1
|
Liberatore CM, Biancucci M, Ezquer I, Gregis V, Di Marzo M. Investigating how reproductive traits in rice respond to abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:2064-2080. [PMID: 39876691 DOI: 10.1093/jxb/eraf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Rice (Oryza sativa) is one of the most important crops and a food source for billions of people. Anthropogenic global warming, soil erosion, and unstable environmental conditions affect both rice vegetative and reproductive growth, and consequently its final yield. The reproductive phase starts with the transition of the apical meristem from the vegetative to the reproductive phase in which it develops into a panicle and proceeds through the differentiation of the floret and, after fertilization, to the filling of the grain. The physiological events that occur during these stages influence the ability of new seeds to respond to stresses during the future germination phase, a key step for successful seedling growth and future plant establishment. This review explores the impacts of different abiotic stresses on the physiological and molecular pathways of reproductive growth.
Collapse
Affiliation(s)
| | - Marco Biancucci
- Department of Biosciences, University of Milan (UNIMI), Milan, Italy
| | - Ignacio Ezquer
- Department of Biosciences, University of Milan (UNIMI), Milan, Italy
| | - Veronica Gregis
- Department of Biosciences, University of Milan (UNIMI), Milan, Italy
| | - Maurizio Di Marzo
- Department of Biosciences, University of Milan (UNIMI), Milan, Italy
| |
Collapse
|
2
|
Liu X, Xu Y, Zhang Y, Chen X, Li P. BrWRKY8: a key regulatory factor involved in delaying postharvest leaf senescence of Pakchoi ( Brassica rapa subsp. chinensis) by 2,4-epibrassinolide. HORTICULTURE RESEARCH 2025; 12:uhaf004. [PMID: 40078720 PMCID: PMC11896971 DOI: 10.1093/hr/uhaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/29/2024] [Indexed: 03/14/2025]
Abstract
Brassinosteroids (BRs) are extensively distributed in plants and play crucial roles throughout all stages of plant growth. Nevertheless, the molecular mechanism through which BRs influence postharvest senescence in pakchoi remains elusive. Previous studies have demonstrated that the application of 1.5 μM of the BRs analog 2,4-epibrassinolide (EBR) delayed the leaf senescence in harvested pakchoi. In this study, we constructed the EBR-delayed senescence transcriptome in pakchoi leaves and discovered that EBR modulates the expression of genes involved in the chlorophyll (Chl) metabolism pathway and the BRs pathway in pakchoi. Notably, we identified and characterized an EBR-suppressed, nucleus-localized WRKY transcription factor called BrWRKY8. BrWRKY8 is a highly expressed transcriptional activator in senescent leaves, targeting the promoters of the Chl degradation-associated gene BrSGR2 and the BRs degradation-associated gene BrCHI2, thereby promoting their expression. Overexpression of the BrWRKY8 gene accelerated the senescence process in Arabidopsis leaves, while EBR treatment mitigated the leaf senescence phenotype induced by BrWRKY8 overexpression. Conversely, silencing of BrWRKY8 through the virus-induced gene silencing extended the postharvest storage period of pakchoi. In conclusion, the newly discovered BRs-BrWRKY8 regulatory model in this study provides novel insights into BRs-mediated leaf senescence in pakchoi.
Collapse
Affiliation(s)
- Xuesong Liu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Road, Nanjing 210014, Jiangsu, China
| | - Yinghao Xu
- Department of Food Science, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110043, China
| | - Yujun Zhang
- Department of Food Science, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110043, China
| | - Xiaofei Chen
- Department of Food Science, Nanjing Agricultural University, 666 Binjiang Road, Nanjing 211800, China
| | - Pengxia Li
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Road, Nanjing 210014, Jiangsu, China
- Department of Food Science, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110043, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, 50 Zhongling Road, Nanjing 210014, Jiangsu, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Products, Ministry of Agriculture and Rural Affairs, 50 Zhongling Road, Nanjing 210014, China
| |
Collapse
|
3
|
Huang Y, Sun Z, Zhou X. WRKY Transcription Factors in Response to Metal Stress in Plants: A Review. Int J Mol Sci 2024; 25:10952. [PMID: 39456735 PMCID: PMC11506853 DOI: 10.3390/ijms252010952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Heavy metals in soil can inflict direct damage on plants growing within it, adversely affecting their growth height, root development, leaf area, and other physiological traits. To counteract the toxic impacts of heavy metals on plant growth and development, plants mitigate heavy metal stress through mechanisms such as metal chelation, vacuolar compartmentalization, regulation of transporters, and enhancement of antioxidant functions. WRKY transcription factors (TFs) play a crucial role in plant growth and development as well as in responses to both biotic and abiotic stresses; notably, heavy metal stress is classified as an abiotic stressor. An increasing number of studies have highlighted the significant role of WRKY proteins in regulating heavy metal stress across various levels. Upon the entry of heavy metal ions into plant root cells, the production of reactive oxygen species (ROS) is triggered, leading to the phosphorylation and activation of WRKY TFs through MAPK cascade signaling. Activated WRKY TFs then modulate various physiological processes by upregulating or downregulating the expression of downstream genes to confer heavy metal tolerance to plants. This review provides an overview of the research advancements regarding WRKY TFs in regulating heavy metal ion stress-including cadmium (Cd), arsenic (As), copper (Cu)-and aluminum (Al) toxicity.
Collapse
Affiliation(s)
| | | | - Xiangui Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Y.H.); (Z.S.)
| |
Collapse
|
4
|
Jin Q, Yang K, Zhang Y, Zhang S, Liu Z, Guan Y, Zhang L, Zhang Y, Wang Q. Physiological and molecular mechanisms of silicon and potassium on mitigating iron-toxicity stress in Panax ginseng. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108975. [PMID: 39084170 DOI: 10.1016/j.plaphy.2024.108975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Iron plays a crucial role in plant chlorophyll synthesis, respiration, and plant growth. However, excessive iron content can contribute to ginseng poisoning. We previously discovered that the application of silicon (Si) and potassium (K) can mitigate the iron toxicity on ginseng. To elucidate the molecular mechanism of how Si and K alleviate iron toxicity stress in ginseng. We investigated the physiological and transcriptional effects of exogenous Si and K on Panax ginseng. The results suggested that the leaves of ginseng with Si and K addition under iron stress increased antioxidant enzyme activity or secondary metabolite content, such as phenylalanine amino-lyase, polyphenol oxidase, ascorbate peroxidase, total phenols and lignin, by 6.21%-25.94%, 30.12%-309.19%, 32.26%-38.82%, 7.81%-23.66%, and 4.68%-48.42%, respectively. Moreover, Si and K increased the expression of differentially expressed genes (DEGs) associated with resistance to both biotic and abiotic stress, including WRKY (WRKY1, WRKY5, and WRKY65), bHLH (bHLH35, bHLH66, bHLH128, and bHLH149), EREBP, ERF10 and ZIP. Additionally, the amount of DEGs of ginseng by Si and K addition was enriched in metabolic processes, single-organism process pathways, signal transduction, metabolism, synthesis and disease resistance. In conclusion, the utilization of Si and K can potentially reduce the accumulation of iron in ginseng, regulate the expression of iron tolerance genes, and enhance the antioxidant enzyme activity and secondary metabolite production in both leaves and roots, thus alleviating the iron toxicity stress in ginseng.
Collapse
Affiliation(s)
- Qiao Jin
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Kexin Yang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yayu Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China; College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Shuna Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Zhengbo Liu
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yiming Guan
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Linlin Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yue Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Qiuxia Wang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China.
| |
Collapse
|
5
|
Ali N, Maitra Pati A. PGPR isolated from hot spring imparts resilience to drought stress in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109031. [PMID: 39137684 DOI: 10.1016/j.plaphy.2024.109031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Drought is a major abiotic stress that occurs frequently due to climate change, severely hampers agricultural production, and threatens food security. In this study, the effect of drought-tolerant PGPRs, i.e., PGPR-FS2 and PGPR-VHH4, was assessed on wheat by withholding water. The results indicate that drought-stressed wheat seedlings treated with PGPRs-FS2 and PGPR-VHH4 had a significantly higher shoot and root length, number of roots, higher chlorophyll, and antioxidant enzymatic activities of guaiacol peroxidase (GPX) compared to without PGPR treatment. The expression study of wheat genes related to tryptophan auxin-responsive (TaTAR), drought-responsive (TaWRKY10, TaWRKY51, TaDREB3, and TaDREB4) and auxin-regulated gene organ size (TaARGOS-A, TaARGOS-B, and TaARGOS-D) exhibited significantly higher expression in the PGPR-FS2 and PGPR-VHH4 treated wheat under drought as compared to without PGPR treatment. The results of this study illustrate that PGPR-FS2 and PGPR-VHH4 mitigate the drought stress in wheat and pave the way for imparting drought in wheat under water deficit conditions. Among the two PGPRs, PGPR-VHH4 more efficiently altered the root architecture to withstand drought stress.
Collapse
Affiliation(s)
- Nilofer Ali
- CSIR- Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aparna Maitra Pati
- CSIR- Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Wairich A, Aung MS, Ricachenevsky FK, Masuda H. You can't always get as much iron as you want: how rice plants deal with excess of an essential nutrient. FRONTIERS IN PLANT SCIENCE 2024; 15:1381856. [PMID: 39100081 PMCID: PMC11294178 DOI: 10.3389/fpls.2024.1381856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024]
Abstract
Iron (Fe) is an essential nutrient for almost all organisms. However, free Fe within cells can lead to damage to macromolecules and oxidative stress, making Fe concentrations tightly controlled. In plants, Fe deficiency is a common problem, especially in well-aerated, calcareous soils. Rice (Oryza sativa L.) is commonly cultivated in waterlogged soils, which are hypoxic and can cause Fe reduction from Fe3+ to Fe2+, especially in low pH acidic soils, leading to high Fe availability and accumulation. Therefore, Fe excess decreases rice growth and productivity. Despite the widespread occurrence of Fe excess toxicity, we still know little about the genetic basis of how rice plants respond to Fe overload and what genes are involved in variation when comparing genotypes with different tolerance levels. Here, we review the current knowledge about physiological and molecular data on Fe excess in rice, providing a comprehensive summary of the field.
Collapse
Affiliation(s)
- Andriele Wairich
- Department of Agronomy and Crop Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - May Sann Aung
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Felipe Klein Ricachenevsky
- Botany Department, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hiroshi Masuda
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| |
Collapse
|
7
|
Wairich A, Vitali A, Adamski JM, Lopes KL, Duarte GL, Ponte LR, Costa HK, Menguer PK, Santos RPD, Fett JP, Sperotto RA, Ricachenevsky FK. Enhanced expression of OsNAC5 leads to up-regulation of OsNAC6 and changes rice (Oryza sativa L.) ionome. Genet Mol Biol 2023; 46:e20220190. [PMID: 37144919 PMCID: PMC10161346 DOI: 10.1590/1678-4685-gmb-2022-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/17/2023] [Indexed: 05/06/2023] Open
Abstract
NAC transcription factors are plant-specific proteins involved in many processes during the plant life cycle and responses to biotic and abiotic stresses. Previous studies have shown that stress-induced OsNAC5 from rice (Oryza sativa L.) is up-regulated by senescence and might be involved in control of iron (Fe) and zinc (Zn) concentrations in rice seeds. Aiming a better understanding of the role of OsNAC5 in rice plants, we investigated a mutant line carrying a T-DNA insertion in the promoter of OsNAC5, which resulted in enhanced expression of the transcription factor. Plants with OsNAC5 enhanced expression were shorter at the seedling stage and had reduced yield at maturity. In addition, we evaluated the expression level of OsNAC6, which is co-expressed with OsNAC5, and found that enhanced expression of OsNAC5 leads to increased expression of OsNAC6, suggesting that OsNAC5 might regulate OsNAC6 expression. Ionomic analysis of leaves and seeds from the OsNAC5 enhanced expression line revealed lower Fe and Zn concentrations in leaves and higher Fe concentrations in seeds than in WT plants, further suggesting that OsNAC5 may be involved in regulating the ionome in rice plants. Our work shows that fine-tuning of transcription factors is key when aiming at crop improvement.
Collapse
Affiliation(s)
- Andriele Wairich
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, RS, Brazil
| | - Ariane Vitali
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Botânica, Porto Alegre, RS, Brazil
| | - Janete Mariza Adamski
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Botânica, Porto Alegre, RS, Brazil
| | - Karina Letícia Lopes
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, RS, Brazil
| | - Guilherme Leitão Duarte
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Botânica, Porto Alegre, RS, Brazil
| | - Lucas Roani Ponte
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, RS, Brazil
| | - Henrique Keller Costa
- Universidade Federal de Santa Maria, Instituto de Ciências Naturais e Exatas, Departamento de Biologia, Porto Alegre, RS, Brazil
| | - Paloma Koprovski Menguer
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, RS, Brazil
| | - Rinaldo Pires Dos Santos
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Botânica, Porto Alegre, RS, Brazil
| | - Janette Palma Fett
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Botânica, Porto Alegre, RS, Brazil
| | - Raul Antonio Sperotto
- Universidade do Vale do Taquari (Univates), Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Lajeado, RS, Brazil
- Universidade Federal de Pelotas, Programa de Pós-Graduação em Fisiologia Vegetal (PPGFV), Pelotas, RS, Brazil
| | - Felipe Klein Ricachenevsky
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Botânica, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Khan N, Zhang Y, Wang J, Li Y, Chen X, Yang L, Zhang J, Li C, Li L, Ur Rehman S, Reynolds MP, Zhang L, Zhang X, Mao X, Jing R. TaGSNE, a WRKY transcription factor, overcomes the trade-off between grain size and grain number in common wheat and is associated with root development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6678-6696. [PMID: 35906966 DOI: 10.1093/jxb/erac327] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/26/2022] [Indexed: 05/28/2023]
Abstract
Wheat is one of the world's major staple food crops, and breeding for improvement of grain yield is a priority under the scenarios of climate change and population growth. WRKY transcription factors are multifaceted regulators in plant growth, development, and responses to environmental stimuli. In this study, we identify the WRKY gene TaGSNE (Grain Size and Number Enhancer) in common wheat, and find that it has relatively high expression in leaves and roots, and is induced by multiple abiotic stresses. Eleven single-nucleotide polymorphisms were identified in TaGSNE, forming two haplotypes in multiple germplasm collections, named as TaGSNE-Hap-1 and TaGSNE-Hap-2. In a range of different environments, TaGSNE-Hap-2 was significantly associated with increases in thousand-grain weight (TGW; 3.0%) and spikelet number per spike (4.1%), as well as with deeper roots (10.1%) and increased root dry weight (8.3%) at the mid-grain-filling stage, and these were confirmed in backcross introgression populations. Furthermore, transgenic rice lines overexpressing TaGSNE had larger panicles, more grains, increased grain size, and increased grain yield relative to the wild-type control. Analysis of geographic and temporal distributions revealed that TaGSNE-Hap-2 is positively selected in China and Pakistan, and TaGSNE-Hap-1 in Europe. Our findings demonstrate that TaGSNE overcomes the trade-off between TGW/grain size and grain number, leading us to conclude that these elite haplotypes and their functional markers could be utilized in marker-assisted selection for breeding high-yielding varieties.
Collapse
Affiliation(s)
- Nadia Khan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Genetics, University of Karachi, Pakistan
| | - Yanfei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuying Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xin Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shoaib Ur Rehman
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan
| | | | - Lichao Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Liang X, Li Y, Yao A, Liu W, Yang T, Zhao M, Zhang B, Han D. Overexpression of MxbHLH18 Increased Iron and High Salinity Stress Tolerance in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23148007. [PMID: 35887354 PMCID: PMC9319408 DOI: 10.3390/ijms23148007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 01/21/2023] Open
Abstract
In the life cycle of apple, it will suffer a variety of abiotic stresses, such as iron stress and salt stress. bHLH transcription factors (TFs) play an indispensable role in the response of plants to stress. In this study, a new bHLH gene named MxbHLH18 was separated from Malus xiaojinensis. According to the results of subcellular localization, MxbHLH18 was localized in the nucleus. Salt stress and iron stress affected the expression of MxbHLH18 in Malus xiaojinensis seedlings to a large extent. Due to the introduction of MxbHLH18, the resistance of Arabidopsis thaliana to salt, high iron and low iron was significantly enhanced. Under the environmental conditions of high iron and low iron, the overexpression of MxbHLH18 increased many physiological indexes of transgenic Arabidopsis compared to wild type (WT), such as root length, fresh weight and iron content. The high level expression of MxbHLH18 in transformed Arabidopsis thaliana can not only increased the content of chlorophyll and proline, as well as increasing the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); it also reduced the content of malondialdehyde (MDA), which was more obvious under high salt conditions. In addition, the relative conductivity, H2O2 content and O2− content in transgenic Arabidopsis decreased under salt stress. Meanwhile, MxbHLH18 can also regulate the expression of downstream genes associated with salt stress (AtCBF1/2/3, AtKIN1 and AtCOR15a/b) and iron stress (AtIRT1, AtFRO2, AtNAS2, ATACT2, AtZIF1 and AtOPT3). Therefore, MxbHLH18 can actively promote the adaptability of plants to the growth environment of salt and low and/or iron.
Collapse
Affiliation(s)
- Xiaoqi Liang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
| | - Yingmei Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
| | - Anqi Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
| | - Wanda Liu
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China;
| | - Tianyu Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
| | - Mengfei Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
| | - Bingxiu Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
- Correspondence: (B.Z.); (D.H.); Tel.: +86-451-55190781 (D.H.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
- Correspondence: (B.Z.); (D.H.); Tel.: +86-451-55190781 (D.H.)
| |
Collapse
|
10
|
Numan M, Guo W, Choi S, Wang X, Du B, Jin W, Bhandari RK, Ligaba‐Osena A. Analysis of miRNAs responsive to long-term calcium deficiency in tef ( Eragrostis tef (Zucc.) Trotter). PLANT DIRECT 2022; 6:e400. [PMID: 35582629 PMCID: PMC9090557 DOI: 10.1002/pld3.400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) play an important role in growth, development, stress resilience, and epigenetic modifications of plants. However, the effect of calcium (Ca2+) deficiency on miRNA expression in the orphan crop tef (Eragrostis tef) remains unknown. In this study, we analyzed expression of miRNAs in roots and shoots of tef in response to Ca2+ treatment. miRNA-seq followed by bioinformatic analysis allowed us to identify a large number of small RNAs (sRNAs) ranging from 17 to 35 nt in length. A total of 1380 miRNAs were identified in tef experiencing long-term Ca2+ deficiency while 1495 miRNAs were detected in control plants. Among the miRNAs identified in this study, 161 miRNAs were similar with those previously characterized in other plant species and 348 miRNAs were novel, while the remaining miRNAs were uncharacterized. Putative target genes and their functions were predicted for all the known and novel miRNAs that we identified. Based on gene ontology (GO) analysis, the predicted target genes are known to have various biological and molecular functions including calcium uptake and transport. Pairwise comparison of differentially expressed miRNAs revealed that some miRNAs were specifically enriched in roots or shoots of low Ca2+-treated plants. Further characterization of the miRNAs and their targets identified in this study may help in understanding Ca2+ deficiency responses in tef and related orphan crops.
Collapse
Affiliation(s)
- Muhammad Numan
- Present address:
Laboratory of Plant Molecular Biology and Biotechnology, Department of BiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| | - Wanli Guo
- Present address:
Laboratory of Plant Molecular Biology and Biotechnology, Department of BiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
- Present address:
Department of Biotechnology, College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Sang‐Chul Choi
- Present address:
Laboratory of Plant Molecular Biology and Biotechnology, Department of BiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| | - Xuegeng Wang
- Laboratory of Environmental Epigenetics, Department of BiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
- Institute of Modern Aquaculture Science and Engineering, College of Life SciencesSouth China Normal UniversityGuangzhouP. R. China
| | - Boxuan Du
- Present address:
Department of Biotechnology, College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Weibo Jin
- Present address:
Department of Biotechnology, College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Ramji Kumar Bhandari
- Laboratory of Environmental Epigenetics, Department of BiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| | - Ayalew Ligaba‐Osena
- Present address:
Laboratory of Plant Molecular Biology and Biotechnology, Department of BiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| |
Collapse
|
11
|
Zhu S, Fan R, Xiong X, Li J, Xiang L, Hong Y, Ye Y, Zhang X, Yu X, Chen Y. MeWRKY IIas, Subfamily Genes of WRKY Transcription Factors From Cassava, Play an Important Role in Disease Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:890555. [PMID: 35720572 PMCID: PMC9201764 DOI: 10.3389/fpls.2022.890555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/02/2022] [Indexed: 05/20/2023]
Abstract
Cassava (Manihot esculenta Crantz) is an important tropical crop for food, fodder, and energy. Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) occurs in all cassava growing regions and threatens global cassava production. WRKY transcription factor family plays the essential roles during plant growth, development, and abiotic or biotic stress. Particularly, previous studies have revealed the important role of the group IIa WRKY genes in plant disease resistance. However, a comprehensive analysis of group IIa subfamily in cassava is still missing. Here, we identified 102 WRKY members, which were classified into three groups, I, II, and III. Transient expression showed that six MeWRKY IIas were localized in the nucleus. MeWRKY IIas transcripts accumulated significantly in response to SA, JA, and Xam. Overexpression of MeWRKY27 and MeWRKY33 in Arabidopsis enhanced its resistance to Pst DC3000. In contrast, silencing of MeWRKY27 and MeWRKY33 in cassava enhanced its susceptibility to Xam. Co-expression network analysis showed that different downstream genes are regulated by different MeWRKY IIa members. The functional analysis of downstream genes will provide clues for clarifying molecular mechanism of cassava disease resistance. Collectively, our results suggest that MeWRKY IIas are regulated by SA, JA signaling, and coordinate response to Xam infection.
Collapse
Affiliation(s)
- Shousong Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Ruochen Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Xi Xiong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Jianjun Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Li Xiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Yuhui Hong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yiwei Ye
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiaofei Zhang
- CGIAR Research Program on Roots Tubers and Bananas (RTB), International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Xiaohui Yu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Xiaohui Yu
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Yinhua Chen
| |
Collapse
|
12
|
Genome-Wide Identification and Expression Analysis of BBX Transcription Factors in Iris germanica L. Int J Mol Sci 2021; 22:ijms22168793. [PMID: 34445524 PMCID: PMC8396303 DOI: 10.3390/ijms22168793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
The family of B-box (BBX) transcription factors contains one or two B-BOX domains and sometimes also features a highly conserved CCT domain, which plays important roles in plant growth, development and stress response. Nevertheless, no systematic study of the BBX gene family in Iris germanica L. has been undertaken. In this study, a set of six BBX TF family genes from I. germanica was identified based on transcriptomic sequences, and clustered into three clades according to phylogenetic analysis. A transient expression analysis revealed that all six BBX proteins were localized in the nucleus. A yeast one-hybrid assay demonstrated that IgBBX3 has transactivational activity, while IgBBX1, IgBBX2, IgBBX4, and IgBBX5 have no transcriptional activation ability. The transcript abundance of IgBBXs in different tissues was divided into two major groups. The expression of IgBBX1, IgBBX2, IgBBX3 and IgBBX5 was higher in leaves, whereas IgBBX4 and IgBBX6 was higher in roots. The stress response patterns of six IgBBX were detected under phytohormone treatments and abiotic stresses. The results of this study lay the basis for further research on the functions of BBX gene family members in plant hormone and stress responses, which will promote their application in I. germanica breeding.
Collapse
|
13
|
Kakei Y, Masuda H, Nishizawa NK, Hattori H, Aung MS. Elucidation of Novel cis-Regulatory Elements and Promoter Structures Involved in Iron Excess Response Mechanisms in Rice Using a Bioinformatics Approach. FRONTIERS IN PLANT SCIENCE 2021; 12:660303. [PMID: 34149757 PMCID: PMC8207140 DOI: 10.3389/fpls.2021.660303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/06/2021] [Indexed: 05/24/2023]
Abstract
Iron (Fe) excess is a major constraint on crop production in flooded acidic soils, particularly in rice cultivation. Under Fe excess, plants activate a complex mechanism and network regulating Fe exclusion by roots and isolation in various tissues. In rice, the transcription factors and cis-regulatory elements (CREs) that regulate Fe excess response mechanisms remain largely elusive. We previously reported comprehensive microarray analyses of several rice tissues in response to various levels of Fe excess stress. In this study, we further explored novel CREs and promoter structures in rice using bioinformatics approaches with this microarray data. We first performed network analyses to predict Fe excess-related CREs through the categorization of the gene expression patterns of Fe excess-responsive transcriptional regulons, and found four major expression clusters: Fe storage type, Fe chelator type, Fe uptake type, and WRKY and other co-expression type. Next, we explored CREs within these four clusters of gene expression types using a machine-learning method called microarray-associated motif analyzer (MAMA), which we previously established. Through a comprehensive bioinformatics approach, we identified a total of 560 CRE candidates extracted by MAMA analyses and 42 important conserved sequences of CREs directly related to the Fe excess response in various rice tissues. We explored several novel cis-elements as candidate Fe excess CREs including GCWGCWGC, CGACACGC, and Myb binding-like motifs. Based on the presence or absence of candidate CREs using MAMA and known PLACE CREs, we found that the Boruta-XGBoost model explained expression patterns with high accuracy of about 83%. Enriched sequences of both novel MAMA CREs and known PLACE CREs led to high accuracy expression patterns. We also found new roles of known CREs in the Fe excess response, including the DCEp2 motif, IDEF1-, Zinc Finger-, WRKY-, Myb-, AP2/ERF-, MADS- box-, bZIP and bHLH- binding sequence-containing motifs among Fe excess-responsive genes. In addition, we built a molecular model and promoter structures regulating Fe excess-responsive genes based on new finding CREs. Together, our findings about Fe excess-related CREs and conserved sequences will provide a comprehensive resource for discovery of genes and transcription factors involved in Fe excess-responsive pathways, clarification of the Fe excess response mechanism in rice, and future application of the promoter sequences to produce genotypes tolerant of Fe excess.
Collapse
Affiliation(s)
- Yusuke Kakei
- Institute of Vegetable and Floriculture Science, Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Hiroshi Masuda
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Naoko K. Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan
| | - Hiroyuki Hattori
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - May Sann Aung
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita, Japan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan
| |
Collapse
|
14
|
Current Understanding of Leaf Senescence in Rice. Int J Mol Sci 2021; 22:ijms22094515. [PMID: 33925978 PMCID: PMC8123611 DOI: 10.3390/ijms22094515] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022] Open
Abstract
Leaf senescence, which is the last developmental phase of plant growth, is controlled by multiple genetic and environmental factors. Leaf yellowing is a visual indicator of senescence due to the loss of the green pigment chlorophyll. During senescence, the methodical disassembly of macromolecules occurs, facilitating nutrient recycling and translocation from the sink to the source organs, which is critical for plant fitness and productivity. Leaf senescence is a complex and tightly regulated process, with coordinated actions of multiple pathways, responding to a sophisticated integration of leaf age and various environmental signals. Many studies have been carried out to understand the leaf senescence-associated molecular mechanisms including the chlorophyll breakdown, phytohormonal and transcriptional regulation, interaction with environmental signals, and associated metabolic changes. The metabolic reprogramming and nutrient recycling occurring during leaf senescence highlight the fundamental role of this developmental stage for the nutrient economy at the whole plant level. The strong impact of the senescence-associated nutrient remobilization on cereal productivity and grain quality is of interest in many breeding programs. This review summarizes our current knowledge in rice on (i) the actors of chlorophyll degradation, (ii) the identification of stay-green genotypes, (iii) the identification of transcription factors involved in the regulation of leaf senescence, (iv) the roles of leaf-senescence-associated nitrogen enzymes on plant performance, and (v) stress-induced senescence. Compiling the different advances obtained on rice leaf senescence will provide a framework for future rice breeding strategies to improve grain yield.
Collapse
|
15
|
Overexpression of ZmWRKY65 transcription factor from maize confers stress resistances in transgenic Arabidopsis. Sci Rep 2021; 11:4024. [PMID: 33597656 PMCID: PMC7889854 DOI: 10.1038/s41598-021-83440-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
Plant-specific WRKY transcription factors play important roles in regulating the expression of defense-responsive genes against pathogen attack. A multiple stress-responsive WRKY gene, ZmWRKY65, was identified in maize by screening salicylic acid (SA)-induced de novo transcriptomic sequences. The ZmWRKY65 protein was localized in the nucleus of mesophyll protoplasts. The analysis of the ZmWRKY65 promoter sequence indicated that it contains several stress-related transcriptional regulatory elements. Many environmental factors affecting the transcription of ZmWRKY65 gene, such as drought, salinity, high temperature and low temperature stress. Moreover, the transcription of ZmWRKY65 gene was also affected by the induction of defense related plant hormones such as SA and exogenous ABA. The results of seed germination and stomatal aperture assays indicated that transgenic Arabidopsis plants exhibit enhanced sensitivity to ABA and high concentrations of SA. Overexpression of ZmWRKY65 improved tolerance to both pathogen attack and abiotic stress in transgenic Arabidopsis plants and activated several stress-related genes such as RD29A, ERD10, and STZ as well as pathogenesis-related (PR) genes such as PR1, PR2 and PR5; these genes are involved in resistance to abiotic and biotic stresses in Arabidopsis. Together, this evidence implies that the ZmWRKY65 gene is involved in multiple stress signal transduction pathways.
Collapse
|
16
|
Ye H, Qiao L, Guo H, Guo L, Ren F, Bai J, Wang Y. Genome-Wide Identification of Wheat WRKY Gene Family Reveals That TaWRKY75-A Is Referred to Drought and Salt Resistances. FRONTIERS IN PLANT SCIENCE 2021; 12:663118. [PMID: 34149760 PMCID: PMC8212938 DOI: 10.3389/fpls.2021.663118] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 05/14/2023]
Abstract
It is well known that WRKY transcription factors play essential roles in plants' response to diverse stress responses, especially to drought and salt stresses. However, a full comprehensive analysis of this family in wheat is still missing. Here we used in silico analysis and identified 124 WRKY genes, including 294 homeologous copies from a high-quality reference genome of wheat (Triticum aestivum). We also found that the TaWRKY gene family did not undergo gene duplication rather than gene loss during the evolutionary process. The TaWRKY family members displayed different expression profiles under several abiotic stresses, indicating their unique functions in the mediation of particular responses. Furthermore, TaWRKY75-A was highly induced after polyethylene glycol and salt treatments. The ectopic expression of TaWRKY75-A in Arabidopsis enhanced drought and salt tolerance. A comparative transcriptome analysis demonstrated that TaWRKY75-A integrated jasmonic acid biosynthetic pathway and other potential metabolic pathways to increase drought and salt resistances in transgenic Arabidopsis. Our study provides valuable insights into the WRKY family in wheat and will generate a useful genetic resource for improving wheat breeding.
Collapse
Affiliation(s)
- Hong Ye
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Linyi Qiao
- College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Haoyu Guo
- College of Life Science, Capital Normal University, Beijing, China
| | - Liping Guo
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Fei Ren
- School of Agricultural Science and Engineering, Shaoguan University, Shaoguan, China
| | - Jianfang Bai
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Jianfang Bai,
| | - Yukun Wang
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- *Correspondence: Jianfang Bai,
| |
Collapse
|
17
|
Li Y, Zhang Y, Li C, Chen X, Yang L, Zhang J, Wang J, Li L, Reynolds MP, Jing R, Mao X, Wang C. Transcription Factor TaWRKY51 Is a Positive Regulator in Root Architecture and Grain Yield Contributing Traits. FRONTIERS IN PLANT SCIENCE 2021; 12:734614. [PMID: 34745169 PMCID: PMC8567066 DOI: 10.3389/fpls.2021.734614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/17/2021] [Indexed: 05/17/2023]
Abstract
Wheat is one of the staple food crops. The utilization of elite genetic resources to develop resource-efficient wheat varieties is an effective approach to deal with the challenges of climate change and population growth. WRKY transcription factors (TFs) are multifaceted regulators of plant growth and development and response to environmental stress. The previous studies have shown that TaWRKY51 positively regulates the development of lateral roots, while its roles in agronomic trait development are not clear, and there is no functional marker for molecular breeding. To bridge the gap, we cloned the three members of TaWRKY51 and found they were highly expressed in the roots and flag leaves at the flowering stage and were induced by the multiple abiotic stresses and phytohormones. The highest expression level was observed in TaWRKY51-2D, followed by TaWRKY51-2A and -2B. The two haplotypes/alleles for each member were identified in the natural populations, and functional markers were developed accordingly. The association assays revealed that Hap-2A-I was an elite haplotype for the large spike, Hap-2B-II and allele-G were favorable haplotypes/alleles for long root. However, only Hap-2A-I was selected for wheat breeding in China. The results of transgenic experiments showed that the rice lines overexpressing TaWRKY51 had large panicle, high thousand-grain-weight, and more crown and lateral roots, which further confirmed the results of association analysis. In short, TaWRKY51 is a positive regulator of the root architecture and grain yield (GY) contributing traits. The elite gene resources and functional markers may be utilized in the marker-assisted selection for high-yield breeding in wheat.
Collapse
Affiliation(s)
- Yuying Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanfei Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaonan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingyi Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Ruilian Jing
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinguo Mao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Xinguo Mao
| | - Chenyang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Chenyang Wang
| |
Collapse
|
18
|
Wang M, Gong J, Bhullar NK. Iron deficiency triggered transcriptome changes in bread wheat. Comput Struct Biotechnol J 2020; 18:2709-2722. [PMID: 33101609 PMCID: PMC7550799 DOI: 10.1016/j.csbj.2020.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
A series of complex transport, storage and regulation mechanisms control iron metabolism and thereby maintain iron homeostasis in plants. Despite several studies on iron deficiency responses in different plant species, these mechanisms remain unclear in the allohexaploid wheat, which is the most widely cultivated commercial crop. We used RNA sequencing to reveal transcriptomic changes in the wheat flag leaves and roots, when subjected to iron limited conditions. We identified 5969 and 2591 differentially expressed genes (DEGs) in the flag leaves and roots, respectively. Genes involved in the synthesis of iron ligands i.e., nicotianamine (NA) and deoxymugineic acid (DMA) were significantly up-regulated during iron deficiency. In total, 337 and 635 genes encoding transporters exhibited altered expression in roots and flag leaves, respectively. Several genes related to MAJOR FACILITATOR SUPERFAMILY (MFS), ATP-BINDING CASSETTE (ABC) transporter superfamily, NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN (NRAMP) family and OLIGOPEPTIDE TRANSPORTER (OPT) family were regulated, indicating their important roles in combating iron deficiency stress. Among the regulatory factors, the genes encoding for transcription factors of BASIC HELIX-LOOP-HELIX (bHLH) family were highly up-regulated in both roots and the flag leaves. The jasmonate biosynthesis pathway was significantly altered but with notable expression differences between roots and flag leaves. Homoeologs expression and induction bias analysis revealed subgenome specific differential expression. Our findings provide an integrated overview on regulated molecular processes in response to iron deficiency stress in wheat. This information could potentially serve as a guideline for breeding iron deficiency stress tolerant crops as well as for designing appropriate wheat iron biofortification strategies.
Collapse
Key Words
- 3-HMA, 3-hydroxymugineic acid
- ABC, ATP-BINDING CASSETTE
- ACC, 1-aminocyclopropane-1-carboxylate
- AEC, AUXIN EFFLUX CARRIER
- AOC, ALLENE OXIDE CYCLASE
- AOS, ALLENE OXIDE SYNTHASE
- AQP, AQUAPORIN
- AVA, avenic acid
- DEGs, differentially expressed genes
- DMA, deoxymugineic acid
- DMAS, DEOXYMUGINEIC ACID SYNTHASE
- DPA, days post anthesis
- ERF, ETHYLENE-RESPONSIVE FACTOR
- FAD, FATTY ACID DESATURASE
- FDR, false discovery rate
- FIT, FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR
- FRO, FERRIC REDUCTASE OXIDASE
- GCN, gene co-expression network
- GO, Gene ontology
- GSH, GLUTATHIONE
- HC, high confidence
- HMA, HEAVY METAL-ASSOCIATED
- IDE, iron deficiency-responsive cis-acting element
- IDEF, IDE BINDING FACTOR
- IHW, independent hypothesis weighting
- ILR3, IAA‐LEUCINE RESISTANT3
- IREG/FPN, IRON REGULATED PROTEIN/FERROPORTIN
- IRT1, IRON-REGULATED TRANSPORTER
- Iron deficiency
- Iron, Fe
- JAs, jasmonates
- JMT, JASMONATE O-METHYLTRANSFERASE
- KAT, 3-KETOACYL-COA THIOLASE
- LOX, LIPOXYGENASE
- MA, mugineic acid
- MATE, MULTI ANTIMICROBIAL EXTRUSION PROTEIN
- MFS, MAJOR FACILITATOR SUPERFAMILY
- MRP, MULTIDRUG RESISTANCE PROTEIN
- MT, METALLOTHIONEIN
- NA, nicotianamine
- NAAT, NICOTIANAMINE AMINOTRANSFERASE
- NAC, NO APICAL MERISTEM (NAM)/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR (ATAF)/CUP-SHAPED COTYLEDON (CUC)
- NAS, NICOTIANAMINE SYNTHASE
- NRAMP, NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN
- NRT1/PTR, NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER
- OPCL, 4-COUMARATE COA LIGASE
- OPR, 12-OXOPHYTODIENOATE REDUCTASE
- OPT, OLIGOPEPTIDE TRANSPORTER
- PDR, PLEIOTROPIC DRUG RESISTANCE
- PLA, PHOSPHOLIPASE A1
- PRI, POSITIVE REGULATOR OF IRON DEFICIENCY RESPONSE
- PSs, phytosiderophores
- PT, peptide transport
- PYE, POPEYE
- RNA sequencing
- SAM, S-adenosyl-L-methionine
- SAMS, S-ADENOSYL-L-METHIONINE SYNTHETASE
- SLC40A1, SOLUTE CARRIER FAMILY 40 MEMBER 1
- SWEET, SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERS
- TOM, TRANSPORTER OF MUGINEIC ACID
- Transcriptomic profiles
- VIT, VACUOLAR IRON TRANSPORTER
- Wheat
- YSL, YELLOW STRIPE LIKE
- ZIFL, ZINC INDUCED FACILITATOR-LIKE
- ZIP, ZINC/IRON PERMEASE
- bHLH, BASIC HELIX-LOOP-HELIX
- bZIP, BASIC LEUCINE ZIPPER
- epiHDMA, 3-epihydroxy-2′-deoxymugineic acid
- epiHMA, 3-epihydroxymugineic acid
Collapse
Affiliation(s)
- Meng Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Jiazhen Gong
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Navreet K. Bhullar
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| |
Collapse
|
19
|
Aung MS, Masuda H. How Does Rice Defend Against Excess Iron?: Physiological and Molecular Mechanisms. FRONTIERS IN PLANT SCIENCE 2020; 11:1102. [PMID: 32849682 PMCID: PMC7426474 DOI: 10.3389/fpls.2020.01102,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 05/29/2023]
Abstract
Iron (Fe) is an essential nutrient for all living organisms but can lead to cytotoxicity when present in excess. Fe toxicity often occurs in rice grown in submerged paddy fields with low pH, leading dramatical increases in ferrous ion concentration, disrupting cell homeostasis and impairing growth and yield. However, the underlying molecular mechanisms of Fe toxicity response and tolerance in plants are not well characterized yet. Microarray and genome-wide association analyses have shown that rice employs four defense systems to regulate Fe homeostasis under Fe excess. In defense 1, Fe excess tolerance is implemented by Fe exclusion as a result of suppression of genes involved in Fe uptake and translocation such as OsIRT1, OsYSL2, OsTOM1, OsYSL15, OsNRAMP1, OsNAS1, OsNAS2, OsNAAT1, OsDMAS1, and OsIRO2. The Fe-binding ubiquitin ligase, HRZ, is a key regulator that represses Fe uptake genes in response to Fe excess in rice. In defense 2, rice retains Fe in the root system rather than transporting it to shoots. In defense 3, rice compartmentalizes Fe in the shoot. In defense 2 and 3, the vacuolar Fe transporter OsVIT2, Fe storage protein ferritin, and the nicotinamine synthase OsNAS3 mediate the isolation or detoxification of excess Fe. In defense 4, rice detoxifies the ROS produced within the plant body in response to excess Fe. Some OsWRKY transcription factors, S-nitrosoglutathione-reductase variants, p450-family proteins, and OsNAC4, 5, and 6 are implicated in defense 4. These knowledge will facilitate the breeding of tolerant crops with increased productivity in low-pH, Fe-excess soils.
Collapse
|
20
|
Aung MS, Masuda H. How Does Rice Defend Against Excess Iron?: Physiological and Molecular Mechanisms. FRONTIERS IN PLANT SCIENCE 2020; 11:1102. [PMID: 32849682 PMCID: PMC7426474 DOI: 10.3389/fpls.2020.01102] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 05/25/2023]
Abstract
Iron (Fe) is an essential nutrient for all living organisms but can lead to cytotoxicity when present in excess. Fe toxicity often occurs in rice grown in submerged paddy fields with low pH, leading dramatical increases in ferrous ion concentration, disrupting cell homeostasis and impairing growth and yield. However, the underlying molecular mechanisms of Fe toxicity response and tolerance in plants are not well characterized yet. Microarray and genome-wide association analyses have shown that rice employs four defense systems to regulate Fe homeostasis under Fe excess. In defense 1, Fe excess tolerance is implemented by Fe exclusion as a result of suppression of genes involved in Fe uptake and translocation such as OsIRT1, OsYSL2, OsTOM1, OsYSL15, OsNRAMP1, OsNAS1, OsNAS2, OsNAAT1, OsDMAS1, and OsIRO2. The Fe-binding ubiquitin ligase, HRZ, is a key regulator that represses Fe uptake genes in response to Fe excess in rice. In defense 2, rice retains Fe in the root system rather than transporting it to shoots. In defense 3, rice compartmentalizes Fe in the shoot. In defense 2 and 3, the vacuolar Fe transporter OsVIT2, Fe storage protein ferritin, and the nicotinamine synthase OsNAS3 mediate the isolation or detoxification of excess Fe. In defense 4, rice detoxifies the ROS produced within the plant body in response to excess Fe. Some OsWRKY transcription factors, S-nitrosoglutathione-reductase variants, p450-family proteins, and OsNAC4, 5, and 6 are implicated in defense 4. These knowledge will facilitate the breeding of tolerant crops with increased productivity in low-pH, Fe-excess soils.
Collapse
|
21
|
Zentgraf U, Doll J. Arabidopsis WRKY53, a Node of Multi-Layer Regulation in the Network of Senescence. PLANTS (BASEL, SWITZERLAND) 2019; 8:E578. [PMID: 31817659 PMCID: PMC6963213 DOI: 10.3390/plants8120578] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022]
Abstract
Leaf senescence is an integral part of plant development aiming at the remobilization of nutrients and minerals out of the senescing tissue into developing parts of the plant. Sequential as well as monocarpic senescence maximize the usage of nitrogen, mineral, and carbon resources for plant growth and the sake of the next generation. However, stress-induced premature senescence functions as an exit strategy to guarantee offspring under long-lasting unfavorable conditions. In order to coordinate this complex developmental program with all kinds of environmental input signals, complex regulatory cues have to be in place. Major changes in the transcriptome imply important roles for transcription factors. Among all transcription factor families in plants, the NAC and WRKY factors appear to play central roles in senescence regulation. In this review, we summarize the current knowledge on the role of WRKY factors with a special focus on WRKY53. In contrast to a holistic multi-omics view we want to exemplify the complexity of the network structure by summarizing the multilayer regulation of WRKY53 of Arabidopsis.
Collapse
Affiliation(s)
- Ulrike Zentgraf
- Center for Plant Molecular Biology (ZMBP), University of Tuebingen, Auf der Morgenstelle 32, 72076 Tuebingen, Germany;
| | | |
Collapse
|
22
|
Dos Santos MS, Sanglard LMPV, Martins SCV, Barbosa ML, de Melo DC, Gonzaga WF, DaMatta FM. Silicon alleviates the impairments of iron toxicity on the rice photosynthetic performance via alterations in leaf diffusive conductance with minimal impacts on carbon metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:275-285. [PMID: 31536896 DOI: 10.1016/j.plaphy.2019.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/09/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Iron (Fe) toxicity is often observed in lowland rice (Oryza sativa L.) plants, disrupting cell homeostasis and impairing growth and crop yields. Silicon (Si) can mitigate the effects of Fe excess on rice by decreasing tissue Fe concentrations, but no information exists whether Si could prevent the harmful effects of Fe toxicity on the photosynthesis and carbon metabolism. Two rice cultivars with contrasting abilities to tolerate Fe excess were hydroponically grown under two Fe levels (25 μM or 5 mM) and amended or not with Si (0 or 2 mM). Fe toxicity caused decreases in net photosynthetic rate (A), particularly in the sensitive cultivar. These decreases were correlated with reductions in stomatal (gs) and mesophyll (gm) conductances, as well as with increasing photorespiration. Photochemical (e.g. electron transport rate) and biochemical (e.g., maximum RuBisCO carboxylation capacity and RuBisCO activity) parameters of photosynthesis, and activities of a range of carbon metabolism enzymes, were minimally, if at all, affected by the treatments. Si attenuated the decreases in A by presumably reducing the Fe content. In fact, A as well as gs and gm, correlated significantly with leaf Fe contents. In summary, our data suggest a remarkable metabolic homeostasis under Fe toxicity, and that Si attenuated the impairments of Fe excess on the photosynthetic apparatus by affecting the leaf diffusive conductance with minimal impacts on carbon metabolism.
Collapse
Affiliation(s)
- Martielly S Dos Santos
- Departamento Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 3570-900, Viçosa, MG, Brazil
| | - Lílian M P V Sanglard
- Departamento Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 3570-900, Viçosa, MG, Brazil
| | - Samuel C V Martins
- Departamento Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 3570-900, Viçosa, MG, Brazil
| | - Marcela L Barbosa
- Departamento Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 3570-900, Viçosa, MG, Brazil
| | - Danilo C de Melo
- Departamento Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 3570-900, Viçosa, MG, Brazil
| | - William F Gonzaga
- Departamento Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 3570-900, Viçosa, MG, Brazil
| | - Fábio M DaMatta
- Departamento Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 3570-900, Viçosa, MG, Brazil.
| |
Collapse
|
23
|
Wang Y, Zhang Y, Zhang Q, Cui Y, Xiang J, Chen H, Hu G, Chen Y, Wang X, Zhu D, Zhang Y. Comparative transcriptome analysis of panicle development under heat stress in two rice ( Oryza sativa L.) cultivars differing in heat tolerance. PeerJ 2019; 7:e7595. [PMID: 31528506 PMCID: PMC6717657 DOI: 10.7717/peerj.7595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
Heat stress inhibits rice panicle development and reduces the spikelet number per panicle. This study investigated the mechanism involved in heat-induced damage to panicle development and spikelet formation in rice cultivars that differ in heat tolerance. Transcriptome data from developing panicles grown at 40 °C or 32 °C were compared for two rice cultivars: heat-tolerant Huanghuazhan and heat-susceptible IR36. Of the differentially expressed genes (DEGs), 4,070 heat stress-responsive genes were identified, including 1,688 heat-resistant-cultivar-related genes (RHR), 707 heat-susceptible-cultivar-related genes (SHR), and 1,675 common heat stress-responsive genes (CHR). A Gene Ontology (GO) analysis showed that the DEGs in the RHR category were significantly enriched in 54 gene ontology terms, some of which improved heat tolerance, including those in the WRKY, HD-ZIP, ERF, and MADS transcription factor families. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs in the RHR and SHR categories were enriched in 15 and 11 significant metabolic pathways, respectively. Improved signal transduction capabilities of endogenous hormones under high temperature seemed to promote heat tolerance, while impaired starch and sucrose metabolism under high temperature might have inhibited young panicle development. Our transcriptome analysis provides insights into the different molecular mechanisms of heat stress tolerance in developing rice.
Collapse
Affiliation(s)
- Yaliang Wang
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Yikai Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Yongtao Cui
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Jing Xiang
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Huizhe Chen
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Guohui Hu
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Yanhua Chen
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Xiaodan Wang
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Defeng Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Yuping Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Zheng X, Jehanzeb M, Zhang Y, Li L, Miao Y. Characterization of S40-like proteins and their roles in response to environmental cues and leaf senescence in rice. BMC PLANT BIOLOGY 2019; 19:174. [PMID: 31046677 PMCID: PMC6498481 DOI: 10.1186/s12870-019-1767-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/09/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Senescence affects the quality and yield of plants by regulating different traits of plants. A few members of S40 gene family, the barley HvS40 and the Arabidopsis AtS40-3, have been shown to play a role in leaf senescence in Barley and Arabidopsis. Although we previously reported that S40 family exist in most of plants, up to now, no more function of S40 members in plant has been demonstrated. The aim of this study was to provide the senescence related information of S40 gene family in rice as rice is a major crop that feeds about half of the human population in the world. RESULTS A total of 16 OsS40 genes were identified from the genome database of Oryza sativa L. japonica by bioinformatics analysis. Phylogenetic analysis reveals that the 16 OsS40 proteins are classified into five groups, and 4 of the 16 members belong to group I to which also the HvS40 and AtS40-3 is assigned. S40 genes of rice show high structural similarities, as 13 out of the 16 genes have no intron and the other 3 genes have only 1 or 2 introns. The expression patterns of OsS40 genes were analyzed during natural as well as stress-induced leaf senescence in correspondence with senescence marker genes. We found that 6 of them displayed differential but clearly up-regulated transcript profiles under diverse situations of senescence, including darkness, nitrogen deficiency, hormone treatments as well as pathogen infection. Furthermore, three OsS40 proteins were identified as nuclear located proteins by transient protoplast transformation assay. CONCLUSIONS Taking all findings together, we concluded that OsS40-1, OsS40-2, OsS40-12 and OsS40-14 genes have potential regulatory function of crosstalk among abiotic, biotic and developmental senescence in rice. Our results provide valuable baseline for functional validation studies of the rice S40 genes in rice leaf senescence.
Collapse
Affiliation(s)
- Xiangzi Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Muhammad Jehanzeb
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Yuanyuan Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Li Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China.
| |
Collapse
|
25
|
Li L, Ye L, Kong Q, Shou H. A Vacuolar Membrane Ferric-Chelate Reductase, OsFRO1, Alleviates Fe Toxicity in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2019; 10:700. [PMID: 31214220 PMCID: PMC6558154 DOI: 10.3389/fpls.2019.00700] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/13/2019] [Indexed: 05/07/2023]
Abstract
Ferric reductase oxidase (FRO), the enzyme that reduced ferric iron [Fe (III)] into ferrous iron [Fe (II)], is known to play important roles in Fe absorption and homeostasis in plants that utilize a strategy I mechanism to obtain iron. Rice can use both strategies I and II for Fe uptake depending on the growth conditions. FRO is encoded by two genes in rice genome. Amino acid sequence alignment shows that OsFRO1 contains all necessary predicted motifs for a functional FRO enzyme, whereas OsFRO2 lacks a complete transmembrane domain at the N-terminal. Transient expression of OsFRO1: GFP protein fusion revealed that OsFRO1 is localized to the vacuolar membrane in rice protoplast. OsFRO1 is primarily expressed in leaves and transcript abundance was decreased under excess Fe conditions. Transgenic plants overexpressing OsFRO1 were more sensitive to Fe toxicity, in contrast RNA interference lines showed more tolerance to Fe excess stress. Furthermore, RNAi lines showed decreased Fe concentrations compared to wild type plants under Fe excess condition. Together these data show that OsFRO1 is involved in reducing ferric Fe into ferrous Fe in the vacuole, and makes the vacuolar stored Fe available to the cytoplasm through Fe (II) or chelated Fe (II) transporters. Under Fe excess condition, the downregulation of OsFRO1 in the RNAi plants reduced the amount of Fe (II) available for cytoplasm, to alleviate Fe excess toxicity. This indicates that OsFRO1 plays an important role to maintain Fe homeostasis between the cytoplasm and vacuole in rice.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lingxiao Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- The Zhejiang University Affiliated 15 Middle School in Hangzhou, Hangzhou, China
| | - Qihui Kong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Huixia Shou,
| |
Collapse
|
26
|
Stein RJ, Duarte GL, Scheunemann L, Spohr MG, de Araújo Júnior AT, Ricachenevsky FK, Rosa LMG, Zanchin NIT, dos Santos RP, Fett JP. Genotype Variation in Rice ( Oryza sativa L.) Tolerance to Fe Toxicity Might Be Linked to Root Cell Wall Lignification. FRONTIERS IN PLANT SCIENCE 2019; 10:746. [PMID: 31244872 PMCID: PMC6581717 DOI: 10.3389/fpls.2019.00746] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/21/2019] [Indexed: 05/09/2023]
Abstract
Iron (Fe) is an essential element to plants, but can be harmful if accumulated to toxic concentrations. Fe toxicity can be a major nutritional disorder in rice (Oryza sativa) when cultivated under waterlogged conditions, as a result of excessive Fe solubilization of in the soil. However, little is known about the basis of Fe toxicity and tolerance at both physiological and molecular level. To identify mechanisms and potential candidate genes for Fe tolerance in rice, we comparatively analyzed the effects of excess Fe on two cultivars with distinct tolerance to Fe toxicity, EPAGRI 108 (tolerant) and BR-IRGA 409 (susceptible). After excess Fe treatment, BR-IRGA 409 plants showed reduced biomass and photosynthetic parameters, compared to EPAGRI 108. EPAGRI 108 plants accumulated lower amounts of Fe in both shoots and roots compared to BR-IRGA 409. We conducted transcriptomic analyses of roots from susceptible and tolerant plants under control and excess Fe conditions. We found 423 up-regulated and 92 down-regulated genes in the susceptible cultivar, and 42 up-regulated and 305 down-regulated genes in the tolerant one. We observed striking differences in root gene expression profiles following exposure to excess Fe: the two cultivars showed no genes regulated in the same way (up or down in both), and 264 genes were oppositely regulated in both cultivars. Plants from the susceptible cultivar showed down-regulation of known Fe uptake-related genes, indicating that plants are actively decreasing Fe acquisition. On the other hand, plants from the tolerant cultivar showed up-regulation of genes involved in root cell wall biosynthesis and lignification. We confirmed that the tolerant cultivar has increased lignification in the outer layers of the cortex and in the vascular bundle compared to the susceptible cultivar, suggesting that the capacity to avoid excessive Fe uptake could rely in root cell wall remodeling. Moreover, we showed that increased lignin concentrations in roots might be linked to Fe tolerance in other rice cultivars, suggesting that a similar mechanism might operate in multiple genotypes. Our results indicate that changes in root cell wall and Fe permeability might be related to Fe toxicity tolerance in rice natural variation.
Collapse
Affiliation(s)
| | | | - Lívia Scheunemann
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marta Gomes Spohr
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Luis Mauro Gonçalves Rosa
- Departamento de Plantas Forrageiras e Agrometeorologia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Janette Palma Fett
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Janette Palma Fett,
| |
Collapse
|
27
|
Li Z, Woo HR, Guo H. Genetic redundancy of senescence-associated transcription factors in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:811-823. [PMID: 29309664 DOI: 10.1093/jxb/erx345] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/29/2017] [Indexed: 05/25/2023]
Abstract
Leaf senescence is a genetically programmed process that constitutes the last stage of leaf development, and involves massive changes in gene expression. As a result of the intensive efforts that have been made to elucidate the molecular genetic mechanisms underlying leaf senescence, 184 genes that alter leaf senescence phenotypes when mutated or overexpressed have been identified in Arabidopsis thaliana over the past two decades. Concurrently, experimental evidence on functional redundancy within senescence-associated genes (SAGs) has increased. In this review, we focus on transcription factors that play regulatory roles in Arabidopsis leaf senescence, and describe the relationships among gene duplication, gene expression level, and senescence phenotypes. Previous findings and our re-analysis demonstrate the widespread existence of duplicate SAG pairs and a correlation between gene expression levels in duplicate genes and senescence-related phenotypic severity of the corresponding mutants. We also highlight effective and powerful tools that are available for functional analyses of redundant SAGs. We propose that the study of duplicate SAG pairs offers a unique opportunity to understand the regulation of leaf senescence and can guide the investigation of the functions of redundant SAGs via reverse genetic approaches.
Collapse
Affiliation(s)
- Zhonghai Li
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hongwei Guo
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China
| |
Collapse
|
28
|
Neeraja CN, Kulkarni KS, Madhu Babu P, Sanjeeva Rao D, Surekha K, Ravindra Babu V. Transporter genes identified in landraces associated with high zinc in polished rice through panicle transcriptome for biofortification. PLoS One 2018; 13:e0192362. [PMID: 29394277 PMCID: PMC5796704 DOI: 10.1371/journal.pone.0192362] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/21/2018] [Indexed: 11/27/2022] Open
Abstract
Polished rice is poor source of micronutrients, however wide genotypic variability exists for zinc uptake and remobilization and zinc content in brown and polished grains in rice. Two landraces (Chittimutyalu and Kala Jeera Joha) and one popular improved variety (BPT 5204) were grown under zinc sufficient soil and their analyses showed high zinc in straw of improved variety, but high zinc in polished rice in landraces suggesting better translocation ability of zinc into the grain in landraces. Transcriptome analyses of the panicle tissue showed 41182 novel transcripts across three samples. Out of 1011 differentially expressed exclusive transcripts by two landraces, 311 were up regulated and 534 were down regulated. Phosphate transporter-exporter (PHO), proton-coupled peptide transporters (POT) and vacuolar iron transporter (VIT) showed enhanced and significant differential expression in landraces. Out of 24 genes subjected to quantitative real time analyses for confirmation, eight genes showed significant differential expression in landraces. Through mapping, six rice microsatellite markers spanning the genomic regions of six differentially expressed genes were validated for their association with zinc in brown and polished rice using recombinant inbred lines (RIL) of BPT 5204/Chittimutyalu. Thus, this study reports repertoire of genes associated with high zinc in polished rice and a proof concept for deployment of transcriptome information for validation in mapping population and its use in marker assisted selection for biofortification of rice with zinc.
Collapse
Affiliation(s)
- C. N. Neeraja
- Department of Crop Improvement, ICAR-Indian Institute of Rice Research, Rajendranagar, Telangana, Hyderabad, India
| | - Kalyani S. Kulkarni
- Department of Crop Improvement, ICAR-Indian Institute of Rice Research, Rajendranagar, Telangana, Hyderabad, India
| | - P. Madhu Babu
- Department of Crop Improvement, ICAR-Indian Institute of Rice Research, Rajendranagar, Telangana, Hyderabad, India
| | - D. Sanjeeva Rao
- Department of Crop Improvement, ICAR-Indian Institute of Rice Research, Rajendranagar, Telangana, Hyderabad, India
| | - K. Surekha
- Department of Crop Improvement, ICAR-Indian Institute of Rice Research, Rajendranagar, Telangana, Hyderabad, India
| | - V Ravindra Babu
- Department of Crop Improvement, ICAR-Indian Institute of Rice Research, Rajendranagar, Telangana, Hyderabad, India
| |
Collapse
|
29
|
Sharma N, Dang TM, Singh N, Ruzicic S, Mueller-Roeber B, Baumann U, Heuer S. Allelic variants of OsSUB1A cause differential expression of transcription factor genes in response to submergence in rice. RICE (NEW YORK, N.Y.) 2018; 11:2. [PMID: 29313187 PMCID: PMC5758481 DOI: 10.1186/s12284-017-0192-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/12/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Flooding during seasonal monsoons affects millions of hectares of rice-cultivated areas across Asia. Submerged rice plants die within a week due to lack of oxygen, light and excessive elongation growth to escape the water. Submergence tolerance was first reported in an aus-type rice landrace, FR13A, and the ethylene-responsive transcription factor (TF) gene SUB1A-1 was identified as the major tolerance gene. Intolerant rice varieties generally lack the SUB1A gene but some intermediate tolerant varieties, such as IR64, carry the allelic variant SUB1A-2. Differential effects of the two alleles have so far not been addressed. As a first step, we have therefore quantified and compared the expression of nearly 2500 rice TF genes between IR64 and its derived tolerant near isogenic line IR64-Sub1, which carries the SUB1A-1 allele. Gene expression was studied in internodes, where the main difference in expression between the two alleles was previously shown. RESULTS Nineteen and twenty-six TF genes were identified that responded to submergence in IR64 and IR64-Sub1, respectively. Only one gene was found to be submergence-responsive in both, suggesting different regulatory pathways under submergence in the two genotypes. These differentially expressed genes (DEGs) mainly included MYB, NAC, TIFY and Zn-finger TFs, and most genes were downregulated upon submergence. In IR64, but not in IR64-Sub1, SUB1B and SUB1C, which are also present in the Sub1 locus, were identified as submergence responsive. Four TFs were not submergence responsive but exhibited constitutive, genotype-specific differential expression. Most of the identified submergence responsive DEGs are associated with regulatory hormonal pathways, i.e. gibberellins (GA), abscisic acid (ABA), and jasmonic acid (JA), apart from ethylene. An in-silico promoter analysis of the two genotypes revealed the presence of allele-specific single nucleotide polymorphisms, giving rise to ABRE, DRE/CRT, CARE and Site II cis-elements, which can partly explain the observed differential TF gene expression. CONCLUSION This study identified new gene targets with the potential to further enhance submergence tolerance in rice and provides insights into novel aspects of SUB1A-mediated tolerance.
Collapse
Affiliation(s)
- Niharika Sharma
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Plant Genomics Centre, Hartley Grove, Urrbrae, Adelaide, South Australia, 5064, Australia
| | - Trang Minh Dang
- International Rice Research Institute (IRRI), Los Banos, Philippines
- Intrexon Corp, California, USA
| | - Namrata Singh
- International Rice Research Institute (IRRI), Los Banos, Philippines
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | | | | | - Ute Baumann
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Plant Genomics Centre, Hartley Grove, Urrbrae, Adelaide, South Australia, 5064, Australia
| | - Sigrid Heuer
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Plant Genomics Centre, Hartley Grove, Urrbrae, Adelaide, South Australia, 5064, Australia.
- International Rice Research Institute (IRRI), Los Banos, Philippines.
- Rothamsted Research, Plant Science Department, Hertfordshire, Harpenden, AL5 2JQ, UK.
| |
Collapse
|
30
|
Liu J, Fan Y, Zou J, Fang Y, Wang L, Wang M, Jiang X, Liu Y, Gao J, Zhang C. A RhABF2/Ferritin module affects rose (Rosa hybrida) petal dehydration tolerance and senescence by modulating iron levels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1157-1169. [PMID: 29072877 DOI: 10.1111/tpj.13751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 05/27/2023]
Abstract
Plants often develop the capacity to tolerate moderate and reversible environmental stresses, such as drought, and to re-establish normal development once the stress has been removed. An example of this phenomenon is provided by cut rose (Rosa hybrida) flowers, which experience typical reversible dehydration stresses during post-harvest handling after harvesting at the bud stages. The molecular mechanisms involved in rose flower dehydration tolerance are not known, however. Here, we characterized a dehydration- and abscisic acid (ABA)-induced ferritin gene (RhFer1). Dehydration-induced free ferrous iron (Fe2+ ) is preferentially sequestered by RhFer1 and not transported outside of the petal cells, to restrict oxidative stresses during dehydration. Free Fe2+ accumulation resulted in more serious oxidative stresses and the induction of genes encoding antioxidant enzyme in RhFer1-silenced petals, and poorer dehydration tolerance was observed compared with tobacco rattle virus (TRV) controls. We also determined that RhABF2, an AREB/ABF transcription factor involved in the ABA signaling pathway, can activate RhFer1 expression by directly binding to its promoter. The silencing of RhABF2 decreased dehydration tolerance and disrupted Fe homeostasis in rose petals during dehydration, as did the silencing of RhFer1. Although both RhFer1 and Fe transporter genes are induced during flower natural senescence in plants, the silencing of RhABF2 or RhFer1 accelerates the petal senescence processes. These results suggest that the regulatory module RhABF2/RhFer1 contributes to the maintenance of Fe levels and enhances dehydration tolerance through the action of RhFer1 locally sequestering free Fe2+ under dehydration conditions, and plays synergistic roles with transporter genes during flower senescence.
Collapse
Affiliation(s)
- Jitao Liu
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Youwei Fan
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jing Zou
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yiqun Fang
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Linghao Wang
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Meng Wang
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinqiang Jiang
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yiqing Liu
- Collabrative Innovation Center of Special Plant Industry in Chongqing, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Junping Gao
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Changqing Zhang
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
31
|
Jehanzeb M, Zheng X, Miao Y. The Role of the S40 Gene Family in Leaf Senescence. Int J Mol Sci 2017; 18:ijms18102152. [PMID: 29035318 PMCID: PMC5666833 DOI: 10.3390/ijms18102152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/04/2017] [Accepted: 10/11/2017] [Indexed: 01/03/2023] Open
Abstract
Senescence affect different traits of plants, such as the ripening of fruit, number, quality and timing of seed maturation. While senescence is induced by age, growth hormones and different environmental stresses, a highly organized genetic mechanism related to substantial changes in gene expression regulates the process. Only a few genes associated to senescence have been identified in crop plants despite the vital significance of senescence for crop yield. The S40 gene family has been shown to play a role in leaf senescence. The barley HvS40 gene is one of the senescence marker genes which shows expression during age-dependent as well as dark-induced senescence. Like barley HvS40, the Arabidopsis AtS40-3 gene is also induced during natural senescence as well as in response to treatment with abscisic acid, salicylic acid, darkness and pathogen attack. It is speculated that rice OsS40 has a similar function in the leaf senescence of rice.
Collapse
Affiliation(s)
- Muhammad Jehanzeb
- The Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| | - Xiangzi Zheng
- The Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| | - Ying Miao
- The Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| |
Collapse
|
32
|
Fan ZQ, Tan XL, Shan W, Kuang JF, Lu WJ, Chen JY. BrWRKY65, a WRKY Transcription Factor, Is Involved in Regulating Three Leaf Senescence-Associated Genes in Chinese Flowering Cabbage. Int J Mol Sci 2017; 18:ijms18061228. [PMID: 28594365 PMCID: PMC5486051 DOI: 10.3390/ijms18061228] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 11/23/2022] Open
Abstract
Plant-specific WRKY transcription factors (TFs) have been implicated to function as regulators of leaf senescence, but their association with postharvest leaf senescence of economically important leafy vegetables, is poorly understood. In this work, the characterization of a Group IIe WRKY TF, BrWRKY65, from Chinese flowering cabbage (Brassica rapa var. parachinensis) is reported. The expression of BrWRKY65 was up-regulated following leaf chlorophyll degradation and yellowing during postharvest senescence. Subcellular localization and transcriptional activation assays showed that BrWRKY65 was localized in the nucleus and exhibited trans-activation ability. Further electrophoretic mobility shift assay (EMSA) and transient expression analysis clearly revealed that BrWRKY65 directly bound to the W-box motifs in the promoters of three senescence-associated genes (SAGs) such as BrNYC1 and BrSGR1 associated with chlorophyll degradation, and BrDIN1, and subsequently activated their expressions. These findings demonstrate that BrWRKY65 may be positively associated with postharvest leaf senescence, at least partially, by the direct activation of SAGs. Taken together, these findings provide new insights into the transcriptional regulatory mechanism of postharvest leaf senescence in Chinese flowering cabbage.
Collapse
Affiliation(s)
- Zhong-Qi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiao-Li Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
33
|
Ning P, Liu C, Kang J, Lv J. Genome-wide analysis of WRKY transcription factors in wheat ( Triticum aestivum L.) and differential expression under water deficit condition. PeerJ 2017; 5:e3232. [PMID: 28484671 PMCID: PMC5420200 DOI: 10.7717/peerj.3232] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND WRKY proteins, which comprise one of the largest transcription factor (TF) families in the plant kingdom, play crucial roles in plant development and stress responses. Despite several studies on WRKYs in wheat (Triticum aestivum L.), functional annotation information about wheat WRKYs is limited. RESULTS Here, 171 TaWRKY TFs were identified from the whole wheat genome and compared with proteins from 19 other species representing nine major plant lineages. A phylogenetic analysis, coupled with gene structure analysis and motif determination, divided these TaWRKYs into seven subgroups (Group I, IIa-e, and III). Chromosomal location showed that most TaWRKY genes were enriched on four chromosomes, especially on chromosome 3B. In addition, 85 (49.7%) genes were either tandem (5) or segmental duplication (80), which suggested that though tandem duplication has contributed to the expansion of TaWRKY family, segmental duplication probably played a more pivotal role. Analysis of cis-acting elements revealed putative functions of WRKYs in wheat during development as well as under numerous biotic and abiotic stresses. Finally, the expression of TaWRKY genes in flag leaves, glumes, and lemmas under water-deficit condition were analyzed. Results showed that different TaWRKY genes preferentially express in specific tissue during the grain-filling stage. CONCLUSION Our results provide a more extensive insight on WRKY gene family in wheat, and also contribute to the screening of more candidate genes for further investigation on function characterization of WRKYs under various stresses.
Collapse
Affiliation(s)
- Pan Ning
- College of Science, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Congcong Liu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingquan Kang
- College of Life Science, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jinyin Lv
- College of Life Science, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
34
|
Peng X, Wang H, Jang JC, Xiao T, He H, Jiang D, Tang X. OsWRKY80-OsWRKY4 Module as a Positive Regulatory Circuit in Rice Resistance Against Rhizoctonia solani. RICE (NEW YORK, N.Y.) 2016; 9:63. [PMID: 27888467 PMCID: PMC5124021 DOI: 10.1186/s12284-016-0137-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/19/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant WRKY transcription factors play pivotal roles in diverse biological processes but most notably in plant defense response to pathogens. Sheath blight represents one of the predominant diseases in rice. However, our knowledge about the functions of WRKY proteins in rice defense against sheath blight is rather limited. RESULTS Here we demonstrate that the expression of Oryza sativa WRKY80 gene (OsWRKY80) is rapidly and strongly induced upon infection of Rhizoctonia solani, the causal agent of rice sheath blight disease. OsWRKY80 expression is also induced by exogenous jasmonic acid (JA) and ethylene (ET), but not by salicylic acid (SA). OsWRKY80-GFP is localized in the nuclei of onion epidermal cells in a transient expression assay. Consistently, OsWRKY80 exhibits transcriptional activation activity in a GAL4 assay in yeast cells. Overexpression of OsWRKY80 in rice plants significantly enhanced disease resistance to R. solani, concomitant with elevated expression of OsWRKY4, another positive regulator in rice defense against R. solani. Suppression of OsWRKY80 by RNA interference (RNAi), on the other hand, compromised disease resistance to R. solani. Results of yeast one-hybrid assay and transient expression assay in tobacco cells have revealed that OsWRKY80 specifically binds to the promoter regions of OsWRKY4, which contain W-box (TTGAC[C/T]) or W-box like (TGAC[C/T]) cis-elements. CONCLUSIONS We propose that OsWRKY80 functions upstream of OsWRKY4 as an important positive regulatory circuit that is implicated in rice defense response to sheath blight pathogen R. solani.
Collapse
Affiliation(s)
- Xixu Peng
- School of Life Science, Hunan University of Science and Technology, Taoyuan Rd., Xiangtan, Hunan, 411201, China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-polluted Soils, College of Hunan Province, Xiangtan, Hunan, 411201, China
| | - Haihua Wang
- School of Life Science, Hunan University of Science and Technology, Taoyuan Rd., Xiangtan, Hunan, 411201, China.
- Key Laboratory of Integrated Management of the Pests and Diseases on Horticultural Crops in Hunan Province, Xiangtan, Hunan, 411201, China.
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-polluted Soils, College of Hunan Province, Xiangtan, Hunan, 411201, China.
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Ting Xiao
- School of Life Science, Hunan University of Science and Technology, Taoyuan Rd., Xiangtan, Hunan, 411201, China
| | - Huanhuan He
- School of Life Science, Hunan University of Science and Technology, Taoyuan Rd., Xiangtan, Hunan, 411201, China
| | - Dan Jiang
- School of Life Science, Hunan University of Science and Technology, Taoyuan Rd., Xiangtan, Hunan, 411201, China
| | - Xinke Tang
- School of Life Science, Hunan University of Science and Technology, Taoyuan Rd., Xiangtan, Hunan, 411201, China
- Key Laboratory of Integrated Management of the Pests and Diseases on Horticultural Crops in Hunan Province, Xiangtan, Hunan, 411201, China
| |
Collapse
|
35
|
Mohanta TK, Park YH, Bae H. Novel Genomic and Evolutionary Insight of WRKY Transcription Factors in Plant Lineage. Sci Rep 2016; 6:37309. [PMID: 27853303 PMCID: PMC5112548 DOI: 10.1038/srep37309] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/27/2016] [Indexed: 11/22/2022] Open
Abstract
The evolutionarily conserved WRKY transcription factor (TF) regulates different aspects of gene expression in plants, and modulates growth, development, as well as biotic and abiotic stress responses. Therefore, understanding the details regarding WRKY TFs is very important. In this study, large-scale genomic analyses of the WRKY TF gene family from 43 plant species were conducted. The results of our study revealed that WRKY TFs could be grouped and specifically classified as those belonging to the monocot or dicot plant lineage. In this study, we identified several novel WRKY TFs. To our knowledge, this is the first report on a revised grouping system of the WRKY TF gene family in plants. The different forms of novel chimeric forms of WRKY TFs in the plant genome might play a crucial role in their evolution. Tissue-specific gene expression analyses in Glycine max and Phaseolus vulgaris showed that WRKY11-1, WRKY11-2 and WRKY11-3 were ubiquitously expressed in all tissue types, and WRKY15-2 was highly expressed in the stem, root, nodule and pod tissues in G. max and P. vulgaris.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Free Major of Natural Sciences, College of Basic Studies, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Yong-Hwan Park
- School of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
36
|
Hwang SH, Kwon SI, Jang JY, Fang IL, Lee H, Choi C, Park S, Ahn I, Bae SC, Hwang DJ. OsWRKY51, a rice transcription factor, functions as a positive regulator in defense response against Xanthomonas oryzae pv. oryzae. PLANT CELL REPORTS 2016; 35:1975-85. [PMID: 27300023 DOI: 10.1007/s00299-016-2012-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/04/2016] [Indexed: 05/05/2023]
Abstract
OsWRKY51 functions as a positive transcriptional regulator in defense signaling against Xanthomonas oryzae pv. oryzae by direct DNA binding to the promoter of defense related gene, OsPR10a. OsWRKY51 in rice (Oryza sativa L.) is induced by exogenous salicylic acid (SA) and inoculation with Xanthomonas oryzae pv. oryzae (Xoo). To examine the role of OsWRKY51 in the defense response of rice, we generated OsWRKY51 overexpressing and underexpressing transgenic rice plants. OsWRKY51-overexpressing transgenic rice lines were more resistant to Xoo and showed greater expression of defense-related genes than wild-type (WT) plants, while OsWRKY51-underexpressing lines were more susceptible to Xoo and showed less expression of defense-associated genes than WT plants. Transgenic lines overexpressing OsWRKY51 showed growth retardation compared to WT plants. In contrast, transgenic lines underexpressing OsWRKY51 by RNA interference showed similar plant height with WT plants. Transient expression of OsWRKY51-green fluorescent protein fusion protein in rice protoplasts revealed that OsWRKY51 was localized in the nucleus. OsWRKY51 bound to the W-box and WLE1 elements of the OsPR10a promoter. Based on these results, we suggest that OsWRKY51 is a positive transcriptional regulator of defense signaling and has direct DNA binding ability to the promoter of OsPR10a, although it is reported to be a negative regulator in GA signaling.
Collapse
Affiliation(s)
- Seon-Hee Hwang
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
| | - Soon Il Kwon
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
- Convergence Research Center for Functional Plant Products, Advanced Institutes of Convergence Technology (AICT), Suwon, 443-270, Korea
| | - Ji-Young Jang
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
| | - Il Lan Fang
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
| | - Heyoung Lee
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
| | - Changhyun Choi
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
| | - Sangryeol Park
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
| | - Ilpyung Ahn
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
| | - Shin-Chul Bae
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
| | - Duk-Ju Hwang
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea.
| |
Collapse
|
37
|
Mao H, Yu L, Li Z, Liu H, Han R. Molecular evolution and gene expression differences within the HD-Zip transcription factor family of Zea mays L. Genetica 2016; 144:243-57. [PMID: 26979310 DOI: 10.1007/s10709-016-9896-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/13/2016] [Indexed: 01/18/2023]
Abstract
Homeodomain-leucine zipper (HD-Zip) transcription factors regulate developmental processes and stress responses in plants, and they vary widely in gene number and family structure. In this study, 55 predicted maize HD-Zip genes were systematically analyzed with respect to their phylogenetic relationships, molecular evolution, and gene expression in order to understand the functional diversification within the family. Phylogenetic analysis of HD-Zip proteins from Zea mays, Oryza sativa, Arabidopsis thaliana, Vitis vinifera, and Physcomitrella patens showed that they group into four classes. We inferred that the copy numbers of classes I and III genes were relatively conserved in all five species. The 55 maize HD-Zip genes are distributed randomly on the ten chromosomes, with 15 segmental duplication and 4 tandem duplication events, suggesting that segmental duplications were the major contributors in the expansion of the maize HD-Zip gene family. Expression analysis of the 55 maize HD-Zip genes in different tissues and drought conditions revealed differences in the expression levels and patterns between the four classes. Promoter analysis revealed that a number of stress response-, hormone response-, light response-, and development-related cis-acting elements were present in their promoters. Our results provide novel insights into the molecular evolution and gene expression within the HD-Zip gene family in maize, and provide a solid foundation for future functional study of the HD-Zip genes in maize.
Collapse
Affiliation(s)
- Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Lijuan Yu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Zhanjie Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Hui Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Ran Han
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shanxi, China
| |
Collapse
|
38
|
Wang N, Xia EH, Gao LZ. Genome-wide analysis of WRKY family of transcription factors in common bean, Phaseolus vulgaris: Chromosomal localization, structure, evolution and expression divergence. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2015.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Zamboni A, Zanin L, Tomasi N, Avesani L, Pinton R, Varanini Z, Cesco S. Early transcriptomic response to Fe supply in Fe-deficient tomato plants is strongly influenced by the nature of the chelating agent. BMC Genomics 2016; 17:35. [PMID: 26742479 PMCID: PMC4705743 DOI: 10.1186/s12864-015-2331-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 12/17/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND It is well known that in the rhizosphere soluble Fe sources available for plants are mainly represented by a mixture of complexes between the micronutrient and organic ligands such as carboxylates and phytosiderophores (PS) released by roots, as well as fractions of humified organic matter. The use by roots of these three natural Fe sources (Fe-citrate, Fe-PS and Fe complexed to water-extractable humic substances, Fe-WEHS) have been already studied at physiological level but the knowledge about the transcriptomic aspects is still lacking. RESULTS The (59)Fe concentration recorded after 24 h in tissues of tomato Fe-deficient plants supplied with (59)Fe complexed to WEHS reached values about 2 times higher than those measured in response to the supply with Fe-citrate and Fe-PS. However, after 1 h no differences among the three Fe-chelates were observed considering the (59)Fe concentration and the root Fe(III) reduction activity. A large-scale transcriptional analysis of root tissue after 1 h of Fe supply showed that Fe-WEHS modulated only two transcripts leaving the transcriptome substantially identical to Fe-deficient plants. On the other hand, Fe-citrate and Fe-PS affected 728 and 408 transcripts, respectively, having 289 a similar transcriptional behaviour in response to both Fe sources. CONCLUSIONS The root transcriptional response to the Fe supply depends on the nature of chelating agents (WEHS, citrate and PS). The supply of Fe-citrate and Fe-PS showed not only a fast back regulation of molecular mechanisms modulated by Fe deficiency but also specific responses due to the uptake of the chelating molecule. Plants fed with Fe-WEHS did not show relevant changes in the root transcriptome with respect to the Fe-deficient plants, indicating that roots did not sense the restored cellular Fe accumulation.
Collapse
Affiliation(s)
- Anita Zamboni
- Department of Biotechnology, University of Verona, via delle Grazie 15, 37134, Verona, Italy.
| | - Laura Zanin
- Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100, Udine, Italy.
| | - Nicola Tomasi
- Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100, Udine, Italy.
| | - Linda Avesani
- Department of Biotechnology, University of Verona, via delle Grazie 15, 37134, Verona, Italy.
| | - Roberto Pinton
- Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100, Udine, Italy.
| | - Zeno Varanini
- Department of Biotechnology, University of Verona, via delle Grazie 15, 37134, Verona, Italy.
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, piazza Università 5, 39100, Bolzano, Italy.
| |
Collapse
|
40
|
Ricachenevsky FK, Sperotto RA. Into the Wild: Oryza Species as Sources for Enhanced Nutrient Accumulation and Metal Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:974. [PMID: 27446193 PMCID: PMC4925693 DOI: 10.3389/fpls.2016.00974] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/20/2016] [Indexed: 05/07/2023]
Affiliation(s)
- Felipe K. Ricachenevsky
- Departamento de Biologia, Programa de Pós-Graduação em Agrobiologia, Universidade Federal de Santa MariaSanta Maria, Brazil
- *Correspondence: Felipe K. Ricachenevsky
| | - Raul A. Sperotto
- Setor de Genética e Biologia Molecular do Museu de Ciências Naturais, Programa de Pós-Graduação em Biotecnologia, Centro de Ciências Biológicas e da Saúde, Centro Universitário UNIVATESLajeado, Brazil
- Raul A. Sperotto
| |
Collapse
|
41
|
Rinerson CI, Scully ED, Palmer NA, Donze-Reiner T, Rabara RC, Tripathi P, Shen QJ, Sattler SE, Rohila JS, Sarath G, Rushton PJ. The WRKY transcription factor family and senescence in switchgrass. BMC Genomics 2015; 16:912. [PMID: 26552372 PMCID: PMC4640240 DOI: 10.1186/s12864-015-2057-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields. METHODS All potential WRKY genes present in the version 1.0 of the switchgrass genome were identified and curated using manual and bioinformatic methods. Expression profiles of WRKY genes in switchgrass flag leaf RNA-Seq datasets were analyzed using clustering and network analyses tools to identify both WRKY and WRKY-associated gene co-expression networks during leaf development and senescence onset. RESULTS We identified 240 switchgrass WRKY genes including members of the RW5 and RW6 families of resistance proteins. Weighted gene co-expression network analysis of the flag leaf transcriptomes across development readily separated clusters of co-expressed genes into thirteen modules. A visualization highlighted separation of modules associated with the early and senescence-onset phases of flag leaf growth. The senescence-associated module contained 3000 genes including 23 WRKYs. Putative promoter regions of senescence-associated WRKY genes contained several cis-element-like sequences suggestive of responsiveness to both senescence and stress signaling pathways. A phylogenetic comparison of senescence-associated WRKY genes from switchgrass flag leaf with senescence-associated WRKY genes from other plants revealed notable hotspots in Group I, IIb, and IIe of the phylogenetic tree. CONCLUSIONS We have identified and named 240 WRKY genes in the switchgrass genome. Twenty three of these genes show elevated mRNA levels during the onset of flag leaf senescence. Eleven of the WRKY genes were found in hotspots of related senescence-associated genes from multiple species and thus represent promising targets for future switchgrass genetic improvement. Overall, individual WRKY gene expression profiles could be readily linked to developmental stages of flag leaves.
Collapse
Affiliation(s)
- Charles I Rinerson
- Texas A&M AgriLife Research and Extension Center, Dallas, TX, 75252, USA.
| | - Erin D Scully
- Grain, Forage and Bioenergy Research Unit USDA-ARS UNL, Lincoln, NE, 68583-0937, USA.
| | - Nathan A Palmer
- Grain, Forage and Bioenergy Research Unit USDA-ARS UNL, Lincoln, NE, 68583-0937, USA.
| | - Teresa Donze-Reiner
- Department of Biology, West Chester University of Pennsylvania, West Chester, PA, 19382, USA.
| | - Roel C Rabara
- Texas A&M AgriLife Research and Extension Center, Dallas, TX, 75252, USA.
| | - Prateek Tripathi
- Molecular and Computational Biology Section, Dana & David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Qingxi J Shen
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
| | - Scott E Sattler
- Grain, Forage and Bioenergy Research Unit USDA-ARS UNL, Lincoln, NE, 68583-0937, USA.
| | - Jai S Rohila
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.
| | - Gautam Sarath
- Grain, Forage and Bioenergy Research Unit USDA-ARS UNL, Lincoln, NE, 68583-0937, USA.
| | - Paul J Rushton
- Texas A&M AgriLife Research and Extension Center, Dallas, TX, 75252, USA.
- Current address: 22nd Century Group Inc., Clarence, 14031, New York.
| |
Collapse
|
42
|
Jiang W, Wu J, Zhang Y, Yin L, Lu J. Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses. PROTOPLASMA 2015; 252:1361-74. [PMID: 25643917 DOI: 10.1007/s00709-015-0769-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/23/2015] [Indexed: 05/25/2023]
Abstract
WRKY transcription factors (TFs) play important roles in many plant processes, including responses to biotic and abiotic stresses. In the present study, Muscadinia rotundifolia MrWRKY30 dramatically accumulated in grapevine leaves in response to inoculation of Plasmopara viticola, a pathogen causing grapevine downy mildew disease. Similar responses were also found on grapevines treated with exogenous SA/JA/ET. Ectopic expression of MrWRKY30 in Arabidopsis thaliana "COL0" enhanced its resistance to downy mildew pathogen Peronospora parasitica. Pathogenesis-related (PR) genes, including AtPR1, AtPR4, AtPR5, and AtPDF1.2, were significantly upregulated in transgenic A. thaliana after P. parasitica inoculation. In the mean time, two critical genes in SA and JA signaling pathways, AtEDS5 and AtJAR1, were abundantly expressed as well, indicating that MrWRKY30 may enhance disease resistance of A. thaliana through SA and JA defense system. The transgenic A. thaliana plants also enhanced tolerance to cold stress accompanied with upregulation of AtCBF1, AtCBF3, AtICE1, and AtCOR47. MrWRKY30 might protect A. thaliana from cold damage by activating the AtCBF-mediated signaling pathway to induce the downstream AtCOR47 gene. Interestingly, the transgenic seedlings had a negative effect on salt tolerance. Reverse transcription PCR (RT-PCR) analysis revealed that antioxidant enzyme genes AtAPX (ascorbate peroxidase), AtCAT (catalase), and AtGST (glutathione-S-transferase) were suppressed in transgenic plants, which may lead to reactive oxygen species (ROS)-mediated sensitivity to salt stress.
Collapse
Affiliation(s)
- Wenming Jiang
- Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | | | | | | | | |
Collapse
|
43
|
Ma J, Zhang D, Shao Y, Liu P, Jiang L, Li C. Genome-Wide Analysis of the WRKY Transcription Factors in Aegilops tauschii. Cytogenet Genome Res 2015; 144:243-53. [DOI: 10.1159/000370172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2014] [Indexed: 11/19/2022] Open
|
44
|
Finatto T, de Oliveira AC, Chaparro C, da Maia LC, Farias DR, Woyann LG, Mistura CC, Soares-Bresolin AP, Llauro C, Panaud O, Picault N. Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice. RICE (NEW YORK, N.Y.) 2015; 8:13. [PMID: 25844118 PMCID: PMC4385019 DOI: 10.1186/s12284-015-0045-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/21/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Iron toxicity is a root related abiotic stress, occurring frequently in flooded soils. It can affect the yield of rice in lowland production systems. This toxicity is associated with high concentrations of reduced iron (Fe(2+)) in the soil solution. Although the first interface of the element is in the roots, the consequences of an excessive uptake can be observed in several rice tissues. In an original attempt to find both genes and transposable elements involved in the response to an iron toxicity stress, we used a microarray approach to study the transcriptional responses of rice leaves of cv. Nipponbare (Oryza sativa L. ssp. japonica) to iron excess in nutrient solution. RESULTS A large number of genes were significantly up- or down-regulated in leaves under the treatment. We analyzed the gene ontology and metabolic pathways of genes involved in the response to this stress and the cis-regulatory elements (CREs) present in the promoter region of up-regulated genes. The majority of genes act in the pathways of lipid metabolic process, carbohydrate metabolism, biosynthesis of secondary metabolites and plant hormones. We also found genes involved in iron acquisition and mobilization, transport of cations and regulatory mechanisms for iron responses, and in oxidative stress and reactive oxygen species detoxification. Promoter regions of 27% of genes up-regulated present at least one significant occurrence of an ABA-responsive CRE. Furthermore, and for the first time, we were able to show that iron stress triggers the up-regulation of many LTR-retrotransposons. We have established a complete inventory of transposable elements transcriptionally activated under iron excess and the CREs which are present in their LTRs. CONCLUSION The short-term response of Nipponbare seedlings to iron excess, includes activation of genes involved in iron homeostasis, in particular transporters, transcription factors and ROS detoxification in the leaves, but also many transposable elements. Our data led to the identification of CREs which are associated with both genes and LTR-retrotransposons up-regulated under iron excess. Our results strengthen the idea that LTR-retrotransposons participate in the transcriptional response to stress and could thus confer an adaptive advantage for the plant.
Collapse
Affiliation(s)
- Taciane Finatto
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
- />Present address: Universidade Tecnológica Federal do Paraná, Campus Pato Branco, 85503-390 Pato Branco, PR Brazil
| | - Antonio Costa de Oliveira
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
| | - Cristian Chaparro
- />Laboratoire Génome et Développement des Plantes, UMR 5096, Université de Perpignan Via Domitia, F-66860 Perpignan, France
- />CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
- />Present address: Laboratoire Ecologie et Evolution des Interactions, UMR 5244, F-66860, Université de Perpignan Via Domitia, Perpignan, France
| | - Luciano C da Maia
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
| | - Daniel R Farias
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
| | - Leomar G Woyann
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
| | - Claudete C Mistura
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
| | - Adriana P Soares-Bresolin
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
| | - Christel Llauro
- />Laboratoire Génome et Développement des Plantes, UMR 5096, Université de Perpignan Via Domitia, F-66860 Perpignan, France
- />CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Olivier Panaud
- />Laboratoire Génome et Développement des Plantes, UMR 5096, Université de Perpignan Via Domitia, F-66860 Perpignan, France
- />CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Nathalie Picault
- />Laboratoire Génome et Développement des Plantes, UMR 5096, Université de Perpignan Via Domitia, F-66860 Perpignan, France
- />CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| |
Collapse
|
45
|
Fan K, Wang M, Miao Y, Ni M, Bibi N, Yuan S, Li F, Wang X. Molecular evolution and expansion analysis of the NAC transcription factor in Zea mays. PLoS One 2014; 9:e111837. [PMID: 25369196 PMCID: PMC4219692 DOI: 10.1371/journal.pone.0111837] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/30/2014] [Indexed: 11/18/2022] Open
Abstract
NAC (NAM, ATAF1, 2 and CUC2) family is a plant-specific transcription factor and it controls various plant developmental processes. In the current study, 124 NAC members were identified in Zea mays and were phylogenetically clustered into 13 distinct subfamilies. The whole genome duplication (WGD), especially an additional WGD event, may lead to expanding ZmNAC members. Different subfamily has different expansion rate, and NAC subfamily preference was found during the expansion in maize. Moreover, the duplication events might occur after the divergence of the lineages of Z. mays and S. italica, and segmental duplication seemed to be the dominant pattern for the gene duplication in maize. Furthermore, the expansion of ZmNAC members may be also related to gain and loss of introns. Besides, the restriction of functional divergence was discovered after most of the gene duplication events. These results could provide novel insights into molecular evolution and expansion analysis of NAC family in maize, and advance the NAC researches in other plants, especially polyploid plants.
Collapse
Affiliation(s)
- Kai Fan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Ming Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Ying Miao
- Center for Molecular Cell and Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Mi Ni
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Noreen Bibi
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Shuna Yuan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Feng Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Xuede Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
- * E-mail:
| |
Collapse
|
46
|
Hsu KH, Liu CC, Wu SJ, Kuo YY, Lu CA, Wu CR, Lian PJ, Hong CY, Ke YT, Huang JH, Yeh CH. Expression of a gene encoding a rice RING zinc-finger protein, OsRZFP34, enhances stomata opening. PLANT MOLECULAR BIOLOGY 2014; 86:125-37. [PMID: 25002225 DOI: 10.1007/s11103-014-0217-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/11/2014] [Indexed: 05/07/2023]
Abstract
By oligo microarray expression profiling, we identified a rice RING zinc-finger protein (RZFP), OsRZFP34, whose gene expression increased with high temperature or abscisic acid (ABA) treatment. As compared with the wild type, rice and Arabidopsis with OsRZFP34 overexpression showed increased relative stomata opening even with ABA treatment. Furthermore, loss-of-function mutation of OsRZFP34 and AtRZFP34 (At5g22920), an OsRZFP34 homolog in Arabidopsis, decreased relative stomata aperture under nonstress control conditions. Expressing OsRZFP34 in atrzfp34 reverted the mutant phenotype to normal, which indicates a conserved molecular function between OsRZFP34 and AtRZFP34. Analysis of water loss and leaf temperature under stress conditions revealed a higher evaporation rate and cooling effect in OsRZFP34-overexpressing Arabidopsis and rice than the wild type, atrzfp34 and osrzfp34. Thus, stomata opening, enhanced leaf cooling, and ABA insensitivity was conserved with OsRZFP34 expression. Transcription profiling of transgenic rice overexpressing OsRZFP34 revealed many genes involved in OsRZFP34-mediated stomatal movement. Several genes upregulated or downregulated in OsRZFP34-overexpressing plants were previously implicated in Ca(2+) sensing, K(+) regulator, and ABA response. We suggest that OsRZFP34 may modulate these genes to control stomata opening.
Collapse
Affiliation(s)
- Kuo-Hsuan Hsu
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Phylogenetic and transcription analysis of chrysanthemum WRKY transcription factors. Int J Mol Sci 2014; 15:14442-55. [PMID: 25196345 PMCID: PMC4159861 DOI: 10.3390/ijms150814442] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 07/30/2014] [Accepted: 08/12/2014] [Indexed: 12/04/2022] Open
Abstract
WRKY transcription factors are known to function in a number of plant processes. Here we have characterized 15 WRKY family genes of the important ornamental species chrysanthemum (Chrysanthemum morifolium). A total of 15 distinct sequences were isolated; initially internal fragments were amplified based on transcriptomic sequence, and then the full length cDNAs were obtained using RACE (rapid amplification of cDNA ends) PCR. The transcription of these 15 genes in response to a variety of phytohormone treatments and both biotic and abiotic stresses was characterized. Some of the genes behaved as would be predicted based on their homology with Arabidopsis thaliana WRKY genes, but others showed divergent behavior.
Collapse
|
48
|
Isolation and Expression Patterns of Rice WRKY82 Transcription Factor Gene Responsive to Both Biotic and Abiotic Stresses. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60074-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|