1
|
Na ES. Epigenetic Mechanisms of Obesity: Insights from Transgenic Animal Models. Life (Basel) 2025; 15:653. [PMID: 40283207 PMCID: PMC12028693 DOI: 10.3390/life15040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Obesity is a chronic disease with prevalence rates that have risen dramatically over the past four decades. This increase is not due to changes in the human genome but rather to environmental factors that promote maladaptive physiological responses. Emerging evidence suggests that external influences, such as high-fat diets, modify the epigenome-the interface between genes and the environment-leading to persistent alterations in energy homeostasis. This review explores the role of epigenetic mechanisms in obesity, emphasizing insights from transgenic animal models and clinical studies. Additionally, we discuss the evolution of obesity research from homeostatic to allostatic frameworks, highlighting key neuroendocrine regulators of energy balance.
Collapse
Affiliation(s)
- Elisa S Na
- School of Social Work, Psychology, & Philosophy, Texas Woman's University, Denton, TX 76209, USA
| |
Collapse
|
2
|
Di Gesù CM, Buffington SA. The early life exposome and autism risk: a role for the maternal microbiome? Gut Microbes 2024; 16:2385117. [PMID: 39120056 PMCID: PMC11318715 DOI: 10.1080/19490976.2024.2385117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental disorders characterized by clinical presentation of atypical social, communicative, and repetitive behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge on key molecular pathways, from translational control to those regulating synaptic structure and function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearthing the relationship between genetics, microbes, and immunity in ASD suggest an integrative physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee exciting advancements in the treatment of some forms of ASD that could markedly improve quality of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine environment and fetal neurodevelopment, host-microbe interactions, and the evolving therapeutic landscape for ASD.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Yoshikawa C, Ariyani W, Kohno D. DNA Methylation in the Hypothalamic Feeding Center and Obesity. J Obes Metab Syndr 2023; 32:303-311. [PMID: 38124554 PMCID: PMC10786209 DOI: 10.7570/jomes23073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
Obesity rates have been increasing worldwide for decades, mainly due to environmental factors, such as diet, nutrition, and exercise. However, the molecular mechanisms through which environmental factors induce obesity remain unclear. Several mechanisms underlie the body's response to environmental factors, and one of the main mechanisms involves epigenetic modifications, such as DNA methylation. The pattern of DNA methylation is influenced by environmental factors, and altered DNA methylation patterns can affect gene expression profiles and phenotypes. DNA methylation may mediate the development of obesity caused by environmental factors. Similar to the factors governing obesity, DNA methylation is influenced by nutrients and metabolites. Notably, DNA methylation is associated with body size and weight programming. The DNA methylation levels of proopiomelanocortin (Pomc) and neuropeptide Y (Npy) in the hypothalamic feeding center, a key region controlling systemic energy balance, are affected by diet. Conditional knockout mouse studies of epigenetic enzymes have shown that DNA methylation in the hypothalamic feeding center plays an indispensable role in energy homeostasis. In this review, we discuss the role of DNA methylation in the hypothalamic feeding center as a potential mechanism underlying the development of obesity induced by environmental factors.
Collapse
Affiliation(s)
- Chiharu Yoshikawa
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Winda Ariyani
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Daisuke Kohno
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
4
|
McFadden T, Carucci I, Farrell K, Fletchall E, Jarome TJ. Hypothalamic DNA 5-hydroxymethylation levels are altered by diet-induced weight gain during the development of obesity in a sex-specific manner. Brain Res 2023; 1817:148478. [PMID: 37422205 PMCID: PMC10529936 DOI: 10.1016/j.brainres.2023.148478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Obesity is a major health concern that is associated with altered gene transcription in the hypothalamus. However, the mechanisms controlling this gene expression dysregulation remain largely unknown. DNA 5-hydroxymethylation (5-hmC) is a potent transcriptional activator that is expressed at 10 times higher levels in the brain than the periphery. Despite this, no study has examined if DNA 5-hmC is altered in the brain following exposure to obesogenic diets or contributes to abnormal weight gain over time. Here, we used a rodent diet-induced obesity model in combination with quantitative molecular assays and CRISPR-dCas9 manipulations to test the role of hypothalamic DNA 5-hmC in abnormal weight gain in male and female rats. We found that males, but not females, have decreased levels of DNA 5-hmC in the hypothalamus following exposure to a high fat diet, which directly correlate with increased body weight. Short-term exposure to a high fat diet, which does not result in significant weight gain, resulted in decreased hypothalamic DNA 5-hmC levels, suggesting these changes occur prior to obesity development. Moreover, decreases in DNA 5-hmC persist even after the high fat diet is removed, though the extent of this is diet-dependent. Importantly, CRISPR-dCas9-mediated upregulation of DNA 5-hmC enzymes in the male, but not female, ventromedial nucleus of the hypothalamus significantly reduced the percentage of weight gained on the high fat diet relative to controls. These results suggest that hypothalamic DNA 5-hmC is an important sex-specific regulator of abnormal weight gain following exposure to high fat diets.
Collapse
Affiliation(s)
| | - Isabella Carucci
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | - Timothy J Jarome
- School of Animal Sciences, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
5
|
Terra MF, García-Arévalo M, Avelino TM, Degaki KY, de Carvalho M, Torres FR, Saito A, Figueira ACM. Obesity-Linked PPARγ Ser273 Phosphorylation Promotes Beneficial Effects on the Liver, despite Reduced Insulin Sensitivity in Mice. Biomolecules 2023; 13:biom13040632. [PMID: 37189379 DOI: 10.3390/biom13040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Since the removal of thiazolidinediones (TZDs) from the market, researchers have been exploring alternative anti-diabetic drugs that target PPARγ without causing adverse effects while promoting insulin sensitization by blocking serine 273 phosphorylation (Ser273 or S273). Nonetheless, the underlying mechanisms of the relationship between insulin resistance and S273 phosphorylation are still largely unknown, except for the involvement of growth differentiation factor (GDF3) regulation in the process. To further investigate potential pathways, we generated a whole organism knockin mouse line with a single S273A mutation (KI) that blocks the occurrence of its phosphorylation. Our observations of KI mice on different diets and feeding schedules revealed that they were hyperglycemic, hypoinsulinemic, presented more body fat at weaning, and presented an altered plasma and hepatic lipid profile, distinctive liver morphology and gene expression. These results suggest that total blockage of S273 phosphorylation may have unforeseen effects that, in addition to promoting insulin sensitivity, could lead to metabolic disturbances, particularly in the liver. Therefore, our findings demonstrate both the beneficial and detrimental effects of PPAR S273 phosphorylation and suggest selective modulation of this post translational modification is a viable strategy to treat type 2 diabetes.
Collapse
|
6
|
Kozlova EV, Denys ME, Benedum J, Valdez MC, Enriquez D, Bishay AE, Chinthirla BD, Truong E, Krum JM, DiPatrizio NV, Deol P, Martins-Green M, Curras-Collazo MC. Developmental exposure to indoor flame retardants and hypothalamic molecular signatures: Sex-dependent reprogramming of lipid homeostasis. Front Endocrinol (Lausanne) 2022; 13:997304. [PMID: 36277707 PMCID: PMC9580103 DOI: 10.3389/fendo.2022.997304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of flame-retardant organohalogen pollutants that act as endocrine/neuroendocrine disrupting chemicals (EDCs). In humans, exposure to brominated flame retardants (BFR) or other environmentally persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and novel organophosphate flame retardants has been associated with increasing trends of diabetes and metabolic disease. However, the effects of PBDEs on metabolic processes and their associated sex-dependent features are poorly understood. The metabolic-disrupting effects of perinatal exposure to industrial penta-PBDE mixture, DE-71, on male and female progeny of C57BL/6N mouse dams were examined in adulthood. Dams were exposed to environmentally relevant doses of PBDEs daily for 10 weeks (p.o.): 0.1 (L-DE-71) and 0.4 mg/kg/d (H-DE-71) and offspring parameters were compared to corn oil vehicle controls (VEH/CON). The following lipid metabolism indices were measured: plasma cholesterol, triglycerides, adiponectin, leptin, and liver lipids. L-DE-71 female offspring were particularly affected, showing hypercholesterolemia, elevated liver lipids and fasting plasma leptin as compared to same-sex VEH/CON, while L- and H-DE-71 male F1 only showed reduced plasma adiponectin. Using the quantitative Folch method, we found that mean liver lipid content was significantly elevated in L-DE-71 female offspring compared to controls. Oil Red O staining revealed fatty liver in female offspring and dams. General measures of adiposity, body weight, white and brown adipose tissue (BAT), and lean and fat mass were weighed or measured using EchoMRI. DE-71 did not produce abnormal adiposity, but decreased BAT depots in L-DE-71 females and males relative to same-sex VEH/CON. To begin to address potential central mechanisms of deregulated lipid metabolism, we used RT-qPCR to quantitate expression of hypothalamic genes in energy-regulating circuits that control lipid homeostasis. Both doses of DE-71 sex-dependently downregulated hypothalamic expression of Lepr, Stat3, Mc4r, Agrp, Gshr in female offspring while H-DE-71 downregulated Npy in exposed females relative to VEH/CON. In contrast, exposed male offspring displayed upregulated Stat3 and Mc4r. Intestinal barrier integrity was measured using FITC-dextran since it can lead to systemic inflammation that leads to liver damage and metabolic disease, but was not affected by DE-71 exposure. These findings indicate that maternal transfer of PBDEs disproportionately endangers female offspring to lipid metabolic reprogramming that may exaggerate risk for adult metabolic disease.
Collapse
Affiliation(s)
- Elena V. Kozlova
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Maximillian E. Denys
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Jonathan Benedum
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Matthew C. Valdez
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Dave Enriquez
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Anthony E. Bishay
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Bhuvaneswari D. Chinthirla
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Edward Truong
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Julia M. Krum
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Nicholas V. DiPatrizio
- Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Poonamjot Deol
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Manuela Martins-Green
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Margarita C. Curras-Collazo
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
7
|
Croizier S, Bouret SG. Molecular Control of the Development of Hypothalamic Neurons Involved in Metabolic Regulation. J Chem Neuroanat 2022; 123:102117. [DOI: 10.1016/j.jchemneu.2022.102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/03/2022] [Accepted: 06/03/2022] [Indexed: 10/18/2022]
|
8
|
Wu Y, Zhang Q, Xiao X. The Effect and Potential Mechanism of Maternal Micronutrient Intake on Offspring Glucose Metabolism: An Emerging Field. Front Nutr 2021; 8:763809. [PMID: 34746215 PMCID: PMC8568771 DOI: 10.3389/fnut.2021.763809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Diabetes has become the most common metabolic disease around the world. In addition to genetic and environmental factors in adulthood, the early life environment is critical to the progression of diabetes in adults, especially the environment during the fetal period; this concept is called “fetal programming.” Substantial evidence has illustrated the key role of early life macronutrient in programming metabolic diseases. Recently, the effect of maternal micronutrient intake on offspring glucose metabolism during later life has become an emerging field. This review focuses on updated human and animal evidence about the effect of maternal micronutrient status on offspring glucose metabolism and the underlying mechanism.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Dessì A, Bosco A, Pintus R, Picari G, Mazza S, Fanos V. Epigenetics and Modulations of Early Flavor Experiences: Can Metabolomics Contribute to Prevention during Weaning? Nutrients 2021; 13:nu13103351. [PMID: 34684350 PMCID: PMC8539480 DOI: 10.3390/nu13103351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
The significant increase in chronic non-communicable diseases has changed the global epidemiological landscape. Among these, obesity is the most relevant in the pediatric field. This has pushed the world of research towards a new paradigm: preventive and predictive medicine. Therefore, the window of extreme plasticity that characterizes the first stage of development cannot be underestimated. In this context, nutrition certainly plays a primary role, being one of the most important epigenetic modulators known to date. Weaning, therefore, has a crucial role that must be analyzed far beyond the simple achievement of nutritional needs. Furthermore, the taste experience and the family context are fundamental for future food choices and can no longer be underestimated. The use of metabolomics allows, through the recognition of early disease markers and food-specific metabolites, the planning of an individualized and precise diet. In addition, the possibility of identifying particular groups of subjects at risk and the careful monitoring of adherence to dietary therapy may represent the basis for this change.
Collapse
|
10
|
Zheng J, Zhang L, Liu J, Li Y, Zhang J. Long-Term Effects of Maternal Low-Protein Diet and Post-weaning High-Fat Feeding on Glucose Metabolism and Hypothalamic POMC Promoter Methylation in Offspring Mice. Front Nutr 2021; 8:657848. [PMID: 34485357 PMCID: PMC8415226 DOI: 10.3389/fnut.2021.657848] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
Substantial evidence indicated that maternal malnutrition could increase the susceptibility to obesity, insulin resistance, and type 2 diabetes in adulthood. It is increasingly apparent that the brain, especially the hypothalamus, plays a critical role in glucose homeostasis. However, little information is known about the mechanisms linking maternal protein restriction combined with post-weaning high-fat (HF) feeding with altered expression of brain neurotransmitters, and investigations into the epigenetic modifications of hypothalamus in offspring have not been fully elucidated. Our objective was to explore the effects of maternal protein restriction combined with post-weaning HF feeding on glucose metabolism and hypothalamic POMC methylation in male offspring mice. C57/BL6 mice were fed on either low-protein (LP) or normal chow (NC) diet throughout gestation and lactation. Then, the male offspring were randomly weaned to either NC or high-fat (HF) diet until 32 weeks of age. Gene expressions and DNA methylation of hypothalamic proopiomelanocortin (POMC) and melanocortin receptor 4 (MC4R) were determined in male offspring. The results showed that birth weights and body weights at weaning were both significantly lower in male offspring mice of the dams fed with a LP diet. Maternal protein restriction combined with post-weaning high-fat feeding, predisposes higher body weight, persistent glucose intolerance (from weaning to 32 weeks of age), hyperinsulinemia, and hyperleptinemia in male offspring mice. POMC and MC4R expressions were significantly increased in offspring mice fed with maternal LP and postnatal high-fat diet (P < 0.05). Furthermore, maternal protein restriction combined with post-weaning high-fat feeding induced hypomethylation of POMC promoter in the hypothalamus (P < 0.05) and POMC-specific methylation (%) was negatively correlated with the glucose response to a glucose load in male offspring mice (r = -0.42, P = 0.039). In conclusion, maternal LP diet combined with post-weaning high-fat feeding predisposed the male offspring to impaired glucose metabolism and hypothalamic POMC hypomethylation. These findings can advance our thinking about hypothalamic POMC gene methylation between maternal LP diet combined with post-weaning high-fat feeding and metabolic health in offspring.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jiayi Liu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yanli Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
11
|
Strain J, Spaans F, Serhan M, Davidge ST, Connor KL. Programming of weight and obesity across the lifecourse by the maternal metabolic exposome: A systematic review. Mol Aspects Med 2021; 87:100986. [PMID: 34167845 DOI: 10.1016/j.mam.2021.100986] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
Exposome research aims to comprehensively understand the multiple environmental exposures that influence human health. To date, much of exposome science has focused on environmental chemical exposures and does not take a lifecourse approach. The rising prevalence of obesity, and the limited success in its prevention points to the need for a better understanding of the diverse exposures that associate with, or protect against, this condition, and the mechanisms driving its pathogenesis. The objectives of this review were to 1. evaluate the evidence on the maternal metabolic exposome in the programming of offspring growth/obesity and 2. identify and discuss the mechanisms underlying the programming of obesity. A systematic review was conducted following PRISMA guidelines to capture articles that investigated early life metabolic exposures and offspring weight and/or obesity outcomes. Scientific databases were searched using pre-determined indexed search terms, and risk of bias assessments were conducted to determine study quality. A final total of 76 articles were obtained and extracted data from human and animal studies were visualised using GOfER diagrams. Multiple early life exposures, including maternal obesity, diabetes and adverse nutrition, increase the risk of high weight at birth and postnatally, and excess adipose accumulation in human and animal offspring. The main mechanisms through which the metabolic exposome programmes offspring growth and obesity risk include epigenetic modifications, altered placental function, altered composition of the gut microbiome and breast milk, and metabolic inflammation, with downstream effects on development of the central appetite system, adipose tissues and liver. Understanding early life risks and protectors, and the mechanisms through which the exposome modifies health trajectories, is critical for developing and applying early interventions to prevent offspring obesity later in life.
Collapse
Affiliation(s)
- Jamie Strain
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Mohamed Serhan
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Sandra T Davidge
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada; Department of Physiology, University of Alberta, Edmonton, AB, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Kristin L Connor
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
12
|
Cruz-Carrillo G, Camacho-Morales A. Metabolic Flexibility Assists Reprograming of Central and Peripheral Innate Immunity During Neurodevelopment. Mol Neurobiol 2021; 58:703-718. [PMID: 33006752 DOI: 10.1007/s12035-020-02154-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/28/2020] [Indexed: 01/03/2023]
Abstract
Central innate immunity assists time-dependent neurodevelopment by recruiting and interacting with peripheral immune cells. Microglia are the major player of central innate immunity integrating peripheral signals arising from the circumventricular regions lacking the blood-brain barrier (BBB), via neural afferent pathways such as the vagal nerve and also by choroid plexus into the brain ventricles. Defective and/or unrestrained activation of central and peripheral immunity during embryonic development might set an aberrant connectome establishment and brain function, leading to major psychiatric disorders in postnatal stages. Molecular candidates leading to central and peripheral innate immune overactivation identified metabolic substrates and lipid species as major contributors of immunological priming, supporting the role of a metabolic flexibility node during trained immunity. Mechanistically, trained immunity is established by an epigenetic program including DNA methylation and histone acetylation, as the major molecular epigenetic signatures to set immune phenotypes. By definition, immunological training sets reprogramming of innate immune cells, enhancing or repressing immune responses towards a second challenge which potentially might contribute to neurodevelopment disorders. Notably, the innate immune training might be set during pregnancy by maternal immune activation stimuli. In this review, we integrate the most valuable scientific evidence supporting the role of metabolic cues assisting metabolic flexibility, leading to innate immune training during development and its effects on aberrant neurological phenotypes in the offspring. We also add reports supporting the role of methylation and histone acetylation signatures as a major epigenetic mechanism regulating immune training.
Collapse
Affiliation(s)
- Gabriela Cruz-Carrillo
- Departamento de Bioquímica. Facultad de Medicina,, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Alberto Camacho-Morales
- Departamento de Bioquímica. Facultad de Medicina,, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico.
| |
Collapse
|
13
|
Trujillo Villarreal LA, Cárdenas-Tueme M, Maldonado-Ruiz R, Reséndez-Pérez D, Camacho-Morales A. Potential role of primed microglia during obesity on the mesocorticolimbic circuit in autism spectrum disorder. J Neurochem 2020; 156:415-434. [PMID: 32902852 DOI: 10.1111/jnc.15141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disease which involves functional and structural defects in selective central nervous system (CNS) regions that harm function and individual ability to process and respond to external stimuli. Individuals with ASD spend less time engaging in social interaction compared to non-affected subjects. Studies employing structural and functional magnetic resonance imaging reported morphological and functional abnormalities in the connectivity of the mesocorticolimbic reward pathway between the nucleus accumbens and the ventral tegmental area (VTA) in response to social stimuli, as well as diminished medial prefrontal cortex in response to visual cues, whereas stronger reward system responses for the non-social realm (e.g., video games) than social rewards (e.g., approval), associated with caudate nucleus responsiveness in ASD children. Defects in the mesocorticolimbic reward pathway have been modulated in transgenic murine models using D2 dopamine receptor heterozygous (D2+/-) or dopamine transporter knockout mice, which exhibit sociability deficits and repetitive behaviors observed in ASD phenotypes. Notably, the mesocorticolimbic reward pathway is modulated by systemic and central inflammation, such as primed microglia, which occurs during obesity or maternal overnutrition. Therefore, we propose that a positive energy balance during obesity/maternal overnutrition coordinates a systemic and central inflammatory crosstalk that modulates the dopaminergic neurotransmission in selective brain areas of the mesocorticolimbic reward pathway. Here, we will describe how obesity/maternal overnutrition may prime microglia, causing abnormalities in dopamine neurotransmission of the mesocorticolimbic reward pathway, postulating a possible immune role in the development of ASD.
Collapse
Affiliation(s)
- Luis A- Trujillo Villarreal
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Marcela Cárdenas-Tueme
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Roger Maldonado-Ruiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Diana Reséndez-Pérez
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Alberto Camacho-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| |
Collapse
|
14
|
Helfer G, Stevenson TJ. Pleiotropic effects of proopiomelanocortin and VGF nerve growth factor inducible neuropeptides for the long-term regulation of energy balance. Mol Cell Endocrinol 2020; 514:110876. [PMID: 32473184 DOI: 10.1016/j.mce.2020.110876] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Abstract
Seasonal rhythms in energy balance are well documented across temperate and equatorial zones animals. The long-term regulated changes in seasonal physiology consists of a rheostatic system that is essential to successful time annual cycles in reproduction, hibernation, torpor, and migration. Most animals use the annual change in photoperiod as a reliable and robust environmental cue to entrain endogenous (i.e. circannual) rhythms. Research over the past few decades has predominantly examined the role of first order neuroendocrine peptides for the rheostatic changes in energy balance. These anorexigenic and orexigenic neuropeptides in the arcuate nucleus include neuropeptide y (Npy), agouti-related peptide (Agrp), cocaine and amphetamine related transcript (Cart) and pro-opiomelanocortin (Pomc). Recent studies also indicate that VGF nerve growth factor inducible (Vgf) in the arcuate nucleus is involved in the seasonal regulation of energy balance. In situ hybridization, qPCR and RNA-sequencing studies have identified that Pomc expression across fish, avian and mammalian species, is a neuroendocrine marker that reflects seasonal energetic states. Here we highlight that long-term changes in arcuate Pomc and Vgf expression is conserved across species and may provide rheostatic regulation of seasonal energy balance.
Collapse
Affiliation(s)
- Gisela Helfer
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Tyler J Stevenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| |
Collapse
|
15
|
Interplay between Metabolism, Nutrition and Epigenetics in Shaping Brain DNA Methylation, Neural Function and Behavior. Genes (Basel) 2020; 11:genes11070742. [PMID: 32635190 PMCID: PMC7397264 DOI: 10.3390/genes11070742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Gene expression in the brain is dramatically regulated by a variety of stimuli. While the role of neural activity has been extensively studied, less is known about the effects of metabolism and nutrition on transcriptional control mechanisms in the brain. Extracellular signals are integrated at the chromatin level through dynamic modifications of epigenetic marks, which in turn fine-tune gene transcription. In the last twenty years, it has become clear that epigenetics plays a crucial role in modulating central nervous system functions and finally behavior. Here, we will focus on the effect of metabolic signals in shaping brain DNA methylation, both during development and adulthood. We will provide an overview of maternal nutrition effects on brain methylation and behavior in offspring. In addition, the impact of different diet challenges on cytosine methylation dynamics in the adult brain will be discussed. Finally, the possible role played by the metabolic status in modulating DNA hydroxymethylation, which is particularly abundant in neural tissue, will be considered.
Collapse
|
16
|
Zheng J, Zhang L, Wang Z, Zhang J. Maternal high-fat diet regulates glucose metabolism and pancreatic β cell phenotype in mouse offspring at weaning. PeerJ 2020; 8:e9407. [PMID: 32607287 PMCID: PMC7316079 DOI: 10.7717/peerj.9407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/02/2020] [Indexed: 11/20/2022] Open
Abstract
Background Maternal malnutrition is a critical factor in determining the risk of obesity and glucose intolerance in offspring. However, little is known about the effects of a maternal high-fat diet (HFD) on the β cell phenotype in offspring, which is a major factor in glucose homeostasis, especially during the early life of offspring. Methods Dams were randomly fed a HFD (60% kcal from fat) or a chow diet before pregnancy and during gestation and lactation. Glucose metabolism and the β cell phenotype were assessed in male offspring at weaning. Results Dams fed a HFD showed impaired glucose tolerance. A HFD predisposed the offspring to increased impairment of metabolic health, including obesity, glucose intolerance and insulin resistance, compared with offspring from chow diet-fed dams. Furthermore, increased islet sizes and islet densities were observed in male offspring from HFD-fed dams at weaning. There were increases in the insulin-positive area, β cell mass and β cell proliferation in male offspring from HFD-fed dams at weaning age. Next, we further determined whether a maternal HFD could affect β cell apoptosis in mouse offspring and found that there was no significant change in β cell apoptosis between the HFD and control groups. Conclusion Our study is novel in showing that a maternal HFD predisposes offspring to impaired glucose metabolism and has a profound effect on β cell mass and proliferation in offspring mice, which is observed in mice as early as at weaning age. However, further study to clarify the underlying mechanisms is warranted.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ziwei Wang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
17
|
Effects of High-Fat Diet and Exercise Intervention on the Metabolism Regulation of Infant Mice. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2358391. [PMID: 32596284 PMCID: PMC7298316 DOI: 10.1155/2020/2358391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022]
Abstract
Maternal exercise is crucial for promoting the health of the offspring. Previous studies showed that long-term maternal exercise improves energy metabolism during pregnancy. Whether swimming exercise can reverse the metabolic disorders caused by high-fat exposure in the early life of the offspring is yet to be elucidated. Three-week-old C57BL/6 female mice were randomly assigned to the standard chow diet group (SC), standard chow diet and exercise group (SC-Ex), high-fat diet group (HFD), and high-fat diet and exercise group (HFD-Ex). After swimming intervention for 13 weeks, male and female mice were caged, and the exercise intervention lasted until delivery. Then, the mothers were fed standard chow diet. A total of 8 offsprings/group were randomly selected after 4 weeks of lactation for GTT and ITT. After body composition analysis, the mice were sacrificed to obtain specimens. The levels of metabolism factors and IL-6 were measured by suspension microarray. Subsequently, 15 min after starting the GTT and ITT, the curve detected significant difference between the HFD and other groups. The body fat percentage of the HFD-Ex offspring was significantly lower than that of HFD offspring (p < 0.05) irrespective of the gender. The levels of IL-6 and TG in the male offspring in the HFD-Ex group were improved significantly (p < 0.05). Compared to the HFD offspring, serum glucose and GIP in the female offspring in the HFD-Ex group was significantly reduced (p < 0.05). Long-term exercise of the mother effectively improved the metabolic disorder caused by high-fat exposure in the infant offspring. Thus, the metabolic inheritance of the offspring is gender-dependent; the maternal metabolism can make male offspring genetically susceptible.
Collapse
|
18
|
Long-term effects of pro-opiomelanocortin methylation induced in food-restricted dams on metabolic phenotypes in male rat offspring. Obstet Gynecol Sci 2020; 63:239-250. [PMID: 32489968 PMCID: PMC7231940 DOI: 10.5468/ogs.2020.63.3.239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 11/08/2022] Open
Abstract
Objective Maternal malnutrition affects the growth and metabolic health of the offspring. Little is known about the long-term effect on metabolic indices of epigenetic changes in the brain caused by maternal diet. Thus, we explored the effect of maternal food restriction during pregnancy on metabolic profiles of the offspring, by evaluating the DNA methylation of hypothalamic appetite regulators at 3 weeks of age. Methods Sprague-Dawley rats were divided into 2 groups: a control group and a group with a 50% food-restricted (FR) diet during pregnancy. Methylation and expression of appetite regulator genes were measured in 3-week-old offspring using pyrosequencing, real-time polymerase chain reaction, and western blotting analyses. We analyzed the relationship between DNA methylation and metabolic profiles by Pearson's correlation analysis. Results The expression of pro-opiomelanocortin (POMC) decreased, whereas DNA methylation significantly increased in male offspring of the FR dams, compared to the male offspring of control dams. Hypermethylation of POMC was positively correlated with the levels of high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol in 3-week-old male offspring. In addition, there were significant positive correlations between hypermethylation of POMC and the levels of triglycerides, HDL-C, and leptin in 6-month-old male offspring. Conclusion Our findings suggest that maternal food restriction during pregnancy influences the expression of hypothalamic appetite regulators via epigenetic changes, leading to the development of metabolic disorders in the offspring.
Collapse
|
19
|
Abstract
It shows that detrimental exposures and conditions in mothers can lead to the development of obesity and type 2 diabetes in offspring. This can lead to a vicious cycle of metabolic dysfunction, where rising rates of obesity, pre-diabetes, and diabetes in individuals of reproductive age, propagating risks to subsequent generations. It is well established that regular exercise has important health benefits for people with obesity and type 2 diabetes. Recently, increasing studies aim to examine the effects of maternal exercise on metabolic health in offspring. This review aims to demonstrate the evidence linking maternal exercise during critical periods of development and its implications for glucose metabolism in offspring, including intervention timing, sexual dimorphism, different exercise type, and intensity. Then we further examine the potential role of epigenetic modifications in this process.
Collapse
|
20
|
Samodien E, Pheiffer C, Erasmus M, Mabasa L, Louw J, Johnson R. Diet-induced DNA methylation within the hypothalamic arcuate nucleus and dysregulated leptin and insulin signaling in the pathophysiology of obesity. Food Sci Nutr 2019; 7:3131-3145. [PMID: 31660128 PMCID: PMC6804761 DOI: 10.1002/fsn3.1169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
Obesity rates continue to rise in an unprecedented manner in what could be the most rapid population‐scale shift in human phenotype ever to occur. Increased consumption of unhealthy, calorie‐dense foods, coupled with sedentary lifestyles, is the main factor contributing to a positive energy balance and the development of obesity. Leptin and insulin are key hormones implicated in pathogenesis of this disorder and are crucial for controlling whole‐body energy homeostasis. Their respective function is mediated by the counterbalance of anorexigenic and orexigenic neurons located within the hypothalamic arcuate nucleus. Dysregulation of leptin and insulin signaling pathways within this brain region may contribute not only to the development of obesity, but also systemically affect the peripheral organs, thereby manifesting as metabolic diseases. Although the exact mechanisms detailing how these hypothalamic nuclei contribute to disease pathology are still unclear, increasing evidence suggests that altered DNA methylation may be involved. This review evaluates animal studies that have demonstrated diet‐induced DNA methylation changes in genes that regulate energy homeostasis within the arcuate nucleus, and elucidates possible mechanisms causing hypothalamic leptin and insulin resistance leading to the development of obesity and metabolic diseases.
Collapse
Affiliation(s)
- Ebrahim Samodien
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa.,Department of Medical Physiology Stellenbosch University Tygerberg South Africa
| | - Melisse Erasmus
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa.,Department of Medical Physiology Stellenbosch University Tygerberg South Africa
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa.,Department of Biochemistry and Microbiology University of Zululand KwaDlangezwa South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa.,Department of Medical Physiology Stellenbosch University Tygerberg South Africa
| |
Collapse
|
21
|
Zhou L, Xiao X, Zhang Q, Zheng J, Li M, Wang X, Deng M, Zhai X, Liu J. Gut microbiota might be a crucial factor in deciphering the metabolic benefits of perinatal genistein consumption in dams and adult female offspring. Food Funct 2019; 10:4505-4521. [PMID: 31348478 DOI: 10.1039/c9fo01046g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Adverse early-life exposures program an increased risk of chronic metabolic diseases in adulthood. However, the effects of genistein consumption in early life on metabolic health are unclear. Our objective was to investigate whether perinatal genistein intake could mitigate the deleterious effects of a high-fat diet (HF) on metabolism in dams and female offspring and to explore the role of the gut microbiota in mediating the transgenerational effects. C57BL/6 female mice were fed a HF, HF with genistein (0.6 g kg-1 diet) or normal control diet for 3 weeks before mating and throughout pregnancy and lactation. The offspring had free access to normal diet from weaning to 24 weeks of age. A glucose tolerance test was performed and the levels of serum insulin and lipid were measured. The cecal contents were collected for 16s rDNA sequencing. The results showed that perinatal genistein intake could not only significantly reduce blood glucose levels, insulin and free fatty acids (FFA) in dams, but also improve glucose tolerance, insulin sensitivity and serum lipid profiles in adult female offspring. Significant enrichment of short-chain fatty acid (mainly butyrate)-producing bacteria might play crucial roles in deciphering the metabolic benefits of perinatal genistein intake in dams. The obvious decrease in harmful microorganisms and increase in Erysipelotrichaceae_incertae_sedis were associated with the protective effects of maternal genistein intake on female offspring. In addition, Bifidobacterium might be an important factor for deciphering the metabolic improvement in both dams and female offspring by dietary genistein. Overall, perinatal genistein intake attenuated the harmful effects of HF on metabolism in both dams and female offspring, and the protective effects were associated with the alterations in the gut microbiota, which provides new evidence and targets for mitigating the poor effects of adverse early-life exposures on metabolic health in later life.
Collapse
Affiliation(s)
- Liyuan Zhou
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Li F, Shan MX, Gao X, Yang Y, Yang X, Zhang YY, Hu JW, Shan AS, Cheng BJ. Effects of nutrition restriction of fat- and lean-line broiler breeder hens during the laying period on offspring performance, blood biochemical parameters, and hormone levels. Domest Anim Endocrinol 2019; 68:73-82. [PMID: 30875642 DOI: 10.1016/j.domaniend.2019.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/18/2019] [Accepted: 01/26/2019] [Indexed: 12/22/2022]
Abstract
To evaluate the effects of maternal undernutrition on the performance, blood biochemical indexes, and hormone levels of broiler chicks, two broiler breeder lines (a fat line and lean line) were given either 100% or 75% of the daily feed intake recommended by the Chinese Ministry of Agriculture from 27 to 54 wk. All hens were fed the same basal corn-soybean diet. Fertile eggs were collected and hatched. All chicks were fed the same basal diet for 56 d. Then, chick performance, blood biochemical indexes, and hormone levels were measured. The results showed that there were interactions between maternal nutrition and line for some parameters, such as the kidney index, glucose, triglyceride, insulin, glucagon, leptin, and triiodothyronine (P < 0.05). Chicks of the fat line had a lower level of serum glucose, triglyceride, albumin, glutamic-pyruvic transaminase, insulin, and thyroxin than those of the lean line (P < 0.05), but the opposite trend was seen for birth weight, heart index, leptin, and triiodothyronine (P < 0.05). Maternal undernutrition decreased the birth weight and thymus index (day 28) of offspring (P < 0.05), but these effects disappeared by day 56. Maternal undernutrition decreased glucose (day 28), urea nitrogen (day 56), creatinine (day 56), glutamic-pyruvic transaminase (day 56), creatinine kinase (day 56), and leptin (day 56) levels in the offspring's serum (P < 0.05) but increased creatinine (day 28), total protein (day 28), glutamic-pyruvic transaminase (day 28), and glucagon (day 28) levels (P < 0.05). In conclusion, different lines have different metabolic processes. Maternal nutrition restriction during the laying period did have effects on the offspring, and the compensation by offspring reduced the effect of maternal nutrition restriction.
Collapse
Affiliation(s)
- F Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - M X Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - X Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Y Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - X Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Y Y Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - J W Hu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - A S Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China.
| | - B J Cheng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
23
|
Epigenetic regulation of POMC; implications for nutritional programming, obesity and metabolic disease. Front Neuroendocrinol 2019; 54:100773. [PMID: 31344387 DOI: 10.1016/j.yfrne.2019.100773] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 01/07/2023]
Abstract
Proopiomelanocortin (POMC) is a key mediator of satiety. Epigenetic marks such as DNA methylation may modulate POMC expression and provide a biological link between early life exposures and later phenotype. Animal studies suggest epigenetic marks at POMC are influenced by maternal energy excess and restriction, prenatal stress and Triclosan exposure. Postnatal factors including energy excess, folate, vitamin A, conjugated linoleic acid and leptin may also affect POMC methylation. Recent human studies suggest POMC DNA methylation is influenced by maternal nutrition in early pregnancy and associated with childhood and adult obesity. Studies in children propose a link between POMC DNA methylation and elevated lipids and insulin, independent of body habitus. This review brings together evidence from animal and human studies and suggests that POMC is sensitive to nutritional programming and is associated with a wide range of weight-related and metabolic outcomes.
Collapse
|
24
|
Schellong K, Melchior K, Ziska T, Ott R, Henrich W, Rancourt RC, Plagemann A. Hypothalamic insulin receptor expression and DNA promoter methylation are sex-specifically altered in adult offspring of high-fat diet (HFD)-overfed mother rats. J Nutr Biochem 2019; 67:28-35. [DOI: 10.1016/j.jnutbio.2019.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 01/28/2023]
|
25
|
Maternal High Fat Diet-Induced Obesity Modifies Histone Binding and Expression of Oxtr in Offspring Hippocampus in a Sex-Specific Manner. Int J Mol Sci 2019; 20:ijms20020329. [PMID: 30650536 PMCID: PMC6359595 DOI: 10.3390/ijms20020329] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/05/2023] Open
Abstract
Maternal obesity during pregnancy increases risk for neurodevelopmental disorders in offspring, although the underlying mechanisms remain unclear. Epigenetic deregulation associates with many neurodevelopmental disorders, and recent evidence indicates that maternal nutritional status can alter chromatin marks in the offspring brain. Thus, maternal obesity may disrupt epigenetic regulation of gene expression during offspring neurodevelopment. Using a C57BL/6 mouse model, we investigated whether maternal high fat diet (mHFD)-induced obesity alters the expression of genes previously implicated in the etiology of neurodevelopmental disorders within the Gestational Day 17.5 (GD 17.5) offspring hippocampus. We found significant two-fold upregulation of oxytocin receptor (Oxtr) mRNA in the hippocampus of male, but not female, GD 17.5 offspring from mHFD-induced obese dams (p < 0.05). To determine whether altered histone binding at the Oxtr gene promoter may underpin these transcriptional changes, we then performed chromatin immunoprecipitation (ChIP). Consistent with the Oxtr transcriptional changes, we observed increased binding of active histone mark H3K9Ac at the Oxtr transcriptional start site (TSS) in the hippocampus of mHFD male (p < 0.05), but not female, offspring. Together, these data indicate an increased vulnerability of male offspring to maternal obesity-induced changes in chromatin remodeling processes that regulate gene expression in the developing hippocampus, and contributes to our understanding of how early life nutrition affects the offspring brain epigenome.
Collapse
|
26
|
Zhou L, Xiao X, Zhang Q, Zheng J, Li M, Yu M, Wang X, Deng M, Zhai X, Li R, Liu J. Dietary Genistein Could Modulate Hypothalamic Circadian Entrainment, Reduce Body Weight, and Improve Glucose and Lipid Metabolism in Female Mice. Int J Endocrinol 2019; 2019:2163838. [PMID: 31139215 PMCID: PMC6500629 DOI: 10.1155/2019/2163838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022] Open
Abstract
Genistein has beneficial effects on metabolic disorders. However, the specific mechanism is not clearly understood. In light of the significant role of the hypothalamus in energy and metabolic homeostasis, this study was designed to explore whether dietary genistein intake could mitigate the harmful effects of a high-fat diet on glucose and lipid metabolism and whether any alterations caused by dietary genistein were associated with hypothalamic gene expression profiles. C57BL/6 female mice were fed a high-fat diet without genistein (HF), a high-fat diet with genistein (HFG), or a normal control diet (CON) for 8 weeks. Body weight and energy intake were assessed. At the end of the study, glucose tolerance and serum levels of insulin and lipids were analyzed. Hypothalamic tissue was collected for whole transcriptome sequencing and reverse transcription quantitative PCR (RT-qPCR) validation. Energy intake and body weight were significantly reduced in the mice of the HFG group compared with those of the HF group. Mice fed the HFG diet had improved glucose tolerance and decreased serum triacylglycerol, free fatty acids, and low-density lipoprotein cholesterol compared with those fed the HF diet. The HFG diet also modulated gene expression in the hypothalamus; the most abundant genes were enriched in the circadian entrainment pathway. Dietary genistein intake could reduce body weight, improve glucose and lipid metabolism, and regulate hypothalamic circadian entrainment. The ability of genistein intake to influence regulation of the hypothalamic circadian rhythm is important since this could provide a novel target for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Liyuan Zhou
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Zheng
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaojing Wang
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingqun Deng
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Zhai
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Rongrong Li
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jieying Liu
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang T, Wang X. Influence of Maternal Inulin-Type Prebiotic Intervention on Glucose Metabolism and Gut Microbiota in the Offspring of C57BL Mice. Front Endocrinol (Lausanne) 2019; 10:675. [PMID: 31632351 PMCID: PMC6779716 DOI: 10.3389/fendo.2019.00675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/17/2019] [Indexed: 01/14/2023] Open
Abstract
Scope: Maternal obesity leads to glucose intolerance in the offspring. Changes in the gut microbiota are being increasingly implicated in the pathogenesis of diabetes. We hypothesized that inulin intervention during gestation and lactation improves glucose metabolism disorders in mouse offspring from high-fat diet (HD)-fed dams. Procedures: Female C57BL mice were fed a control diet or HD for 4 weeks before mating. After mating, pregnant mice were randomly divided into three groups through gestation and lactation: control diet (CD) group, HD group, and HD treated with inulin (HD-inulin) group. At weaning, glucose metabolic status was assessed. Gut microbial DNA from offspring cecal contents was isolated and processed for metagenomic shotgun sequencing, and taxonomic and functional profiling were performed. Results: Offspring from dams in the HD-inulin groups demonstrated reduced fasting blood glucose, decreased blood glucose area under the curve during the oral glucose tolerance test, and reduced fasting serum insulin and HOMA-IR compared to offspring from dams in the HD group. Nineteen differentially abundant bacterial species were identified between the HD-inulin and HD groups. The HD-inulin group displayed significantly greater abundances of Bacteroides_acidifaciens, Eubacterium_sp_CAG_786, Clostridium_sp_CAG_343, and Bifidobacterium_breve species and lower abundances of Oscillibacter_sp_1_3, Ruminococcus_gnavus_CAG_126, and Bacteroides_massiliensis species. Differentially abundant bacterial species among the three groups were involved in 38 metabolic pathways, including several glucose and lipid metabolism pathways. Conclusion: Our results show that early inulin intervention in HD-fed mouse dams moderates offspring glucose metabolism and gut dysbiosis.
Collapse
|
28
|
Zhou L, Xiao X, Zhang Q, Zheng J, Li M, Deng M. A Possible Mechanism: Genistein Improves Metabolism and Induces White Fat Browning Through Modulating Hypothalamic Expression of Ucn3, Depp, and Stc1. Front Endocrinol (Lausanne) 2019; 10:478. [PMID: 31379744 PMCID: PMC6646519 DOI: 10.3389/fendo.2019.00478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022] Open
Abstract
Bioactive food components have gained growing attention in recent years. Multiple studies demonstrated that genistein had beneficial effects on metabolism. However, the exact mechanism by which genistein improves metabolism remains unclear, especially the central regulation. This study was designed to evaluate whether addition of genistein to the high-fat diet could counter metabolic disorders and whether these alterations were associated with gene expression in hypothalamus. C57BL/6 mice were fed either a high-fat diet (HF), high-fat diet with genistein (0.25 g/kg diet) (HFG) or a normal control diet (CON) for 8 weeks. Body weight was assessed during the study. After 8-week intervention, content of inguinal subcutaneous adipose tissue (SAT), perirenal visceral adipose tissue (VAT) and brown adipose tissue (BAT) were weighed. Glucose tolerance test, the serum levels of insulin and lipid were assessed. The mRNA of browning marker was detected in the white fat. The hypothalamus was collected for whole transcriptome sequencing and reverse transcription quantitative PCR validation. The results demonstrated that mice fed HFG diet had lower body weight and SAT mass, decrease levels of low-density lipoprotein cholesterol and free fatty acids, higher browning marker of Ucp1 and Cidea in WAT and an improvement in glucose tolerance and insulin sensitivity compared with those in HF group. Transcriptome sequencing showed that there were three differentially expressed genes in hypothalamus among the three groups, including Ucn3, Depp, and Stc1, which were significantly correlated with the browning markers in WAT and insulin sensitivity. Thus, regulating gene expressions in hypothalamus is a potential mechanism for genistein improving metabolism and inducing WAT browning, which may provide a novel target for the precaution and treatment of T2DM.
Collapse
|
29
|
Moody L, Xu GB, Chen H, Pan YX. Epigenetic regulation of carnitine palmitoyltransferase 1 (Cpt1a) by high fat diet. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:141-152. [PMID: 30605728 DOI: 10.1016/j.bbagrm.2018.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022]
Abstract
Carnitine palmitoyltransferase 1 (Cpt1a) is a rate-limiting enzyme that mediates the transport of fatty acids into the mitochondria for subsequent beta-oxidation. The objective of this study was to uncover how diet mediates the transcriptional regulation of Cpt1a. Pregnant Sprague Dawley rats were exposed to either a high-fat (HF) or low-fat control diet during gestation and lactation. At weaning, male offspring received either a HF or control diet, creating 4 groups: lifelong control diet (C/C; n = 12), perinatal HF diet (HF/C; n = 9), post-weaning HF diet (C/HF; n = 10), and lifelong HF diet (HF/HF; n = 10). Only HF/HF animals had higher hepatic Cpt1a mRNA expression than C/C. Epigenetic analysis revealed reduced DNA methylation (DNAMe) and increased histone 3 lysine 4 dimethylation (H3K4Me2) upstream and within the promoter of Cpt1a in the HF/HF group. This was accompanied by increased peroxisome proliferator activated receptor alpha (PPARα) and CCAAT/enhancer binding protein beta (C/EBPβ) binding directly downstream of the Cpt1a transcription start site within the first intron. Findings were confirmed in rat hepatoma H4IIEC3 cells treated with non-esterified fatty acid (NEFA). After 12 h of NEFA treatment, there was an enrichment of SWI/SNF related matrix associated actin dependent regulator of chromatin subfamily D member 1 (BAF60a or SMARCD1) in the first intron of Cpt1a. We conclude that dietary fat elevates hepatic Cpt1a expression via a highly coordinated transcriptional mechanism involving increased H3K4Me2, reduced DNAMe, and recruitment of C/EBPβ, PPARα, PGC1α, and BAF60a to the gene.
Collapse
Affiliation(s)
- Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America.
| | - Guanying Bianca Xu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America.
| | - Hong Chen
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America.
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America; Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America.
| |
Collapse
|
30
|
Maternal overnutrition programs epigenetic changes in the regulatory regions of hypothalamic Pomc in the offspring of rats. Int J Obes (Lond) 2018; 42:1431-1444. [PMID: 29777232 PMCID: PMC6113193 DOI: 10.1038/s41366-018-0094-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/27/2018] [Accepted: 03/16/2018] [Indexed: 02/02/2023]
Abstract
Background and objective Maternal overnutrition has been implicated in affecting the offspring by programming metabolic disorders such as obesity and diabetes, by mechanisms that are not clearly understood. This study aimed to determine the long-term impact of maternal high-fat (HF) diet feeding on epigenetic changes in the offspring’s hypothalamic Pomc gene, coding a key factor in the control of energy balance. Further, it aimed to study the additional effects of postnatal overnutrition on epigenetic programming by maternal nutrition. Methods Eight-week-old female Sprague–Dawley rats were fed HF diet or low-fat (LF) diet for 6 weeks before mating, and throughout gestation and lactation. At postnatal day 21, samples were collected from a third offspring and the remainder were weaned onto LF diet for 5 weeks, after which they were either fed LF or HF diet for 12 weeks, resulting in four groups of offspring differing by their maternal and postweaning diet. Results With maternal HF diet, offspring at weaning had rapid early weight gain, increased adiposity, and hyperleptinemia. The programmed adult offspring, subsequently fed LF diet, retained the increased body weight. Maternal HF diet combined with offspring HF diet caused more pronounced hyperphagia, fat mass, and insulin resistance. The ARC Pomc gene from programmed offspring at weaning showed hypermethylation in the enhancer (nPE1 and nPE2) regions and in the promoter sequence mediating leptin effects. Interestingly, hypermethylation at the Pomc promoter but not at the enhancer region persisted long term into adulthood in the programmed offspring. However, there were no additive effects on methylation levels in the regulatory regions of Pomc in programmed offspring fed a HF diet. Conclusion Maternal overnutrition programs long-term epigenetic alterations in the offspring’s hypothalamic Pomc promoter. This predisposes the offspring to metabolic disorders later in life.
Collapse
|
31
|
Barrand S, Crowley TM, Wood-Bradley RJ, De Jong KA, Armitage JA. Impact of maternal high fat diet on hypothalamic transcriptome in neonatal Sprague Dawley rats. PLoS One 2017; 12:e0189492. [PMID: 29240779 PMCID: PMC5730210 DOI: 10.1371/journal.pone.0189492] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
Maternal consumption of a high fat diet during early development has been shown to impact the formation of hypothalamic neurocircuitry, thereby contributing to imbalances in appetite and energy homeostasis and increasing the risk of obesity in subsequent generations. Early in postnatal life, the neuronal projections responsible for energy homeostasis develop in response to appetite-related peptides such as leptin. To date, no study characterises the genome-wide transcriptional changes that occur in response to exposure to high fat diet during this critical window. We explored the effects of maternal high fat diet consumption on hypothalamic gene expression in Sprague Dawley rat offspring at postnatal day 10. RNA-sequencing enabled discovery of differentially expressed genes between offspring of dams fed a high fat diet and offspring of control diet fed dams. Female high fat diet offspring displayed altered expression of 86 genes (adjusted P-value<0.05), including genes coding for proteins of the extra cellular matrix, particularly Collagen 1a1 (Col1a1), Col1a2, Col3a1, and the imprinted Insulin-like growth factor 2 (Igf2) gene. Male high fat diet offspring showed significant changes in collagen genes (Col1a1 and Col3a1) and significant upregulation of two genes involved in regulation of dopamine availability in the brain, tyrosine hydroxylase (Th) and dopamine reuptake transporter Slc6a3 (also known as Dat1). Transcriptional changes were accompanied by increased body weight, body fat and body length in the high fat diet offspring, as well as altered blood glucose and plasma leptin. Transcriptional changes identified in the hypothalamus of offspring of high fat diet mothers could alter neuronal projection formation during early development leading to abnormalities in the neuronal circuitry controlling appetite in later life, hence priming offspring to the development of obesity.
Collapse
Affiliation(s)
- Sanna Barrand
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Tamsyn M. Crowley
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
- MMR, BCRG, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Ryan J. Wood-Bradley
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Kirstie A. De Jong
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - James A. Armitage
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| |
Collapse
|
32
|
A maternal high-fat, high-sucrose diet alters insulin sensitivity and expression of insulin signalling and lipid metabolism genes and proteins in male rat offspring: effect of folic acid supplementation. Br J Nutr 2017; 118:580-588. [PMID: 29056104 DOI: 10.1017/s0007114517002501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A maternal high-fat, high-sucrose (HFS) diet alters offspring glucose and lipid homoeostasis through unknown mechanisms and may be modulated by folic acid. We investigated the effect of a maternal HFS diet on glucose homoeostasis, expression of genes and proteins associated with insulin signalling and lipid metabolism and the effect of prenatal folic acid supplementation (HFS/F) in male rat offspring. Pregnant Sprague-Dawley rats were randomly fed control (CON), HFS or HFS/F diets. Offspring were weaned on CON; at postnatal day 70, fasting plasma insulin and glucose and liver and skeletal muscle gene and protein expression were measured. Treatment effects were assessed by one-way ANOVA. Maternal HFS diet induced higher fasting glucose in offspring v. HFS/F (P=0·027) and down-regulation (P<0·05) of genes coding for v-Akt murine thymoma viral oncogene homolog 2, resistin and v-Raf-1 murine leukaemia viral oncogene homolog 1 (Raf1) in offspring skeletal muscle and acetyl-CoA carboxylase (Acaca), fatty acid synthase and phosphatidylinositol-4,5-biphosphate 3-kinase, catalytic subunit β in offspring liver. Skeletal muscle neuropeptide Y and hepatic Kruppel-like factor 10 were up-regulated in HFS v. CON offspring (P<0·05). Compared with CON, Acaca and Raf1 protein expression levels were significantly lower in HFS offspring. Maternal HFS induced higher homoeostasis model of assessment index of insulin resistance v. CON (P=0·030) and HFS/F was associated with higher insulin (P=0·016) and lower glucose (P=0·025). Maternal HFS diet alters offspring insulin sensitivity and de novo hepatic lipogenesis via altered gene and protein expression, which appears to be potentiated by folate supplementation.
Collapse
|
33
|
Conceição EPS, Moura EG, Oliveira E, Guarda DS, Figueiredo MS, Quitete FT, Calvino C, Miranda RA, Mathias PCF, Manhães AC, Lisboa PC. Dietary calcium supplementation in adult rats reverts brown adipose tissue dysfunction programmed by postnatal early overfeeding. J Nutr Biochem 2017; 39:117-125. [DOI: 10.1016/j.jnutbio.2016.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 07/05/2016] [Accepted: 09/02/2016] [Indexed: 11/28/2022]
|
34
|
Alwahsh SM, Gebhardt R. Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD). Arch Toxicol 2016; 91:1545-1563. [PMID: 27995280 DOI: 10.1007/s00204-016-1892-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022]
Abstract
Glucose is a major energy source for the entire body, while fructose metabolism occurs mainly in the liver. Fructose consumption has increased over the last decade globally and is suspected to contribute to the increased incidence of non-alcoholic fatty liver disease (NAFLD). NAFLD is a manifestation of metabolic syndrome affecting about one-third of the population worldwide and has progressive pathological potential for liver cirrhosis and cancer through non-alcoholic steatohepatitis (NASH). Here we have reviewed the possible contribution of fructose to the pathophysiology of NAFLD. We critically summarize the current findings about several regulators, and their potential mechanisms, that have been studied in humans and animal models in response to fructose exposure. A novel hypothesis on fructose-dependent perturbation of liver regeneration and metabolism is advanced. Fructose intake could affect inflammatory and metabolic processes, liver function, gut microbiota, and portal endotoxin influx. The role of the brain in controlling fructose ingestion and the subsequent development of NAFLD is highlighted. Although the importance for fructose (over)consumption for NAFLD in humans is still debated and comprehensive intervention studies are invited, understanding of how fructose intake can favor these pathological processes is crucial for the development of appropriate noninvasive diagnostic and therapeutic approaches to detect and treat these metabolic effects. Still, lifestyle modification, to lessen the consumption of fructose-containing products, and physical exercise are major measures against NAFLD. Finally, promising drugs against fructose-induced insulin resistance and hepatic dysfunction that are emerging from studies in rodents are reviewed, but need further validation in human patients.
Collapse
Affiliation(s)
- Salamah Mohammad Alwahsh
- Faculty of Medicine, Institute of Biochemistry, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany. .,MCR Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Dr, EH16 4UU Edinburgh, UK.
| | - Rolf Gebhardt
- Faculty of Medicine, Institute of Biochemistry, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
35
|
Zheng J, Zhang Q, Mul JD, Yu M, Xu J, Qi C, Wang T, Xiao X. Maternal high-calorie diet is associated with altered hepatic microRNA expression and impaired metabolic health in offspring at weaning age. Endocrine 2016; 54:70-80. [PMID: 27106801 DOI: 10.1007/s12020-016-0959-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 04/11/2016] [Indexed: 12/22/2022]
Abstract
High-calorie diet (HCD) feeding in mice predisposes offspring for impaired glucose homeostasis and obesity. However, the mechanisms underlying these detrimental effects of maternal nutrition, especially during early life of offspring, are incompletely understood. MicroRNAs (miRNAs) are small non-coding RNAs that can regulate target gene expression. Here we hypothesized that impaired metabolic health in offspring from HCD-fed dams at weaning is associated with dysregulated expression of hepatic miRNAs. Dams were fed a chow diet (CD; 11.4 % kcal fat, 62.8 % from carbohydrate, 25.8 % from protein) or HCD (58 % kcal from fat; 25.6 % from carbohydrate, 16.4 % from protein) during gestation and lactation, and metabolic health was assessed in male offspring at weaning. Hepatic levels of miRNAs and target genes were investigated in offspring from CD- or HCD-fed dams using gene and protein expression. Maternal HCD feeding impaired metabolic health in offspring compared to offspring from CD-fed dams. Microarray analysis indicated that expressions of miR-615-5p, miR-3079-5p, miR-124*, and miR-101b* were downregulated, whereas miR-143* was upregulated, in livers from offspring from HCD-fed dams. Our functional enrichment analysis indicated that the target genes of these differentially expressed miRNAs, including tumor necrosis factor-α (TNF-α) and mitogen-activated protein kinase 1 (MAPK1), were mapped to inflammatory pathways. Finally, we verified that both mRNA and protein levels of the pro-inflammatory modulators TNF-α and MAPK1 were significantly increased in livers of offspring from HCD-fed dams at weaning. Maternal HCD feeding predisposes offspring to a higher body weight and impaired glucose metabolism at weaning. To the best of knowledge, our study is the first to show that maternal HCD consumption impairs metabolic health, modulates hepatic miRNA expression, and increases markers of hepatic inflammation in offspring as early as at weaning age.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Joram D Mul
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Miao Yu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Jianping Xu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Cuijuan Qi
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Tong Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Xinhua Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
36
|
Lemche E, Chaban OS, Lemche AV. Neuroendocrinological and Epigenetic Mechanisms Subserving Autonomic Imbalance and HPA Dysfunction in the Metabolic Syndrome. Front Neurosci 2016; 10:142. [PMID: 27147943 PMCID: PMC4830841 DOI: 10.3389/fnins.2016.00142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/21/2016] [Indexed: 12/18/2022] Open
Abstract
Impact of environmental stress upon pathophysiology of the metabolic syndrome (MetS) has been substantiated by epidemiological, psychophysiological, and endocrinological studies. This review discusses recent advances in the understanding of causative roles of nutritional factors, sympathomedullo-adrenal (SMA) and hypothalamic-pituitary adrenocortical (HPA) axes, and adipose tissue chronic low-grade inflammation processes in MetS. Disturbances in the neuroendocrine systems for leptin, melanocortin, and neuropeptide Y (NPY)/agouti-related protein systems have been found resulting directly in MetS-like conditions. The review identifies candidate risk genes from factors shown critical for the functioning of each of these neuroendocrine signaling cascades. In its meta-analytic part, recent studies in epigenetic modification (histone methylation, acetylation, phosphorylation, ubiquitination) and posttranscriptional gene regulation by microRNAs are evaluated. Several studies suggest modification mechanisms of early life stress (ELS) and diet-induced obesity (DIO) programming in the hypothalamic regions with populations of POMC-expressing neurons. Epigenetic modifications were found in cortisol (here HSD11B1 expression), melanocortin, leptin, NPY, and adiponectin genes. With respect to adiposity genes, epigenetic modifications were documented for fat mass gene cluster APOA1/C3/A4/A5, and the lipolysis gene LIPE. With regard to inflammatory, immune and subcellular metabolism, PPARG, NKBF1, TNFA, TCF7C2, and those genes expressing cytochrome P450 family enzymes involved in steroidogenesis and in hepatic lipoproteins were documented for epigenetic modifications.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Oleg S Chaban
- Section of Psychosomatic Medicine, Bogomolets National Medical University Kiev, Ukraine
| | - Alexandra V Lemche
- Department of Medical Science, Institute of Clinical Research Berlin, Germany
| |
Collapse
|
37
|
Lopomo A, Burgio E, Migliore L. Epigenetics of Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:151-84. [PMID: 27288829 DOI: 10.1016/bs.pmbts.2016.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Zhang N. Epigenetic modulation of DNA methylation by nutrition and its mechanisms in animals. ACTA ACUST UNITED AC 2015; 1:144-151. [PMID: 29767106 PMCID: PMC5945948 DOI: 10.1016/j.aninu.2015.09.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/21/2022]
Abstract
It is well known that phenotype of animals may be modified by the nutritional modulations through epigenetic mechanisms. As a key and central component of epigenetic network, DNA methylation is labile in response to nutritional influences. Alterations in DNA methylation profiles can lead to changes in gene expression, resulting in diverse phenotypes with the potential for decreased growth and health. Here, I reviewed the biological process of DNA methylation that results in the addition of methyl groups to DNA; the possible ways including methyl donors, DNA methyltransferase (DNMT) activity and other cofactors, the critical periods including prenatal, postnatal and dietary transition periods, and tissue specific of epigenetic modulation of DNA methylation by nutrition and its mechanisms in animals.
Collapse
Affiliation(s)
- Naifeng Zhang
- Feed Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|