1
|
Bhairu Khot K, Jose J, Gopan G, Sandeep DS, Ashtekar H, Shastry P, Raviraj C. Stearyl amine coated liposome of rotigotine alleviates cognitive deficit in Parkinson's disease induced mice model: modulation of oxidative stress, and motor coordination. Drug Dev Ind Pharm 2025:1-16. [PMID: 40238494 DOI: 10.1080/03639045.2025.2494127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVE The study was conducted to evaluate the brain targeted delivery of cationic liposomes of rotigotine via nasal route, addressing the limitations in brain penetration for Parkinson's disease intervention. METHODS Cationic liposomes were fabricated and optimized using a Box-Behnken design to improve the excipient composition for effective intranasal delivery. The optimized liposome, LR12, was surface modified with stearylamine at three concentrations to confer a cationic charge. The final formulation, RTG-LP3, was evaluated for physicochemical parameters, including size, entrapment efficiency, and zeta potential. A morphological study was performed within the 100-200 nm size range. The cytotoxicity of RTG-LP3 was determined in SH-SY5Y cell lines, whereas pharmacodynamic studies were evaluated in C57BL/6 mice following nasal administration. RESULTS The formulation RTG-LP3 exhibited a minimal vesicle size of 162 ± 2.94 nm, a high entrapment efficiency of 86.53 ± 0.33%, and a positive zeta potential of +19.8 ± 2.45 mV. Morphological investigation indicated spherical shape of liposomes in the size range of 100-200 nm. Cytotoxicity study showed fivefold safety margin for RTG-LP3 when compared with rotigotine. Pharmacodynamic assessments in PD-induced C57BL6 mice showed increased motor coordination and antioxidant benefits following nasal treatment. Histological study of brain regions treated with RTG-LP3 demonstrated improved neuronal architecture, indicating reduced neurodegeneration and improved disease condition. CONCLUSION The cationic liposome RTG-LP3 demonstrated effective delivery of liposomes with superior therapeutic effects in treating PD via nasal route. These findings highlight the potential of cationic liposomes as a viable method for improving brain penetration and neuroprotection in PD therapy.
Collapse
Affiliation(s)
- Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Jobin Jose
- Department of Pharmaceutics, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - D S Sandeep
- Department of Pharmaceutics, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Harsha Ashtekar
- Department of Pharmacology, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Prajna Shastry
- Department of Pharmaceutics, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Chaithra Raviraj
- Department of Advance Research Centre, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| |
Collapse
|
2
|
Mirab F, Pirhaghi M, Otzen DE, Saboury AA. Parkinson's disease and gut microbiota metabolites: The dual impact of vitamins and functional amyloids. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167862. [PMID: 40254265 DOI: 10.1016/j.bbadis.2025.167862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the abnormal accumulation of alpha-synuclein (α-Syn). Recent research emphasizes the significant role of the gut microbiota, the diverse community of microbes living in the intestines, in modulating α-Syn pathology. This review explores the bi-directional communication along the microbiota-gut-brain axis, highlighting the paradoxical impact of two gut microbiota metabolites-functional bacterial amyloids (FuBA) and vitamins-on neurodegenerative diseases, particularly PD. FuBA contributes to PD pathogenesis by promoting α-Syn aggregation, while vitamins offer neuroprotection through their anti-amyloidogenic, antioxidant, and anti-inflammatory properties. Understanding these processes could lead to precision clinical approaches and novel strategies for managing and preventing PD.
Collapse
Affiliation(s)
- Fatemeh Mirab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Mitra Pirhaghi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 6673145137, Iran
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, C 1592-224, Denmark
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran.
| |
Collapse
|
3
|
Belviranlı M, Okudan N, Sezer T. Potential therapeutic effects of curcumin, with or without L-DOPA, on motor and cognitive functions and hippocampal changes in rotenone-treated rats. Metab Brain Dis 2025; 40:174. [PMID: 40208367 PMCID: PMC11985604 DOI: 10.1007/s11011-025-01602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
The neurodegenerative condition known as Parkinson's disease (PD) is a long-term condition that causes both motor and non-motor symptoms. It is known that curcumin has a strong neuroprotective potential. This experimental study was designed to examine the anti-inflammatory, anti-apoptotic and neuroprotective effects of curcumin administered alone and in combination with L-DOPA in the hippocampus as well as behavioral symptoms in rotenone-induced PD model. Forty-two 4-month-old adult male Wistar rats were randomly divided into six groups as follows: Control, Curcumin, Rotenone, Rotenone plus curcumin, Rotenone plus L-DOPA and Rotenone plus curcumin plus L-DOPA. Control group received vehicles, curcumin group received curcumin (200 mg kg-1, daily for 35 days), rotenone group received rotenone (2 mg kg-1, daily for 35 days), and test groups received curcumin or L-DOPA (10 mg kg-1, daily for the last 15 days) or their combination in addition the rotenone. Pole, sucrose preference, open field, elevated plus maze, and Morris water maze tests were performed after treatment. Molecular and biochemical analyses were performed in the hippocampus tissue and serum samples. Rotenone injection caused impairments in motor activity, depressive-like behavior, and learning and memory functions. Rotenone also increased the expressions of α-synuclein, caspase 3, NF-κB, and decreased the expressions of parkin and BDNF in the hippocampus. However, especially curcumin and L-DOPA combined treatment normalized all these impaired molecular and behavioral variables. In conclusion, curcumin may exert beneficial effects in treatment strategies for PD-related hippocampal effects, especially when added to L-DOPA therapy.
Collapse
Affiliation(s)
- Muaz Belviranlı
- School of Medicine, Department of Physiology, Selçuk University, Konya, 42131, Turkey.
| | - Nilsel Okudan
- School of Medicine, Department of Physiology, Selçuk University, Konya, 42131, Turkey
| | - Tuğba Sezer
- School of Medicine, Department of Physiology, Selçuk University, Konya, 42131, Turkey
| |
Collapse
|
4
|
Manica D, da Silva GB, Narzetti RA, Dallagnoll P, da Silva AP, Marafon F, Cassol J, de Souza Matias L, Zamoner A, de Oliveira Maciel SFV, Moreno M, Bagatini MD. Curcumin modulates purinergic signaling and inflammatory response in cutaneous metastatic melanoma cells. Purinergic Signal 2025; 21:277-288. [PMID: 38801619 PMCID: PMC12061816 DOI: 10.1007/s11302-024-10023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Cutaneous melanoma (CM) poses a therapeutic challenge due to its aggressive nature and often limited response to conventional treatments. Exploring novel therapeutic targets is essential, and natural compounds have emerged as potential candidates. This study aimed to elucidate the impact of curcumin, a natural compound known for its anti-inflammatory, antioxidant, and anti-tumor properties, on metastatic melanoma cells, focusing on the purinergic system and immune responses. Human melanoma cell line SK-Mel-28 were exposed to different curcumin concentrations for either 6 or 24 h, after which we assessed components related to the purinergic system and the inflammatory cascade. Using RT-qPCR, we assessed the gene expression of CD39 and CD73 ectonucleotidases, as well as adenosine deaminase (ADA). Curcumin effectively downregulated CD39, CD73, and ADA gene expression. Flow cytometry analysis revealed that curcumin significantly reduced CD39 and CD73 protein expression at specific concentrations. Moreover, the A2A receptor's protein expression decreased across all concentrations. Enzymatic activity assays demonstrated that curcumin modulated CD39, CD73, and ADA activities, with effects dependent on concentration and duration of treatment. Extracellular ATP levels increased after 24 h of curcumin treatment, emphasizing its role in modulating hydrolytic activity. Curcumin also displayed anti-inflammatory properties by reducing NLRP3 gene expression and impacting the levels of key inflammatory cytokines. In conclusion, this study unveils the potential of curcumin as a promising adjuvant in CM treatment. Curcumin modulates the expression and activity of crucial components of the purinergic system and exhibits anti-inflammatory effects, indicating its potential therapeutic role in combating CM. These findings underscore curcumin's promise and warrant further investigation in preclinical and clinical settings for melanoma management.
Collapse
Affiliation(s)
- Daiane Manica
- Department of Biochemistry, Biochemistry Graduate Program, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Gilnei Bruno da Silva
- Multicentric Graduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Rafael Antônio Narzetti
- Department of Biochemistry, Biochemistry Graduate Program, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Paula Dallagnoll
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapeco, SC, Brazil
| | - Alana Patrícia da Silva
- Department of Biochemistry, Biochemistry Graduate Program, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Filomena Marafon
- Department of Biochemistry, Biochemistry Graduate Program, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Joana Cassol
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapeco, SC, Brazil
| | - Letícia de Souza Matias
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapeco, SC, Brazil
| | - Ariane Zamoner
- Department of Biochemistry, Biochemistry Graduate Program, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | | | - Marcelo Moreno
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapeco, SC, Brazil.
| | - Margarete Dulce Bagatini
- Department of Biochemistry, Biochemistry Graduate Program, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapeco, SC, Brazil.
| |
Collapse
|
5
|
Lagoa R, Rajan L, Violante C, Babiaka SB, Marques-da-Silva D, Kapoor B, Reis F, Atanasov AG. Application of curcuminoids in inflammatory, neurodegenerative and aging conditions - Pharmacological potential and bioengineering approaches to improve efficiency. Biotechnol Adv 2025; 82:108568. [PMID: 40157560 DOI: 10.1016/j.biotechadv.2025.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Curcumin, a natural compound found in turmeric, has shown promise in treating brain-related diseases and conditions associated with aging. Curcumin has shown multiple anti-inflammatory and brain-protective effects, but its clinical use is limited by challenges like poor absorption, specificity and delivery to the right tissues. A range of contemporary approaches at the intersection with bioengineering and systems biology are being explored to address these challenges. Data from preclinical and human studies highlight various neuroprotective actions of curcumin, including the inhibition of neuroinflammation, modulation of critical cellular signaling pathways, promotion of neurogenesis, and regulation of dopamine levels. However, curcumin's multifaceted effects - such as its impact on microRNAs and senescence markers - suggest novel therapeutic targets in neurodegeneration. Tetrahydrocurcumin, a primary metabolite of curcumin, also shows potential due to its presence in circulation and its anti-inflammatory properties, although further research is needed to elucidate its neuroprotective mechanisms. Recent advancements in delivery systems, particularly brain-targeting nanocarriers like polymersomes, micelles, and liposomes, have shown promise in enhancing curcumin's bioavailability and therapeutic efficacy in animal models. Furthermore, the exploration of drug-laden scaffolds and dermal delivery may extend the pharmacological applications of curcumin. Studies reviewed here indicate that engineered dermal formulations and devices could serve as viable alternatives for neuroprotective treatments and to manage skin or musculoskeletal inflammation. This work highlights the need for carefully designed, long-term studies to better understand how curcumin and its bioactive metabolites work, their safety, and their effectiveness.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal; Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials LSRE-LCM, Associate Laboratory in Chemical Engineering ALiCE, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Applied Molecular Biosciences Unit UCIBIO, Institute for Health and Bioeconomy i4HB, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Logesh Rajan
- Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| | - Cristiana Violante
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Smith B Babiaka
- Department of Chemistry, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon; Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal; Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials LSRE-LCM, Associate Laboratory in Chemical Engineering ALiCE, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research iCBR, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology CIBB, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-531 Coimbra, Portugal.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Magdalenka, Poland; Laboratory of Natural Products and Medicinal Chemistry LNPMC, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences SIMATS, Thandalam, Chennai, India; Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
| |
Collapse
|
6
|
Turer BY, Sanlier N. Relationship of Curcumin with Aging and Alzheimer and Parkinson Disease, the Most Prevalent Age-Related Neurodegenerative Diseases: A Narrative Review. Nutr Rev 2025; 83:e1243-e1258. [PMID: 38916925 DOI: 10.1093/nutrit/nuae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
The elderly population is increasing worldwide every day. Age is a significant factor in the progression of neurological diseases, which can also cause cognitive decline and memory disorders. Inflammation and oxidative stress are primary drivers of senescence and disorders, particularly those associated with aging and neurodegenerative diseases. Bioactive phytochemicals are considered a promising therapeutic strategy in combating aging and age-related pathological conditions. One of the phytochemicals with diverse biological properties encompassing antioxidant, anti-inflammatory, antibacterial, antiviral, anticancer, antifungal, antidepressant, anti-allergic, and anti-aging properties is curcumin. Curcumin, a polyphenolic structure with a distinct orange hue and unique chemical properties, is derived from the roots of Curcuma longa, a member of the Zingiberaceae family, commonly known as turmeric. It has been noted that the incidence of neurodegenerative diseases is low in societies that consume curcumin widely. Therefore, this review investigates the effect of curcumin on aging and Alzheimer and Parkinson disease, which are the most prevalent age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Büşra Yurt Turer
- Department of Nutrition and Dietetics, Institute of Health Sciences, Ankara Medipol University, Ankara, 06050, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Ankara, 06050, Turkey
| |
Collapse
|
7
|
Zhu Y, Tian M, Lu S, Qin Y, Zhao T, Shi H, Li Z, Qin D. The antioxidant role of aromatic plant extracts in managing neurodegenerative diseases: A comprehensive review. Brain Res Bull 2025; 222:111253. [PMID: 39938752 DOI: 10.1016/j.brainresbull.2025.111253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Neurodegenerative diseases (NDDs) are a class of cognitive and motor disorders including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), and others. They are caused by lesions in cells and tissues of the central nervous system, resulting in corresponding dysfunctions and consequent decline in cognitive and motor functions. Neural tissues are extremely vulnerable to oxidative stress, which plays critical biological roles in NDDs. Aromatic compounds are found extensively in natural plants and have substantial effects of anti-oxidative stress damage, which not only have a wide range of research applications in cosmetics, foods, etc., but are also frequently utilized in the treatment of various central nervous system diseases. This review summarizes the relevant oxidative stress mechanisms in NDDs (AD, PD, HD, and ALS) and reviews aromatic compounds such as polyphenols, terpenoids, and flavonoids that can be used in the management of neurodegenerative diseases, as well as their specific mechanisms of antioxidant action. This review will serve as a reference for future experimental studies on neurodegenerative illnesses while also offering fresh insights into clinical therapy.
Collapse
Affiliation(s)
- Youyang Zhu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Miao Tian
- The Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Shiyu Lu
- The People's Hospital of Mengzi, The Affiliated Hospital of Yunnan University of Chinese Medicine, Honghe, Yunnan 661100, China.
| | - Yuliang Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Ting Zhao
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Hongling Shi
- Department of Rehabilitation Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, China.
| | - Zhaofu Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| |
Collapse
|
8
|
Nasr NN, El-Hagrassi AM, Ahmed YR, Hamed MA. GC/MS and LC-ESI-MS Analysis of Conocarpus erectus Leaves Extract via Regulating Amyloid-β-Peptide, Tau Protein, Neurotransmitters, Inflammation and Oxidative Stress against AlCl 3-Induced Alzheimer's Disease in Rats. Chem Biodivers 2025; 22:e202401960. [PMID: 39367808 DOI: 10.1002/cbdv.202401960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/07/2024]
Abstract
This study investigated the therapeutic effect of Conocarpus erectus leaves methanolic extract against AlCl3 -induced Alzheimer's disease (AD) in rats comparing with Donepezil-hydrochloride as a reference drug. The bioactive compounds of C. erectus leaves were isolated and identified by GC/MS and LC-ESI-MS analysis. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), amyloid-β-peptide (Aβ-peptide), tau protein, acetylcholinesterase (AChE), serotonin (5-HT), dopamine (DA) and nor-adrenaline (NE) levels were estimated. The neuromuscular strength, memory behavior and histopathological examination of cerebral cortex region were also conducted. Forty-three compounds were characterized from the non-polar fraction of C. erectus L. leaves extract and nineteen compounds were identified from the defatted extract. AlCl3- induction caused significant elevation of brain oxidative stress, Aβ-peptide, tau protein, IL-6, TNF-α and AChE levels. A significant decrease in 5-HT, ND and DA levels were noticed. Additionally, AlCl3 reduced neuromuscular strength and compromised memory function. Treatment of AlCl3- induced rats with C. erectuse extract ameliorated these selected parameters by variable degrees. In conclusion, C. erectus protects against AlCl3- induced AD in rats through its antioxidant, anti-inflammatory, and antineural damage. [Correction added on 3 December 2024, after first online publication: The term "antineutron" was corrected to "antineural" in the preceding sentence.]. It could be considered as a new nutraceutical agent for attenuating symptoms associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Noha N Nasr
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Ali M El-Hagrassi
- Phytochemistry and Plant Systematic Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza, Egypt
| | - Yomna R Ahmed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Manal A Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
9
|
Saadullah M, Sehar A, Chauhdary Z, Siddique R, Tariq H, Asif M, Bukhari SA, Sethi A. Anti-neuroinflammatory and neuroprotective potential of Cissus tuberosa ethanol extract in Parkinson's disease model through the modulation of neuroinflammatory markers. PLoS One 2024; 19:e0311140. [PMID: 39642134 PMCID: PMC11623804 DOI: 10.1371/journal.pone.0311140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/11/2024] [Indexed: 12/08/2024] Open
Abstract
The plant Cissus tuberosa Moc is abundant in phenolics, has been documented to have neuroprotective properties. The study seeks to determine the neuroprotective effects of C. tuberosa ethanolic extract (CTE) against Parkinson's disease by evaluating its impact on motor dysfunction, cognitive deficits, neuroinflammation, and neurodegeneration in paraquat-induced Parkinson's disease models. The research hypothesizes that CTE can modulate key biomarkers involved in Parkinson's pathology, including α-synuclein, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), assessed through qRT-PCR, as well as interleukin-6 (IL-6) and TNF-α, evaluated through ELISA. Parkinson disease was induced by using paraquat intraperitoneally. The study was designed by considering various groups with their respective treatments, control group treated normally, disease control receiving paraquat (1 mg/kg, i.p.), standard treated grabbed with (levodopa+carbidopa), and three treatment groups received plant extract (150, 300, 600 mg/kg) respectively for 21 days study period. Both behavioral, and biochemical analysis were performed. HPLC analysis revealed the presence of several phenolic compounds. CTE significantly improved motor function and cognitive performance in rats, showing a dose-dependent reduction in paraquat-induced neurotoxicity (150 < 300 < 600 mg/kg, P<0.001). CTE significantly restored antioxidant enzyme levels (P<0.001), contributing to the alleviation of oxidative stress. Neurotransmitter levels were significantly improved in a dose-dependent manner (P<0.001), while acetylcholinesterase (AChE) levels were significantly reduced (P<0.001). CTE treatment showed significant restoration of brain tissue, reducing neuroinflammation and neurodegeneration, thereby preserving normal brain structure. ELISA testing demonstrated a significant (P<0.001) downregulation of IL-6 and TNF-α levels in CTE-treated groups. qRT-PCR results showed significant downregulation of α-synuclein, IL-1β, and TNF-α mRNA expression in CTE-treated groups compared to the diseased group, suggesting neuroprotective effects. The study concludes that CTE has potential therapeutic effects in alleviating Parkinson's disease symptoms, primarily through its antioxidant, anti-inflammatory, and neuroprotective properties.
Collapse
Affiliation(s)
- Malik Saadullah
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Amna Sehar
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zunera Chauhdary
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rida Siddique
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hafsa Tariq
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Asif
- Department of Pharmacology, Islamia University Bahawalpur, Bahawalpur, Pakistan
| | - Shazia Anwer Bukhari
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aisha Sethi
- Department of Pharmaceutics, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
10
|
Khot KB, D S S, Gopan G, Deshpande N S, Shastry P, Bandiwadekar A, Jose J. Enhancing selegiline hydrochloride efficacy: Box Behnken-optimized liposomal delivery via intranasal route for Parkinson's disease intervention. J Liposome Res 2024; 34:575-592. [PMID: 38591935 DOI: 10.1080/08982104.2024.2336549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
The clinical use of selegiline hydrochloride in conventional dosage forms is to reduce the progression of Parkinson's disease (PD). However, its limited access to the brain, short half-life, and first-pass metabolism minimize brain uptake. Nano-based liposomes offer promising tools for brain-targeted delivery of therapeutics, especially intranasally administered cationic liposomes that target the brain region via the olfactory route and reduce biodistribution. In the present work, cationic liposomes encapsulated with selegiline hydrochloride were fabricated for intranasal administration against PD. The liposomes were initially optimized by Box Behnken design, and the selected run was coated with stearylamine to provide a cationic charge to the liposomes. The final coated liposomes, SH-LP3, demonstrated a minimum size of 173 ± 2.13 nm, an ideal zeta potential of +16 ± 1.98, and achieved a maximum entrapment efficiency of 40.14 ± 1.83%. Morphology analysis showed the spherical shape of liposomes in the size range of 100-200 nm. The in vitro cytotoxicity assay in SHSY5Y cell lines showed a significant decrease in toxicity, almost ten times less, compared to pure selegiline hydrochloride. Animal studies on rotenone-lesioned C57BL6 mice model for PD were performed to investigate the effect of intranasally administered liposomes. The SH-LP3 formulation exhibited remarkable effectiveness in relieving symptoms of PD. This extensive analysis emphasizes the possibility of intranasally administered SH-LP3 liposomes as a feasible treatment option for PD. The formulation not only delivers continuous drug release but also displays better safety and efficacy, providing a platform for additional studies and growth in the domain of PD treatment.
Collapse
Affiliation(s)
- Kartik Bhairu Khot
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Sandeep D S
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Shridhar Deshpande N
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Prajna Shastry
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Akshay Bandiwadekar
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| |
Collapse
|
11
|
Soni D, Jamwal S, Chawla R, Singh SK, Singh D, Singh TG, Khurana N, Kanwal A, Dureja H, Patil UK, Singh R, Kumar P. Nutraceuticals Unveiled a Multifaceted Neuroprotective Mechanisms for Parkinson’s Disease: Elixir for the Brain. FOOD REVIEWS INTERNATIONAL 2024; 40:3079-3102. [DOI: 10.1080/87559129.2024.2337766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Divya Soni
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Sumit Jamwal
- Department of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Rakesh Chawla
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences & Research, Baba Farid University of Health Sciences, Faridkot, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Phagwara, India
| | - Deependra Singh
- Univesity Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Raipur, Chhattisgarh, India
| | | | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Phagwara, India
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Umesh Kumar Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
12
|
Wuerch EC, Mirzaei R, Yong VW. Niacin produces an inconsistent treatment response in the EAE model of multiple sclerosis. J Neuroimmunol 2024; 394:578421. [PMID: 39088907 DOI: 10.1016/j.jneuroim.2024.578421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Niacin was found in the lysolecithin model of multiple sclerosis (MS) to promote the phagocytic clearance of debris and enhance remyelination. Lysolecithin lesions have prominent microglia/macrophages but lack lymphocytes that populate plaques of MS or its experimental autoimmune encephalomyelitis (EAE) model. Thus, the current study assessed the efficacy of niacin in EAE. We found that niacin inconsistently affects EAE clinical score, and largely does not ameliorate neuropathology. In culture, niacin enhances phagocytosis by macrophages, but does not reduce T cell proliferation. We suggest that studies of niacin for potential remyelination in MS should include a therapeutic that targets adaptive immunity.
Collapse
Affiliation(s)
- Emily C Wuerch
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Reza Mirzaei
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
13
|
El-Refai HA, Saleh AM, Mohamed SIA, Aboul Naser AF, Zaki RA, Gomaa SK, Hamed MA. Biosynthesis of Zinc Oxide Nanoparticles Using Bacillus paramycoides for In Vitro Biological Activities and In Vivo Assessment Against Hepatorenal Injury Induced by CCl 4 in Rats. Appl Biochem Biotechnol 2024; 196:5953-5973. [PMID: 38175413 PMCID: PMC11604716 DOI: 10.1007/s12010-023-04817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Recently, impressive developments in the field of nanotechnology have been achieved. The study aimed to synthetize zinc oxide nanoparticles (ZnONPs) from locally isolated terrestrial Bacillus paramycoides (MCCC 1A04098) bacteria and assess its role as antioxidant, antimicrobial, and anticancer agent. The antioxidant activity was done using the percentage of DPPH scavenging method. The antibacterial activity was evaluated against Escherichia coli, Staphylococcus aureus, Bacillus cereus, and Candida albicans. The anti-proliferation assay against hepatocellular carcinoma (HepG2) and human breast cancer (MCF-7) cell lines was estimated by neutral red assay. The apoptotic effect of ZnONP was measured by flow cytometry. The in vivo evaluation was carried out against hepatorenal injuries induced by carbon tetrachloride (CCl4) in rats comparing with silymarin as a reference drug. The oxidative stress markers, liver and kidney function enzyme indices, lipid profile, and the histological features of the liver and kidney were also examined. ZnONPs revealed antioxidant and antibacterial effects. It also exerted cytotoxic and apoptotic effect in a dose dependent manner without any toxicity on normal cell line. ZnONPs improved all the biochemical parameters under investigation to varying degrees, and the histological pictures of the liver and kidney confirmed the results. In conclusion, ZnONPs were successfully synthesized from the terrestrial Bacillus paramycoides and recorded in vitro antioxidant, anticancer, and antibacterial effects as well as in vivo anti-hepatorenal toxicity effects.
Collapse
Affiliation(s)
- Heba A El-Refai
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt
| | - Alaa M Saleh
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt
| | - Shimaa I A Mohamed
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt
| | - Asmaa F Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Rania A Zaki
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt
| | - Sanaa K Gomaa
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt
| | - Manal A Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt.
| |
Collapse
|
14
|
Roshdy M, Zaky DA, Abbas SS, Abdallah DM. Niacin, an innovative protein kinase-C-dependent endoplasmic reticulum stress reticence in murine Parkinson's disease. Life Sci 2024; 351:122865. [PMID: 38914304 DOI: 10.1016/j.lfs.2024.122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
AIMS Niacin (NIA) supplementation showed effectiveness against Parkinson's disease (PD) in clinical trials. The depletion of NAD and endoplasmic reticulum stress response (ERSR) are implicated in the pathogenesis of PD, but the potential role for NAD precursors on ERSR is not yet established. This study was undertaken to decipher NIA molecular mechanisms against PD-accompanied ERSR, especially in relation to PKC. METHODS Alternate-day-low-dose-21 day-subcutaneous exposure to rotenone (ROT) in rats induced PD. Following the 5th ROT injection, rats received daily doses of either NIA alone or preceded by the PKC inhibitor tamoxifen (TAM). Extent of disease progression was assessed by behavioral, striatal biochemical and striatal/nigral histopathological/immunohistochemical analysis. KEY FINDINGS Via activating PKC/LKB1/AMPK stream, NIA post-treatment attenuated the ERSR reflected by the decline in ATF4, ATF6 and XBP1s to downregulate the apoptotic markers, CHOP/GADD153, p-JNK and active caspase-3. Such amendments congregated in motor activity/coordination improvements in open field and rotarod tasks, enhanced grid test latency and reduced overall PD scores, while boosting nigral/striatal tyrosine hydroxylase immunoreactivity and increasing intact neurons (Nissl stain) in both SNpc and striatum that showed less neurodegeneration (H&E stain). To different extents, TAM reverted all the NIA-related actions to prove PKC as a fulcrum in conveying the drug neurotherapeutic potential. SIGNIFICANCE PKC activation is a pioneer mechanism in the drug ERSR inhibitory anti-apoptotic modality to clarify NIA promising clinical and potent preclinical anti-PD efficacy. This kinase can be tagged as a druggable target for future add-on treatments that can assist dopaminergic neuronal aptitude against this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Merna Roshdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Ahmed Orabi District, Cairo 44971, Egypt
| | - Doaa A Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Samah S Abbas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Ahmed Orabi District, Cairo 44971, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
15
|
Zhang L, Yang S, Liu X, Wang C, Tan G, Wang X, Liu L. Association between dietary niacin intake and risk of Parkinson's disease in US adults: cross-sectional analysis of survey data from NHANES 2005-2018. Front Nutr 2024; 11:1387802. [PMID: 39091685 PMCID: PMC11291445 DOI: 10.3389/fnut.2024.1387802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases and involves various pathogenic mechanisms, including oxidative stress and neuroinflammation. Niacin, an important cofactor in mitochondrial energy metabolism, may play a key role in the pathogenesis of PD. An in-depth exploration of the relationship between niacin and mitochondrial energy metabolism may provide new targets for the treatment of PD. The present study was designed to examine the association between dietary niacin intake and the risk of PD in US adults. Data from adults aged 40 years and older collected during cycles of the United States (US) National Health and Nutrition Examination Survey (NHANES) from 2005 to 2018 were used. A multiple logistic regression model was used to analyze the relationship between dietary niacin intake and the risk of PD. Further linear tests using restricted cubic splines (RCS) were performed to explore the shape of the dose-response relationship. Subgroup stratification and interaction analyses were conducted according to years of education, marital status, smoking, and hypertension to evaluate the stability of the association between different subgroups. A total of 20,211 participants were included in this study, of which 192 were diagnosed with PD. In the fully adjusted multiple logistic regression model, dietary niacin intake was negatively associated with the risk of PD (OR: 0.77, 95%CI: 0.6-0.99; p = 0.042). In the RCS linear test, the occurrence of PD was negatively correlated with dietary niacin intake (nonlinearity: p = 0.232). In stratified analyses, dietary niacin intake was more strongly associated with PD and acted as an important protective factor in patients with fewer years of education (OR: 0.35, 95%CI: 0.13-0.93), married or cohabitating (OR: 0.71, 95%CI: 0.5-0.99), taking dietary supplements (OR: 0.6, 95%CI: 0.37 0.97), non-smokers (OR: 0.57, 95%CI: 0.39-0.85), those with hypertension (OR: 0.63, 95%CI: 0.63-0.95), coronary artery disease (OR: 0.77, 95%CI: 0.6-1), and stroke (OR: 0.75, 95%CI: 0.88-0.98), but the interaction was not statistically significant in all subgroups. Dietary niacin intake was inversely associated with PD risk in US adults, with a 23% reduction in risk for each 10 mg increase in niacin intake.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurology, Chengdu Eighth People’s Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, China
| | - Shaojie Yang
- Department of Neurology, Chengdu Eighth People’s Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, China
| | - Xiaoyan Liu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurology, The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Chunxia Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurology, 363 Hospital, Chengdu, China
| | - Ge Tan
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xueping Wang
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ling Liu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Cannas C, Lostia G, Serra PA, Peana AT, Migheli R. Food and Food Waste Antioxidants: Could They Be a Potent Defence against Parkinson's Disease? Antioxidants (Basel) 2024; 13:645. [PMID: 38929084 PMCID: PMC11200518 DOI: 10.3390/antiox13060645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress, an imbalance between reactive oxygen species (ROS) and endogenous antioxidants, plays an important role in the development of neurodegenerative diseases, including Parkinson's. The human brain is vulnerable to oxidative stress because of the high rate of oxygen that it needs and the high levels of polyunsaturated fatty acids, which are substrates of lipid peroxidation. Natural antioxidants inhibit oxidation and reduce oxidative stress, preventing cancer, inflammation, and neurodegenerative disorders. Furthermore, in the literature, it is reported that antioxidants, due to their possible neuroprotective activity, may offer an interesting option for better symptom management, even Parkinson's disease (PD). Natural antioxidants are usually found in several foods, such as fruits, vegetables, meat, fish, and oil, and in food wastes, such as seeds, peels, leaves, and skin. They can help the system of endogenous antioxidants, protect or repair cellular components from oxidative stress, and even halt lipid, protein, and DNA damage to neurons. This review will examine the extent of knowledge from the last ten years, about the neuroprotective potential effect of natural antioxidants present in food and food by-products, in in vivo and in vitro PD models. Additionally, this study will demonstrate that the pool of dietary antioxidants may be an important tool in the prevention of PD and an opportunity for cost savings in the public health area.
Collapse
Affiliation(s)
| | | | | | | | - Rossana Migheli
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy (A.T.P.)
| |
Collapse
|
17
|
Liu Z, Hua W, Jin S, Wang Y, Pang Y, Wang B, Zhao N, Song Y, Qi J. Canagliflozin protects against hyperglycemia-induced cerebrovascular injury by preventing blood-brain barrier (BBB) disruption via AMPK/Sp1/adenosine A2A receptor. Eur J Pharmacol 2024; 968:176381. [PMID: 38341077 DOI: 10.1016/j.ejphar.2024.176381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Diabetes mellitus causes brain microvascular endothelial cell (MEC) damage, inducing dysfunctional angiogenic response and disruption of the blood-brain barrier (BBB). Canagliflozin is a revolutionary hypoglycemic drug that exerts neurologic and/or vascular-protective effects beyond glycemic control; however, its underlying mechanism remains unclear. In the present study, we hypothesize that canagliflozin ameliorates BBB permeability by preventing diabetes-induced brain MEC damage. Mice with high-fat diet/streptozotocin-induced diabetes received canagliflozin for 8 weeks. We assessed vascular integrity by measuring cerebrovascular neovascularization indices. The expression of specificity protein 1 (Sp1), as well as tight junction proteins (TJs), phosphorylated AMP-activated protein kinase (p-AMPK), and adenosine A2A receptors was examined. Mouse brain MECs were grown in high glucose (30 mM) to mimic diabetic conditions. They were treated with/without canagliflozin and assessed for migration and angiogenic ability. We also performed validation studies using AMPK activator (AICAR), inhibitor (Compound C), Sp1 small interfering RNA (siRNA), and adenosine A2A receptor siRNA. We observed that cerebral pathological neovascularization indices were significantly normalized in mice treated with canagliflozin. Increased Sp1 and adenosine A2A receptor expression and decreased p-AMPK and TJ expression were observed under diabetic conditions. Canagliflozin or AICAR treatment alleviated these changes. However, this alleviation effect of canagliflozin was diminished again after Compound C treatment. Either Sp1 siRNA or adenosine A2A receptor siRNA could increase the expression of TJs. Luciferase reporter assay confirmed that Sp1 could bind to the adenosine A2A receptor gene promoter. Our study identifies the AMPK/Sp1/adenosine A2A receptor pathway as a treatment target for diabetes-induced cerebrovascular injury.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Wei Hua
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Sinan Jin
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Yueying Wang
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Yuxin Pang
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Benshuai Wang
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Nan Zhao
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Yuejia Song
- Department of Endocrinology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China.
| | - Jiping Qi
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China.
| |
Collapse
|
18
|
Albadawi E, El-Tokhy A, Albadrani M, Adel M, El-Gamal R, Zaarina W, El-Agawy MSED, Elsayed HRH. The role of stinging nettle (Urtica dioica L.) in the management of rotenone-induced Parkinson's disease in rats. Tissue Cell 2024; 87:102328. [PMID: 38387425 DOI: 10.1016/j.tice.2024.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/27/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative conditions. Alpha-synuclein deposition, Lewy bodies (LBs) formation, disruption of the autophagic machinery, apoptosis of substantia nigra dopaminergic neurons, oxidative stress, and neuroinflammation are all pathologic hallmarks of PD. The leaves of the stinging Nettle (Urtica dioica L.) have a long history as an herbal cure with antioxidant, anti-inflammatory, anti-cancer, immunomodulatory, and neuroprotective properties. The current study aims for the first time to investigate the role of Nettle supplementation on Rotenone-induced PD. Rats were divided into five groups; a Saline control, Nettle control (100 mg/kg/day), Rotenone control (2 mg/kg/day), Rotenone + Nettle (50 mg /kg/day), and Rotenone + Nettle (100 mg/kg). After four weeks, the rats were examined for behavioral tests. The midbrains were investigated for histopathological alteration and immunohistochemical reaction for Tyrosine hydroxylase in the dopaminergic neurons, α-synuclein for Lewy bodies, caspase 3 for apoptotic neurons, LC3 and P62 for autophagic activity. Midbrain homogenates were examined for oxidative stress markers. mRNA expression of TNFα and Il6; inflammatory markers, Bcl-2, BAX and Caspase 3; apoptosis markers, were detected in midbrains. The results showed that Nettle caused recovery of midbrain dopaminergic neurons, by inhibiting apoptosis, inflammation, and oxidative stress and by restoring the autophagic machinery with clearance of α-synuclein deposits. We can conclude that Nettle is a potentially effective adjuvant in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Emad Albadawi
- Department of Anatomy, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Ahmed El-Tokhy
- Plant Protection Department, Faculty of Agriculture, New Valley University, El-Kharga, Egypt
| | - Muayad Albadrani
- Department of Family and Community Medicine, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Mohammed Adel
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Egypt
| | - Randa El-Gamal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Egypt; Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Medical Biochemistry, Horus University in Egypt (HUE), New Damietta, Damietta, Egypt
| | - Wael Zaarina
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Anatomy, Faculty of Medicine, Mansoura National University, Gamasa, Egypt
| | - Mosaab Salah El-Din El-Agawy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Hassan Reda Hassan Elsayed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Anatomy and Neurobiology, College of Medicine and Health Sciences, National University of Science and Technology, Sohar, Oman.
| |
Collapse
|
19
|
Khayatan D, Razavi SM, Arab ZN, Hosseini Y, Niknejad A, Momtaz S, Abdolghaffari AH, Sathyapalan T, Jamialahmadi T, Kesharwani P, Sahebkar A. Superoxide dismutase: a key target for the neuroprotective effects of curcumin. Mol Cell Biochem 2024; 479:693-705. [PMID: 37166541 DOI: 10.1007/s11010-023-04757-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Over the past few years, the prevalence of neurodegenerative diseases (NDD) has increased dramatically. The community health system is burdened by the high healthcare costs associated with NDD. Superoxide dismutase (SOD) is a type of metalloenzyme that possesses a distinct characteristic of protecting the body from oxidative stress through antioxidants. In this way, SOD supplementation may activate the endogenous antioxidant mechanism in various pathological conditions and could be used to neutralize free radical excess. Several factors are responsible for damaging DNA and RNA in the body, including the overproduction of reactive species, particularly reactive oxygen species (ROS) and reactive nitrogen species (RNS). Excessive ROS/RNS have deleterious effects on mitochondria and their metabolic processes, mainly through increased mitochondrial proteins, lipids and DNA oxidation. Studies have shown that oxidative stress is implicated in the etiology of many diseases, including NDD. It is thought that anti-inflammatory compounds, particularly phytochemicals, can interfere with these pathways and regulate inflammation. Extensive experimental and clinical research has proven that curcumin (Cur) has anti-inflammatory and anti-neurologic properties. In this review, we have compiled the available data on Cur's anti-inflammatory properties, paying special attention to its therapeutic impact on NDD through SOD.
Collapse
Affiliation(s)
- Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Niknejad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Thozhukat Sathyapalan
- Academic Diabetes Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom of Great Britain and Northern Ireland, Hull, UK
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Aboul Naser AF, Ahmed YR, Mohammed MA, Aboelmagd M, Aboutabl ME, Hassan EE, Khalil WKB, Hamed MA. Inflammatory mediators, oxidative stress and genetic disturbance in rheumatoid arthritis rats supported by alfalfa seeds metabolomic constituents via blocking interleukin-1receptor. Chem Biodivers 2024; 21:e202301653. [PMID: 38158718 DOI: 10.1002/cbdv.202301653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by aggressive cartilage and bone erosion. This work aimed to evaluate the metabolomic profile of Medicago sativa L. (MS) (alfalfa) seeds and explore its therapeutic impact against RA in rats. Arthritis was induced by complete Freund's adjuvant (CFA) and its severity was assessed by the arthritis index. Treatment with MS seeds butanol fraction and interlukin-1 receptor antagonist (IL-1RA) were evaluated through measuring interlukin-1 receptor (IL-1R) type 1 gene expression, interlukin-1 beta (IL-1β), oxidative stress markers, C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), prostaglandin E2 (PGE2), caspase-3 (Cas-3), intracellular adhesion molecule-1 (ICAM-1), DNA fragmentation, and chromosomal damage. Total phenolics/ flavonoids content in the ethyl acetate, butanol fraction and crude extract of MS seeds were estimated. The major identified compounds were Quercetin, Trans-taxifolin, Gallic acid, 7,4'-Dihydroxyflavone, Cinnamic acid, Kudzusaponin SA4, Isorhamnetin 3-O-beta-D-2'',3'',4''-triacetylglucopyranoside, Apigenin, 5,7,4'-Trihydroxy-3'-methoxyflavone, Desmethylxanthohumol, Pantothenic acid, Soyasapogenol E, Malvidin, Helilandin B, Stigmasterol, and Wairol. Treatment with MS seeds butanol fraction and IL-1RA enhanced all the biochemical parameters and the histopathological features of the ankle joint. In conclusion, Trans-taxifolin was isolated for the first time from the genus Medicago. MS butanol fraction seeds extract and IL-1 RA were considered as anti-rheumatic agents.
Collapse
Affiliation(s)
- Asmaa F Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Yomna R Ahmed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Mona A Mohammed
- Medicinal and Aromatic Plants Research Department, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed Aboelmagd
- Pharmacognosy Department, National Research Centre, Dokki, Giza, Egypt
| | - Mona E Aboutabl
- Medicinal and Pharmaceutical Chemistry Department (Pharmacology Group), National Research Centre, Dokki, Giza, Egypt
| | - Entesar E Hassan
- Department of Genetics and Cytology, National Research Centre, Dokki, Giza, Egypt
| | - Wagdy K B Khalil
- Department of Cell Biology, National Research Centre, Dokki, Giza, Egypt
| | - Manal A Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
21
|
Amina E. Essawy, Matta CA, Nabil B, Elkader HTAEA, Alhasani RH, Soffar AA. Neuroprotective Effect of Curcumin on the Rat Model of Parkinson’s Disease Induced by Rotenone via Modulating Tyrosine Hydroxylase and Dopa Decarboxylase Expression Levels. NEUROCHEM J+ 2023; 17:457-466. [DOI: 10.1134/s1819712423030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 09/01/2023]
|
22
|
Garodia P, Hegde M, Kunnumakkara AB, Aggarwal BB. Curcumin, inflammation, and neurological disorders: How are they linked? Integr Med Res 2023; 12:100968. [PMID: 37664456 PMCID: PMC10469086 DOI: 10.1016/j.imr.2023.100968] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 09/05/2023] Open
Abstract
Background Despite the extensive research in recent years, the current treatment modalities for neurological disorders are suboptimal. Curcumin, a polyphenol found in Curcuma genus, has been shown to mitigate the pathophysiology and clinical sequalae involved in neuroinflammation and neurodegenerative diseases. Methods We searched PubMed database for relevant publications on curcumin and its uses in treating neurological diseases. We also reviewed relevant clinical trials which appeared on searching PubMed database using 'Curcumin and clinical trials'. Results This review details the pleiotropic immunomodulatory functions and neuroprotective properties of curcumin, its derivatives and formulations in various preclinical and clinical investigations. The effects of curcumin on neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), brain tumors, epilepsy, Huntington's disorder (HD), ischemia, Parkinson's disease (PD), multiple sclerosis (MS), and traumatic brain injury (TBI) with a major focus on associated signalling pathways have been thoroughly discussed. Conclusion This review demonstrates curcumin can suppress spinal neuroinflammation by modulating diverse astroglia mediated cascades, ensuring the treatment of neurological disorders.
Collapse
Affiliation(s)
| | - Mangala Hegde
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | | | | |
Collapse
|
23
|
Abstract
Niacin (vitamin B3) is an essential nutrient that treats pellagra, and prior to the advent of statins, niacin was commonly used to counter dyslipidemia. Recent evidence has posited niacin as a promising therapeutic for several neurological disorders. In this review, we discuss the biochemistry of niacin, including its homeostatic roles in NAD+ supplementation and metabolism. Niacin also has roles outside of metabolism, largely through engaging hydroxycarboxylic acid receptor 2 (Hcar2). These receptor-mediated activities of niacin include regulation of immune responses, phagocytosis of myelin debris after demyelination or of amyloid beta in models of Alzheimer's disease, and cholesterol efflux from cells. We describe the neurological disorders in which niacin has been investigated or has been proposed as a candidate medication. These are multiple sclerosis, Alzheimer's disease, Parkinson's disease, glioblastoma and amyotrophic lateral sclerosis. Finally, we explore the proposed mechanisms through which niacin may ameliorate neuropathology. While several questions remain, the prospect of niacin as a therapeutic to alleviate neurological impairment is promising.
Collapse
Affiliation(s)
- Emily Wuerch
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Gloria Roldan Urgoiti
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada.
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
24
|
Zhang W, Dong X, Huang R. Antiparkinsonian Effects of Polyphenols: A Narrative Review with a Focus on the Modulation of the Gut-brain Axis. Pharmacol Res 2023:106787. [PMID: 37224894 DOI: 10.1016/j.phrs.2023.106787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Polyphenols, which are naturally occurring bioactive compounds in fruits and vegetables, are emerging as potential therapeutics for neurological disorders such as Parkinson's disease (PD). Polyphenols have diverse biological activities, such as anti-oxidative, anti-inflammatory, anti-apoptotic, and α-synuclein aggregation inhibitory effects, which could ameliorate PD pathogenesis. Studies have shown that polyphenols are capable of regulating the gut microbiota (GM) and its metabolites; in turn, polyphenols are extensively metabolized by the GM, resulting in the generation of bioactive secondary metabolites. These metabolites may regulate various physiological processes, including inflammatory responses, energy metabolism, intercellular communication, and host immunity. With increasing recognition of the importance of the microbiota-gut-brain axis (MGBA) in PD etiology, polyphenols have attracted growing attention as MGBA regulators. In order to address the potential therapeutic role of polyphenolic compounds in PD, we focused on MGBA. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China.
| |
Collapse
|
25
|
Zhao Y, Liu X, Yang G. Adenosinergic Pathway in Parkinson's Disease: Recent Advances and Therapeutic Perspective. Mol Neurobiol 2023; 60:3054-3070. [PMID: 36786912 DOI: 10.1007/s12035-023-03257-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized pathologically by α-synuclein (α-syn) aggregation. In PD, the current mainstay of symptomatic treatment is levodopa (L-DOPA)-based dopamine (DA) replacement therapy. However, the development of dyskinesia and/or motor fluctuations which is relevant to levodopa is restricting its long-term utility. Given that the ability of which is to modulate the striato-thalamo-cortical loops and function to modulate basal ganglia output, the adenosinergic pathway (AP) is qualified as a potential promising non-DA target. As an indispensable component of energy production pathways, AP modulates cellular metabolism and gene regulation in both neurons and neuroglia cells through the recognition and degradation of extracellular adenosine. In addition, AP is geared to the initiation, evolution, and resolution of inflammation as well. Besides the above-mentioned crosstalk between the adenosine and dopamine signaling pathways, the functions of adenosine receptors (A1R, A2AR, A2BR, and A3R) and metabolism enzymes in modulating PD pathological process have been extensively investigated in recent decades. Here we reviewed the emerging findings focused on the function of adenosine receptors, adenosine formation, and metabolism in the brain and discussed its potential roles in PD pathological process. We also recapitulated clinical studies and the preclinical evidence for the medical strategies targeting the Ado signaling pathway to improve motor dysfunction and alleviate pathogenic process in PD. We hope that further clinical studies should consider this pathway in their monotherapy and combination therapy, which would open new vistas to more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Xin Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Guofeng Yang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China. .,Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
26
|
Could Vitamins Have a Positive Impact on the Treatment of Parkinson's Disease? Brain Sci 2023; 13:brainsci13020272. [PMID: 36831815 PMCID: PMC9954544 DOI: 10.3390/brainsci13020272] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder after Alzheimer's disease. Pathophysiologically, it is characterized by intracytoplasmic aggregates of α-synuclein protein in the Lewy body and loss of dopaminergic neurons from substantia nigra pars compacta and striatum regions of the brain. Although the exact mechanism of neurodegeneration is not fully elucidated, it has been reported that environmental toxins such as MPTP, rotenone, paraquat, and MPP+ induce oxidative stress, which is one of the causative factors for it. To date, there is no complete cure. However, the indispensable role of oxidative stress in mediating PD indicates that antioxidant therapy could be a possible therapeutic strategy against the disease. The deficiency of vitamins has been extensively co-related to PD. Dietary supplementation of vitamins with antioxidant, anti-inflammatory, anti-apoptotic, and free radical scavenging properties could be the potential neuroprotective therapeutic strategy. This review summarizes the studies that evaluated the role of vitamins (A, B, C, D, E, and K) in PD. It will guide future studies in understanding the potential therapeutic role of vitamins in disease pathophysiology and may provide a framework for designing treatment strategies against the disease.
Collapse
|
27
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Jha NK, Gupta G, Devkota HP, Prasher P, Chellappan DK, Dua K. A sojourn into therapeutic and nutraceutical potential of curcumin and its novel drug delivery system: Current achievements and future perspectives. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 149:944-962. [DOI: 10.1016/j.sajb.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Cui C, Han Y, Li H, Yu H, Zhang B, Li G. Curcumin-driven reprogramming of the gut microbiota and metabolome ameliorates motor deficits and neuroinflammation in a mouse model of Parkinson's disease. Front Cell Infect Microbiol 2022; 12:887407. [PMID: 36034698 PMCID: PMC9400544 DOI: 10.3389/fcimb.2022.887407] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/06/2022] [Indexed: 12/28/2022] Open
Abstract
Background Parkinson's disease (PD) is a common neurodegenerative disorder, accompanied by motor deficits as well as gastrointestinal dysfunctions. Recent studies have proved that the disturbance of gut microbiota and metabolism contributes to the pathogenesis of PD; however, the mechanisms underlying these effects have yet to be elucidated. Curcumin (CUR) has been reported to provide neuroprotective effects on neurological disorders and modulate the gut flora in intestinal-related diseases. Therefore, it is of significant interest to investigate whether CUR could exert a protective effect on PD and whether the effect of CUR is dependent on the intestinal flora and subsequent changes in metabolites. Methods In this study, we investigated the neuroprotective effects of CUR on a mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). 16S rRNA sequencing was performed to explore the profile of the gut microbiota among controls, MPTP-treated mice and CUR-treated mice. Then, antibiotic treatment (ABX) and fecal microbiota transplantation (FMT) experiments were conducted to examine the role of intestinal microbes on the protective effects of CUR in PD mice. Furthermore, ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS)-based metabolomics analysis was used to identify the landscape of the CUR-driven serum metabolome. Finally, Pearson's analysis was conducted to investigate correlations between the gut flora-metabolite axis and CUR-driven neuroprotection in PD. Results Our results showed that CUR intervention effectively improved motor deficits, glial cell activation, and the aggregation of α-synuclein (α-syn) in MPTP-treated mice. 16S rRNA sequencing showed elevated abundances of Muribaculaceae, Lactobacillaceae, Lachnospiraceae and Eggerthellaceae but depleted abundances of Aerococcaceae and Staphylococcaceae in CUR-treated mice when compared with MPTP mice. ABX and FMT experiments further confirmed that the gut microbiota was required for CUR-induced protection in PD mice. Serum metabolomics analysis showed that CUR notably upregulated the levels of tyrosine, methionine, sarcosine and creatine. Importantly, strong correlations were identified among crucial taxa (Aerococcaceae, Staphylococcaceae, Muribaculaceae, Lactobacillaceae, Lachnospiraceae and Eggerthellaceae), pivotal metabolites (tyrosine, methionine, sarcosine and creatine) and the motor function and pathological results of mice. CUR treatment led to a rapid increase in the brain levels of tyrosine and levodopa (dopa) these changes were related to the abundances of Lactobacillaceae and Aerococcaceae. Conclusions CUR exerts a protective effect on the progression of PD by modulating the gut microbiota-metabolite axis. Lactobacillaceae and Aerococcaceae, along with key metabolites such as tyrosine and dopa play a dominant role in CUR-associated neuroprotection in PD mice. Our findings offer unique insights into the pathogenesis and potential treatment of PD.
Collapse
Affiliation(s)
- Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingying Han
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongxia Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongxiang Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bei Zhang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gang Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
29
|
Marques MS, Marinho MAG, Vian CO, Horn AP. The action of curcumin against damage resulting from cerebral stroke: a systematic review. Pharmacol Res 2022; 183:106369. [PMID: 35914679 DOI: 10.1016/j.phrs.2022.106369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/09/2022]
Abstract
Stroke is the second leading cause of morbidity and mortality globally. Treatments for stroke are limited, and preventive treatments are scarce. Curcumin (CUR) has several biological effects, as described in the literature, which highlight its antioxidant and neuroprotective effects. Therefore, this qualitative systematic review aimed to investigate the effects of CUR on damage caused by stroke in rodent models. A systematic search was performed on three databases PubMed, Scopus, and Web of Science. In addition, the risk-of-bias and quality of the studies were assessed using SYRCLE and Collaborative Approach for Meta-Analysis and Review of Animal Data from Experimental Studies, respectively. The selection, inclusion, and exclusion criteria were established by the authors. At the end of our systematic search of the three databases, we found a total of 728 articles. After excluding duplicates and triplicates and reading the abstracts, keywords, and full texts, 53 articles were finally included in this systematic review. CUR exerts several beneficial effects against the damage caused by both ischemic and hemorrhagic stroke, via different pathways. However, because of its low bioavailability, Free-form CUR only exerted significant effects when it was administered at high concentrations. In contrast, when CUR was administered using nanostructured systems, positive responses were observed even at low concentrations. The mechanisms of action of CUR, free or in nanostructure, are extremely important for the recovery of injured brain tissue after a stroke; CUR has neuroprotective, antioxidant, anti-inflammatory, and anti-apoptotic effects and helps to maintain the integrity of the blood-brain barrier. Finally, we concluded that CUR presents an extremely important and significant response profile against the damage caused by stroke, making it a possible therapeutic candidate for individuals affected by this disease.
Collapse
Affiliation(s)
- M S Marques
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, 96210-900, Brazil.
| | - M A G Marinho
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, 96210-900, Brazil
| | - C O Vian
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, 96210-900, Brazil
| | - A P Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, 96210-900, Brazil
| |
Collapse
|
30
|
de Sousa Macedo LLB, Antunes FTT, de Andrade Alvarenga W, Batista MCC, de Moura MSB, Farias MNL, Caminski ES, Dallegrave E, Grivicich I, de Souza AH. Curcumin for attention-deficit-hyperactivity disorder: a systematic review and preliminary behavioral investigation. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:803-813. [PMID: 35394134 DOI: 10.1007/s00210-022-02236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/24/2022] [Indexed: 12/08/2022]
Abstract
Curcumin has protective actions in neuropsychiatric disorders, acting as a neuroprotective agent. As a first approach, the study aimed at a systematic review of the potential effects of curcumin on cognitive performance for attention-deficit-hyperactivity disorder (ADHD). This research was carried out in the databases of PubMed, Embase, SciELO, the Cochrane Central Register of Controlled Trials (CENTRAL), the Web of Science, and the Grey literature. Upon discovering the scarcity of relevant studies, and knowing that curcumin might have an ADHD hyperactive and anxious behavior, the study proposed to evaluate the effects of curcumin in an ADHD phenotype of spontaneously hypertensive Wistar rats (SHR). No studies were found that related to curcumin and ADHD. Fifteen SHRs were then divided into separate groups that received water (1 mg/kg/day), curcumin (50 mg/kg/day), or methylphenidate (1 mg/kg/day) for 42 days. Behavioral tests to assess activity (Open Field Test), anxiety and impulsivity (Elevated Plus-Maze, and Social Interaction), and memory (Y-Maze, and the Object Recognition Test) were all performed. The animals that were treated with curcumin showed less anxious and hyperactive behavior, as seen in the Open Field Test and the Social Interaction Test. Anxious behavior was measured by the EPM and was not modulated by any treatment. The results of the Y-Maze Test demonstrated that curcumin improved spatial memory. In the Object Recognition Test, neither the short nor the long-term memory was improved. The treatments that were used in this study beneficially modulated the anxious and hyperactive behavior of the SHR.
Collapse
Affiliation(s)
- Lélia Lilianna Borges de Sousa Macedo
- Programa de Pós-Graduação Em Biologia Celular E Molecular Aplicada À Saúde, Universidade Luterana Do Brasil (ULBRA), Avenida Farroupilha, 8001, São José, Canoas, Rio Grande Do Sul, CEP 92425-020, Brasil
| | - Flavia Tasmin Techera Antunes
- Programa de Pós-Graduação Em Biologia Celular E Molecular Aplicada À Saúde, Universidade Luterana Do Brasil (ULBRA), Avenida Farroupilha, 8001, São José, Canoas, Rio Grande Do Sul, CEP 92425-020, Brasil.
| | | | | | | | | | - Emanuelle Sistherenn Caminski
- Laboratório de Pesquisa Em Toxicologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Eliane Dallegrave
- Laboratório de Pesquisa Em Toxicologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Ivana Grivicich
- Programa de Pós-Graduação Em Biologia Celular E Molecular Aplicada À Saúde, Universidade Luterana Do Brasil (ULBRA), Avenida Farroupilha, 8001, São José, Canoas, Rio Grande Do Sul, CEP 92425-020, Brasil
| | - Alessandra Hübner de Souza
- Programa de Pós-Graduação Em Biologia Celular E Molecular Aplicada À Saúde, Universidade Luterana Do Brasil (ULBRA), Avenida Farroupilha, 8001, São José, Canoas, Rio Grande Do Sul, CEP 92425-020, Brasil
| |
Collapse
|
31
|
Bianchi VE, Rizzi L, Somaa F. The role of nutrition on Parkinson's disease: a systematic review. Nutr Neurosci 2022; 26:605-628. [PMID: 35730414 DOI: 10.1080/1028415x.2022.2073107] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Parkinson's disease (PD) in elderly patients is the second most prevalent neurodegenerative disease. The pathogenesis of PD is associated with dopaminergic neuron degeneration of the substantia nigra in the basal ganglia, causing classic motor symptoms. Oxidative stress, mitochondrial dysfunction, and neuroinflammation have been identified as possible pathways in laboratory investigations. Nutrition, a potentially versatile factor from all environmental factors affecting PD, has received intense research scrutiny. METHODS A systematic search was conducted in the MEDLINE, EMBASE, and WEB OF SCIENCE databases from 2000 until the present. Only randomized clinical trials (RCTs), observational case-control studies, and follow-up studies were included. RESULTS We retrieved fifty-two studies that met the inclusion criteria. Most selected studies investigated the effects of malnutrition and the Mediterranean diet (MeDiet) on PD incidence and progression. Other investigations contributed evidence on the critical role of microbiota, vitamins, polyphenols, dairy products, coffee, and alcohol intake. CONCLUSIONS There are still many concerns regarding the association between PD and nutrition, possibly due to underlying genetic and environmental factors. However, there is a body of evidence revealing that correcting malnutrition, gut microbiota, and following the MeDiet reduced the onset of PD and reduced clinical progression. Other factors, such as polyphenols, polyunsaturated fatty acids, and coffee intake, can have a potential protective effect. Conversely, milk and its accessory products can increase PD risk. Nutritional intervention is essential for neurologists to improve clinical outcomes and reduce the disease progression of PD.
Collapse
Affiliation(s)
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Fahad Somaa
- King Abdulaziz University, Department of occupational therapy. Jeddah, Makkah, Saudi Arabia
| |
Collapse
|
32
|
Reducing neuroinflammation via therapeutic compounds and lifestyle to prevent or delay progression of Parkinson's disease. Ageing Res Rev 2022; 78:101618. [PMID: 35395416 DOI: 10.1016/j.arr.2022.101618] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the second most common age-associated neurodegenerative disorder and is characterised by progressive loss of dopamine neurons in the substantia nigra. Peripheral immune cell infiltration and activation of microglia and astrocytes are observed in PD, a process called neuroinflammation. Neuroinflammation is a fundamental response to protect the brain but, when chronic, it triggers neuronal damage. In the last decade, central and peripheral inflammation were suggested to occur at the prodromal stage of PD, sustained throughout disease progression, and may play a significant role in the pathology. Understanding the pathological mechanisms of PD has been a high priority in research, primarily to find effective treatments once symptoms are present. Evidence indicates that early life exposure to neuroinflammation as a consequence of life events, environmental or behaviour factors such as exposure to infections, pollution or a high fat diet increase the risk of developing PD. Many studies show healthy habits and products that decrease neuroinflammation also reduce the risk of PD. Here, we aim to stimulate discussion about the role of neuroinflammation in PD onset and progression. We highlight that reducing neuroinflammation throughout the lifespan is critical for preventing idiopathic PD, and present epidemiological studies that detail risk and protective factors. It is possible that introducing lifestyle changes that reduce neuroinflammation at the time of PD diagnosis may slow symptom progression. Finally, we discuss compounds and therapeutics to treat the neuroinflammation associated with PD.
Collapse
|
33
|
Shah M, Murad W, Mubin S, Ullah O, Rehman NU, Rahman MH. Multiple health benefits of curcumin and its therapeutic potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43732-43744. [PMID: 35441996 DOI: 10.1007/s11356-022-20137-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Turmeric, or Curcuma longa as it is formally named, is a multifunctional plant with numerous names. It was dubbed "the golden spice" and "Indian saffron" not only for its magnificent yellow color, but also for its culinary use. Turmeric has been utilized in traditional medicine since the dawn of mankind. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which are all curcuminoids, make up turmeric. Although there have been significant advancements in cancer treatment, cancer death and incidence rates remain high. As a result, there is an increasing interest in discovering more effective and less hazardous cancer treatments. Curcumin is being researched for its anti-inflammatory, anti-cancer, anti-metabolic syndrome, neuroprotective, and antibacterial properties. Turmeric has long been used as a home remedy for coughs, sore throats, and other respiratory problems. As a result, turmeric and its compounds have the potential to be used in modern medicine to cure a variety of diseases. In this current review, we highlighted therapeutic potential of curcumin and its multiple health benefits on various diseases.
Collapse
Affiliation(s)
- Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Oman
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Sidra Mubin
- Department of Botany, Hazara University Mansehra, Mansehra, 21310, Pakistan
| | - Obaid Ullah
- Department of Chemistry, University of Malakand, Chakdara, 18800, Pakistan
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Oman.
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Korea
| |
Collapse
|
34
|
Augustin RC, Leone RD, Naing A, Fong L, Bao R, Luke JJ. Next steps for clinical translation of adenosine pathway inhibition in cancer immunotherapy. J Immunother Cancer 2022; 10:jitc-2021-004089. [PMID: 35135866 PMCID: PMC8830302 DOI: 10.1136/jitc-2021-004089] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence supports targeting the adenosine pathway in immuno-oncology with several clinical programs directed at adenosine A2 receptor (A2AR, A2BR), CD73 and CD39 in development. Through a cyclic-AMP-mediated intracellular cascade, adenosine shifts the cytokine and cellular profile of the tumor microenvironment away from cytotoxic T cell inflammation toward one of immune tolerance. A perpetuating cycle of tumor cell proliferation, tissue injury, dysregulated angiogenesis, and hypoxia promote adenosine accumulation via ATP catabolism. Adenosine receptor (eg, A2AR, A2BR) stimulation of both the innate and adaptive cellular precursors lead to immunosuppressive phenotypic differentiation. Preclinical work in various tumor models with adenosine receptor inhibition has demonstrated restoration of immune cell function and tumor regression. Given the broad activity but known limitations of anti-programmed cell death protein (PD1) therapy and other checkpoint inhibitors, ongoing studies have sought to augment the successful outcomes of anti-PD1 therapy with combinatorial approaches, particularly adenosine signaling blockade. Preliminary data have demonstrated an optimal safety profile and enhanced overall response rates in several early phase clinical trials with A2AR and more recently CD73 inhibitors. However, beneficial outcomes for both monotherapy and combinations have been mostly lower than expected based on preclinical studies, indicating a need for more nuanced patient selection or biomarker integration that might predict and optimize patient outcomes. In the context of known immuno-oncology biomarkers such as tumor mutational burden and interferon-associated gene expression, a comparison of adenosine-related gene signatures associated with clinical response indicates an underlying biology related to immunosuppression, angiogenesis, and T cell inflammation. Importantly, though, adenosine associated gene expression may point to a unique intratumoral phenotype independent from IFN-γ related pathways. Here, we discuss the cellular and molecular mechanisms of adenosine-mediated immunosuppression, preclinical investigation of adenosine signaling blockade, recent response data from clinical trials with A2AR, CD73, CD39 and PD1/L1 inhibitors, and ongoing development of predictive gene signatures to enhance combinatorial immune-based therapies.
Collapse
Affiliation(s)
- Ryan C Augustin
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert D Leone
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lawrence Fong
- Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Riyue Bao
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Jason J Luke
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA .,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
35
|
Benameur T, Giacomucci G, Panaro MA, Ruggiero M, Trotta T, Monda V, Pizzolorusso I, Lofrumento DD, Porro C, Messina G. New Promising Therapeutic Avenues of Curcumin in Brain Diseases. Molecules 2021; 27:236. [PMID: 35011468 PMCID: PMC8746812 DOI: 10.3390/molecules27010236] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023] Open
Abstract
Curcumin, the dietary polyphenol isolated from Curcuma longa (turmeric), is commonly used as an herb and spice worldwide. Because of its bio-pharmacological effects curcumin is also called "spice of life", in fact it is recognized that curcumin possesses important proprieties such as anti-oxidant, anti-inflammatory, anti-microbial, antiproliferative, anti-tumoral, and anti-aging. Neurodegenerative diseases such as Alzheimer's Diseases, Parkinson's Diseases, and Multiple Sclerosis are a group of diseases characterized by a progressive loss of brain structure and function due to neuronal death; at present there is no effective treatment to cure these diseases. The protective effect of curcumin against some neurodegenerative diseases has been proven by in vivo and in vitro studies. The current review highlights the latest findings on the neuroprotective effects of curcumin, its bioavailability, its mechanism of action and its possible application for the prevention or treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Giulia Giacomucci
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50134 Florence, Italy;
| | - Maria Antonietta Panaro
- Biotechnologies and Biopharmaceutics, Department of Biosciences, University of Bari, 70125 Bari, Italy; (M.A.P.); (M.R.)
| | - Melania Ruggiero
- Biotechnologies and Biopharmaceutics, Department of Biosciences, University of Bari, 70125 Bari, Italy; (M.A.P.); (M.R.)
| | - Teresa Trotta
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (T.T.); (V.M.); (G.M.)
| | - Vincenzo Monda
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (T.T.); (V.M.); (G.M.)
- Unit of Dietetic and Sport Medicine, Section of Human Physiology, Department of Experimental Medicine, Luigi Vanvitelli University of Campania, 81100 Naples, Italy
| | - Ilaria Pizzolorusso
- Child and Adolescent Neuropsychiatry Unit, Department of Mental Health, ASL Foggia, 71121 Foggia, Italy;
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, 73100 Lecce, Italy;
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (T.T.); (V.M.); (G.M.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (T.T.); (V.M.); (G.M.)
| |
Collapse
|
36
|
Hamed MA, Aboul Naser AF, Aboutabl ME, Osman AF, Hassan EES, Aziz WM, Khalil WKB, Farghaly AA, El-Hagrassi AM. Bioactive compounds and therapeutic role of Brassica oleracea L. seeds in rheumatoid arthritis rats via regulating inflammatory signalling pathways and antagonizing interleukin-1 receptor action. Biomarkers 2021; 26:788-807. [PMID: 34704882 DOI: 10.1080/1354750x.2021.1999504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/23/2021] [Indexed: 12/20/2022]
Abstract
CONTEXT Rheumatoid arthritis (RA) is a chronic, progressive autoimmune disease characterized by aggressive and systematic polyarthritis. OBJECTIVE The present study aimed to isolate and identify the phenolic constituents in Brassica oleracea L. (Brassicaceae) seeds methanolic extract and evaluates its effect against rheumatoid arthritis in rats referring to the new therapy; interleukin-1 receptor antagonist (IL-1RA). MATERIALS AND METHODS The GC/MS profiling of the plant was determined. Arthritis induction was done using complete Freund's adjuvant. Arthritis severity was assessed by percentage of edema and arthritis index. IL-1 receptor type I gene expression, interleukin-1β (IL-1β), oxidative stress markers, protein content, inflammatory mediators, prostaglandin-E2 (PGE2), genetic abnormalities and the histopathological features of ankle joint were evaluated. RESULTS For the first time twelve phenolic compounds had been isolated from the seeds extract. Treatment with extract and IL-1RA improved the tested parameters by variable degrees. CONCLUSIONS RA is an irreversible disease, where its severity increases with the time of induction. Brassica oleracea L. seeds extract is considered as a promising anti-arthritis agent. IL-1 RA may be considered as an unusual therapeutic agent for RA disease. More studies are needed to consider the seeds extract as a nutraceutical agent and to recommend IL-1RA as a new RA drug.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/prevention & control
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/prevention & control
- Biomarkers/blood
- Brassica/chemistry
- Freund's Adjuvant
- Gene Expression Regulation/drug effects
- Humans
- Inflammation Mediators/metabolism
- Interleukin 1 Receptor Antagonist Protein/metabolism
- Interleukin-1beta/metabolism
- Male
- Molecular Structure
- Oxidative Stress/drug effects
- Phytochemicals/chemistry
- Phytochemicals/pharmacology
- Phytotherapy/methods
- Plant Extracts/chemistry
- Plant Extracts/pharmacology
- Rats, Wistar
- Receptors, Interleukin-1 Type I/antagonists & inhibitors
- Receptors, Interleukin-1 Type I/genetics
- Receptors, Interleukin-1 Type I/metabolism
- Seeds/chemistry
- Signal Transduction/drug effects
- Rats
Collapse
Affiliation(s)
- Manal A Hamed
- Department of Therapeutic Chemistry, National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| | - Asmaa F Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| | - Mona E Aboutabl
- Medicinal and Pharmaceutical Chemistry Department (Pharmacology Group), National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| | - Abeer F Osman
- Chemistry of Natural Compounds Department, National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| | - Entesar E S Hassan
- Department of Genetics and Cytology, National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| | - Wessam M Aziz
- Department of Therapeutic Chemistry, National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| | - Wagdy K B Khalil
- Department of Cell Biology, National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| | - Ayman A Farghaly
- Department of Genetics and Cytology, National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| | - Ali M El-Hagrassi
- Phytochemistry and Plant Systematics Department, National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| |
Collapse
|
37
|
Nebrisi EE. Neuroprotective Activities of Curcumin in Parkinson's Disease: A Review of the Literature. Int J Mol Sci 2021; 22:11248. [PMID: 34681908 PMCID: PMC8537234 DOI: 10.3390/ijms222011248] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a slowly progressive multisystem disorder affecting dopaminergic neurons of the substantia nigra pars compacta (SNpc), which is characterized by a decrease of dopamine (DA) in their striatal terminals. Treatment of PD with levodopa or DA receptor agonists replaces the function of depleted DA in the striatum. Prolonged treatment with these agents often has variable therapeutic effects and leads to the development of undesirable dyskinesia. Consequently, a crucial unmet demand in the management of Parkinson's disease is the discovery of new approaches that could slow down, stop, or reverse the process of neurodegeneration. Novel potential treatments involving natural substances with neuroprotective activities are being developed. Curcumin is a polyphenolic compound isolated from the rhizomes of Curcuma longa (turmeric). It has been demonstrated to have potent anti-inflammatory, antioxidant, free radical scavenging, mitochondrial protecting, and iron-chelating effects, and is considered a promising therapeutic and nutraceutical agent for the treatment of PD. However, molecular and cellular mechanisms that mediate the pharmacological actions of curcumin remain largely unknown. Stimulation of nicotinic receptors and, more precisely, selective α7 nicotinic acetylcholine receptors (α7-nAChR), have been found to play a major modulatory role in the immune system via the "cholinergic anti-inflammatory pathway". Recently, α7-nAChR has been proposed to be a potential therapeutic approach in PD. In this review, the detailed mechanisms of the neuroprotective activities of curcumin as a potential therapeutic agent to help Parkinson's patients are being discussed and elaborated on in detail.
Collapse
Affiliation(s)
- Eslam El Nebrisi
- Department of Pharmacology, Dubai Medical College, Dubai 20170, United Arab Emirates
| |
Collapse
|
38
|
Naser AFA, Aziz WM, Ahmed YR, Khalil WKB, Hamed MAA. Parkinsonism-like disease induced by rotenone in rats: Treatment role of curcumin, dopamine agonist and adenosine A2A receptor antagonist. Curr Aging Sci 2021; 15:65-76. [PMID: 34042043 DOI: 10.2174/1874609814666210526115740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Parkinsonism is a neurodegenerative disorder that affects elderly people worldwide. METHODS Curcumin, adenosine A2AR antagonist (ZM241385) and Sinemet® (L-dopa) were evaluated against Parkinson's disease (PD) induced by rotenone in rats and comparativelyrelatively compared with our previous study on mice model. RESULTS Rats injected with rotenone showed severe alterations in adenosine A2A receptor gene expression, oxidative stress markers, inflammatory mediator, energetic indices, apoptotic marker and DNA fragmentation levels as compare with the control group. Treatments with curcumin, ZM241385, and Sinemet® restored all the selected parameters. The brain histopathological features of cerebellum regions confirmed our results. By comparing our results with the previous results on mice, we noticed that mice respond to rotenone toxicity and treatments more than rats regarding to behavioral observation, A2AR gene expression, neurotransmitter levels, inflammatory mediator and apoptotic markers, while rats showed higher response to treatments regarding to oxidative stress and energetic indices. CONCLUSION Curcumin succeeded to attenuate the severe effects of Parkinson's disease in rat model and can be consider as a potential dietary supplement. Adenosine A2AR antagonist has almost the same pattern of improvement as Sinemet® and may be considered as a promising therapy against PD. By comparing the role of animal species in response to PD symptoms and treatments, our previous report on mice explore the response of mice to rotenone toxicity than rats, while rats showed higher response to treatments. Therefore, no animal model can perfectly recapitulate all the pathologies of PD.
Collapse
Affiliation(s)
| | - Wessam Magdi Aziz
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Yomna Rashad Ahmed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | | | | |
Collapse
|
39
|
Innos J, Hickey MA. Using Rotenone to Model Parkinson's Disease in Mice: A Review of the Role of Pharmacokinetics. Chem Res Toxicol 2021; 34:1223-1239. [PMID: 33961406 DOI: 10.1021/acs.chemrestox.0c00522] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rotenone is a naturally occurring toxin that inhibits complex I of the mitochondrial electron transport chain. Several epidemiological studies have shown an increased risk of Parkinson's disease (PD) in individuals exposed chronically to rotenone, and it has received great attention for its ability to reproduce many critical features of PD in animal models. Laboratory studies of rotenone have repeatedly shown that it induces in vivo substantia nigra dopaminergic cell loss, a hallmark of PD neuropathology. Additionally, rotenone induces in vivo aggregation of α-synuclein, the major component of Lewy bodies and Lewy neurites found in the brain of PD patients and another hallmark of PD neuropathology. Some in vivo rotenone models also reproduce peripheral signs of PD, such as reduced intestinal motility and peripheral α-synuclein aggregation, both of which are thought to precede classical signs of PD in humans, such as cogwheel rigidity, bradykinesia, and resting tremor. Nevertheless, variability has been noted in cohorts of animals exposed to the same rotenone exposure regimen and also between cohorts exposed to similar doses of rotenone. Low doses, administered chronically, may reproduce PD symptoms and neuropathology more faithfully than excessively high doses, but overlap between toxicity and parkinsonian motor phenotypes makes it difficult to separate if behavior is examined in isolation. Rotenone degrades when exposed to light or water, and choice of vehicle may affect outcome. Rotenone is metabolized extensively in vivo, and choice of route of exposure influences greatly the dose used. However, male rodents may be capable of greater metabolism of rotenone, which could therefore reduce their total body exposure when compared with female rodents. The pharmacokinetics of rotenone has been studied extensively, over many decades. Here, we review these pharmacokinetics and models of PD using this important piscicide.
Collapse
Affiliation(s)
- Jürgen Innos
- Institute of Biomedicine and Translational Medicine, Ravila 19, University of Tartu, 50411 Tartu, Estonia
| | - Miriam A Hickey
- Institute of Biomedicine and Translational Medicine, Ravila 19, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
40
|
Polychemotherapy with Curcumin and Doxorubicin via Biological Nanoplatforms: Enhancing Antitumor Activity. Pharmaceutics 2020; 12:pharmaceutics12111084. [PMID: 33187385 PMCID: PMC7697177 DOI: 10.3390/pharmaceutics12111084] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/31/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is a well-known chemotherapeutic agent extensively applied in the field of cancer therapy. However, similar to other chemotherapeutic agents such as cisplatin, paclitaxel, docetaxel, etoposide and oxaliplatin, cancer cells are able to obtain chemoresistance that limits DOX efficacy. In respect to dose-dependent side effect of DOX, enhancing its dosage is not recommended for effective cancer chemotherapy. Therefore, different strategies have been considered for reversing DOX resistance and diminishing its side effects. Phytochemical are potential candidates in this case due to their great pharmacological activities. Curcumin is a potential antitumor phytochemical isolated from Curcuma longa with capacity of suppressing cancer metastasis and proliferation and affecting molecular pathways. Experiments have demonstrated the potential of curcumin for inhibiting chemoresistance by downregulating oncogene pathways such as MMP-2, TGF-β, EMT, PI3K/Akt, NF-κB and AP-1. Furthermore, coadministration of curcumin and DOX potentiates apoptosis induction in cancer cells. In light of this, nanoplatforms have been employed for codelivery of curcumin and DOX. This results in promoting the bioavailability and internalization of the aforementioned active compounds in cancer cells and, consequently, enhancing their antitumor activity. Noteworthy, curcumin has been applied for reducing adverse effects of DOX on normal cells and tissues via reducing inflammation, oxidative stress and apoptosis. The current review highlights the anticancer mechanism, side effects and codelivery of curcumin and DOX via nanovehicles.
Collapse
|
41
|
Kim TY, Leem E, Lee JM, Kim SR. Control of Reactive Oxygen Species for the Prevention of Parkinson's Disease: The Possible Application of Flavonoids. Antioxidants (Basel) 2020; 9:antiox9070583. [PMID: 32635299 PMCID: PMC7402123 DOI: 10.3390/antiox9070583] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress reflects an imbalance between the production of reactive oxygen species (ROS) and antioxidant defense systems, and it can be associated with the pathogenesis and progression of neurodegenerative diseases such as multiple sclerosis, stroke, and Parkinson's disease (PD). The application of antioxidants, which can defend against oxidative stress, is able to detoxify the reactive intermediates and prevent neurodegeneration resulting from excessive ROS production. There are many reports showing that numerous flavonoids, a large group of natural phenolic compounds, can act as antioxidants and the application of flavonoids has beneficial effects in the adult brain. For instance, it is well known that the long-term consumption of the green tea-derived flavonoids catechin and epigallocatechin gallate (EGCG) can attenuate the onset of PD. Also, flavonoids such as ampelopsin and pinocembrin can inhibit mitochondrial dysfunction and neuronal death through the regulation of gene expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Additionally, it is well established that many flavonoids exhibit anti-apoptosis and anti-inflammatory effects through cellular signaling pathways, such as those involving (ERK), glycogen synthase kinase-3β (GSK-3β), and (Akt), resulting in neuroprotection. In this review article, we have described the oxidative stress involved in PD and explained the therapeutic potential of flavonoids to protect the nigrostriatal DA system, which may be useful to prevent PD.
Collapse
Affiliation(s)
- Tae Yeon Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea; (T.Y.K.); (E.L.)
| | - Eunju Leem
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea; (T.Y.K.); (E.L.)
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Sang Ryong Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea; (T.Y.K.); (E.L.)
- Institute of Life Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-7362
| |
Collapse
|
42
|
Mutual Two-Way Interactions of Curcumin and Gut Microbiota. Int J Mol Sci 2020; 21:ijms21031055. [PMID: 32033441 PMCID: PMC7037549 DOI: 10.3390/ijms21031055] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 02/08/2023] Open
Abstract
Curcumin, an herbal naturally occurring polyphenol, has recently been proposed for the treatment of neurodegenerative, neurological and cancer diseases due to its pleiotropic effect. Recent studies indicated that dysbiosis is associated with the abovementioned and other diseases, and gut microflora may be a new potential therapeutic target. The new working hypothesis that could explain the curative role of curcumin, despite its limited availability, is that curcumin acts indirectly on the brain, affecting the “gut–brain–microflora axis”, a complex two-way system in which the gut microbiome and its composition, are factors that preserve and determine brain health. It is therefore suspected that curcumin and its metabolites have a direct regulatory effect on gut microflora and vice versa, which may explain the paradox between curcumin’s poor bioavailability and its commonly reported therapeutic effects. Curcumin and its metabolites can have health benefits by eliminating intestinal microflora dysbiosis. In addition, curcumin undergoes enzymatic modifications by bacteria, forming pharmacologically more active metabolites than their parent, curcumin. In this review, we summarize a number of studies that highlight the interaction between curcumin and gut microbiota and vice versa, and we consider the possibility of microbiome-targeted therapies using curcumin, particularly in disease entities currently without causal treatment.
Collapse
|