1
|
Liu L, Chen J, Liu C, Luo Y, Chen J, Fu Y, Xu Y, Wu H, Li X, Wang H. Relationships Between Biological Heavy Metals and Breast Cancer: A Systematic Review and Meta-Analysis. Front Nutr 2022; 9:838762. [PMID: 35782923 PMCID: PMC9245072 DOI: 10.3389/fnut.2022.838762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Heavy metals were classified as essential, probably essential, and potentially toxic in the general population. Until now, it has been reported inconsistently on the association between heavy metals and BC. In this meta-analysis, we aimed to assess the association between heavy metals and BC and review the potential mechanisms systematically. Methods We searched for epidemiological studies in English about the association between heavy metals and BC published before September 2020 in PubMed, Web of Science, and Embase databases. In total 36 studies, comprising 4,151 individuals from five continents around the world were identified and included. Results In all biological specimens, Cu, Cd, and Pb concentrations were higher, but Zn and Mn concentrations were lower in patients with BC than in non-BC participants [SMD (95% CIs): 0.62 (0.12, 1.12); 1.64 (0.76, 2.52); 2.03 (0.11, 3.95); −1.40 (−1.96, −0.85); −2.26 (−3.39, −1.13); p = 0.01, 0.0003, 0.04, <0.0001, <0.0001]. Specifically, higher plasma or serum Cu and Cd, as well as lower Zn and Mn, were found in cases [SMD (95% CIs): 0.98 (0.36, 1.60); 2.55 (1.16, 3.94); −1.53 (−2.28, −0.78); −2.40 (−3.69, −1.10); p = 0.002, 0.0003, <0.0001, 0.0003]; in hair, only lower Zn was observed [SMD (95% CIs): −2.12 (−3.55, −0.68); p = 0.0004]. Furthermore, the status of trace elements probably needs to be re-explored, particularly in BC. More prospective studies, randomized clinical trials, and specific pathogenic studies are needed to prevent BC. The main mechanisms underlying above-mentioned findings are comprehensively reviewed. Conclusion For BC, this review identified the current knowledge gaps which we currently have in understanding the impact of different heavy metals on BC. Systematic Review Registration www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020176934, identifier: CRD42020176934.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Chen
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxuan Luo
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayun Chen
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Fu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yajie Xu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haili Wu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Xue Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xue Li
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hui Wang
| |
Collapse
|
2
|
Mani MS, Dsouza VL, Dsouza HS. Evaluation of divalent metal transporter 1 (DMT1) (rs224589) polymorphism on blood lead levels of occupationally exposed individuals. Toxicol Lett 2021; 353:13-19. [PMID: 34626817 DOI: 10.1016/j.toxlet.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/15/2021] [Accepted: 10/04/2021] [Indexed: 01/28/2023]
Abstract
Lead (Pb) is an environmental and public health toxicant. It affects various organ systems of the body, thereby disrupting their normal functions. To date, several genes that are known to influence the mechanism of action of lead and toxicity have been studied. Among them, the iron transporter gene, SLC11A2 (Solute Carrier 11 group A member 2) which codes for the transmembrane protein, DMT1 (Divalent Metal Transporter 1) has shown to transport other metals including zinc, copper, and lead. We investigated the influence of DMT1 polymorphism (rs224589) on blood lead (Pb-B) levels. In the present study, we enrolled 113 lead-exposed workers and performed a comprehensive biochemical analysis and genetic composition. The frequency of DMT1 variants observed in the total subjects (n = 113) was 42 % for homozygous CC wild type, 54 % for heterozygous CA, and 4 % for homozygous AA mutant. The heterozygous CA carriers presented higher Pb-B levels compared to wild type CC and mutant AA carriers. Further, a negative association was observed between Pb-B levels and hemoglobin in heterozygous CA carriers. Hence, C allele may be the risk allele that contributes to increased susceptibility to high Pb-B retention, and genotyping of DMT1 in lead exposed subjects might be used as a prognostic marker to impede organ damage due to lead toxicity.
Collapse
Affiliation(s)
- Monica Shirley Mani
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Venzil Lavie Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
3
|
Joneidi Z, Mortazavi Y, Memari F, Roointan A, Chahardouli B, Rostami S. The impact of genetic variation on metabolism of heavy metals: Genetic predisposition? Biomed Pharmacother 2019; 113:108642. [DOI: 10.1016/j.biopha.2019.108642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 02/08/2023] Open
|
4
|
The genetic variants of solute carrier family 11 member 2 gene and risk of developing type-2 diabetes. J Genet 2018. [DOI: 10.1007/s12041-018-1032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Tolone C, Bellini G, Punzo F, Papparella A, Miele E, Vitale A, Nobili B, Strisciuglio C, Rossi F. The DMT1 IVS4+44C>A polymorphism and the risk of iron deficiency anemia in children with celiac disease. PLoS One 2017; 12:e0185822. [PMID: 29023457 PMCID: PMC5638269 DOI: 10.1371/journal.pone.0185822] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Iron deficiency anemia in celiac disease is related to impaired duodenal mucosal uptake, due to villous atrophy. Iron enters the enterocytes through an apical divalent metal transporter, DMT1. Different DMT1 transcripts have been identified, depending on the presence of an iron-responsive element that allows DMT1 up-regulation during iron starvation. An intronic DMT1 polymorphism, IVS4+44C>A, has been associated with metal toxicity, and the CC-carriers show high iron levels. AIMS This study investigates the association between DMT1 IVS4+44C>A and anemia in a cohort of 387 Italian celiac children, and the functional role of the polymorphism. METHODS AND RESULTS By association analysis, we found that DMT1 IVS4+44-AA genotype confers a four-fold risk of developing anemia, despite of atrophy degree. By analysis of mRNA from gastroesophageal biopsies, we found that total DMT1 is significantly upregulated in presence of mild, but not severe, atrophy, independently from IVS4+44C>A variant, and in normal but not in atrophic CC-biopsies. Moreover, we found that A-allele is associated to preferential expression of the DMT1 transcripts lacking the iron-responsive element, thus limiting the DMT1 overexpression that normally occurs to respond to iron starvation. DISCUSSION Possibly, the IVS4+44-AA-related dysregulation of the iron-induced changes in DMT1 expression is not able to impair iron absorption in physiological condition. However, if exacerbated by the concomitant massive loss of functional absorbing tissue paralleling worsened stages of villus atrophy, it might be ineffective in counteracting iron deficiency, despite of DMT1 overexpression. CONCLUSION We suggest, for the first time, that celiac disease may unmask the contribution of the DMT1 IVS4+44C>A polymorphism to the risk of anemia.
Collapse
Affiliation(s)
- Carlo Tolone
- Department of Woman, Child and of General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giulia Bellini
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- * E-mail:
| | - Francesca Punzo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Alfonso Papparella
- Department of Woman, Child and of General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Erasmo Miele
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Alessandra Vitale
- Department of Woman, Child and of General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Bruno Nobili
- Department of Woman, Child and of General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and of General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Francesca Rossi
- Department of Woman, Child and of General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
6
|
Kaya-Akyüzlü D, Kayaaltı Z, Söylemezoğlu T. Influence of MRP1 G1666A and GSTP1 Ile105Val genetic variants on the urinary and blood arsenic levels of Turkish smelter workers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:68-73. [PMID: 26970057 DOI: 10.1016/j.etap.2016.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
To understand the cellular mechanisms responsible for arsenic metabolism and transport pathways plays a fundamental role in order to prevent the arsenic-induced toxicity. The effect of MRP1 G1666A and GSTP1 Ile105Val polymorphisms on blood and urinary arsenic levels were determined in 95 Turkish smelter workers. Blood and urinary arsenic concentrations were measured by GF-AAS with Zeeman correction and gene polymorphisms were investigated by PCR-RFLP method. The mean blood and urinary arsenic levels were 21.60±12.28μg/L and 5.58±4.37μg/L, respectively. A significant association between MRP1 1666A allele and urinary arsenic levels was found (p=0.001). GSTP1 Ile105Val polymorphism was detected not to be associated with either blood or urinary arsenic levels (p=0.384, p=0.440, respectively). Significant association was also detected between MRP1A(-)/GSTP1Val(-) genotypes and urinary arsenic levels (p=0.001). This study suggested that MRP1 G1666A alone and, also, combined with GSTP1 Ile105Val were associated with inter-individual variations in urinary arsenic levels, but not with blood arsenic levels.
Collapse
Affiliation(s)
| | - Zeliha Kayaaltı
- Ankara University, Institute of Forensic Sciences, Ankara, Türkiye.
| | | |
Collapse
|
7
|
Is the 1254T>C polymorphism in the DMT1 gene associated with Parkinson’s disease? Neurosci Lett 2015; 594:51-4. [DOI: 10.1016/j.neulet.2015.03.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 11/30/2022]
|
8
|
Kayaaltı Z, Akyüzlü DK, Söylemezoğlu T. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels. ENVIRONMENTAL RESEARCH 2015; 137:8-13. [PMID: 25483413 DOI: 10.1016/j.envres.2014.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 06/04/2023]
Abstract
Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01 ± 81.87 ppm, 35.59 ± 17.72 ppb and 1.25 ± 0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels.
Collapse
Affiliation(s)
- Zeliha Kayaaltı
- Institute of Forensic Sciences, Ankara University, Dikimevi 06590, Ankara, Turkey.
| | - Dilek Kaya Akyüzlü
- Institute of Forensic Sciences, Ankara University, Dikimevi 06590, Ankara, Turkey
| | - Tülin Söylemezoğlu
- Institute of Forensic Sciences, Ankara University, Dikimevi 06590, Ankara, Turkey
| |
Collapse
|
9
|
Wysokinski D, Zaras M, Dorecka M, Waszczyk M, Szaflik J, Blasiak J, Szaflik JP. An association between environmental factors and the IVS4+44C>A polymorphism of the DMT1 gene in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2012; 250:1057-65. [PMID: 22371024 PMCID: PMC3382657 DOI: 10.1007/s00417-012-1966-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 12/14/2022] Open
Abstract
Background Age-related macular degeneration (AMD) is an ocular disease affecting macula — the central part of the retina, resulting in the degeneration of photoreceptors and retinal epithelium and causing severe central vision impairment. The pathophysiology of the disease is not completely known, but a significant role is attributed to genetic factors. The contribution of oxidative stress in AMD as a trigger of the degenerative process is well-established. Iron ions may act as a source of reactive oxygen species; therefore, maintaining iron homeostasis is important for redox balance in the organism. Diversity in iron homeostasis genes may counterpart in unbalanced redox state, and thus be involved in AMD pathophysiology. Methods In this work, we searched for an association between some single nucleotide polymorphisms in the divalent metal transporter 1 (DMT1) gene intronic IVS4+44C>A (rs224589) and 3’-UTR c.2044T>C (rs2285230) and environmental factors and AMD. Genotyping was performed using the PCR-RFLP method. DNA was obtained from 436 AMD patients and 168 controls. Results We did not find any association between the genotypes of the two polymorphisms and AMD occurrence. However, we observed that AMD patients living in a rural environment and having the CC genotype of the IVS4+44C>A polymorphism had an increased risk of AMD, while individuals with the CA genotype or the A allele had a decreased risk of the disease. Moreover, in male AMD patients the C allele increased the risk of the disease, while the AA genotype decreased it. Conclusions These results suggest that the VS4+44C>A polymorphism of the DMT1 gene may interact with place of living and gender to modulate the risk of AMD.
Collapse
Affiliation(s)
- Daniel Wysokinski
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|