary GSPE ameliorates lead-induced fatty acids metabolic disturbance in rat liver associated with PPARα signaling pathway, and suggests that dietary GSPE may be a protector against lead-induced metabolic dysfunction and liver injury, providing a novel therapy to protect liver against lead exposure.
Collapse
Affiliation(s)
- Daqian Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Jingjing Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ruiqi Baiyun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| | - Biying Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Zhang Y, Zhang Y, Li J, Chen Y, Han L, He Q, Chu J, Liu K. The role of hepatic antioxidant capacity and hepatobiliary transporter in liver injury induced by isopsoralen in zebrafish larvae. Hum Exp Toxicol 2018; 38:36-44. [DOI: 10.1177/0960327118774873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Isopsoralen is the main component of the Chinese medicine psoralen, which has antitumour activity and can be used for the treatment of osteoporosis. However, the mechanism behind its hepatotoxicity has not yet been elucidated. In this study, the hepatotoxicity of isopsoralen was investigated using zebrafish. Isopsoralen treatment groups of 25, 50 and 100 μM were established. The mortality, liver morphology changes, levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), liver histopathology and mRNA levels of liver injury–related genes in zebrafish larvae were measured. The results showed that isopsoralen resulted in the development of malformed zebrafish, dose-dependent increases in ALT and AST, decreased liver fluorescence and weakened fluorescence intensity. Histopathological examination showed that high-dose isopsoralen caused a large number of vacuolated structures in the larvae liver. The polymerase chain reaction results showed a significant decrease in the mRNA levels of genes related to antioxidant capacity ( lfabp, gstp2 and sod1) and drug transport ( mdr1, mrp1 and mrp2), indicating that isopsoralen significantly inhibited liver antioxidant capacity and drug efflux capacity in zebrafish larvae. Isopsoralen is hepatotoxic to zebrafish larvae via inhibition of drug transporter expression resulting in the accumulation of isopsoralen in the body and decreased antioxidant capacity, leading to liver injury.
Collapse
Affiliation(s)
- Y Zhang
- Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
| | - Y Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - J Li
- Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
- Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Y Chen
- Shandong Normal University, Jinan, People’s Republic of China
| | - L Han
- Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
| | - Q He
- Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
| | - J Chu
- Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
| | - K Liu
- Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
| |
Collapse
|
9
|
Fukushima T, Hara-Yamamura H, Nakashima K, Tan LC, Okabe S. Multiple-endpoints gene alteration-based (MEGA) assay: A toxicogenomics approach for water quality assessment of wastewater effluents. CHEMOSPHERE 2017; 188:312-319. [PMID: 28888119 DOI: 10.1016/j.chemosphere.2017.08.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
Wastewater effluents contain a significant number of toxic contaminants, which, even at low concentrations, display a wide variety of toxic actions. In this study, we developed a multiple-endpoints gene alteration-based (MEGA) assay, a real-time PCR-based transcriptomic analysis, to assess the water quality of wastewater effluents for human health risk assessment and management. Twenty-one genes from the human hepatoblastoma cell line (HepG2), covering the basic health-relevant stress responses such as response to xenobiotics, genotoxicity, and cytotoxicity, were selected and incorporated into the MEGA assay. The genes related to the p53-mediated DNA damage response and cytochrome P450 were selected as markers for genotoxicity and response to xenobiotics, respectively. Additionally, the genes that were dose-dependently regulated by exposure to the wastewater effluents were chosen as markers for cytotoxicity. The alterations in the expression of an individual gene, induced by exposure to the wastewater effluents, were evaluated by real-time PCR and the results were validated by genotoxicity (e.g., comet assay) and cell-based cytotoxicity tests. In summary, the MEGA assay is a real-time PCR-based assay that targets cellular responses to contaminants present in wastewater effluents at the transcriptional level; it is rapid, cost-effective, and high-throughput and can thus complement any chemical analysis for water quality assessment and management.
Collapse
Affiliation(s)
- Toshikazu Fukushima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Hiroe Hara-Yamamura
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Koji Nakashima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Lea Chua Tan
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
| |
Collapse
|
10
|
Sato E, Kamijo-Ikemori A, Oikawa T, Okuda A, Sugaya T, Kimura K, Nakamura T, Shibagaki Y. Urinary excretion of liver-type fatty acid-binding protein reflects the severity of sepsis. RENAL REPLACEMENT THERAPY 2017. [DOI: 10.1186/s41100-017-0107-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
11
|
Zou Y, Zhang Y, Han L, He Q, Hou H, Han J, Wang X, Li C, Cen J, Liu K. Oxidative stress-mediated developmental toxicity induced by isoniazide in zebrafish embryos and larvae. J Appl Toxicol 2017; 37:842-852. [DOI: 10.1002/jat.3432] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/22/2016] [Accepted: 12/06/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Zou
- Key Laboratory of Natural Medicine and Immuno-Engineering; Henan University; Kaifeng 475004 Henan Province People's Republic of China
- Biology Institute of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
| | - Yun Zhang
- Biology Institute of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
| | - Liwen Han
- Biology Institute of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
| | - Qiuxia He
- Biology Institute of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
| | - Hairong Hou
- Biology Institute of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
- Shandong Provincial Engineering Laboratory for Biological Testing Technology; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
| | - Jian Han
- Biology Institute of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
- Key Laboratory for Biosensor of Shandong Province; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
| | - Ximin Wang
- Biology Institute of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
- Shandong Provincial Engineering Laboratory for Biological Testing Technology; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
- Key Laboratory for Biosensor of Shandong Province; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
| | - Chengyun Li
- Ecology Institute of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
| | - Juan Cen
- Key Laboratory of Natural Medicine and Immuno-Engineering; Henan University; Kaifeng 475004 Henan Province People's Republic of China
| | - Kechun Liu
- Biology Institute of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
- Key Laboratory for Biosensor of Shandong Province; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
| |
Collapse
|
12
|
Martin GG, Landrock D, Chung S, Dangott LJ, Seeger DR, Murphy EJ, Golovko MY, Kier AB, Schroeder F. Fabp1 gene ablation inhibits high-fat diet-induced increase in brain endocannabinoids. J Neurochem 2017; 140:294-306. [PMID: 27861894 PMCID: PMC5225076 DOI: 10.1111/jnc.13890] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 01/03/2023]
Abstract
The endocannabinoid system shifts energy balance toward storage and fat accumulation, especially in the context of diet-induced obesity. Relatively little is known about factors outside the central nervous system that may mediate the effect of high-fat diet (HFD) on brain endocannabinoid levels. One candidate is the liver fatty acid binding protein (FABP1), a cytosolic protein highly prevalent in liver, but not detected in brain, which facilitates hepatic clearance of fatty acids. The impact of Fabp1 gene ablation (LKO) on the effect of high-fat diet (HFD) on brain and plasma endocannabinoid levels was examined and data expressed for each parameter as the ratio of high-fat diet/control diet. In male wild-type mice, HFD markedly increased brain N-acylethanolamides, but not 2-monoacylglycerols. LKO blocked these effects of HFD in male mice. In female wild-type mice, HFD slightly decreased or did not alter these endocannabinoids as compared with male wild type. LKO did not block the HFD effects in female mice. The HFD-induced increase in brain arachidonic acid-derived arachidonoylethanolamide in males correlated with increased brain-free and total arachidonic acid. The ability of LKO to block the HFD-induced increase in brain arachidonoylethanolamide correlated with reduced ability of HFD to increase brain-free and total arachidonic acid in males. In females, brain-free and total arachidonic acid levels were much less affected by either HFD or LKO in the context of HFD. These data showed that LKO markedly diminished the impact of HFD on brain endocannabinoid levels, especially in male mice.
Collapse
Affiliation(s)
- Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Sarah Chung
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Lawrence J. Dangott
- Protein Chemistry Laboratory, Texas A&M University, College Station, TX 77843-2128
| | - Drew R. Seeger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Eric J. Murphy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Mikhail Y. Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
| |
Collapse
|
13
|
Schroeder F, McIntosh AL, Martin GG, Huang H, Landrock D, Chung S, Landrock KK, Dangott LJ, Li S, Kaczocha M, Murphy EJ, Atshaves BP, Kier AB. Fatty Acid Binding Protein-1 (FABP1) and the Human FABP1 T94A Variant: Roles in the Endocannabinoid System and Dyslipidemias. Lipids 2016; 51:655-76. [PMID: 27117865 PMCID: PMC5408584 DOI: 10.1007/s11745-016-4155-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/11/2016] [Indexed: 01/01/2023]
Abstract
The first discovered member of the mammalian FABP family, liver fatty acid binding protein (FABP1, L-FABP), occurs at high cytosolic concentration in liver, intestine, and in the case of humans also in kidney. While the rat FABP1 is well studied, the extent these findings translate to human FABP1 is not clear-especially in view of recent studies showing that endocannabinoids and cannabinoids represent novel rat FABP1 ligands and FABP1 gene ablation impacts the hepatic endocannabinoid system, known to be involved in non-alcoholic fatty liver (NAFLD) development. Although not detectable in brain, FABP1 ablation nevertheless also impacts brain endocannabinoids. Despite overall tertiary structure similarity, human FABP1 differs significantly from rat FABP1 in secondary structure, much larger ligand binding cavity, and affinities/specificities for some ligands. Moreover, while both mouse and human FABP1 mediate ligand induction of peroxisome proliferator activated receptor-α (PPARα), they differ markedly in pattern of genes induced. This is critically important because a highly prevalent human single nucleotide polymorphism (SNP) (26-38 % minor allele frequency and 8.3 ± 1.9 % homozygous) results in a FABP1 T94A substitution that further accentuates these species differences. The human FABP1 T94A variant is associated with altered body mass index (BMI), clinical dyslipidemias (elevated plasma triglycerides and LDL cholesterol), atherothrombotic cerebral infarction, and non-alcoholic fatty liver disease (NAFLD). Resolving human FABP1 and the T94A variant's impact on the endocannabinoid and cannabinoid system is an exciting challenge due to the importance of this system in hepatic lipid accumulation as well as behavior, pain, inflammation, and satiety.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA.
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Sarah Chung
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Kerstin K Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Lawrence J Dangott
- Department of Biochemistry and Biophysics, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Shengrong Li
- Avanti Polar Lipids, 700 Industrial Park Dr., Alabaster, AL, 35007-9105, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eric J Murphy
- Department of Pharmacology, Physiology, and Therapeutics and Chemistry, University of North Dakota, Grand Forks, ND, 58202-9037, USA
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| |
Collapse
|
14
|
Martin GG, Atshaves BP, Landrock KK, Landrock D, Schroeder F, Kier AB. Loss of L-FABP, SCP-2/SCP-x, or both induces hepatic lipid accumulation in female mice. Arch Biochem Biophys 2015; 580:41-9. [PMID: 26116377 DOI: 10.1016/j.abb.2015.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 06/08/2015] [Accepted: 06/17/2015] [Indexed: 02/06/2023]
Abstract
Although roles for both sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) and liver fatty acid binding protein (L-FABP) have been proposed in hepatic lipid accumulation, individually ablating these genes has been complicated by concomitant alterations in the other gene product(s). For example, ablating SCP2/SCP-x induces upregulation of L-FABP in female mice. Therefore, the impact of ablating SCP-2/SCP-x (DKO) or L-FABP (LKO) individually or both together (TKO) was examined in female mice. Loss of SCP-2/SCP-x (DKO, TKO) more so than loss of L-FABP alone (LKO) increased hepatic total lipid and total cholesterol content, especially cholesteryl ester. Hepatic accumulation of nonesterified long chain fatty acids (LCFA) and phospholipids occurred only in DKO and TKO mice. Loss of SCP-2/SCP-x (DKO, TKO) increased serum total lipid primarily by increasing triglycerides. Altered hepatic level of proteins involved in cholesterol uptake, efflux, and/or secretion was observed, but did not compensate for the loss of L-FABP, SCP-2/SCP-x or both. However, synergistic responses were not seen with the combinatorial knock out animals-suggesting that inhibiting SCP-2/SCP-x is more correlative with hepatic dysfunction than L-FABP. The DKO- and TKO-induced hepatic accumulation of cholesterol and long chain fatty acids shared significant phenotypic similarities with non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, United States
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Kerstin K Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, United States
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, United States
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, United States
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, United States.
| |
Collapse
|
15
|
Martin GG, Atshaves BP, Landrock KK, Landrock D, Storey SM, Howles PN, Kier AB, Schroeder F. Ablating L-FABP in SCP-2/SCP-x null mice impairs bile acid metabolism and biliary HDL-cholesterol secretion. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1130-43. [PMID: 25277800 PMCID: PMC4254959 DOI: 10.1152/ajpgi.00209.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/28/2014] [Indexed: 01/31/2023]
Abstract
On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kerstin K Landrock
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Danilo Landrock
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Stephen M Storey
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas
| | - Philip N Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Ann B Kier
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas;
| |
Collapse
|
16
|
Kajimoto K, Minami Y, Harashima H. Cytoprotective role of the fatty acid binding protein 4 against oxidative and endoplasmic reticulum stress in 3T3-L1 adipocytes. FEBS Open Bio 2014; 4:602-10. [PMID: 25161868 PMCID: PMC4141204 DOI: 10.1016/j.fob.2014.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 06/20/2014] [Accepted: 06/30/2014] [Indexed: 01/27/2023] Open
Abstract
Oxidative stress in 3T3-L1 adipocytes was elevated by silencing of FABP4. FABP4 silencing did not alter levels of glutathione or superoxide dismutase. The recombinant FABP4 significantly reduced levels of hydrogen peroxide. The resistance of adipocytes to oxidative stress was decreased by FABP4 knockdown. Silencing of FABP4 elevated the endoplasmic reticulum stress in adipocytes.
The fatty acid binding protein 4 (FABP4), one of the most abundant proteins in adipocytes, has been reported to have a proinflammatory function in macrophages. However, the physiological role of FABP4, which is constitutively expressed in adipocytes, has not been fully elucidated. Previously, we demonstrated that FABP4 was involved in the regulation of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) production in 3T3-L1 adipocytes. In this study, we examined the effects of FABP4 silencing on the oxidative and endoplasmic reticulum (ER) stress in 3T3-L1 adipocytes. We found that the cellular reactive oxygen species (ROS) and 8-nitro-cyclic GMP levels were significantly elevated in the differentiated 3T3-L1 adipocytes transfected with a small interfering RNA (siRNA) against Fabp4, although the intracellular levels or enzyme activities of antioxidants including reduced glutathione (GSH), superoxide dismutase (SOD) and glutathione S-transferase A4 (GSTA4) were not altered. An in vitro evaluation using the recombinant protein revealed that FABP4 itself functions as a scavenger protein against hydrogen peroxide (H2O2). FABP4-knockdown resulted in a significant lowering of cell viability of 3T3-L1 adipocytes against H2O2 treatment. Moreover, four kinds of markers related to the ER stress response including the endoplasmic reticulum to nucleus signaling 1 (Ern1), the signal sequence receptor α (Ssr1), the ORM1-like 3 (Ormdl3), and the spliced X-box binding protein 1 (Xbp1s), were all elevated as the result of the knockdown of FABP4. Consequently, FABP4 might have a new role as an antioxidant protein against H2O2 and contribute to cytoprotection against oxidative and ER stress in adipocytes.
Collapse
Key Words
- Adipocyte
- Antioxidant
- ER stress
- ER, endoplasmic reticulum
- Ern1, endoplasmic reticulum to nucleus signaling 1
- FABP, fatty acid binding protein
- FABP4
- GSH, reduced glutathione
- GSTA4, glutathione S-transferase A4
- H2O2, hydrogen peroxide
- Ormdl3, ORM1-like 3
- Oxidative stress
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- Ssr1, signal sequence receptor α
- UPR, unfolded protein response
- VEGF, vascular endothelial growth factor
- Xbp1, X-box binding protein 1.
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Kazuaki Kajimoto
- Corresponding author. Tel.: +81 11 706 2197; fax: +81 11 706 4879.
| | | | | |
Collapse
|
17
|
Rochette L, Zeller M, Cottin Y, Vergely C. Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta Gen Subj 2014; 1840:2709-29. [PMID: 24905298 DOI: 10.1016/j.bbagen.2014.05.017] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/12/2014] [Accepted: 05/27/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diabetes has emerged as a major threat to health worldwide. SCOPE OF REVIEW The exact mechanisms underlying the disease are unknown; however, there is growing evidence that excess generation of reactive oxygen species (ROS), largely due to hyperglycemia, causes oxidative stress in a variety of tissues. Oxidative stress results from either an increase in free radical production, or a decrease in endogenous antioxidant defenses, or both. ROS and reactive nitrogen species (RNS) are products of cellular metabolism and are well recognized for their dual role as both deleterious and beneficial species. In type 2 diabetic patients, oxidative stress is closely associated with chronic inflammation. Multiple signaling pathways contribute to the adverse effects of glucotoxicity on cellular functions. There are many endogenous factors (antioxidants, vitamins, antioxidant enzymes, metal ion chelators) that can serve as endogenous modulators of the production and action of ROS. Clinical trials that investigated the effect of antioxidant vitamins on the progression of diabetic complications gave negative or inconclusive results. This lack of efficacy might also result from the fact that they were administered at a time when irreversible alterations in the redox status are already under way. Another strategy to modulate oxidative stress is to exploit the pleiotropic properties of drugs directed primarily at other targets and thus acting as indirect antioxidants. MAJOR CONCLUSIONS It appears important to develop new compounds that target key vascular ROS producing enzymes and mimic endogenous antioxidants. GENERAL SIGNIFICANCE This strategy might prove clinically relevant in preventing the development and/or retarding the progression of diabetes associated with vascular diseases.
Collapse
Affiliation(s)
- Luc Rochette
- Laboratoire de Physiopathologie et Pharmacologie Cardio-Métaboliques, INSERM UMR866, Université de Bourgogne, Facultés de Médecine et Pharmacie, 7 Boulevard Jeanne d'Arc, 21079 Dijon, France.
| | - Marianne Zeller
- Laboratoire de Physiopathologie et Pharmacologie Cardio-Métaboliques, INSERM UMR866, Université de Bourgogne, Facultés de Médecine et Pharmacie, 7 Boulevard Jeanne d'Arc, 21079 Dijon, France
| | - Yves Cottin
- Laboratoire de Physiopathologie et Pharmacologie Cardio-Métaboliques, INSERM UMR866, Université de Bourgogne, Facultés de Médecine et Pharmacie, 7 Boulevard Jeanne d'Arc, 21079 Dijon, France
| | - Catherine Vergely
- Laboratoire de Physiopathologie et Pharmacologie Cardio-Métaboliques, INSERM UMR866, Université de Bourgogne, Facultés de Médecine et Pharmacie, 7 Boulevard Jeanne d'Arc, 21079 Dijon, France
| |
Collapse
|
18
|
Deng Z, Zhou JJ, Sun SY, Zhao X, Sun Y, Pu XP. Procaterol but not dexamethasone protects 16HBE cells from H₂O₂-induced oxidative stress. J Pharmacol Sci 2014; 125:39-50. [PMID: 24739282 DOI: 10.1254/jphs.13206fp] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Oxidative stress is an important pathophysiological factor of asthma and chronic obstructive pulmonary disease (COPD). We hypothesized that procaterol and dexamethasone might treat inflammation through inhibiting oxidative stress in vitro. This study evaluated procaterol and dexamethasone in the hydrogen peroxide (H2O2)-induced immortal human bronchial epithelial cell model of oxidative stress and investigated the underlying mechanisms. Results showed that exposure to 125 μM H2O2 for 2 h led to a 50% reduction in the cell viability, significantly increased the percentage of apoptosis, and elevated levels of malondialdehyde and reactive oxygen species. Pretreatment with procaterol (25 - 200 nM) could reduce these effects in a dose-dependent manner. In contrast, pretreatment with dexamethasone (100 nM, 1000 nM) was inefficient. Pretreatment with procaterol plus dexamethasone (100 nM procaterol + 1000 nM dexamethasone) was effective, but the combined effect was not more effective than the sole pretreatment with 100 nM procaterol. The nuclear factor kappa-B (NF-κB) pathway was involved in the pathogenic mechanisms of H2O2. Procaterol may indirectly inhibit H2O2-induced activation of the NF-κB pathway due to its capability of antioxidation. Glucocorticoids may be not recommended to treat asthma or COPD complicated with severe oxidative stress.
Collapse
Affiliation(s)
- Zheng Deng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, China
| | | | | | | | | | | |
Collapse
|
19
|
Huang H, McIntosh AL, Martin GG, Landrock KK, Landrock D, Gupta S, Atshaves BP, Kier AB, Schroeder F. Structural and functional interaction of fatty acids with human liver fatty acid-binding protein (L-FABP) T94A variant. FEBS J 2014; 281:2266-83. [PMID: 24628888 DOI: 10.1111/febs.12780] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/17/2014] [Accepted: 03/11/2014] [Indexed: 12/13/2022]
Abstract
The human liver fatty acid-binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride levels. How this amino acid substitution elicits these effects is not known. This issue was addressed using human recombinant wild-type (WT) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC and CC). The T94A substitution did not alter or only slightly altered L-FABP binding affinities for saturated, monounsaturated or polyunsaturated long chain fatty acids, nor did it change the affinity for intermediates of triglyceride synthesis. Nevertheless, the T94A substitution markedly altered the secondary structural response of L-FABP induced by binding long chain fatty acids or intermediates of triglyceride synthesis. Finally, the T94A substitution markedly decreased the levels of induction of peroxisome proliferator-activated receptor α-regulated proteins such as L-FABP, fatty acid transport protein 5 and peroxisome proliferator-activated receptor α itself meditated by the polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid in cultured primary human hepatocytes. Thus, although the T94A substitution did not alter the affinity of human L-FABP for long chain fatty acids, it significantly altered human L-FABP structure and stability, as well as the conformational and functional response to these ligands.
Collapse
Affiliation(s)
- Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Luo SW, Cai L, Liu Y, Wang WN. Functional analysis of a dietary recombinant fatty acid binding protein 10 (FABP10) on the Epinephelus coioides in response to acute low temperature challenge. FISH & SHELLFISH IMMUNOLOGY 2014; 36:475-484. [PMID: 24412164 DOI: 10.1016/j.fsi.2013.12.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/26/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
The effect of Ec-FABP10 (Epinephelus coiodes-FABP10) on growth performance, enzyme activity, respiratory burst, MDA level, ATP content, immune-related gene expression of juvenile orange-spotted grouper (E. coioides). The commercial diet supplemented with FABP10 protein was feed to orange-spotted grouper for six weeks. No significant difference was observed in the specific growth rates, while the survival rate in the FABP10 additive group was significantly higher. After the feeding trial, the groupers were exposed to acute low temperature challenge. The decreased level of respiratory burst activity was observed in the FABP10 additive group after the exposure to the acute low temperature stress, while the blood cell count increased significantly at 15 °C and a significant increase of ATP content was observed at 10 °C. Higher enzymatic activities of CAT and SOD were observed at 20 °C and 15 °C, respectively. Meanwhile, the lower level of MDA was observed after the exposure to acute low temperature challenge by comparing with the controls. Further transcript expression analyses of FABP10, SOD2, GPX4, HSPA4 and LIPC in liver by quantitative real-time PCR demonstrated that the up-regulated transcript expression of FABP10, SOD2, HSPA4 and LIPC was observed in FABP10 additive group at 15 °C, while the transcript expression of GPX4 increased significantly at 20 °C. Western blotting analysis confirmed that FABP10 protein expression strongly increased at 15 ± 0.5 °C in FABP10 additive group. These results showed that FABP10 additive diet could moderate the metabolic and immune abilities mainly via ROS pathway in the orange-spotted grouper.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Luo Cai
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Yuan Liu
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Wei-Na Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
21
|
Jiang H, Li F, Zhang J, Zhang J, Huang B, Yu Y, Xiang J. Comparison of protein expression profiles of the hepatopancreas in Fenneropenaeus chinensis challenged with heat-inactivated Vibrio anguillarum and white spot syndrome virus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:111-123. [PMID: 24057166 DOI: 10.1007/s10126-013-9538-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Fenneropenaeus chinensis (Chinese shrimp) culture industry, like other Penaeidae culture, has been seriously affected by the shrimp diseases caused by bacteria and virus. To better understand the mechanism of immune response of shrimp to different pathogens, proteome research approach was utilized in this study. Firstly, the soluble hepatopancreas protein samples in adult Chinese shrimp among control, heat-inactivated Vibrio-challenged and white spot syndrome virus-infected groups were separated by 2-DE (pH range, 4-7; sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and pH range, 3-10; tricine-SDS-PAGE). Then the differentially expressed protein spots (≥1.5-fold or ≤0.67-fold averagely of controls) were analyzed by LC-ESI-MS/MS. Using Mascot online database searching algorithm and SEQUEST searching program, 48 and 49 differentially expressed protein spots were successfully identified in response to Vibrio and white spot syndrome virus infection, respectively. Based on these results, we discussed the mechanism of immune response of the shrimp and shed light on the differences between immune response of shrimp toward Vibrio and white spot syndrome virus. This study also set a basis for further analyses of some key genes in immune response of Chinese shrimp.
Collapse
Affiliation(s)
- Hao Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Storey SM, McIntosh AL, Huang H, Martin GG, Landrock KK, Landrock D, Payne HR, Kier AB, Schroeder F. Loss of intracellular lipid binding proteins differentially impacts saturated fatty acid uptake and nuclear targeting in mouse hepatocytes. Am J Physiol Gastrointest Liver Physiol 2012; 303:G837-50. [PMID: 22859366 PMCID: PMC3469595 DOI: 10.1152/ajpgi.00489.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The liver expresses high levels of two proteins with high affinity for long-chain fatty acids (LCFAs): liver fatty acid binding protein (L-FABP) and sterol carrier protein-2 (SCP-2). Real-time confocal microscopy of cultured primary hepatocytes from gene-ablated (L-FABP, SCP-2/SCP-x, and L-FABP/SCP-2/SCP-x null) mice showed that the loss of L-FABP reduced cellular uptake of 12-N-methyl-(7-nitrobenz-2-oxa-1,3-diazo)-aminostearic acid (a fluorescent-saturated LCFA analog) by ∼50%. Importantly, nuclear targeting of the LCFA was enhanced when L-FABP was upregulated (SCP-2/SCP-x null) but was significantly reduced when L-FABP was ablated (L-FABP null), thus impacting LCFA nuclear targeting. These effects were not associated with a net decrease in expression of key membrane proteins involved in LCFA or glucose transport. Since hepatic LCFA uptake and metabolism are closely linked to glucose uptake, the effect of glucose on L-FABP-mediated LCFA uptake and nuclear targeting was examined. Increasing concentrations of glucose decreased cellular LCFA uptake and even more extensively decreased LCFA nuclear targeting. Loss of L-FABP exacerbated the decrease in LCFA nuclear targeting, while loss of SCP-2 reduced the glucose effect, resulting in enhanced LCFA nuclear targeting compared with control. Simply, ablation of L-FABP decreases LCFA uptake and even more extensively decreases its nuclear targeting.
Collapse
Affiliation(s)
- Stephen M. Storey
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Avery L. McIntosh
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Huan Huang
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Gregory G. Martin
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Kerstin K. Landrock
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Danilo Landrock
- 2Department of Pathobiology, Texas A & M University, College Station, Texas
| | - H. Ross Payne
- 2Department of Pathobiology, Texas A & M University, College Station, Texas
| | - Ann B. Kier
- 2Department of Pathobiology, Texas A & M University, College Station, Texas
| | - Friedhelm Schroeder
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| |
Collapse
|
23
|
Qi ZH, Liu YF, Wang WN, Xin Y, Xie FX, Wang AL. Fatty acid binding protein 10 in the orange-spotted grouper (Epinephelus coioides): characterization and regulation under pH and temperature stress. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:447-55. [PMID: 22182678 DOI: 10.1016/j.cbpc.2011.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/02/2011] [Accepted: 12/04/2011] [Indexed: 11/29/2022]
Abstract
We have isolated and characterized a fatty acid binding protein from the liver of the orange-spotted grouper (Epinephelus coioides). Amino acid sequence similarity of the Ec-FABP (E. coioides-FABP) was highest to FABP10s isolated from the livers of catfish, chicken, salamander and iguana. The open-reading frame of the Ec-FABP codes for a protein of 14.0 kDa with a calculated isoelectric point of 8.5. We first expressed a FABP10 protein from orange-spotted grouper (E. coioides) in Pichia pastoris, and then characterized the antioxidative potential of our recombinant Ec-FABP by DCF fluorescence assay. RT-PCR assays showed that endogenous Ec-FABP mRNA is most strongly expressed in liver with the most abundance and intestine. Change in the groupers' blood cells respiratory burst activity was examined during and after exposure to the pH and temperature stress using flow cytometry. Further analysis of Ec-FABP gene expression in liver tissue by quantitative real-time PCR demonstrated that Ec-FABP transcript levels increased when the fish were exposed to both pH and temperature stress, but the time when its mRNA expression level peaked differed under these stresses. Western blot analyses confirmed that the Ec-FABP protein was strongly expressed in the liver after exposure to the pH and temperature stress. These results suggest that Ec-FABP expression is stimulated by pH and temperature stress and that it may play important roles in general adaptive and antioxidant responses.
Collapse
Affiliation(s)
- Zeng-hua Qi
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | | | | | | | | | | |
Collapse
|
24
|
Zhang Y, Jiang Z, Su Y, Chen M, Li F, Liu L, Sun L, Wang Y, Zhang S, Zhang L. Gene expression profiling reveals potential key pathways involved in pyrazinamide-mediated hepatotoxicity in Wistar rats. J Appl Toxicol 2012; 33:807-19. [DOI: 10.1002/jat.2736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/04/2012] [Accepted: 01/14/2012] [Indexed: 12/18/2022]
Affiliation(s)
- Yun Zhang
- Jiangsu Center of Drug Screening; China Pharmaceutical University; 24 Tong Jia Xiang; Nanjing; 210009; China
| | | | - Yijing Su
- Jiangsu Center of Drug Screening; China Pharmaceutical University; 24 Tong Jia Xiang; Nanjing; 210009; China
| | - Mi Chen
- Jiangsu Center of Drug Screening; China Pharmaceutical University; 24 Tong Jia Xiang; Nanjing; 210009; China
| | - Fu Li
- Jiangsu Center of Drug Screening; China Pharmaceutical University; 24 Tong Jia Xiang; Nanjing; 210009; China
| | - Li Liu
- The School of Pharmaceutical Engineering and Life Sciences; Changzhou University; Changzhou; 213000; China
| | - Lixin Sun
- Jiangsu Center of Drug Screening; China Pharmaceutical University; 24 Tong Jia Xiang; Nanjing; 210009; China
| | - Yun Wang
- Jiangsu Center of Drug Screening; China Pharmaceutical University; 24 Tong Jia Xiang; Nanjing; 210009; China
| | - Shuang Zhang
- Jiangsu Center of Drug Screening; China Pharmaceutical University; 24 Tong Jia Xiang; Nanjing; 210009; China
| | | |
Collapse
|
25
|
Janevski M, Antonas KN, Sullivan-Gunn MJ, McGlynn MA, Lewandowski PA. The effect of cocoa supplementation on hepatic steatosis, reactive oxygen species and LFABP in a rat model of NASH. COMPARATIVE HEPATOLOGY 2011; 10:10. [PMID: 22081873 PMCID: PMC3227569 DOI: 10.1186/1476-5926-10-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 11/14/2011] [Indexed: 02/05/2023]
Abstract
Background Non alcoholic steatohepatitis is hypothesised to develop via a mechanism involving fat accumulation and oxidative stress. The current study aimed to investigate if an increase in oxidative stress was associated with changes in the expression of liver fatty acid binding protein in a rat model of non alcoholic steatohepatitis and whether cocoa supplementation attenuated those changes. Methods Female Sprague Dawley rats were fed a high fat control diet, a high fat methionine choline deficient diet, or one of four 12.5% cocoa supplementation regimes in combination with the high fat methionine choline deficient diet. Results Liver fatty acid binding protein mRNA and protein levels were reduced in the liver of animals with fatty liver disease when compared to controls. Increased hepatic fat content was accompanied by higher levels of oxidative stress in animals with fatty liver disease when compared to controls. An inverse association was found between the levels of hepatic liver fatty acid binding protein and the level of hepatic oxidative stress in fatty liver disease. Elevated NADPH oxidase protein levels were detected in the liver of animals with increased severity in inflammation and fibrosis. Cocoa supplementation was associated with partial attenuation of these pathological changes, although the severity of liver disease induced by the methionine choline deficient diet prevented complete reversal of any disease associated changes. Red blood cell glutathione was increased by cocoa supplementation, whereas liver glutathione was reduced by cocoa compared to methionine choline deficient diet fed animals. Conclusion These findings suggest a potential role for liver fatty acid binding protein and NADPH oxidase in the development of non alcoholic steatohepatitis. Furthermore, cocoa supplementation may have be of therapeutic benefit in less sever forms of NASH.
Collapse
Affiliation(s)
- Mile Janevski
- School of Medicine, Deakin University, Waurn Ponds, Australia.
| | | | | | | | | |
Collapse
|
26
|
Zeiser JJ, Klodmann J, Braun HP, Gerhard R, Just I, Pich A. Effects of Clostridium difficile Toxin A on the proteome of colonocytes studied by differential 2D electrophoresis. J Proteomics 2011; 75:469-79. [PMID: 21890007 DOI: 10.1016/j.jprot.2011.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/19/2011] [Accepted: 08/15/2011] [Indexed: 02/04/2023]
Abstract
Clostridium difficile is a spore-forming anaerobic pathogen, commonly associated with severe diarrhea or life-threatening pseudomembraneous colitis. Its main virulence factors are the single-chain, multi-domain toxin A (TcdA) and B (TcdB). Their glucosyltransferase domain selectively inactivates Rho proteins leading to a reorganization of the cytoskeleton. To study exclusively glucosyltransferase-dependent molecular effects of TcdA, human colonic cells (Caco-2) were treated with recombinant wild type TcdA and the glucosyltransferase deficient variant of the toxin, TcdA(gd) for 24h. Changes in the protein pattern of the colonic cells were investigated by 2-D DIGE and LCMS/MS methodology combined with detailed proteome mapping. gdTcdA did not induce any detectable significant changes in the protein pattern. Comparing TcdA-treated cells with a control group revealed seven spots of higher and two of lower intensity (p<0.05). Three proteins are involved in the assembly of the cytoskeleton (β-actin, ezrin, and DPYL2) and four are involved in metabolism and/or oxidative stress response (ubiquitin, DHE3, MCCB, FABPL) and two in regulatory processes (FUBP1, AL1A1). These findings correlate well to known effects of TcdA like the reorganization of the cytoskeleton and stress the importance of Rho protein glucosylation for the pathogenic effects of TcdA.
Collapse
Affiliation(s)
- Johannes J Zeiser
- Institute for Toxicology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Yan J, Gong Y, Wang G, Gong Y, Burczynski FJ. Regulation of liver fatty acid binding protein expression by clofibrate in hepatoma cells. Biochem Cell Biol 2010; 88:957-67. [DOI: 10.1139/o10-151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) agonists such as clofibrate are known to affect liver fatty acid binding protein (L-FABP) levels, which in turn influence hepatocellular oxidant status. The mechanism of clofibrate’s modulation of L-FABP levels is not clear. In this study we used clofibrate (PPARα agonist), MK886 (PPARα antagonist), and GW9662 (PPARγ antagonist) in determining the regulating mechanism of L-FABP expression and its antioxidant activity in CRL-1548 hepatoma cells. Antioxidant activity was assessed by determining intracellular reactive oxygen species (ROS) using dichlorofluorescein (DCF) fluorescence. The effect of clofibrate on cytosolic activity of the intracellular antioxidant enzymes was also assessed. RT-PCR and mRNA stability assay showed that clofibrate treatment enhanced L-FABP mRNA stability, which resulted in increased L-FABP levels. A nuclear run-off assay and RT-PCR measurements of L-FABP mRNA revealed that clofibrate increased the L-FABP gene transcription rate. The increased L-FABP was associated with reduced cytosolic ROS. Levels of superoxide dismutase, glutathione peroxidase, and catalase were not affected by clofibrate treatment. L-FABP siRNA knockdown studies showed that a reduction in L-FABP expression was associated with increased DCF fluorescence. We conclude that clofibrate enhanced L-FABP gene transcription and mRNA stability, thus affecting L-FABP expression and ultimately cellular antioxidant activity.
Collapse
Affiliation(s)
- Jing Yan
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yuewen Gong
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Guqi Wang
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yu Gong
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Frank J. Burczynski
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
28
|
Mitochondrial HMG-CoA synthase partially contributes to antioxidant protection in the kidney of stroke-prone spontaneously hypertensive rats. Nutrition 2010; 26:1176-80. [PMID: 20137896 DOI: 10.1016/j.nut.2009.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/21/2009] [Accepted: 10/21/2009] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Increased oxidative stress plays an important role in cardiovascular diseases including hypertension and stroke. Evidence has indicated that ketone bodies could exert antioxidative effects. We explored the role of renal mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMGCS2) expression, a key control site of ketogenesis, in stroke-prone spontaneously hypertensive rats (SHRSPs) and their ancestral hypertensive but stroke-resistant spontaneously hypertensive rats (SHRs). METHODS Two groups of SHRSPs were fed a standard chow or standard chow supplemented with clofibrate (an agonist of HMGCS2 promoter), respectively, and SHRs fed with a standard chow were used as controls. The renal levels of HMGCS2, Akt, and phosphorylated protein kinase B (Akt) were measured by western blotting. Malondialdehyde, catalase, superoxide dismutase, and glutathione peroxidase were detected by assay kits. RESULTS Compared with SHRs, lower HMGCS2 protein expression, enhanced phosphorylated Akt signal, higher malondialdehyde levels, and higher catalase activity were observed in kidney tissues in SHRSPs (P < 0.05). No differences in superoxide dismutase and glutathione peroxidase activities were observed between SHRSPs and SHRs. Clofibrate treatment significantly upregulated renal HMGCS2 expressions, inhibited phosphorylation of Akt, and decreased malondialdehyde levels and catalase activities in SHRSP kidney tissues (P < 0.05). CONCLUSION These results demonstrated the difference in HMGCS2 expression and oxidative stress in kidney tissues between SHRSPs and their SHR controls. The enhanced oxidative stress was partly due to the lower HMGCS2 expression regulated possibly by the Akt signaling pathway.
Collapse
|
29
|
Ren Q, Du ZQ, Zhao XF, Wang JX. An acyl-CoA-binding protein (FcACBP) and a fatty acid binding protein (FcFABP) respond to microbial infection in Chinese white shrimp, Fenneropenaeus chinensis. FISH & SHELLFISH IMMUNOLOGY 2009; 27:739-747. [PMID: 19766195 DOI: 10.1016/j.fsi.2009.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 09/02/2009] [Accepted: 09/03/2009] [Indexed: 05/28/2023]
Abstract
Acyl-CoA-binding protein (ACBP) and fatty acid-binding protein (FABP) are involved in lipid metabolism. ACBP plays a key role in multiple cellular tasks including modulation of fatty acid biosynthesis, enzyme regulation, vesicular trafficking, and gene regulation. In our study, a 536 bp cDNA of ACBP (FcACBP) was cloned and identified as a widely distributed gene in the Chinese white shrimp, Fenneropenaeus chinensis. Its expression in intestine was upregulated in response to white spot syndrome virus (WSSV) or Vibrio anguillarum infection. The expression patterns were confirmed by Western blot analysis. FABPs, members of the lipid-binding protein superfamily, play an important role in lipid metabolism and also participate in vertebrate innate immunity. A cDNA of FABP (FcFABP) cloned from the hepatopancreas of the shrimp was 715 bp in size and encoded a 14 kDa protein. FcFABP appeared to be a basic fatty acid binding protein with a predicted isoelectric point of 9.16. It showed sequence similarity to both vertebrate and invertebrate FABPs. Phylogenetic analysis showed that FcFABP, together with LvFABP, were clustered into one group. FcFABP was detected mainly in the hepatopancreas and expression level increased after a challenge with WSSV. FcFABP was down-regulated by V. anguillarum challenge. The protein also had bacterial binding activity. These two lipid metabolism related proteins may play important roles in shrimp innate immunity.
Collapse
Affiliation(s)
- Qian Ren
- School of Life Sciences, Shandong University, Jinan, Shandong 250100, PR China
| | | | | | | |
Collapse
|
30
|
Jiang H, Li F, Xie Y, Huang B, Zhang J, Zhang J, Zhang C, Li S, Xiang J. Comparative proteomic profiles of the hepatopancreas in Fenneropenaeus chinensis
response to hypoxic stress. Proteomics 2009; 9:3353-67. [DOI: 10.1002/pmic.200800518] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Walther UI, Mückter H. GLUTATHIONE SYNTHESIS AGAINST OXIDANT INJURY BY PEROXIDES IN TWO ALVEOLAR EPITHELIAL CELL LINES. Exp Lung Res 2009; 35:89-103. [DOI: 10.1080/01902140802441569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Salas-Leiton E, Cánovas-Conesa B, Zerolo R, López-Barea J, Cañavate JP, Alhama J. Proteomics of juvenile senegal sole (Solea senegalensis) affected by gas bubble disease in hyperoxygenated ponds. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:473-487. [PMID: 19101763 DOI: 10.1007/s10126-008-9168-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 11/19/2008] [Indexed: 05/27/2023]
Abstract
Solea senegalensis is a commercial flat fish traditionally farmed in earth ponds in coastal wetlands that might also become important to more intensive aquaculture. Gas bubble disease (GBD) is a potential risk for outdoor fish farming, particularly in certain periods of the year, related to improper management leading to macroalgae blooms. Physical-chemical conditions inducing hyperoxia, including radiation, temperature, and high levels of dissolved oxygen, have been monitored in fish affected by GBD together with observed symptoms. Exophthalmia, subcutaneous emphysemas, obstruction of gill lamellae, hemorrhages, and anomalous swimming were the main effects of oxygen supersaturation. A proteomic study was carried out for the first time under aquaculture conditions and protein expression changes are described for fish that were subject to hyperoxic conditions. Proteins identified in gill of GBD-affected fish are related to oxidative alteration of cytoskeleton structure/function (beta-tubulin, beta-actin), motility (light myosin chain, alpha-tropomyosin), or regulatory pathways (calmodulin, Raf kinase inhibitor protein), reflecting the central role of gill in oxygen exchange. Hepatic proteins identified are related to protein oxidative damages (beta-globin, FABPs), protection from oxidative stress (DCXR, GNMT), and inflammatory response (C3), in agreement with the predominant metabolic role of liver. Comparison of protein expression patterns and protein identification are suggested as potentially specific hyperoxia biomarkers that would facilitate prevention of GBD outbreaks.
Collapse
Affiliation(s)
- E Salas-Leiton
- IFAPA Centro El Toruño, Junta de Andalucía, El Puerto de Santa María, Cádiz, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Böhme M, Grallert H, Klapper M, Gieger C, Fischer A, Heid I, Wichmann HE, Döring F, Illig T. Association between functional FABP2 promoter haplotypes and body mass index: Analyses of 8072 participants of the KORA cohort study. Mol Nutr Food Res 2009; 53:681-5. [DOI: 10.1002/mnfr.200800225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Yan J, Gong Y, She YM, Wang G, Roberts MS, Burczynski FJ. Molecular mechanism of recombinant liver fatty acid binding protein's antioxidant activity. J Lipid Res 2009; 50:2445-54. [PMID: 19474456 DOI: 10.1194/jlr.m900177-jlr200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatocytes expressing liver fatty acid binding protein (L-FABP) are known to be more resistant to oxidative stress than those devoid of this protein. The mechanism for the observed antioxidant activity is not known. We examined the antioxidant mechanism of a recombinant rat L-FABP in the presence of a hydrophilic (AAPH) or lipophilic (AMVN) free radical generator. Recombinant L-FABP amino acid sequence and its amino acid oxidative products following oxidation were identified by MALDI quadrupole time-of-flight MS after being digested by endoproteinase Glu-C. L-FABP was observed to have better antioxidative activity when free radicals were generated by the hydrophilic generator than by the lipophilic generator. Oxidative modification of L-FABP included up to five methionine oxidative peptide products with a total of approximately 80 Da mass shift compared with native L-FABP. Protection against lipid peroxidation of L-FABP after binding with palmitate or alpha-bromo-palmitate by the AAPH or AMVN free radical generators indicated that ligand binding can partially block antioxidant activity. We conclude that the mechanism of L-FABP's antioxidant activity is through inactivation of the free radicals by L-FABP's methionine and cysteine amino acids. Moreover, exposure of the L-FABP binding site further promotes its antioxidant activity. In this manner, L-FABP serves as a hepatocellular antioxidant.
Collapse
Affiliation(s)
- Jing Yan
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Nasrollahzadeh J, Siassi F, Doosti M, Eshraghian MR, Shokri F, Modarressi MH, Mohammadi-Asl J, Abdi K, Nikmanesh A, Karimian SM. The influence of feeding linoleic, gamma-linolenic and docosahexaenoic acid rich oils on rat brain tumor fatty acids composition and fatty acid binding protein 7 mRNA expression. Lipids Health Dis 2008; 7:45. [PMID: 19014610 PMCID: PMC2605445 DOI: 10.1186/1476-511x-7-45] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Accepted: 11/16/2008] [Indexed: 11/10/2022] Open
Abstract
Background Experimental studies indicate that gamma linolenic acid (GLA) and docosahexaenoic acid (DHA) may inhibit glioma cells growth but effects of oral consumption of these fatty acids on brain tumor fatty acid composition have not been determined in vivo. Methods GLA oil (GLAO; 72% GLA), DHA oil (DHAO; 73% DHA) were fed to adult wistar rats (1 mL/rat/day) starting one week prior to C6 glioma cells implantation and continued for two weeks after implantation. Control group were fed same amount of high linoleic acid safflower oil (74–77% linoleic acid). Fatty acid composition of tumor samples was determined in a set of 8–12 animals in each group and serum fatty acid in 6 animals per each group. Gene expression of tumor fatty acid binding protein 7 (FABP7), epidermal growth factor receptor (EGFR), peroxisome proliferator activated receptor γ (PPAR-γ) and retinoid × receptor-α (RXR-α) were determined in a set of 18 animals per group. Results DHAO feeding increased EPA of brain tumors and decreased ratio of n-6/n-3 fatty acids. Serum levels of EPA were also increased in DHAO group. A similar trend in serum and tumor levels of DHA were observed in DHAO group but it did not achieve statistical significance. GLAO increased serum concentration of GLA but had no significant effect on tumor GLA or dihomo-gamma linolenic acid (DGLA) concentrations. Gene expression of FABP7 was up-regulated in tumors of DHAO group but no other significant effects were observed on EGFR, PPAR-γ or RXR-α expression, and expression of these genes in tumors of GLAO were not different from SFO group. Conclusion Dietary supplementation of DHA containing oil could be an effective way to increase levels of long chain n-3 fatty acids in brain tumors and this increase may be mediated partly by up-regulation of FABP7 expression.
Collapse
Affiliation(s)
- Javad Nasrollahzadeh
- Department of Nutrition and Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Walther UI, Stets R. Glucocorticoid pretreatment increases toxicity due to peroxides in alveolar epithelial-like cell lines. Toxicology 2008; 256:48-52. [PMID: 19056457 DOI: 10.1016/j.tox.2008.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 10/13/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
In previous experiments an increase in zinc-mediated toxicity was found after pretreatment of alveolar epithelial type II-like cells with glucocorticoids. In this work toxicity of two peroxides (tertiary butyl hydroperoxide [tBHP], hydrogene peroxide [HP]) was assessed in L2 and A549 cells compared to dexamethasone (DEX) pretreated cells. Pretreatment of cells with 7.5micromol/l DEX for 72h decreased cellular glutathione content in both cell lines. Furthermore compared to not pretreated cells toxicity of both peroxides was increased in A549 cells, while in L2 cells only toxicity of tBHP was significantly increased by the glucocorticoid pretreatment. HP toxicity only showed a tendency to be increased in L2 cells after DEX pretreatment. The results point to a glucocorticoid-dependent increased oxidative stress of alveolar epithelial type II cells as antagonised by antioxidative enzymes such as catalase and/or preferentially by the glutathione system. This furthermore should be considered for all glucocorticoid applications in vivo as well.
Collapse
Affiliation(s)
- Udo I Walther
- Walther-Straub-Institut für Pharmakologie und Toxikologie der Ludwig-Maximilians-Universität München, Nussbaumstr. 26, 80336 München, Germany.
| | | |
Collapse
|
37
|
Liu P, Lu HX, Yin ZF. Advance in liver-type fatty acid binding protein. Shijie Huaren Xiaohua Zazhi 2008; 16:3523-3527. [DOI: 10.11569/wcjd.v16.i31.3523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver-type fatty acid binding protein (L-FABP) is an important member of FABP family, and mainly expressed in liver, intestine and kidney. In the past, it was found that L-FABP was related to the absorption, translocation and redistribution of long-chain fatty acid in intestine and cell compartments. Recent studtes indicated L-FABP is one pivotal signal molecular related to alcoholic or non-alcoholic fatty liver, kidney parenchymal injury, diabetes, ischemia injury and so on. In regard to its small molecular weight and membrane infiltration ability, L-FABP may be a high-sensitive marker of liver or kidney injury. Here, we review the research progress in the physical function, regulation mechanism and clinical application of L-FABP.
Collapse
|
38
|
Klapper M, Böhme M, Nitz I, Döring F. Transcriptional regulation of the fatty acid binding protein 2 (FABP2) gene by the hepatic nuclear factor 1 alpha (HNF-1alpha). Gene 2008; 416:48-52. [PMID: 18440731 DOI: 10.1016/j.gene.2008.02.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/17/2008] [Accepted: 02/29/2008] [Indexed: 12/29/2022]
Abstract
The human fatty acid binding protein (FABP2) is involved in intestinal absorption and intracellular trafficking of long-chain fatty acids. Here we investigate transcriptional regulation of FABP2 by the endodermal hepatic nuclear factor 1 alpha (HNF-1alpha). In electromobility shift and supershift assays we show the presence of two adjacent HNF-1alpha binding sites within the FABP2 promoter regions -185 to -165 and -169 to -149. HNF-1alpha activates an FABP2 promoter luciferase construct by 3.5 and 20-fold in Caco-2 and Hela cells, respectively. Mutational analysis of HNF-1alpha elements resulted in about 50% reduction of basal and HNF-1alpha induced activity of FABP2 promoter constructs, predominantly caused by deletion of the -185 to -165 site. Thus, our data suggest a major role of HNF-1alpha in control of FABP2 expression in intestine via a functional HNF-1alpha recognition element within FABP2 promoter region -185 to -165.
Collapse
Affiliation(s)
- Maja Klapper
- Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel, Germany.
| | | | | | | |
Collapse
|
39
|
Wang G, Shen H, Rajaraman G, Roberts MS, Gong Y, Jiang P, Burczynski F. Expression and antioxidant function of liver fatty acid binding protein in normal and bile-duct ligated rats. Eur J Pharmacol 2007; 560:61-8. [PMID: 17292345 DOI: 10.1016/j.ejphar.2007.01.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 12/21/2006] [Accepted: 01/08/2007] [Indexed: 11/17/2022]
Abstract
Liver fatty acid binding protein has recently been shown to possess antioxidant properties but its role in liver disease, such as cholestasis, is not known. Since oxidative stress has been recognized as an important contributing factor in liver disease, we investigated the expression and antioxidative function of this protein using the bile-duct ligated model of cholestasis. Rats were divided into 3 groups: sham, bile-duct ligated and bile-duct ligated plus clofibrate. Animals were sacrificed at various time points after bile-duct ligation. RT-PCR and Western blot were used to analyze liver fatty acid binding protein expression. Cellular lipid peroxidation products were assessed by measuring thiobarbituric acid-reactive substances. Liver function was evaluated by measuring serum total bilirubin, alanine aminotransferase and ammonia. Liver fatty acid binding protein mRNA and protein levels were reduced to 51% and 20% of sham, respectively at 2 weeks following bile-duct ligation (p<0.05). The decreased liver fatty acid binding protein was associated with a statistical increase in hepatic lipid peroxidation products (224%) and decrease in hepatic function. Clofibrate treatment restored protein level and improved hepatic function. Clofibrate treatment also reduced hepatic lipid peroxidation products by 68% as compared with the bile-duct ligated group (p<0.05). Liver fatty acid binding protein likely has important antioxidant function during hepatocellular oxidative stress.
Collapse
Affiliation(s)
- Guqi Wang
- Faculty of Pharmacy, Princess Alexandra Hospital, University of Queensland, Woolloongabba, Queensland, 4102 Australia
| | | | | | | | | | | | | |
Collapse
|