1
|
Yu C, Yin W, Li J, Wu F, Wang S, Han Z, Chen H, Yan X, Cui M. Regulatory Effect of Atorvastatin combined with Berberine on PI3K/Akt/FoxO1 Signaling Pathway in Rats with Hyperlipidemia. Xenobiotica 2025:1-14. [PMID: 40355402 DOI: 10.1080/00498254.2025.2503359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/24/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
1.Atorvastatin Calcium (AC) is the first line lipid-lowering drug in clinical. Nowadays, the combination of AC and BBR is often used to treat hyperlipidemia in clinical. In order to determine the mechanism, we investigate the regulatory of atorvastatin combined with berberine on PI3K/Akt/FoxO1 signaling pathway in rats with hyperlipidemia.2.The hyperlipidemia rat model was constructed. Meanwhile, lipid-lowering and liver protective effects were determined by oil red O and H&E method. The expression of PI3K, Akt and FoxO1 was examined by IHC, WB and RT-pCR. The level of CK and LDH in serum was examined by ELISA.3.The results showed that the expression of PI3K, AKT increased and FoxO1 decreased in MC group compared with NC group (P < 0.01). The expression of PI3K, AKT decreased and FoxO1 increased compared with MC group (P < 0.05). The expression of FoxO1 in combination group is lower than AC group. The levels of CK and LDH in AC group increased compared with NC group (P < 0.01), but decreased significantly in AC + BBR group compared with AC group(P < 0.01).4.The combination of AC and BBR could regulate the lipid level by mediating PI3K/Akt/FoxO1, which providing a new references for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Chao Yu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Weihong Yin
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jiao Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Fan Wu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Siwen Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhaoyang Han
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Haoliang Chen
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xueying Yan
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Mingyu Cui
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
2
|
Yin D, Zhang Z, Zhu Y, Xu Z, Liu W, Liang K, Li F. Assessment of the Impact of Dietary Supplementation with Epigallocatechin Gallate (EGCG) on Antioxidant Status, Immune Response, and Intestinal Microbiota in Post-Weaning Rabbits. Animals (Basel) 2024; 14:3011. [PMID: 39457941 PMCID: PMC11504044 DOI: 10.3390/ani14203011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study was conducted to investigate the impact of EGCG on antioxidant stress, immune response, and intestinal microbiota flora in post-weaning rabbits. A total of 144 40 d Ira rabbits (equally divided by sex), were randomly allocated to six treatments. with five groups receiving doses of 200, 400, 600, 800, and 1000 mg/kg of EGCG, while one group served as a control without EGCG. Over 48 days, this study the assessed growth performance, antioxidant capacity, immune system, intestinal morphology, and cecal microbiota in the rabbits. The results showed that EGCG did not affect growth performance; however, significant linear and quadratic correlations were observed between the MDA, T-AOC, and GSH-Px activities in the liver and jejunum (p < 0.05). Quadratic effects were observed for the spleen and thymus indexes and serum IgG levels with increasing EGCG dosages (p < 0.05). Additionally, positive linear and quadratic effects were found on the ileal villus height and the villus height/crypt depth ratio. The relative abundances of Euryarchaeota, Patescibacteria, and Synergistota were significantly enriched in rabbits fed with high dosages (600-1000 mg/kg) of EGCG. Conclusively, the addition of large doses of EGCG (400-800 mg/kg) can effectively suppress oxidative stress and alleviate weaning stress, thereby contributing to the protection of post-weaning rabbits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fangfang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (D.Y.)
| |
Collapse
|
3
|
Jiang X, Wang H, Nie K, Gao Y, Chen S, Tang Y, Wang Z, Su H, Dong H. Targeting lipid droplets and lipid droplet-associated proteins: a new perspective on natural compounds against metabolic diseases. Chin Med 2024; 19:120. [PMID: 39232826 PMCID: PMC11373146 DOI: 10.1186/s13020-024-00988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Lipid droplet (LD) is a metabolically active organelle, which changes dynamically with the metabolic state and energy requirements of cells. Proteins that either insert into the LD phospholipid monolayer or are present in the cytoplasm, playing a crucial role in lipid homeostasis and signaling regulation, are known as LD-associated proteins. METHODS The keywords "lipid droplets" and "metabolic diseases" were used to obtain literature on LD metabolism and pathological mechanism. After searching databases including Scopus, OVID, Web of Science, and PubMed from 2013 to 2024 using terms like "lipid droplets", "lipid droplet-associated proteins", "fatty liver disease", "diabetes", "diabetic kidney disease", "obesity", "atherosclerosis", "hyperlipidemia", "natural drug monomers" and "natural compounds", the most common natural compounds were identified in about 954 articles. Eventually, a total of 91 studies of 10 natural compounds reporting in vitro or in vivo studies were refined and summarized. RESULTS The most frequently used natural compounds include Berberine, Mangostin, Capsaicin, Caffeine, Genistein, Epigallocatechin-3-gallate, Chlorogenic acid, Betaine, Ginsenoside, Resveratrol. These natural compounds interact with LD-associated proteins and help ameliorate abnormal LDs in various metabolic diseases. CONCLUSION Natural compounds involved in the regulation of LDs and LD-associated proteins hold promise for treating metabolic diseases. Further research into these interactions may lead to new therapeutic applications.
Collapse
Affiliation(s)
- Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueheng Tang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Su
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Hassan HA, Nageeb MM, Mohammed HO, Samy W, Fawzy A, Afifi R, Abbas NAT. Dapagliflozin dampens liver fibrosis induced by common bile duct ligation in rats associated with the augmentation of the hepatic Sirt1/AMPK/PGC1α/FoxO1 axis. Toxicol Appl Pharmacol 2024; 489:116991. [PMID: 38871090 DOI: 10.1016/j.taap.2024.116991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Liver fibrosis is considered an epidemic health problem due to different insults that lead to death. Dapagliflozin (DAPA), a sodium-glucose cotransporter-2 (SGLT2) inhibitor, is one of the newer anti-diabetic drugs used to manage type 2 diabetes mellitus (T2DM). DAPA exerted beneficial effects in many human and rat models due to its antioxidant, anti-inflammatory and antifibrotic activities. AIM Due to previously reported capabilities related to DAPA, we designed this study to clarify the beneficial role of DAPA in liver fibrosis triggered by common bile duct ligation (CBL) in male rats. METHODS For 14 or 28 days after CBL procedures, DAPA was administered to the rats orally at a dose of 10 mg/kg once daily. The effects of DAPA were evaluated by assaying liver enzymes, hepatic oxidant/antioxidant parameters, serum levels of tumor necrotic factor alpha (TNF-α), and AMP-activated protein kinase (AMPK). In addition, we measured the hepatic expression of fibrosis regulator-related genes along with evaluating liver histological changes. KEY FINDINGS DAPA successfully decreased hepatic enzymes and malondialdehyde levels, increased superoxide dismutase activity, elevated catalase levels, decreased serum levels of TNF-α, elevated serum levels of AMPK, decreased liver hydroxyproline content, upregulated Sirt1/PGC1α/FoxO1 liver gene expressions, down-regulated fibronectin-1 (Fn-1), collagen-1 genes in liver tissues, and improved the damaged liver tissues. Deteriorated biochemical parameters and histological liver insults associated with CBL were more pronounced after 28 days, but DAPA administration for 14 and 28 days showed significant improvement in most parameters and reflected positively in the histological structures of the liver. SIGNIFICANCE The significance of this study lies in the observation that DAPA mitigated CBL-induced liver fibrosis in rats, most likely due to its antioxidant, anti-inflammatory, and antifibrotic effects. These results suggest that DAPA's beneficial impact on liver fibrosis might be attributed to its interaction with the Sirt1/AMPK/PGC1α/FoxO1 pathway, indicating a potential mechanistic action for future exploration.
Collapse
Affiliation(s)
- Heba A Hassan
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt; Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Mahitab M Nageeb
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Heba Osama Mohammed
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Walaa Samy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig 45519, Egypt
| | - Amal Fawzy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig 45519, Egypt
| | | | - Noha A T Abbas
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
5
|
Wang H, An Y, Rajput SA, Qi D. Resveratrol and (-)-Epigallocatechin-3-gallate Regulate Lipid Metabolism by Activating the AMPK Pathway in Hepatocytes. BIOLOGY 2024; 13:368. [PMID: 38927248 PMCID: PMC11201192 DOI: 10.3390/biology13060368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
The purpose of this study was to explore the effects of Res and EGCG on cell growth, cellular antioxidant levels, and cellular lipid metabolism in hepatocytes. In this experiment, leghorn male hepatoma (LMH) cells were used as hepatocytes. The results showed that 6.25-25 μM Res and EGCG had no adverse effects on cell viability and growth. Meanwhile, with the increasing dosage of Res and EGCG, the contents of total cholesterol (TC), total glyceride (TG), and malondialdehyde (MDA) in hepatocytes decreased significantly (p < 0.05), while the contents of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD), and catalase (CAT) increased significantly (p < 0.05). In addition, western blot results showed that Res and EGCG could significantly increase the expression of p-AMPK protein and reduce the expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) protein in hepatocytes (p < 0.05). Moreover, q-PCR results showed that with the increase in Res and EGCG, the expression of cholesterol- and fatty acid synthesis-related genes decreased significantly (p < 0.05). In conclusion, Res and EGCG can increase the antioxidant capacity of hepatocytes and reduce the synthesis of TC and TG in hepatocytes by activating AMPK, thereby regulating lipid metabolism in hepatocytes.
Collapse
Affiliation(s)
- Huanbin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (Y.A.)
| | - Yu An
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (Y.A.)
| | - Shahid Ali Rajput
- Department of Animal and Dairy Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan;
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (Y.A.)
| |
Collapse
|
6
|
Sui M, Yan S, Zhang P, Li Y, Chen K, Li Y, Lu H, Li Y, Zhao W, Zeng L. The role of Testis-Specific Protein Y-encoded-Like 2 in kidney injury. iScience 2024; 27:109594. [PMID: 38665207 PMCID: PMC11043847 DOI: 10.1016/j.isci.2024.109594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI). Recent findings suggest that Testis-Specific Protein Y-encoded-Like 2 (TSPYL2) plays a fibrogenic role in diabetes-associated renal injury. However, the role of TSPYL2 in IRI-induced kidney damage is not entirely clear. In this study, we found that the expression of TSPYL2 was upregulated in a mouse model of AKI and in the hypoxia/reoxygenation (H/R) cell model. Knockdown of TSPYL2 attenuated kidney injury after IRI. More specifically, the knockdown of TSPYL2 or aminocarboxymuconate-semialdehyde decarboxylase (ACMSD) alleviated renal IRI-induced mitochondrial dysfunction and oxidative stress in vitro and in vivo. Further investigation showed that TSPYL2 regulated SREBP-2 acetylation by inhibiting SIRT1 and promoting p300 activity, thereby promoting the transcriptional activity of ACMSD. In conclusion, TSPYL2 was identified as a pivotal regulator of IRI-induced kidney damage by activating ACMSD, which may lead to NAD+ content and the damaging response in the kidney.
Collapse
Affiliation(s)
- Mingxing Sui
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sijia Yan
- Department of Pathology, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Zhang
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuhong Li
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Kewen Chen
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yanhua Li
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hanlan Lu
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yanfeng Li
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenyu Zhao
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Li Zeng
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Hu Q, Zhang W, Wei F, Huang M, Shu M, Song D, Wen J, Wang J, Nian Q, Ma X, Zeng J, Zhao Y. Human diet-derived polyphenolic compounds and hepatic diseases: From therapeutic mechanisms to clinical utilization. Phytother Res 2024; 38:280-304. [PMID: 37871899 DOI: 10.1002/ptr.8043] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023]
Abstract
This review focuses on the potential ameliorative effects of polyphenolic compounds derived from human diet on hepatic diseases. It discusses the molecular mechanisms and recent advancements in clinical applications. Edible polyphenols have been found to play a therapeutic role, particularly in liver injury, liver fibrosis, NAFLD/NASH, and HCC. In the regulation of liver injury, polyphenols exhibit anti-inflammatory and antioxidant effects, primarily targeting the TGF-β, NF-κB/TLR4, PI3K/AKT, and Nrf2/HO-1 signaling pathways. In the regulation of liver fibrosis, polyphenolic compounds effectively reverse the fibrotic process by inhibiting the activation of hepatic stellate cells (HSC). Furthermore, polyphenolic compounds show efficacy against NAFLD/NASH by inhibiting lipid oxidation and accumulation, mediated through the AMPK, SIRT, and PPARγ pathways. Moreover, several polyphenolic compounds exhibit anti-HCC activity by suppressing tumor cell proliferation and metastasis. This inhibition primarily involves blocking Akt and Wnt signaling, as well as inhibiting the epithelial-mesenchymal transition (EMT). Additionally, clinical trials and nutritional evidence support the notion that certain polyphenols can improve liver disease and associated metabolic disorders. However, further fundamental research and clinical trials are warranted to validate the efficacy of dietary polyphenols.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meilan Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengyao Shu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Jundong Wang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Kim DH, Song NY, Yim H. Targeting dysregulated lipid metabolism in the tumor microenvironment. Arch Pharm Res 2023; 46:855-881. [PMID: 38060103 PMCID: PMC10725365 DOI: 10.1007/s12272-023-01473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
The reprogramming of lipid metabolism and its association with oncogenic signaling pathways within the tumor microenvironment (TME) have emerged as significant hallmarks of cancer. Lipid metabolism is defined as a complex set of molecular processes including lipid uptake, synthesis, transport, and degradation. The dysregulation of lipid metabolism is affected by enzymes and signaling molecules directly or indirectly involved in the lipid metabolic process. Regulation of lipid metabolizing enzymes has been shown to modulate cancer development and to avoid resistance to anticancer drugs in tumors and the TME. Because of this, understanding the metabolic reprogramming associated with oncogenic progression is important to develop strategies for cancer treatment. Recent advances provide insight into fundamental mechanisms and the connections between altered lipid metabolism and tumorigenesis. In this review, we explore alterations to lipid metabolism and the pivotal factors driving lipid metabolic reprogramming, which exacerbate cancer progression. We also shed light on the latest insights and current therapeutic approaches based on small molecular inhibitors and phytochemicals targeting lipid metabolism for cancer treatment. Further investigations are worthwhile to fully understand the underlying mechanisms and the correlation between altered lipid metabolism and carcinogenesis.
Collapse
Affiliation(s)
- Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, 16227, Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, BK21 Four Project, Yonsei University, Seoul, 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Korea.
| |
Collapse
|
9
|
Łanoszka K, Vlčková N. Natural Sirtuin1 Activators and Atherosclerosis: an Overview. Curr Atheroscler Rep 2023; 25:979-994. [PMID: 38038821 PMCID: PMC10770200 DOI: 10.1007/s11883-023-01165-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the most recent findings investigating the impact of several natural sirtuin (SIRT) activators, particularly SIRT1, on atherosclerosis. RECENT FINDINGS Sirtuins that belong to a family of class III histone deacetylases are believed to be novel therapeutic targets to treat age-related and chronic diseases. SIRT expression is regulated by small molecules called SIRT-activating compounds that can be found in natural food products. SIRT1 may exert protective effects in atherosclerosis, which is said to be a major cause of cardiovascular diseases. Most of the evidence supporting the beneficial effects of these natural compounds comes from in vitro or animal-based studies, while there have been particularly few or inconsistent human-based studies evaluating their long-term impact in recent years. SIRT1 activation has been demonstrated to mitigate or prevent atherosclerosis through various mechanisms. However, further research is required to determine the optimal SIRT activator dosage and to establish a stronger correlation between health effects and the administration of bioactive compounds. Additionally, conducting more human clinical trials is necessary to ensure the safety of these compounds for preventing atherosclerosis development.
Collapse
Affiliation(s)
- Karolina Łanoszka
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149, Krakow, Poland
| | - Nimasha Vlčková
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149, Krakow, Poland.
| |
Collapse
|
10
|
Yang C, Huang Z, Pan C, Wang S. Characterization of feed efficiency-related key signatures molecular in different cattle breeds. PLoS One 2023; 18:e0289939. [PMID: 37756351 PMCID: PMC10529570 DOI: 10.1371/journal.pone.0289939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/30/2023] [Indexed: 09/29/2023] Open
Abstract
Feed efficiency is a major constraint in the beef industry and has a significant negative correlation with residual feed intake (RFI). RFI is widely used as a measure of feed efficiency in beef cattle and is independent of economic traits such as body weight and average daily gain. However, key traits with commonality or specificity among beef cattle breeds at the same level of RFI have not been reported. Accordingly, the present study hypothesized that signatures associated with feed efficiency would have commonality or specificity in the liver of cattle breeds at the same RFI level. By comparing and integrating liver transcriptome data, we investigated the critical signatures closely associated with RFI in beef cattle using weighted co-expression network analysis, consensus module analysis, functional enrichment analysis and protein network interaction analysis. The results showed that the consensus modules in Angus and Charolais cattle were negatively correlated, and four (turquoise, red, tan, yellow) were significantly positively correlated in Angus liver, while (turquoise, red) were significantly negatively correlated in Charolais liver. These consensus modules were found to be primarily involved in biological processes such as substance metabolism, energy metabolism and gene transcription, which may be one of the possible explanations for the difference in feed efficiency between the two beef breeds. This research also identified five key candidate genes, PLA2G12B, LCAT, MTTP, LCAT, ABCA1 and FADS1, which are closely associated with hepatic lipid metabolism. The present study has identified some modules, genes and pathways that may be the major contributors to the variation in feed efficiency among different cattle breeds, providing a new perspective on the molecular mechanisms of feed efficiency in beef cattle and a research basis for investigating molecular markers associated with feed efficiency in beef cattle.
Collapse
Affiliation(s)
- Chaoyun Yang
- College of Animal Science, Xichang University, Xichang City, Sichuan Province, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan City, Ningxia, China
| | - Zengwen Huang
- College of Animal Science, Xichang University, Xichang City, Sichuan Province, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan City, Ningxia, China
| | - Cuili Pan
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan City, Ningxia, China
| | - Shuzhe Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan City, Ningxia, China
| |
Collapse
|
11
|
Witte K, Wolk K, Witte-Händel E, Krause T, Kokolakis G, Sabat R. Targeting Metabolic Syndrome in Hidradenitis Suppurativa by Phytochemicals as a Potential Complementary Therapeutic Strategy. Nutrients 2023; 15:3797. [PMID: 37686829 PMCID: PMC10490062 DOI: 10.3390/nu15173797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by the appearance of painful inflamed nodules, abscesses, and pus-draining sinus tracts in the intertriginous skin of the groins, buttocks, and perianal and axillary regions. Despite its high prevalence of ~0.4-1%, therapeutic options for HS are still limited. Over the past 10 years, it has become clear that HS is a systemic disease, associated with various comorbidities, including metabolic syndrome (MetS) and its sequelae. Accordingly, the life expectancy of HS patients is significantly reduced. MetS, in particular, obesity, can support sustained inflammation and thereby exacerbate skin manifestations and the chronification of HS. However, MetS actually lacks necessary attention in HS therapy, underlining the high medical need for novel therapeutic options. This review directs attention towards the relevance of MetS in HS and evaluates the potential of phytomedical drug candidates to alleviate its components. It starts by describing key facts about HS, the specifics of metabolic alterations in HS patients, and mechanisms by which obesity may exacerbate HS skin alterations. Then, the results from the preclinical studies with phytochemicals on MetS parameters are evaluated and the outcomes of respective randomized controlled clinical trials in healthy people and patients without HS are presented.
Collapse
Affiliation(s)
- Katrin Witte
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Inflammation and Regeneration of Skin, BIH Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Inflammation and Regeneration of Skin, BIH Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Ellen Witte-Händel
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Torben Krause
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Georgios Kokolakis
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Robert Sabat
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
12
|
Yang C, Wu A, Tan L, Tang D, Chen W, Lai X, Gu K, Chen J, Chen D, Tang Q. Epigallocatechin-3-Gallate Alleviates Liver Oxidative Damage Caused by Iron Overload in Mice through Inhibiting Ferroptosis. Nutrients 2023; 15:nu15081993. [PMID: 37111212 PMCID: PMC10145929 DOI: 10.3390/nu15081993] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/29/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Ferroptosis, a form of regulated cell death, has been widely explored as a novel target for the treatment of diseases. The failure of the antioxidant system can induce ferroptosis. Epigallocatechin-3-Gallate (EGCG) is a natural antioxidant in tea; however, whether EGCG can regulate ferroptosis in the treatment of liver oxidative damage, as well as the exact molecular mechanism, is unknown. Here, we discovered that iron overload disturbed iron homeostasis in mice, leading to oxidative stress and damage in the liver by activating ferroptosis. However, EGCG supplementation alleviated the liver oxidative damage caused by iron overload by inhibiting ferroptosis. EGCG addition increased NRF2 and GPX4 expression and elevated antioxidant capacity in iron overload mice. EGCG administration attenuates iron metabolism disorders by upregulating FTH/L expression. Through these two mechanisms, EGCG can effectively inhibit iron overload-induced ferroptosis. Taken together, these findings suggest that EGCG is a potential ferroptosis suppressor, and may be a promising therapeutic agent for iron overload-induced liver disease.
Collapse
Affiliation(s)
- Chunjing Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Liqiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Dandan Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Wei Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Xin Lai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Ke Gu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Junzhou Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
13
|
Chen J, Qin P, Tao Z, Ding W, Yao Y, Xu W, Yin D, Tan S. Anticancer Activity of Methyl Protodioscin against Prostate Cancer by Modulation of Cholesterol-Associated MAPK Signaling Pathway <i>via</i> FOXO1 Induction. Biol Pharm Bull 2023; 46:574-585. [PMID: 37005301 DOI: 10.1248/bpb.b22-00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Methyl protodioscin (MPD), a furostanol saponin found in the rhizomes of Dioscoreaceae, has lipid-lowering and broad anticancer properties. However, the efficacy of MPD in treating prostate cancer remains unexplored. Therefore, the present study aimed to evaluate the anticancer activity and action mechanism of MPD in prostate cancer. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), wound healing, transwell, and flow cytometer assays revealed that MPD suppressed proliferation, migration, cell cycle, and invasion and induced apoptosis of DU145 cells. Mechanistically, MPD decreased cholesterol concentration in the cholesterol oxidase, peroxidase and 4-aminoantipyrine phenol (COD-PAP) assay, disrupting the lipid rafts as detected using immunofluorescence and immunoblot analyses after sucrose density gradient centrifugation. Further, it reduced the associated mitogen-activated protein kinase (MAPK) signaling pathway protein P-extracellular regulated protein kinase (ERK), detected using immunoblot analysis. Forkhead box O (FOXO)1, a tumor suppressor and critical factor controlling cholesterol metabolism, was predicted to be a direct target of MPD and induced by MPD. Notably, in vivo studies demonstrated that MPD significantly reduced tumor size, suppressed cholesterol concentration and the MAPK signaling pathway, and induced FOXO1 expression and apoptosis in tumor tissue in a subcutaneous mouse model. These results suggest that MPD displays anti-prostate cancer activity by inducing FOXO1 protein, reducing cholesterol concentration, and disrupting lipid rafts. Consequently, the reduced MAPK signaling pathway suppresses proliferation, migration, invasion, and cell cycle and induces apoptosis of prostate cancer cells.
Collapse
Affiliation(s)
- Jie Chen
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Puyan Qin
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Zhanxia Tao
- College of Life Science, Capital Normal University
| | - Weijian Ding
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Yunlong Yao
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Weifang Xu
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Song Tan
- School of Pharmacy, Anhui University of Chinese Medicine
| |
Collapse
|
14
|
Resveratrol Improves the Progression of Osteoarthritis by Regulating the SIRT1-FoxO1 Pathway-Mediated Cholesterol Metabolism. Mediators Inflamm 2023; 2023:2936236. [PMID: 36643587 PMCID: PMC9833897 DOI: 10.1155/2023/2936236] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
Osteoarthritis (OA) is considered a metabolic disorder. This study investigated the effect of resveratrol (RES) on cholesterol accumulation in osteoarthritic articular cartilage via the silent information regulator 1 (SIRT1)/forkhead transcription factor (FoxO1) pathway. Interleukin (IL)-1β-treated chondrocytes that mimic OA chondrocytes were used in in vitro experiments. The optimal RES concentration was selected based on the results of chondrocyte proliferation in the Cell Counting Kit-8 assay. Western blotting, immunofluorescence, and reverse transcription-quantitative polymerase chain reaction were performed. For the animal experiments, mice were randomly divided into the RES group (n = 15), medial meniscus destabilization group (n = 15), and sham group (n = 15), and each group received the same dose of RES or saline. Articular cartilage tissue was obtained eight weeks after surgery for relevant histological analysis. Clinical tissue test results suggest that downregulation of the SIRT1/FoxO1 pathway is associated with cholesterol buildup in OA chondrocytes. For the in vitro studies, RES increased the expression of SIRT1 and phosphorylation of FoxO1 in IL-1β-treated chondrocytes, promoted the expression of cholesterol efflux factor liver X receptor alpha (LXRα), and inhibited the expression of cholesterol synthesis-associated factor sterol-regulatory element binding proteins 2 (SREBP2). This reduced IL-1β-induced chondrocytes cholesterol accumulation. SIRT1 inhibition prevented the RES-mediated reduction in cholesterol buildup. Inhibiting FoxO1 but not SIRT1 reduced FoxO1 phosphorylation and increased cholesterol buildup in cultured chondrocytes. Additionally, in vivo experiments have shown that RES can alleviate cholesterol buildup and pathological changes in OA cartilage. Our findings suggest that RES regulates cholesterol buildup in osteoarthritic articular cartilage via the SIRT1/FoxO1 pathway, thereby improving the progression of OA.
Collapse
|
15
|
Yang C, Ding Y, Dan X, Shi Y, Kang X. Multi-transcriptomics reveals RLMF axis-mediated signaling molecules associated with bovine feed efficiency. Front Vet Sci 2023; 10:1090517. [PMID: 37035824 PMCID: PMC10073569 DOI: 10.3389/fvets.2023.1090517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
The regulatory axis plays a vital role in interpreting the information exchange and interactions among mammal organs. In this study on feed efficiency, it was hypothesized that a rumen-liver-muscle-fat (RLMF) regulatory axis exists and scrutinized the flow of energy along the RLMF axis employing consensus network analysis from a spatial transcriptomic standpoint. Based on enrichment analysis and protein-protein interaction analysis of the consensus network and tissue-specific genes, it was discovered that carbohydrate metabolism, energy metabolism, immune and inflammatory responses were likely to be the biological processes that contribute most to feed efficiency variation on the RLMF regulatory axis. In addition, clusters of genes related to the electron respiratory chain, including ND (2,3,4,4L,5,6), NDUF (A13, A7, S6, B3, B6), COX (1,3), CYTB, UQCR11, ATP (6,8), clusters of genes related to fatty acid metabolism including APO (A1, A2, A4, B, C3), ALB, FG (A, G), as well as clusters of the ribosomal-related gene including RPL (8,18A,18,15,13, P1), the RPS (23,27A,3A,4X), and the PSM (A1-A7, B6, C1, C3, D2-D4, D8 D9, E1) could be the primary effector genes responsible for feed efficiency variation. The findings demonstrate that high feed efficiency cattle, through the synergistic action of the regulatory axis RLMF, may improve the efficiency of biological processes (carbohydrate metabolism, protein ubiquitination, and energy metabolism). Meanwhile, high feed efficiency cattle might enhance the ability to respond to immunity and inflammation, allowing nutrients to be efficiently distributed across these organs associated with digestion and absorption, energy-producing, and energy-storing organs. Elucidating the distribution of nutrients on the RLMF regulatory axis could facilitate an understanding of feed efficiency variation and achieve the study on its molecular regulation.
Collapse
|
16
|
Zhou Z, Li K, Guo J, Wang Y, Wei Y, Duan J, Chen M, Shi L, Hu W. Green Tea Catechin EGCG Ameliorates Thioacetamide-Induced Hepatic Encephalopathy in Rats via Modulation of the Microbiota-Gut-Liver Axis. Mol Nutr Food Res 2022; 67:e2200821. [PMID: 36573265 DOI: 10.1002/mnfr.202200821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/23/2022] [Indexed: 12/28/2022]
Abstract
SCOPE Existing research suggests that (-)-epigallocatechin-3-gallate (EGCG), which is a natural tea catechin active substance, can protect against liver injury. However, its mechanism for hepatic encephalopathy (HE) treatment is still unclear. In this study, the role of EGCG in the amelioration of HE rats and the effect on the microbiota-gut-liver axis are mainly analyzed. METHODS AND RESULTS Thioacetamide (TAA) is employed to induce the HE model in rats. The results of open field test show that EGCG restores locomotor activity and exploratory behavior. Histological and biochemical results demonstrate that EGCG ameliorates brain and liver damage, decreases the expression of pro-inflammatory cytokines, and increases the activity of antioxidant enzymes. Meanwhile, EGCG modulates the Nrf2 pathway and TLR4/NF-κB pathway to mitigate TAA-induced oxidative stress and inflammatory responses. Immunohistochemistry reveals protection of the intestinal barrier by EGCG upregulating the expression of occludin and zonula occludens-1. Furthermore, serum levels of ammonia and LPS are reduced. 16S rRNA analysis shows that EGCG treatment increases the abundance of beneficial bacteria (e.g., Bifidobacterium, Lactobacillus, and Limosilactobacillus). CONCLUSION The above results reveal that EGCG has anti-oxidative stress and anti-inflammatory effects, and ameliorates the condition through the microbiota-gut-liver axis, with potential for the treatment of HE.
Collapse
Affiliation(s)
- Zhengming Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Li
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiankui Guo
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunfeng Wang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaoyao Wei
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Juan Duan
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Muxi Chen
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Shi
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wen Hu
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
17
|
Sun F, Zhao W, Shen H, Fan N, Zhang J, Liu Q, Xu C, Luo J, Zhao M, Chen Y, Lam KWK, Yang X, Kwok RTK, Lam JWY, Sun J, Zhang H, Tang BZ. Design of Smart Aggregates: Toward Rapid Clinical Diagnosis of Hyperlipidemia in Human Blood. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207671. [PMID: 36134528 DOI: 10.1002/adma.202207671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Molecular aggregates with environmental responsive properties are desired for their wide practical applications such as bioprobes. Here, a series of smart near-infrared (NIR) luminogens for hyperlipidemia (HLP) diagnosis is reported. The aggregates of these molecules exhibit a twisted intramolecular charge-transfer effect in aqueous media, but aggregation-induced emission in highly viscous media due to the restriction of the intramolecular motion. These aggregates, which can autonomously respond to different environments via switching the aggregation state without changing their chemical structures are described, as "smart aggregates". Intriguingly, these luminogens demonstrate NIR-II and NIR-III luminescence with ultralarge Stokes shifts (>950 nm). Both in vitro detection and in vivo imaging of HLP can be realized in a mouse model. Linear relationships exist between the emission intensity and multiple pathological parameters in blood samples of HLP patients. Thus, the design of smart aggregate facilitates rapid and accurate detection of HLP and provides a promising attempt in aggregate science.
Collapse
Affiliation(s)
- Feiyi Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Wei Zhao
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Ni Fan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, P. R. China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Qingqing Liu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, P. R. China
| | - Changhuo Xu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Jiaming Luo
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Mengying Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Yuyang Chen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Kristy W K Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Xueqin Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Hongfei Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
- Center of Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
18
|
Chattree V, Singh K, Singh K, Goel A, Maity A, Lone A. A comprehensive review on modulation of SIRT1 signaling pathways in the immune system of COVID-19 patients by phytotherapeutic melatonin and epigallocatechin-3-gallate. J Food Biochem 2022; 46:e14259. [PMID: 35662052 PMCID: PMC9347991 DOI: 10.1111/jfbc.14259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 01/13/2023]
Abstract
SARS-CoV-2 infection has now become the world's most significant health hazard, with the World Health Organization declaring a pandemic on March 11, 2020. COVID-19 enters the lungs through angiotensin-converting enzyme 2 (ACE2) receptors, alters various signaling pathways, and causes immune cells to overproduce cytokines, resulting in mucosal inflammation, lung damage, and multiple organ failure in COVID-19 patients. Although several antiviral medications have been effective in managing the virus, they have not been effective in lowering the inflammation and symptoms of the illness. Several studies have found that epigallocatechin-3-gallate and melatonin upregulate sirtuins proteins, which leads to downregulation of pro-inflammatory gene transcription and NF-κB, protecting organisms from oxidative stress in autoimmune, respiratory, and cardiovascular illnesses. As a result, the purpose of this research is to understand more about the molecular pathways through which these phytochemicals affect COVID-19 patients' impaired immune systems, perhaps reducing hyperinflammation and symptom severity. PRACTICAL APPLICATIONS: Polyphenols are natural secondary metabolites that are found to be present in plants. EGCG a polyphenol belonging to the flavonoid family in tea has potent anti-inflammatory and antioxidative properties that helps to counter the inflammation and oxidative stress associated with many neurodegenerative diseases. Melatonin, another strong antioxidant in plants, has been shown to possess antiviral function and alleviate oxidative stress in many inflammatory diseases. In this review, we propose an alternative therapy for COVID-19 patients by supplementing their diet with these nutraceuticals that perhaps by modulating sirtuin signaling pathways counteract cytokine storm and oxidative stress, the root causes of severe inflammation and symptoms in these patients.
Collapse
Affiliation(s)
- Vineeta Chattree
- Department of Biochemistry, Deshbandhu CollegeDelhi UniversityNew DelhiIndia
| | - Kamana Singh
- Department of Biochemistry, Deshbandhu CollegeDelhi UniversityNew DelhiIndia
| | - Kanishk Singh
- Department of Biochemistry, Deshbandhu CollegeDelhi UniversityNew DelhiIndia
| | - Aayush Goel
- Department of Biochemistry, Deshbandhu CollegeDelhi UniversityNew DelhiIndia
| | - Amritaparna Maity
- Department of Biochemistry, Deshbandhu CollegeDelhi UniversityNew DelhiIndia
| | - Asif Lone
- Department of Biochemistry, Deshbandhu CollegeDelhi UniversityNew DelhiIndia
| |
Collapse
|
19
|
Jiang S, Huang C, Zheng G, Yi W, Wu B, Tang J, Liu X, Huang B, Wu D, Yan T, Li M, Wan C, Cai Y. EGCG Inhibits Proliferation and Induces Apoptosis Through Downregulation of SIRT1 in Nasopharyngeal Carcinoma Cells. Front Nutr 2022; 9:851972. [PMID: 35548580 PMCID: PMC9084317 DOI: 10.3389/fnut.2022.851972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG), a frequently studied catechin in green tea, has been shown involved in the anti-proliferation and apoptosis of human nasopharyngeal carcinoma (NPC) cells. However, the underlying molecular mechanism of the apoptotic effects of EGCG has not been fully investigated. Recent literature emphasized the importance of Sirtuin 1 (SIRT1), an NAD+-dependent protein deacetylase, in regulating cellular stress responses, survival, and organismal lifespan. Herein, the study showed that EGCG could significantly inhibit cell proliferation and promote apoptosis of 2 NPC (CNE-2 and 5-8F) cell lines. Moreover, it was also found that SIRT1 is down-regulated by EGCG, and the SIRT1-p53 signaling pathway participates in the effects of EGCG on CNE-2 and 5-8 F cells. Taken together, the findings of this study provided evidence that EGCG could inhibit the growth of NPC cell lines and is linked with the inhibition of the SIRT1-p53 signaling pathway, suggesting the therapeutic potential of EGCG in human NPC.
Collapse
Affiliation(s)
- Shisheng Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology, The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chaoming Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology, The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guodong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology, The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology, The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bo Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology, The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junyuan Tang
- Key Laboratory of Molecular Target & Clinical Pharmacology, The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiawen Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology, The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Biyun Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology, The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dan Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology, The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tingdong Yan
- School of Pharmacy, Nantong University, Nantong, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology, The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Deniz FSŞ, Eren G, Orhan IE. Flavonoids as Sirtuin Modulators. Curr Top Med Chem 2022; 22:790-805. [PMID: 35466876 DOI: 10.2174/1568026622666220422094744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
Sirtuins (SIRTs) are described as NAD+-dependent deacetylases, also known as class III histone deacetylases. So far, seven sirtuin genes (SIRTS 1-7) have been identified and characterized in mammals and also known to occur in bacteria and eukaryotes. SIRTs are involved in various biological processes including endocrine system, apoptosis, aging and longevity, diabetes, rheumatoid arthritis, obesity, inflammation, etc. Among them, the best characterized one is SIRT1. Actually, small molecules seem to be the most effective SIRT modulators. Flavonoids have been reported to possess many positive effects favrable for human health, while a relatively less research has been reported so far on their funcions as SIRT modulation mechanisms. In this regard, we herein aimed to focus on modulatory effects of flavonoids on SIRTs as the most common secondary metabolites in natural products. Our literature survey covering the years of 2006-2021 pointed out that flavonoids frequently interact with SIRT1 and SIRT3 followed by SIRT6. It can be also concluded that some popular flavonoid derivatives, e.g. resveratrol, quercetin, and catechin derivatives came forward in terms of SIRT modulation.
Collapse
Affiliation(s)
| | - Gökçen Eren
- Faculty of Pharmacy, Gazi University, 06330 Ankara
| | | |
Collapse
|
21
|
Abunofal O, Mohan C. Salubrious Effects of Green Tea Catechins on Fatty Liver Disease: A Systematic Review. MEDICINES 2022; 9:medicines9030020. [PMID: 35323719 PMCID: PMC8949532 DOI: 10.3390/medicines9030020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/07/2022] [Accepted: 02/25/2022] [Indexed: 01/26/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is a polyphenol green tea catechin with potential health benefits and therapeutic effects in non-alcoholic fatty liver disease (NAFLD), a common liver disorder that adversely affects liver function and lipid metabolism. This systematic review surveyed the effects of EGCG or green tea extract (GTE) on NAFLD reported in studies involving rodent models or humans with a focus on clinicopathologic outcomes, lipid and carbohydrate metabolism, and inflammatory, oxidative stress, and liver injury markers. Articles involving clinical efficacy of EGCG/GTE on human subjects and rodent models were gathered by searching the PUBMED database and by referencing additional articles identified from other literature reviews. EGCG or GTE supplementation reduced body weight, adipose tissue deposits, and food intake. Mechanistically, the majority of these studies confirmed that EGCG or GTE supplementation plays a significant role in regulating lipid and glucose metabolism and expression of genes involved in lipid synthesis. Importantly, EGCG and GTE supplementation were shown to have beneficial effects on oxidative stress-related pathways that activate pro-inflammatory responses, leading to liver damage. In conclusion, green tea catechins are a potentially useful treatment option for NAFLD. More research is required to determine the ideal dosage, treatment duration, and most effective delivery method of EGCG or GTE, and to provide more definitive conclusions by performing large, randomized clinical trials.
Collapse
|
22
|
Waiz M, Alvi SS, Khan MS. Potential dual inhibitors of PCSK-9 and HMG-R from natural sources in cardiovascular risk management. EXCLI JOURNAL 2022; 21:47-76. [PMID: 35221836 PMCID: PMC8859648 DOI: 10.17179/excli2021-4453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands amongst the leading causes of mortality worldwide and has attracted the attention of world's leading pharmaceutical companies in order to tackle such mortalities. The low-density lipoprotein-cholesterol (LDL-C) is considered the most prominent biomarker for the assessment of ASCVD risk. Distinct inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-R), the chief hepatic cholesterogenic enzyme, are being used since last seven decades to manage hypercholesterolemia. On the other hand, discovery and the association of proprotein convertase subtilisin/kexin type-9 (PCSK-9) with increased ASCVD risk have established PCSK-9 as a novel therapeutic target in cardiovascular medicine. PCSK-9 is well reckoned to facilitate the LDL-receptor (LDL-R) degradation and compromised LDL-C clearance leading to the arterial atherosclerotic plaque formation. The currently available HMG-R inhibitors (statins) and PCSK-9 inhibitors (siRNA, anti-sense oligonucleotides, and monoclonal antibodies) have shown great promises in achieving LDL-C lowering goals, however, their life long prescriptions have raised significant concerns. These deficits associated with the synthetic HMG-R and PCSK-9 inhibitors called for the discovery of alternative therapeutic candidates with potential dual HMG-R and PCSK-9 inhibitory activities from natural origins. Therefore, this report firstly describes the mechanistic insights into the cholesterol homeostasis through HMG-R, PCSK-9, and LDL-R functionality and then compiles the pharmacological effects of natural secondary metabolites with special emphasis on their dual HMG-R and PCSK-9 inhibitory action. In conclusion, various natural products exhibit atheroprotective effects via targeting HMG-R and PCSK-9 activities and lipoprotein metabolism, however, further clinical assessments are still warranted prior their approval for ASCVD risk management in hypercholesterolemic patients.
Collapse
Affiliation(s)
- Mohd Waiz
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| | - Sahir Sultan Alvi
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| | - M Salman Khan
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| |
Collapse
|
23
|
Qin S, He Z, Wu Y, Zeng C, Zheng Z, Zhang H, Lv C, Yuan Y, Wu H, Ye J, Liu Z, Shi M. Instant Dark Tea Alleviates Hyperlipidaemia in High-Fat Diet-Fed Rat: From Molecular Evidence to Redox Balance and Beyond. Front Nutr 2022; 9:819980. [PMID: 35223953 PMCID: PMC8875000 DOI: 10.3389/fnut.2022.819980] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/05/2022] [Indexed: 12/30/2022] Open
Abstract
Instant dark tea (IDT) is a new product gaining increasing attention because it is convenient and can endow significant health benefit to consumers, which is partially attributed to its high concentration of functional ingredients. However, the molecular mechanism underlying its regulatory effect on hyperlipidaemia is rarely studied. In this study, we performed omics and molecular verification in high-fat diet (HFD)-fed rat, aiming to reveal the mechanism and provide molecular evidence. The results showed that the major bioactive components in IDT were include 237.9 mg/g total polysaccharides, 336.6 mg/g total polyphenols, and 46.9 mg/g EGCG. Rats fed with IDT (0.27–0.54 g/kg for 12 weeks) significantly reduced the body weight and TC, TG, LDL-C, blood glucose, and MDA and induced the level of serum HDL-C and also the levels of liver SOD, CAT, GSH-Px, and Nrf2, compared to HFD group. For molecular mechanism study, HIDT feeding had significant impact on the gene expressions of biomarkers in lipogenesis (FABP, CD36, SCD1, Cyp4a1, and Kcnn2), lipid oxidation (PPARγ), and glucose glycolysis (Gck and ENO2) in liver tissue. Moreover, gut microbiome study found that rats fed with IDT dramatically modified the gut microbial species at the family level, such as suppressing the increase abundance of Proteobacteria and Firmicutes induced by HFD. HIDT significantly boosted the relative composition of beneficial bacterium Akkermansia and Rikenellaceae_RC9_gut_group and decreased the relative abundance of the harmful bacterium Ruminococcaceae_UCG-005 and Ruminiclostridium_9, compared to HFD (p < 0.01). Correlation analysis between microbiome and animal indicators found that seven genera including Akkermansia, Clostridiales, Lachnospiraceae, Lachnospiraceae_UCG-010, Ruminiclostridium_9, Ruminococaceae-UCG-005, and Ruminocuccus_1 were found as potential biomarkers that were strongly correlated with oxidative stress and metabolism genes. For instance, Ruminococcaceae_UCG-005 was significantly correlated with body weight, TG, HDL-C, Nfr2, FABP3, SCD1, Cyp4a1, and Kcnn2. Collectively, the above data obtained in this study had provided the primary molecular evidence for the molecular mechanism and brought in novel insights based on omics for the regulatory effect of IDT on hyperlipidaemia.
Collapse
Affiliation(s)
- Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- *Correspondence: Si Qin
| | - Zhilan He
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yuanjie Wu
- Hunan Tea Group Co. LTD, Changsha, China
| | - Chaoxi Zeng
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhibing Zheng
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Haowei Zhang
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Chenghao Lv
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yong Yuan
- Hunan Tea Group Co. LTD, Changsha, China
| | - Haoren Wu
- Hunan Tea Group Co. LTD, Changsha, China
| | - Jianhui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China
- Zhonghua Liu
| | - Meng Shi
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Meng Shi
| |
Collapse
|
24
|
Wang Q, Wang L, Abdullah ., Tian W, Song M, Cao Y, Xiao J. Co-delivery of EGCG and Lycopene via a Pickering Double Emulsion induced Synergistic Hypolipidemic Effect. Food Funct 2022; 13:3419-3430. [DOI: 10.1039/d2fo00169a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concept of “synergy” and its applications has rapidly increased in the food industry as a practical strategy to preserve and improve health-promoting effects of the functional ingredients. In this...
Collapse
|
25
|
Jeong HW, Lee JH, Choi JK, Rha CS, Lee JD, Park J, Park M. Antihypertriglyceridemia activities of naturally fermented green tea, Heukcha, extract through modulation of lipid metabolism in rats fed a high-fructose diet. Food Sci Biotechnol 2021; 30:1581-1591. [PMID: 34868706 DOI: 10.1007/s10068-021-00992-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/01/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Hypertriglyceridemia, a symptom of elevated triglyceride level in the blood, is a potent risk factor for cardiovascular and metabolic disorders. Among the numerous treatments to regulate circulating triglyceride levels, fibrates are widely used to treat hypertriglyceridemia, although they also have side effects such as hepatotoxicity and gallstone formation. In the present study, we aimed to investigate the blood triglyceride-lowering effects of a naturally fermented green tea extract (NFGT) and the underlying mechanisms on hypertriglyceridemia in vitro and in vivo models. NFGT suppressed the expression of lipogenic genes, while augmented expression of fatty acid oxidation-related genes in cultured cells, leading to the significant decrease of intracellular triglyceride content. NFGT treated group in fructose-induced hypertriglyceridemic rat model significantly decreased plasma and hepatic triglyceride, which was accompanied by an increase in excretion of fecal fat. Taken together, we propose that NFGT could be potentially a novel functional ingredient to prevent or treat hypertriglyceridemia.
Collapse
Affiliation(s)
- Hyun Woo Jeong
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| | - Ji-Hae Lee
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| | - Jin Kyu Choi
- QA Team, Aestura Corporation, Ansung, Republic of Korea
| | - Chan-Su Rha
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| | - Jung Dae Lee
- Osulloc R&D Center, Osulloc Farm Corporation, Jeju, Republic of Korea
| | - Jaehong Park
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| | - Miyoung Park
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| |
Collapse
|
26
|
Sun P, Zhao L, Zhang N, Zhou J, Zhang L, Wu W, Ji B, Zhou F. Bioactivity of Dietary Polyphenols: The Role in LDL-C Lowering. Foods 2021; 10:2666. [PMID: 34828946 PMCID: PMC8617782 DOI: 10.3390/foods10112666] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases are the leading causes of the death around the world. An elevation of the low-density lipoprotein cholesterol (LDL-C) level is one of the most important risk factors for cardiovascular diseases. To achieve optimal plasma LDL-C levels, clinal therapies were investigated which targeted different metabolism pathways. However, some therapies also caused various adverse effects. Thus, there is a need for new treatment options and/or combination therapies to inhibit the LDL-C level. Dietary polyphenols have received much attention in the prevention of cardiovascular diseases due to their potential LDL-C lowering effects. However, the effectiveness and potential mechanisms of polyphenols in lowering LDL-C is not comprehensively summarized. This review focused on dietary polyphenols that could reduce LDL-C and their mechanisms of action. This review also discussed the limitations and suggestions regarding previous studies.
Collapse
Affiliation(s)
- Peng Sun
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing 100083, China;
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| |
Collapse
|
27
|
Kang M, Kim EH, Jeong J, Ha H. Heukcha, naturally post-fermented green tea extract, ameliorates diet-induced hypercholesterolemia and NAFLD in hamster. J Food Sci 2021; 86:5016-5025. [PMID: 34642957 DOI: 10.1111/1750-3841.15929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022]
Abstract
Hypercholesterolemia, characterized by an increase in plasma low-density lipoprotein (LDL) cholesterol and total cholesterol (TC), is the leading cause of non-alcoholic fatty liver disease (NAFLD). The present study examined the effect of Heukcha extract (HCE), a naturally post-fermented green tea extract, on diet-induced hypercholesterolemia and related NAFLD in hamsters that metabolize lipids in a similar fashion to humans. The 10-week-old golden Syrian hamsters were fed a normal diet (ND) or a high cholesterol diet (HCD) containing 0.2% cholesterol and 10% lard, and some were also given HCE (200 or 500 mg/kg/day) orally for 12 weeks. The HCE did not affect the body weight gain, food intake, or the calorie intake. HCD significantly (p < 0.05) increased LDL (0.9 to 2.1 mmol/L), TC (2.7 to 7.8 mmol/L), and triglyceride (TG; 2.3 to 4.0 mmol/L), which was significantly decreased by 27.7%, 17.3%, and 60%, respectively, by HCE. HDL was significantly increased by HCD (0.6 to 1.6 mmol/L), but it was not affected by HCE administration. Furthermore, HCE suppressed HCD-induced liver oxidative stress, fibrosis, and lipid accumulation almost to control levels. Interestingly, HCE significantly increased the protein level of cholesterol 7 alpha-hydroxylase (CYP7A1), the rate-limiting enzyme for bile acid synthesis, by 1.5-fold in the liver. The present data suggest that HCE could be a functional food ingredient that can suppress the occurrence of diet-induced hypercholesterolemia and NAFLD, possibly by increasing the expression of CYP7A1.
Collapse
Affiliation(s)
- Minji Kang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Ee Hyun Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jeewon Jeong
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
28
|
Epigallocatechin-3-Gallate Suppresses BMP-6-Mediated SMAD1/5/8 Transactivation of Hepcidin Gene by Inducing SMILE in Hepatocytes. Antioxidants (Basel) 2021; 10:antiox10101590. [PMID: 34679725 PMCID: PMC8533173 DOI: 10.3390/antiox10101590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 01/01/2023] Open
Abstract
Hepcidin, a major regulator of systemic iron homeostasis, is mainly induced in hepatocytes by activating bone morphogenetic protein 6 (BMP-6) signaling in response to changes in the iron status. Small heterodimer partner-interacting leucine zipper protein (SMILE), a polyphenol-inducible transcriptional co-repressor, regulates hepatic gluconeogenesis and lipogenesis. Here, we examine the epigallocatechin-3-gallate (EGCG) effect on BMP-6-mediated SMAD1/5/8 transactivation of the hepcidin gene. EGCG treatment significantly decreased BMP-6-induced hepcidin gene expression and secretion in hepatocytes, which, in turn, abated ferroportin degradation. SMILE overexpression significantly decreased BMP receptor-induced hepcidin promoter activity. SMILE overexpression also significantly suppressed BMP-6-mediated induction of hepcidin mRNA and its secretion in HepG2 and AML12 cells. EGCG treatment inhibited BMP-6-mediated hepcidin gene expression and secretion, which were significantly reversed by SMILE knockdown in hepatocytes. Interestingly, SMILE physically interacted with SMAD1 in the nucleus and significantly blocked DNA binding of the SMAD complex to the BMP-response element on the hepcidin gene promoter. Taken together, these findings suggest that SMILE is a novel transcriptional repressor of BMP-6-mediated hepcidin gene expression, thus contributing to the control of iron homeostasis.
Collapse
|
29
|
The Mutual Inhibition of FoxO1 and SREBP-1c Regulated the Progression of Hepatoblastoma by Regulating Fatty Acid Metabolism. Mediators Inflamm 2021; 2021:5754592. [PMID: 34539243 PMCID: PMC8443342 DOI: 10.1155/2021/5754592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/22/2021] [Accepted: 08/25/2021] [Indexed: 01/16/2023] Open
Abstract
Background Hepatoblastoma (HB) is the most common liver malignancy in pediatrics, but the treatment for this disease is minimal. This study is aimed at exploring the effect of FoxO1 and SREBP-1c on HB and their mechanism. Methods FoxO1, SREBP-1c, FASN, ACLY, ACC, and MAGL expressions in tissue samples were detected by RT-qPCR and WB. IHC was utilized to measure FASN content. Overexpression and knockdown of FoxO1 and sSREBP-1c were performed on Huh-6 cells. Cell proliferation, migration, and invasion were examined by CCK8, scratch, and transwell assay. ELISA was performed to test the ATP, FAO, NEFA, and Acetyl-CoA contents. ChIP was used to detect the interaction between SREBP-1c protein and the FoxO1 gene. In vivo tumorigenesis was conducted on mice. The morphology of tumor tissue sections was observed by HE staining. Results FoxO1 expression was downregulated in HB tissue, while the expressions of SREBP-1c, FASN, ACLY, ACC, and MAGL were upregulated. In Huh-6 cells and mouse tumor tissues, FoxO1 knockdown resulted in increased cell proliferation, migration, and invasion and active fatty acid metabolism. On the contrary, after the knockdown of SREBP-1c, cell proliferation, migration, and invasion were weakened, and fatty acid metabolism was significantly reduced. SREBP-1c interacted with the promoter of the FoxO1 gene. When FoxO1 was knocked down, the tumor tissue was more closely packed. After the knockdown of the SREBP-1c gene, the structure of tumor cells was deformed. Conclusion FoxO1 and SREBP-1c inhibited each other in HB, leading to the increase of intracellular fatty acid metabolism, and ultimately facilitated the development of HB.
Collapse
|
30
|
Yang Z, Roth K, Agarwal M, Liu W, Petriello MC. The transcription factors CREBH, PPARa, and FOXO1 as critical hepatic mediators of diet-induced metabolic dysregulation. J Nutr Biochem 2021; 95:108633. [PMID: 33789150 PMCID: PMC8355060 DOI: 10.1016/j.jnutbio.2021.108633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/31/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
The liver is a critical mediator of lipid and/or glucose homeostasis and is a primary organ involved in dynamic changes during feeding and fasting. Additionally, hepatic-centric pathways are prone to dysregulation during pathophysiological states including metabolic syndrome (MetS) and non-alcoholic fatty liver disease. Omics platforms and GWAS have elucidated genes related to increased risk of developing MetS and related disorders, but mutations in these metabolism-related genes are rare and cannot fully explain the increasing prevalence of MetS-related pathologies worldwide. Complex interactions between diet, lifestyle, environmental factors, and genetic predisposition jointly determine inter-individual variability of disease risk. Given the complexity of these interactions, researchers have focused on master regulators of metabolic responses incorporating and mediating the impact of multiple environmental cues. Transcription factors are DNA binding, terminal executors of signaling pathways that modulate the cellular responses to complex metabolic stimuli and are related to the control of hepatic lipid and glucose homeostasis. Among numerous hepatic transcription factors involved in regulating metabolism, three emerge as key players in transducing nutrient sensing, which are dysregulated in MetS-related perturbations in both clinical and preclinical studies: cAMP Responsive Element Binding Protein 3 Like 3 (CREB3L3), Peroxisome Proliferator Activated Receptor Alpha (PPAR), and Forkhead Box O1 (FOXO1). Additionally, these three transcription factors appear to be amenable to dietary and/or nutrient-based therapies, being potential targets of nutritional therapy. In this review we aim to describe the activation, regulation, and impact of these transcription factors in the context of metabolic homeostasis. We also summarize their perspectives in MetS and nutritional therapies.
Collapse
Affiliation(s)
- Zhao Yang
- Institute of Environmental Health Sciences (IEHS), Wayne State University, Detroit, MI, USA
| | - Katherine Roth
- Institute of Environmental Health Sciences (IEHS), Wayne State University, Detroit, MI, USA
| | - Manisha Agarwal
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Wanqing Liu
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI, USA
| | - Michael C Petriello
- Institute of Environmental Health Sciences (IEHS), Wayne State University, Detroit, MI, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
31
|
Wu Q, Li Z, Lu X, Song J, Wang H, Liu D, Guo D, Bi H. Epigallocatechin gallate protects the human lens epithelial cell survival against UVB irradiation through AIF/endo G signalling pathways in vitro. Cutan Ocul Toxicol 2021; 40:187-197. [PMID: 33487044 DOI: 10.1080/15569527.2021.1879112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Oxidative stress has been recognised as an important mediator of apoptosis in lens epithelial cells. It also plays an important role in the pathogenesis of cataracts. It is reported that (-)-Epigallocatechin gallate (EGCG), the most abundant component in green tea, exhibits potent antioxidant activity against oxidative stress. This study aimed to investigate the protective effect of EGCG against Ultraviolet B (UVB) induced apoptotic death and the underlying mechanism in human lens epithelial cells (HLECs). METHODS HLECs were exposed to various concentrations of EGCG under UVB (30 mJ/cm2), and cell viability was monitored by the MTT assay. Next, mitochondrial membrane potential (Δψm), reactive oxygen species (ROS) and apoptosis were detected by flow cytometry. Meanwhile, the total antioxigenic capacity (T-AOC) was determined by enzyme standard instrument, and the expression of apoptosis inducing factor (AIF) and endonuclease G (Endo G) was measured by quantitative PCR (Q-PCR) and western blotting, respectively. Moreover, the localisation of AIF and Endo G within cells was further detected by confocal optical microscopy. RESULTS The results indicated that EGCG could enhance the cell viability and protect against cell apoptosis caused by UVB irradiation in HLECs. EGCG could also decrease the UVB-induced generation of ROS and collapse of Δψm, increase the T-AOC level. In addition, EGCG could also inhibit the UVB-stimulated increase of AIF and Endo G expression at mRNA and protein levels and ameliorate the UVB-induced mitochondria-nuclear translocation of AIF and Endo G. CONCLUSIONS UVB irradiation could damage HLECs viability, while EGCG exhibits antioxidant effect and inhibits UVB-induced apoptosis in HLECs through AIF/Endo G signalling pathways. Our findings reveal the underlying mechanism of EGCG against UVB-induced oxidative stress in HLECs.
Collapse
Affiliation(s)
- Qiuxin Wu
- Shandong University of Traditional Chinese Medicine, Jinan, P. R. China.,Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Zhongen Li
- Shandong University of Traditional Chinese Medicine, Jinan, P. R. China.,Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Xiuzhen Lu
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Jike Song
- Shandong University of Traditional Chinese Medicine, Jinan, P. R. China.,Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Hui Wang
- Shandong University of Traditional Chinese Medicine, Jinan, P. R. China.,Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Dongmei Liu
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong; Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, P. R. China.,Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong; Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| |
Collapse
|
32
|
Monfoulet LE, Ruskovska T, Ajdžanović V, Havlik J, Vauzour D, Bayram B, Krga I, Corral-Jara KF, Kistanova E, Abadjieva D, Massaro M, Scoditti E, Deligiannidou E, Kontogiorgis C, Arola-Arnal A, van Schothorst EM, Morand C, Milenkovic D. Molecular Determinants of the Cardiometabolic Improvements of Dietary Flavanols Identified by an Integrative Analysis of Nutrigenomic Data from a Systematic Review of Animal Studies. Mol Nutr Food Res 2021; 65:e2100227. [PMID: 34048642 DOI: 10.1002/mnfr.202100227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Indexed: 12/11/2022]
Abstract
SCOPE Flavanols are important polyphenols of the human diet with extensive demonstrations of their beneficial effects on cardiometabolic health. They contribute to preserve health acting on a large range of cellular processes. The underlying mechanisms of action of flavanols are not fully understood but involve a nutrigenomic regulation. METHODS AND RESULTS To further capture how the intake of dietary flavanols results in the modulation of gene expression, nutrigenomics data in response to dietary flavanols obtained from animal models of cardiometabolic diseases have been collected and submitted to a bioinformatics analysis. This systematic analysis shows that dietary flavanols modulate a large range of genes mainly involved in endocrine function, fatty acid metabolism, and inflammation. Several regulators of the gene expression have been predicted and include transcription factors, miRNAs and epigenetic factors. CONCLUSION This review highlights the complex and multilevel action of dietary flavanols contributing to their strong potential to preserve cardiometabolic health. The identification of the potential molecular mediators and of the flavanol metabolites driving the nutrigenomic response in the target organs is still a pending question which the answer will contribute to optimize the beneficial health effects of dietary bioactives.
Collapse
Affiliation(s)
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković,", National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, Serbia
| | - Jaroslav Havlik
- Department of Food Science, Czech University of Life Sciences Prague, Prague 6, Suchdol, Czech Republic
| | - David Vauzour
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Banu Bayram
- Department of Nutrition and Dietetics, University of Health Sciences, Istanbul, Turkey
| | - Irena Krga
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France.,Centre of Excellence in Nutrition and Metabolism Research, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, 43007, Spain
| | | | - Christine Morand
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France.,Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, USA
| |
Collapse
|
33
|
Li H, Yu XH, Ou X, Ouyang XP, Tang CK. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res 2021; 83:101109. [PMID: 34097928 DOI: 10.1016/j.plipres.2021.101109] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a quickly emerging global health problem representing the most common chronic liver disease in the world. Atherosclerotic cardiovascular disease represents the leading cause of mortality in NAFLD patients. Cholesterol metabolism has a crucial role in the pathogenesis of both NAFLD and atherosclerosis. The liver is the major organ for cholesterol metabolism. Abnormal hepatic cholesterol metabolism not only leads to NAFLD but also drives the development of atherosclerotic dyslipidemia. The cholesterol level in hepatocytes reflects the dynamic balance between endogenous synthesis, uptake, esterification, and export, a process in which cholesterol is converted to neutral cholesteryl esters either for storage in cytosolic lipid droplets or for secretion as a major constituent of plasma lipoproteins, including very-low-density lipoproteins, chylomicrons, high-density lipoproteins, and low-density lipoproteins. In this review, we describe decades of research aimed at identifying key molecules and cellular players involved in each main aspect of hepatic cholesterol metabolism. Furthermore, we summarize the recent advances regarding the biological processes of hepatic cholesterol transport and its role in NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Xiang Ou
- Department of Endocrinology, the First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
34
|
Zhu W, Gui W, Lin X, Yin X, Liang L, Li H. Maternal undernutrition modulates hepatic MicroRNAs expression in the early life of offspring. Exp Cell Res 2021; 400:112450. [PMID: 33347859 DOI: 10.1016/j.yexcr.2020.112450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/20/2020] [Accepted: 12/16/2020] [Indexed: 02/02/2023]
Abstract
Emerging studies revealed that a poor intrauterine environment elicited by maternal nutrient restriction (MNR) is associated with an increased risk of metabolic diseases in adulthood. Previous research has shown that microRNAs (miRNAs) exert pivotal roles in modulating molecular pathways involved in disease pathogenesis and progression. In this respect, we herein examined miRNA profiles in samples of liver from offspring whose mothers were fed either with a 50% food-restricted diet or standard laboratory chow during pregnancy. Our findings enumerated that miR-181a, involved in lipid metabolism, was found to be downregulated in the liver of MNR offspring at 1 day of age when compared to that of control offspring. We also noted that overexpression of miR-181a reduced the lipid droplets after treatment with oleic acid for 48 h, which suppressed the expressions levels of SIRT1, FOXO1, KLF6 and PPARγ in BRL-3A cells, while the opposite results were observed with decreased expression of miR-181a. Furthermore, the luciferase reporter assay confirmed the direct interactions between miR-181a with KLF6 and SIRT1. In adults, the MNR offspring elucidated increased TG content, decreased expression of miR-181a, and increased expressions levels of SIRT1, FOXO1, KLF6, and PPARγ in liver tissues. Collectively, these findings provided novel evidence that MNR could regulate miRNAs expression, which might be related to lipid metabolism in MNR offspring.
Collapse
Affiliation(s)
- Weifen Zhu
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiwei Gui
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xihua Lin
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xueyao Yin
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Liang
- Department of Pediatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
35
|
Du Y, Paglicawan L, Soomro S, Abunofal O, Baig S, Vanarsa K, Hicks J, Mohan C. Epigallocatechin-3-Gallate Dampens Non-Alcoholic Fatty Liver by Modulating Liver Function, Lipid Profile and Macrophage Polarization. Nutrients 2021; 13:599. [PMID: 33670347 PMCID: PMC7918805 DOI: 10.3390/nu13020599] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG) has been shown to attenuate obesity, fatty liver disease, hepatic inflammation and lipid profiles. Here, we validate the efficacy of EGCG in a murine model of non-alcoholic fatty liver disease (NAFLD) and extend the mechanistic insights. NAFLD was induced in mice by a high-fat diet (HFD) with 30% fructose. EGCG was administered at a low dose (25 mg/kg/day, EGCG-25) or high dose (50 mg/kg/day, EGCG-50) for 8 weeks. In HFD-fed mice, EGCG attenuated body and liver weight by ~22% and 47%, respectively, accompanied by ~47% reduction in hepatic triglyceride (TG) accumulation and ~38% reduction in serum cholesterol, resonating well with previous reports in the literature. In EGCG-treated mice, the hepatic steatosis score and the non-alcoholic steatohepatitis activity score were both reduced by ~50% and ~57%, respectively, accompanied by improvements in hepatic inflammation grade. Liver enzymes were improved ~2-3-fold following EGCG treatment, recapitulating previous reports. Hepatic flow cytometry demonstrated that EGCG-fed mice had lower Ly6C+, MHCII+ and higher CD206+, CD23+ hepatic macrophage infiltration, indicating that EGCG impactedM1/M2 macrophage polarization. Our study further validates the salubrious effects of EGCG on NAFLD and sheds light on a novel mechanistic contribution of EGCG, namely hepatic M1-to-M2 macrophage polarization. These findings offer further support for the use of EGCG in human NAFLD.
Collapse
Affiliation(s)
- Yong Du
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (L.P.); (S.S.); (O.A.); (S.B.); (K.V.)
| | - Laura Paglicawan
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (L.P.); (S.S.); (O.A.); (S.B.); (K.V.)
| | - Sanam Soomro
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (L.P.); (S.S.); (O.A.); (S.B.); (K.V.)
| | - Omar Abunofal
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (L.P.); (S.S.); (O.A.); (S.B.); (K.V.)
| | - Sahar Baig
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (L.P.); (S.S.); (O.A.); (S.B.); (K.V.)
| | - Kamala Vanarsa
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (L.P.); (S.S.); (O.A.); (S.B.); (K.V.)
| | - John Hicks
- Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (L.P.); (S.S.); (O.A.); (S.B.); (K.V.)
| |
Collapse
|
36
|
Wang Y, Yang Q, Lin P, Li C, Lu Y, Daijun S. The Effect of Supplementing Tea Polyphenols in Diet of Laying Hens on Yolk Cholesterol Content and Production Performance. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2020-1356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Y Wang
- Southwest University, China; Southwest University, China
| | - Q Yang
- Southwest University, China; Southwest University, China
| | - P Lin
- Southwest University, China; Southwest University, China
| | - C Li
- Southwest University, China
| | - Y Lu
- Southwest University, China
| | - S Daijun
- Southwest University, China; Southwest University, China
| |
Collapse
|
37
|
Sayed AM, Hassanein EH, Salem SH, Hussein OE, Mahmoud AM. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sci 2020; 259:118173. [DOI: 10.1016/j.lfs.2020.118173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
|
38
|
Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients 2020; 12:E2393. [PMID: 32785059 PMCID: PMC7469047 DOI: 10.3390/nu12082393] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prevention and treatment of obesity is primary based on the follow-up of a healthy lifestyle, which includes a healthy diet with an important presence of bioactive compounds such as polyphenols. For many years, the health benefits of polyphenols have been attributed to their anti-oxidant capacity as free radical scavengers. More recently it has been described that polyphenols activate other cell-signaling pathways that are not related to ROS production but rather involved in metabolic regulation. In this review, we have summarized the current knowledge in this field by focusing on the metabolic effects of flavonoids. Flavonoids are widely distributed in the plant kingdom where they are used for growing and defensing. They are structurally characterized by two benzene rings and a heterocyclic pyrone ring and based on the oxidation and saturation status of the heterocyclic ring flavonoids are grouped in seven different subclasses. The present work is focused on describing the molecular mechanisms underlying the metabolic impact of flavonoids in obesity and obesity-related diseases. We described the effects of each group of flavonoids in liver, white and brown adipose tissue and central nervous system and the metabolic and signaling pathways involved on them.
Collapse
Affiliation(s)
- Viviana Sandoval
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Hèctor Sanz-Lamora
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Giselle Arias
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
39
|
Kim YJ, Kim KS, Lim D, Yang DJ, Park JI, Kim KW, Jeong JH, Choi HS, Kim DK. Epigallocatechin-3-Gallate (EGCG)-Inducible SMILE Inhibits STAT3-Mediated Hepcidin Gene Expression. Antioxidants (Basel) 2020; 9:antiox9060514. [PMID: 32545266 PMCID: PMC7346121 DOI: 10.3390/antiox9060514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatic peptide hormone hepcidin, a key regulator of iron metabolism, is induced by inflammatory cytokine interleukin-6 (IL-6) in the pathogenesis of anemia of inflammation or microbial infections. Small heterodimer partner-interacting leucine zipper protein (SMILE)/CREBZF is a transcriptional corepressor of nuclear receptors that control hepatic glucose and lipid metabolism. Here, we examined the role of SMILE in regulating iron metabolism by inflammatory signals. Overexpression of SMILE significantly decreased activation of the Janus kinase 2-signal transducer and activator of transcription 3 (STAT3)-mediated hepcidin production and secretion that is triggered by the IL-6 signal in human and mouse hepatocytes. Moreover, SMILE co-localized and physically interacted with STAT3 in the nucleus in the presence of IL-6, which significantly suppressed binding of STAT3 to the hepcidin gene promoter. Interestingly, epigallocatechin-3-gallate (EGCG), a major component of green tea, induced SMILE expression through forkhead box protein O1 (FoxO1), as demonstrated in FoxO1 knockout primary hepatocytes. In addition, EGCG inhibited IL-6-induced hepcidin expression, which was reversed by SMILE knockdown. Finally, EGCG significantly suppressed lipopolysaccharide-induced hepcidin secretion and hypoferremia through induction of SMILE expression in mice. These results reveal a previously unrecognized role of EGCG-inducible SMILE in the IL-6-dependent transcriptional regulation of iron metabolism.
Collapse
Affiliation(s)
- Yu-Ji Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea;
| | - Ki-Sun Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea; (K.-S.K.); (H.-S.C.)
| | - Daejin Lim
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61468, Korea; (D.L.); (J.-H.J.)
| | - Dong Ju Yang
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul, 03722, Korea; (D.J.Y.); (K.W.K.)
| | - Jae-Il Park
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju 61186, Korea;
| | - Ki Woo Kim
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul, 03722, Korea; (D.J.Y.); (K.W.K.)
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61468, Korea; (D.L.); (J.-H.J.)
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea; (K.-S.K.); (H.-S.C.)
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: ; Tel.: +82-62-530-2166; Fax: +82-62-530-2160
| |
Collapse
|
40
|
Wang X, Yang J, Lu T, Zhan Z, Wei W, Lyu X, Jiang Y, Xue X. The effect of swimming exercise and diet on the hypothalamic inflammation of ApoE-/- mice based on SIRT1-NF-κB-GnRH expression. Aging (Albany NY) 2020; 12:11085-11099. [PMID: 32518216 PMCID: PMC7346084 DOI: 10.18632/aging.103323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/28/2020] [Indexed: 04/13/2023]
Abstract
A high-fat diet and sedentary lifestyle could accelerate aging and hypothalamic inflammation. In order to explore the regulatory mechanisms of lifestyle in the hypothalamus, swimming exercise and diet control were applied in the high-fat diet ApoE-/- mice in our study. 20-week-old ApoE-/- mice fed with 12-week high-fat diet were treated by high-fat diet, diet control and swimming exercise. The results showed that hypothalamic inflammation, glial cells activation and cognition decline were induced by high-fat diet. Compared with the diet control, hypothalamic inflammation, glial cells activation and learning and memory impairment were effectively alleviated by swimming exercise plus diet control, which was related to the increasing expression of SIRT1, inhibiting the expression of NF-κB and raising secretion of GnRH in the hypothalamus. These findings supported the hypothesis that hypothalamic inflammation was susceptible to exercise and diet, which was strongly associated with SIRT1-NF-κB-GnRH expression in the hypothalamus.
Collapse
Affiliation(s)
- Xialei Wang
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350112, China
| | - Jingda Yang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350112, China
| | - Taotao Lu
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350112, China
| | - Zengtu Zhan
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Wei Wei
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Xinru Lyu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350112, China
| | - Yijing Jiang
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Xiehua Xue
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| |
Collapse
|
41
|
The Potential Mechanism of Wuwei Qingzhuo San against Hyperlipidemia Based on TCM Network Pharmacology and Validation Experiments in Hyperlipidemia Hamster. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5369025. [PMID: 32454862 PMCID: PMC7212318 DOI: 10.1155/2020/5369025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 11/17/2022]
Abstract
Wuwei Qingzuo San (WWQZS), as a renowned traditional Mongolian patent medicine approved by Chinese State Food and Drug Administration, is used to treat hyperlipidemia, indigestion, and other ailments related to disorder of production of essence and phlegm, a typical abnormal metabolism of blood in traditional Mongolian medicine. A combination of network pharmacology and validation experiments in hyperlipidemia hamster is used to understand the potential mechanism of WWQZS for hypolipidemic effects, further for an integrated concept of traditional theory, bioactive constituents, and molecular mechanism for TMM. Through network pharmacology, we obtained 212 components, 219 predicted targets, and 349 known hyperlipidemia-related targets form public database and used Metascape to carry out enrichment analysis of 43 potential and 45 candidate targets to imply numerous BP concerned with metabolism of lipid, regulation of kinases and MF related to lipid binding, phosphatase binding, and receptor ligand activity that are involved in anti-hyperlipidemia. In addition, KEGG pathways that explicated hypolipidemic effect were involved in pathways including metabolism associated with kinase function according to MAPK signaling pathway, AMPK signaling pathway, and PI3K-Akt signaling pathway. Meanwhile, in HFD-induced hamster model, WWQZS could significantly reduce TC and ALT and help decrease TG, LDL-C as well; liver pathological section implied that WWQZS could relieve liver damage and lipid accumulation. Western blot indicated that WWQZS may upregulate CYP7A1 and activate AMPK to suppress the expression of HMGCR in livers. In conclusion, our results suggest that WWQSZS plays important dual hypolipidemic and liver-protective role in livers in HFD-induced hamster model. Through this research, a new reference is also provided to other researches in the study of ethnopharmacology.
Collapse
|
42
|
Naturally Occurring PCSK9 Inhibitors. Nutrients 2020; 12:nu12051440. [PMID: 32429343 PMCID: PMC7284437 DOI: 10.3390/nu12051440] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
Genetic, epidemiological and pharmacological data have led to the conclusion that antagonizing or inhibiting Proprotein convertase subtilisin/kexin type 9 (PCSK9) reduces cardiovascular events. This clinical outcome is mainly related to the pivotal role of PCSK9 in controlling low-density lipoprotein (LDL) cholesterol levels. The absence of oral and affordable anti-PCSK9 medications has limited the beneficial effects of this new therapeutic option. A possible breakthrough in this field may come from the discovery of new naturally occurring PCSK9 inhibitors as a starting point for the development of oral, small molecules, to be used in combination with statins in order to increase the percentage of patients reaching their LDL-cholesterol target levels. In the present review, we have summarized the current knowledge on natural compounds or extracts that have shown an inhibitory effect on PCSK9, either in experimental or clinical settings. When available, the pharmacodynamic and pharmacokinetic profiles of the listed compounds are described.
Collapse
|
43
|
Paeonol prevents lipid metabolism dysfunction in palmitic acid-induced HepG2 injury through promoting SIRT1-FoxO1-ATG14-dependent autophagy. Eur J Pharmacol 2020; 880:173145. [PMID: 32343969 DOI: 10.1016/j.ejphar.2020.173145] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/23/2022]
Abstract
This study aimed to investigate the effects of paeonol (Pae) on lipid metabolism in palmitic acid (PA)-induced injury of HepG2, and to evaluate the protective mechanisms. Lipid metabolism dysfunction of HepG2 cells was produced by administration of palmitic acid (PA). The cells were pretreated with different concentrations of Pae. MTT method was used to detect the cell survival; lipid metabolism was evaluated based on total cholesterol (TC), triglycerides (TG); Western blotting was used to detect the expression of Sirtuin 1 (SIRT1), autophagy related 14 (ATG14), microtubule-associated protein 1A/1B-light chain 3 (LC3) and p62 proteins; immunoprecipitation was used to detect the expression of acetylated FoxO1. After treatment for 24 h, the inhibitory concentration 50 (IC50) of PA in HepG2 cells was about 566.8 μM. Pae at the concentration range from 7.5 to 30 μM did not affect cell viability. Thus, 500 μM PA was used to model metabolism dysfunction and Pae at the concentration range was selected to investigate the protective effect. Compared with the normal control group, the cell survival rate decreased, the number of lipid droplets, and TC and TG levels increased in the model group. Compared with model group, the cell survival rate of Pae (7.5, 15, 30 μM) group increased, the number of lipid droplets and content of TC and TG decreased, the ratio of LC3-II/I increased and p62 expression decreased with pretreatment of Pae. Additionally, Pae pretreatment promoted SIRT1 and ATG14 expression, but reduced acetylated FoxO1 levels in PA-treated cells. Most importantly, autophagy inhibitor, as well as SIRT1 inhibitor blocked the effects of Pae on PA-induced cell injury and metabolism dysfunction, respectively. Pae prevents lipid metabolism dysfunction in PA-induced HepG2 injury by promoting SIRT1-FoxO1-ATG14-dependent autophagy.
Collapse
|
44
|
Cerbaro AF, Rodrigues VSB, Rigotti M, Branco CS, Rech G, de Oliveira DL, Salvador M. Grape seed proanthocyanidins improves mitochondrial function and reduces oxidative stress through an increase in sirtuin 3 expression in EA.hy926 cells in high glucose condition. Mol Biol Rep 2020; 47:3319-3330. [PMID: 32266639 DOI: 10.1007/s11033-020-05401-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
Proanthocyanidins are phenolic compounds abundant in the diet, commonly found in grapes and derivatives, foods known for their health-promoting benefits. There is previous evidence showing the antidiabetic activity of proanthocyanidins, however, their mechanisms of action have not been fully elucidated. This study evaluated the capacity of grape seed proanthocyanidins extract (GSPE) to modulate oxidative stress, nitric oxide levels, mitochondrial dysfunction, apoptosis, and sirtuin expression in endothelial cells EA.hy926 under high glucose condition. In addition, the possible toxic effects of GSPE was evaluated in a zebrafish embryos model. The results showed that GSPE was able to enhance cell viability and avoid the disturbance in redox metabolism induced by high glucose. Moreover, GSPE was able to avoid mitochondria dysfunction and the increased in p53 and poly-(ADP-ribose) polymerase expression induced by high glucose exposition. These effects were attributed to the increase in expression of sirtuin 3, a protein able to regulate mitochondrial function. GSPE in an effective concentration did not show toxic effects in zebrafish embryos model. Taken together, these data elucidate the key molecular target of GSPE for future pharmacological interventions in diabetic patients.
Collapse
Affiliation(s)
- Aline Fagundes Cerbaro
- Laboratory of Oxidative Stress and Antioxidants, Biotechnology Institute, University of Caxias Do Sul, Caxias do Sul, RS, 95070560, Brazil
| | | | - Marina Rigotti
- Laboratory of Oxidative Stress and Antioxidants, Biotechnology Institute, University of Caxias Do Sul, Caxias do Sul, RS, 95070560, Brazil
| | - Catia Santos Branco
- Laboratory of Oxidative Stress and Antioxidants, Biotechnology Institute, University of Caxias Do Sul, Caxias do Sul, RS, 95070560, Brazil
| | - Giovana Rech
- Cellular Neurochemistry Laboratory, Department of Biochemistry, Institute Health Basic Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, RS, 90035003, Brazil
| | - Diogo Losch de Oliveira
- Cellular Neurochemistry Laboratory, Department of Biochemistry, Institute Health Basic Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, RS, 90035003, Brazil
| | - Mirian Salvador
- Laboratory of Oxidative Stress and Antioxidants, Biotechnology Institute, University of Caxias Do Sul, Caxias do Sul, RS, 95070560, Brazil.
| |
Collapse
|
45
|
Jin S, Yang L, Fan X, Wu M, Xu Y, Chen X, Lin Z, Geng Z. Effect of divergence in residual feed intake on expression of lipid metabolism-related genes in the liver of meat-type ducks1. J Anim Sci 2019; 97:3947-3957. [PMID: 31325379 DOI: 10.1093/jas/skz241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism is considered one of the important factors affecting residual feed intake (RFI). However, the relationship between RFI and expression of lipid metabolism-related genes is unknown in meat-type ducks. To address this issue, a total of 1,000 male meat-type ducks with similar body weight were randomly selected to measure body weight gain and feed intake from 21 to 42 d of age to estimate RFI. The 8 greatest- (high RFI [HRFI]) and lowest- (low RFI [LRFI]) ranking birds were then selected for the present study. Relative expressions of key genes, namely sirtuin 1 (Sirt1), forkhead box O1 (Foxo1), peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding transcription factor 1c (SREBP-1c), fas cell surface death receptor (FAS), acetyl-CoA carboxylase alpha (ACC), carnitine palmitoyltransferase 1A (CPT1A), and acyl-CoA oxidase 1 (ACOX1), were then determined in the HRFI and LRFI ducks by quantitative PCR. The results showed that RFI, feed conversion ratio (FCR), and average daily feed intake (ADFI) were significantly lower (P < 0.05) in LRFI ducks than in HRFI ducks. In addition, expression of Sirt1, Foxo1, CPT1A, and ACOX1 were significantly higher in LRFI ducks than in HRFI ducks (P < 0.05), whereas PPARγ and FAS expression levels were significantly lower in LRFI ducks than in HRFI ducks (P < 0.01). Correlation analysis showed that Sirt1, CPT1A, and ACOX1 expressions were significantly negatively correlated with FCR (r = -0.81 to -0.93; P < 0.01), whereas PPARγ and FAS expressions were significantly positively correlated with FCR (r = 0.74 to 0.87; P < 0.01). PPARγ expression was significantly positively correlated with RFI (r = 0.83; P < 0.01), whereas CPT1A and ACOX1 expressions were significantly negatively correlated with RFI (r = -0.84 to -0.89; P < 0.01). Sirt1 mRNA expression was positively correlated with Foxo1, CPT1A, and ACOX1 mRNA expression (r = 0.78 to 0.92; P < 0.01). Association of Foxo1 with CPT1A and ACOX1 was positive (r = 0.88 to 0.96; P < 0.01). These results suggest that genes related to fatty acid oxidation are upregulated in the liver of ducks with high feed efficiency, while genes associated with lipid synthesis are downregulated. Furthermore, the inclusion of lipid metabolism-related genes in future breeding programs might be beneficial for selecting ducks with greater feed efficiency phenotype.
Collapse
Affiliation(s)
- Sihua Jin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lei Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xinfeng Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Minghui Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yuan Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xianzen Chen
- Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Biobreeding, Hefei, China
| | - Zhiqiang Lin
- Huangshan Qiangying Duck Breeding Co. Ltd., Huangshan, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
46
|
Chen G, Li X. The decreased SIRT1 level may account for the lipid profile in chronic kidney disease. ACTA ACUST UNITED AC 2019; 26:9. [PMID: 31637223 PMCID: PMC6794817 DOI: 10.1186/s40709-019-0101-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/04/2019] [Indexed: 01/12/2023]
Abstract
Dysregulated lipid profile with hypertriglyceridemia and increased low-density lipoprotein (LDL) is common in chronic kidney disease (CKD) whereas the reason is unclear. A similar phenomenon is found in the elder population. Silent information regulator-1 (SIRT1) associates with many modulators regulating lipid metabolism and results in increased expression of sterol regulatory element-binding proteins (SREBPs), which functions as a key modulator in lipid synthesis. Since CKD is being viewed as a premature aging model and SIRT1 is known to decrease during the process of aging, we hypothesize that SIRT1 level is reduced in the liver when CKD develops and eventually result in dysregulated lipid profile.
Collapse
Affiliation(s)
- Gang Chen
- Dept. of Nephrology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, 100730 Beijing, China
| | - Xuemei Li
- Dept. of Nephrology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, 100730 Beijing, China
| |
Collapse
|
47
|
Collin de l'Hortet A, Takeishi K, Guzman-Lepe J, Morita K, Achreja A, Popovic B, Wang Y, Handa K, Mittal A, Meurs N, Zhu Z, Weinberg F, Salomon M, Fox IJ, Deng CX, Nagrath D, Soto-Gutierrez A. Generation of Human Fatty Livers Using Custom-Engineered Induced Pluripotent Stem Cells with Modifiable SIRT1 Metabolism. Cell Metab 2019; 30:385-401.e9. [PMID: 31390551 PMCID: PMC6691905 DOI: 10.1016/j.cmet.2019.06.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/11/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022]
Abstract
The mechanisms by which steatosis of the liver progresses to non-alcoholic steatohepatitis and end-stage liver disease remain elusive. Metabolic derangements in hepatocytes controlled by SIRT1 play a role in the development of fatty liver in inbred animals. The ability to perform similar studies using human tissue has been limited by the genetic variability in man. We generated human induced pluripotent stem cells (iPSCs) with controllable expression of SIRT1. By differentiating edited iPSCs into hepatocytes and knocking down SIRT1, we found increased fatty acid biosynthesis that exacerbates fat accumulation. To model human fatty livers, we repopulated decellularized rat livers with human mesenchymal cells, fibroblasts, macrophages, and human SIRT1 knockdown iPSC-derived hepatocytes and found that the human iPSC-derived liver tissue developed macrosteatosis, acquired proinflammatory phenotype, and shared a similar lipid and metabolic profiling to human fatty livers. Biofabrication of genetically edited human liver tissue may become an important tool for investigating human liver biology and disease.
Collapse
Affiliation(s)
| | - Kazuki Takeishi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jorge Guzman-Lepe
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kazutoyo Morita
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abhinav Achreja
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Branimir Popovic
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Kan Handa
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anjali Mittal
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Noah Meurs
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ziwen Zhu
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Frank Weinberg
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | | | - Ira J Fox
- Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
48
|
SIRT1 Modulators in Experimentally Induced Liver Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8765954. [PMID: 31281594 PMCID: PMC6589266 DOI: 10.1155/2019/8765954] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/21/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
Abstract
This article is directed at highlighting the involvement of the endogenous stress sensor SIRT1 (silent information regulator T1) as a possible factor involved in hepatoprotection. The selective SIRT1 modulators whether activators (STACs) or inhibitors are being tried experimentally and clinically. We discuss the modulation of SIRT1 on cytoprotection or even cytotoxicity in the liver chemically injured by hepatotoxic agents in rats, to shed light on the crosstalk between SIRT1 and its modulators. A combination of D-galactosamine and lipopolysaccharide (D-GalN/LPS) downregulated SIRT1 expression, while SIRT1 activators, SRT1720, resveratrol, and quercetin, upregulated SIRT1 and alleviated D-GalN/LPS-induced acute hepatotoxicity. Liver injury markers exhibited an inverse relationship with SIRT1 expression. However, under subchronic hepatotoxicity, quercetin decreased the significant increase in SIRT1 expression to lower levels which are still higher than normal ones and mitigated the liver-damaging effects of carbon tetrachloride. Each of these STACs was hepatoprotective and returned the conventional antioxidant enzymes to the baseline. Polyphenols tend to fine-tune SIRT1 expression towards normal in the liver of intoxicated rats in both acute and subchronic studies. Together, all these events give an impression that the cytoprotective effects of SIRT1 are exhibited within a definite range of expression. The catalytic activity of SIRT1 is important in the hepatoprotective effects of polyphenols where SIRT1 inhibitors block and the allosteric SIRT1 activators mimic the hepatoprotective effects of polyphenols. Our findings indicate that the pharmacologic modulation of SIRT1 could represent both an important move in alleviating hepatic insults and a future major step in the treatment of xenobiotic-induced hepatotoxicity.
Collapse
|
49
|
Huang H, Jin CY, Bi XK, Zhao YB, Xu SJ, Wang MH, Yu L, Sun YX, Hu D. Green Tea Polyphenol Epigallocatechin-3-Gallate Promotes Reendothelialization in Carotid Artery of Diabetic Rabbits by Reactivating Akt/eNOS Pathway. Front Pharmacol 2018; 9:1305. [PMID: 30487749 PMCID: PMC6246634 DOI: 10.3389/fphar.2018.01305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022] Open
Abstract
Background: Epigallocatechin gallate (EGCG) is the most abundant catechin in green tea and has proven benefits on endothelial cells in diabetes. However, it remains unclear whether EGCG could improve function of late endothelial progenitor cells (L-EPCs) in diabetes. Methods: Thirty-six rabbits were randomized into six groups. Thirty diabetic rabbits were induced by a single dose of alloxan (100 mg/kg injection intraperitoneally). All of them were given intragastrically EGCG (50 mg/kg/day) or saline for 7 days after carotid injury. In autotransfusion experiment, L-EPCs were cultured with pre-treated EGCG (40 μM for 72 h) and then were injected into the site of injured vascular. Proliferation and migration of EGCG pre-treated L-EPCs in high glucose condition were assessed by EDU incorporation assay and modified Boyden chamber assay, respectively. The mRNA and protein expression of Akt-eNOS pathway were detected by real-time PCR and western blot. Results: Reendothelialization rate in injured carotid artery of diabetic rabbits was augmented in the EGCG group (50 mg/kg/d for 7 days) compared with the non-EGCG group (74.2 ± 4.6% vs. 25.6 ± 5.9%, P < 0.001). EGCG pre-treated L-EPCs autologous transfusion also accelerated the diabetic rabbits’ carotid reendothelialization compared with the diabetic sham-operated group (65.6 ± 8.5% vs. 32.9 ± 5.0%, P = 0.011). In vitro studies showed, 40 μM EGCG treatment for 72 h recovered L-EPCs’ proliferation and migration, as well as restored the phosphorylation level of Akt and eNOS blocked by high glucose condition. Conclusion: EGCG accelerated reendothelialization in diabetic rabbits after carotid injury in part by reactivating the Akt/eNOS pathway, which might contribute to recovering proliferation and migration of L-EPCs impaired by high glucose.
Collapse
Affiliation(s)
- He Huang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chong-Ying Jin
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xu-Kun Bi
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yan-Bo Zhao
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng-Jie Xu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mei-Hui Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Yu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ya-Xun Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|