1
|
Amini H, Avci ÇB, Kerdar SN, Hassani A, Amini M, Mardi N, Saghati S, Narmi MT, Takanlou LS, Takanlou MS, Khoshfetrat AB, Nori M, Hashemzadeh S, Rahbarghazi R. Intramyocardial injection of pre-cultured endothelial progenitor cells and mesenchymal stem cells inside alginate/gelatin microspheres induced angiogenesis in infarcted rabbits. Cell Commun Signal 2025; 23:279. [PMID: 40506721 PMCID: PMC12164120 DOI: 10.1186/s12964-025-02301-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 06/08/2025] [Indexed: 06/16/2025] Open
Abstract
Background Using several strategies, the stimulation of angiogenesis can alleviate the pathological complications of post-myocardial ischemia. Here, endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) were pre-cultured inside the alginate/gelatin (Alg/Gel) microspheres in the presence of SDF-1α for 7 days, and their angiogenesis potential was monitored in infarcted rabbits. Methods The decapsulated cells were monitored in terms of cell dynamic growth and angiogenesis potential in vitro and after injection into ischemic myocardium in rabbits. Results Based on the data, 7-day incubation inside the Alg/Gel microspheres led to the stimulation of angiogenesis profile (Ang-1↑, -2↑, Tie-2↑), migration (MMP-2↑, and − 9↑), and autophagic response (Beclin-1↑, LC3↑, and p-62↓) in EPCs containing groups in the presence of SDF-1α. PCR array analysis revealed the expression of angiogenesis-related genes in the presence of SDF-1α. These features coincided with the stimulation of in vitro tubulogenesis properties in EPCs and EPCs + SDF-1α groups. The injection of cells from different groups into the infarcted rabbits led to the reduction of fibrotic area in ischemic myocardium in MSCs-bearing groups, and these effects were intensified in the presence of SDF-1α. Pre-treatment of EPCs and MSCs increased the recruited immune cells into the ischemic area within the myocardium. It was suggested that SDF-1α stimulated the local vascular density (CD31 capillaries, and α-SMA arterioles) in EPCs-bearing groups compared to MSCs and MSCs + SDF-1α groups. Conclusions These data indicate that pre-culture of EPCs and MSCs inside the Alg-based hydrogels can increase the regenerative potential of these cells, especially when exposed to stimulatory cytokines such as SDF-1α for the alleviation of ischemic changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12964-025-02301-0.
Collapse
Affiliation(s)
- Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Çığır Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sajed Nazif Kerdar
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335- 1996, Iran
| | - Ayla Hassani
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335- 1996, Iran
| | - Meisam Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran
| | - Sepideh Saghati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran
| | - Maryam Taghavi Narmi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran
| | | | | | | | - Mohammad Nori
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran
| | - Shahriar Hashemzadeh
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Yang J, Li Z, Zhang C, Xiong J, Yang X, Zheng D, Xie S, Shi H. Ornidazole Regulates Inflammatory Response and Odontogenic Differentiation of Human Dental Pulp Cells. Int Dent J 2025; 75:1522-1531. [PMID: 40121849 PMCID: PMC11982462 DOI: 10.1016/j.identj.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/01/2025] [Accepted: 02/16/2025] [Indexed: 03/25/2025] Open
Abstract
AIM This study aimed to explore the potential of ornidazole as an alternative treatment for pulpitis, focusing on its effects on human dental pulp cells (hDPCs) and macrophages. We assessed the cytotoxicity of various concentrations of ornidazole, its safety and efficacy in treating inflamed hDPCs, and its regulatory impact on inflammatory markers during inflammation. MATERIALS AND METHODS Inflammation in hDPCs was induced using lipopolysaccharides (LPS), and varying doses of ornidazole were introduced. Cell proliferation, migration, inflammation regulation, and dentinogenesis under inflammatory conditions were evaluated. Additionally, macrophages were cultured with different doses of ornidazole to analyse the expression of inflammatory genes. If statistically significant differences were observed between the control and treatment groups, this was considered evidence of ornidazole's effects on hDPCs. Statistical analysis was performed using SPSS 26.0, with one-way analysis of variance and Tukey's test for comparisons. A P-value of < 0.05 was considered statistically significant. RESULTS Ornidazole influenced cell proliferation, inflammation regulation, and dentinogenesis. Concentrations below 10 µg/mL did not exhibit significant cytotoxic effects on hDPCs over a 7-day period, and the cytotoxicity of ornidazole was both concentration- and time-dependent. Ornidazole decreased the expression of proinflammatory markers (IL-6 and TNF-α) while enhancing the expression of anti-inflammatory markers (IL-1Ra and IL-8). It also suppressed alkaline phosphatase (ALP) activity but increased the expression of odontogenic differentiation markers at both mRNA and protein levels in the presence of inflammatory stimuli. Furthermore, ornidazole demonstrated immunomodulatory effects on macrophages. CONCLUSIONS Low concentrations of ornidazole were found to be safe for hDPCs. Ornidazole modulated the expression of inflammatory markers (IL-6, TNF-α, IL-8, IL-1Ra) in inflamed hDPCs and regulated odontogenesis-related markers. Furthermore, low concentrations of ornidazole enhanced the immune regulation in macrophages, highlighting its potential as a therapeutic agent for pulpitis. CLINICAL RELEVANCE This study aimed to understand the interactions of ornidazole with hDPCs, its anti-inflammatory properties, and its regulatory effects on odontogenic processes. By examining the impact of different concentrations of ornidazole on cells associated with pulp inflammation, this study provides valuable insights into its therapeutic potential for pulpitis and tends to support its clinical application.
Collapse
Affiliation(s)
- Jing Yang
- School of Stomatology, Jinan University, Guangzhou, China; Department of stomatology, The 924th Hospital of the Joint Logistics Support Force of the People's Liberation Army, Guilin, China
| | - Zikai Li
- School of Stomatology, Jinan University, Guangzhou, China
| | | | - Jiaying Xiong
- School of Stomatology, Jinan University, Guangzhou, China
| | - Xirui Yang
- School of Stomatology, Jinan University, Guangzhou, China
| | - Dandan Zheng
- Department of stomatology, The 924th Hospital of the Joint Logistics Support Force of the People's Liberation Army, Guilin, China
| | - Siming Xie
- School of Stomatology, Jinan University, Guangzhou, China
| | - Haishan Shi
- School of Stomatology, Jinan University, Guangzhou, China; Artificial Organs and Materials Engineering Research Center, Ministry of Education, Guangzhou, China; College of Chemistry and Materials Science, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Meng X, Qin L, Wang X. Biased agonism of G protein-coupled receptors as a novel strategy for osteoarthritis therapy. Bone Res 2025; 13:52. [PMID: 40355428 PMCID: PMC12069619 DOI: 10.1038/s41413-025-00435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 05/14/2025] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disorder marked by chronic pain, inflammation, and cartilage loss, with current treatments limited to symptom relief. G protein-coupled receptors (GPCRs) play a pivotal role in OA progression by regulating inflammation, chondrocyte survival, and matrix homeostasis. However, their multifaceted signaling, via G proteins or β-arrestins, poses challenges for precise therapeutic targeting. Biased agonism, where ligands selectively activate specific GPCR pathways, emerges as a promising approach to optimize efficacy and reduce side effects. This review examines biased signaling in OA-associated GPCRs, including cannabinoid receptors (CB1, CB2), chemokine receptors (CCR2, CXCR4), protease-activated receptors (PAR-2), adenosine receptors (A1R, A2AR, A2BR, A3R), melanocortin receptors (MC1R, MC3R), bradykinin receptors (B2R), prostaglandin E2 receptors (EP-2, EP-4), and calcium-sensing receptors (CaSR). We analyze ligands in clinical trials and explore natural products from Traditional Chinese Medicine as potential biased agonists. These compounds, with diverse structures and bioactivities, offer novel therapeutic avenues. By harnessing biased agonism, this review underscores the potential for developing targeted, safer OA therapies that address its complex pathology, bridging molecular insights with clinical translation.
Collapse
Affiliation(s)
- Xiangbo Meng
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, PR China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
4
|
de Lucena Morais D, de Sena LSB, Silva Cunha JL, de Mendonça EF, Alves PM, Nonaka CFW. Immunoexpression of CXCL12 and CXCR4 in oral tongue squamous cell carcinoma of young and older patients. Eur Arch Otorhinolaryngol 2025; 282:2105-2114. [PMID: 39613853 DOI: 10.1007/s00405-024-09106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
PURPOSE This study analyzed the immunoexpression of C-X-C chemokine ligand 12 (CXCL12) and C-X-C chemokine receptor 4 (CXCR4) in oral tongue squamous cell carcinoma (OTSCC) of young (≤ 45 years) and older (≥ 60 years) patients and correlated the findings with clinicopathological parameters (sex, tumor size, regional metastasis, clinical stage, and histopathological grade of malignancy). METHODS Forty OTSCC cases (20 diagnosed in young patients and 20 diagnosed in older patients) were selected. Cytoplasmic (CXCL12 and CXCR4) and nuclear (CXCR4) staining percentages in epithelial and stromal cells were assessed at the invasive tumor front. RESULTS Low median percentages of CXCL12 positivity were observed in epithelial and stromal cells of OTSCC in both age groups. In stromal cells, expression of this chemokine was higher in older individuals compared to young individuals (p = 0.026). Expression of CXCR4 in neoplastic cells was more frequent in older individuals, with higher median percentages of cytoplasmic (p = 0.023) and nuclear (p = 0.001) positivity compared to young individuals. In stromal cells, older individuals exhibited a significantly higher cytoplasmic expression of CXCR4 (p < 0.001). No significant differences in CXCL12 or CXCR4 immunoexpression according to clinicopathological parameters was observed in either age group (p > 0.05). Positive correlations between cytoplasmic and nuclear expressions of CXCR4 were found in young (r = 0.580; p = 0.007) and older individuals (r = 0.476;p = 0.034). CONCLUSION The results suggest the participation of CXCR4 in the development of OTSCC, especially in older individuals. The findings also support possible age-related differences in the pathogenesis of this malignant neoplasm. Nevertheless, this protein may not be involved in the progression of OTSCC.
Collapse
Affiliation(s)
| | | | - John Lennon Silva Cunha
- Department of Biological and Health Sciences, Federal University of Western Bahia, Barreiras, BA, Brazil
| | | | | | - Cassiano Francisco Weege Nonaka
- Department of Dentistry, State University of Paraíba, Campina Grande, PB, Brazil.
- Departamento de Odontologia, Universidade Estadual da Paraíba, Programa de Pós-Graduação em Odontologia, Rua Baraúnas, 351- Bairro Universitário, Campina Grande , PB, CEP 58429-500, Brasil.
| |
Collapse
|
5
|
Sun M, Yu Y, Zhu H, Yao Y, Zhou X, Wang X, Zhang Y, Xu X, Zhuang J, Sun C. Hepatic Growth Factor as a Potential Biomarker for Lung Adenocarcinoma: A Multimodal Study. Curr Issues Mol Biol 2025; 47:208. [PMID: 40136462 PMCID: PMC11941628 DOI: 10.3390/cimb47030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
(1) Background: Despite previous studies linking inflammatory cytokines to lung adenocarcinoma (LUAD), their causal mechanisms remain unclear. This study aims to explore the causal relationship between inflammatory cytokines and LUAD to fill this knowledge gap. (2) Methods: This study employs a comprehensive approach, integrating Mendelian randomization (MR) analysis, single-cell RNA sequencing (scRNA-seq), and transcriptomic sequencing (RNA-seq) data to investigate the relationship between inflammatory cytokines and LUAD. (3) Results: In forward MR analysis, elevated levels of hepatocyte growth factor (HGF), interleukin-1 receptor antagonist (IL-1RA), IL-5, monocyte chemoattractant protein-3, and monokine induced by interferon-γ were causally associated with an increased risk of LUAD. In reverse MR analysis, LUAD exhibited a positive causal relationship with the levels of regulated upon activation normal T cell expressed and secreted factor (RANTES) and stromal cell-derived factor-1α. The scRNA-seq data further identified specific cell populations that may influence LUAD onset and progression through the expression of particular inflammatory genes and intercellular communication. RNA-seq data analysis highlighted the role of the HGF gene in LUAD diagnosis, demonstrating its strong correlation with patient prognosis and immune cell infiltration within the tumor microenvironment. (4) Conclusions: The findings reveal a causal relationship between inflammatory cytokines and LUAD, with HGF emerging as a potential biomarker of significant clinical relevance. This study provides new insights into the molecular mechanisms underlying LUAD and lays the foundation for future therapeutic strategies.
Collapse
Affiliation(s)
- Mengxuan Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (M.S.); (H.Z.); (Y.Y.); (X.Z.); (Y.Z.)
| | - Yang Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Hanci Zhu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (M.S.); (H.Z.); (Y.Y.); (X.Z.); (Y.Z.)
| | - Yan Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (M.S.); (H.Z.); (Y.Y.); (X.Z.); (Y.Z.)
| | - Xintong Zhou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (M.S.); (H.Z.); (Y.Y.); (X.Z.); (Y.Z.)
| | - Xue Wang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261000, China; (X.W.); (X.X.)
| | - Yubao Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (M.S.); (H.Z.); (Y.Y.); (X.Z.); (Y.Z.)
| | - Xiaowei Xu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261000, China; (X.W.); (X.X.)
| | - Jing Zhuang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (M.S.); (H.Z.); (Y.Y.); (X.Z.); (Y.Z.)
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261000, China; (X.W.); (X.X.)
| | - Changgang Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (M.S.); (H.Z.); (Y.Y.); (X.Z.); (Y.Z.)
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261000, China; (X.W.); (X.X.)
| |
Collapse
|
6
|
Sang X, Jiao H, Meng Q, Fang X, Pan Q, Zhou J, Qian T, Zhang W, Xu Y, An J, Huang Z, Hu H. Structural mechanisms underlying the modulation of CXCR4 by diverse small-molecule antagonists. Proc Natl Acad Sci U S A 2025; 122:e2425795122. [PMID: 40063796 PMCID: PMC11929458 DOI: 10.1073/pnas.2425795122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/22/2025] [Indexed: 03/22/2025] Open
Abstract
CXCR4 (CXC chemokine receptor type 4), a member of the G protein-coupled receptor superfamily, plays a role in cell migration and functions as a coreceptor for HIV entry. Molecular therapeutics targeting CXCR4 have been under intensive investigation. To date, only two small-molecule antagonist drugs targeting CXCR4, plerixafor (AMD3100) and mavorixafor (AMD070), have been approved. Here, we present the high-resolution structures of CXCR4 complexed with AMD3100 and AMD070, as well as a small-molecule antagonist HF51116 that has very different chemical structure and binding mechanism from AMD3100 and AMD070. The interactions between these antagonists and the receptor are analyzed in details, and the mechanisms of antagonism are elucidated. Both the major and minor subpockets on CXCR4 are found to be involved in binding of these small-molecule antagonists. The distinct conformations of Trp942.60 observed in these structures highlight the plasticity of the binding pocket on CXCR4, offering valuable insights into the exploration and refinement of therapeutic strategies targeting this chemokine receptor.
Collapse
Affiliation(s)
- Xiaohong Sang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Haizhan Jiao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Qian Meng
- School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Xiong Fang
- School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qi Pan
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Jiao Zhou
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Tingli Qian
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Wanqin Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Yan Xu
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA92037
| | - Jing An
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA92037
| | - Ziwei Huang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
- School of Life Sciences, Tsinghua University, Beijing100084, China
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA92037
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| |
Collapse
|
7
|
Maldonado MBC, Rabaglino MB, Cannon GH, Hansen PJ. Effects of endometrial embryokines on the preimplantation bovine embryo to create a gene expression signature consistent with a high competence phenotype†. Biol Reprod 2025; 112:447-457. [PMID: 39869817 DOI: 10.1093/biolre/ioaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/18/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025] Open
Abstract
Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. The identity of specific embryokines that enhance the competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate the effects of three putative embryokines in cattle on embryonic development to the blastocyst stage. The molecules tested were vascular endothelial growth factor A (VEGFA), C-X-C motif chemokine ligand 12 (CXCL12), and interleukin-6 (IL6). Molecules were added from day 4 to 7.5 of culture at 50 ng/mL (VEGFA and CXCL12) or 100 ng/mL (IL6). Endpoints were development to the blastocyst stage and transcript abundance for 94 specific genes involved in lineage commitment, epigenetic regulation, and other functions. Among the genes examined were eight whose transcript abundance has been related to embryo competence for survival after embryo transfer. None of the molecules increased the proportion of putative zygotes or cleaved embryos becoming blastocysts at day 7.5 of development. An embryo competence index based on a Bayesian multiple regression formula to weigh transcript abundance of the eight biomarker genes was not affected by treatment with VEGFA but was increased by both CXCL12 and IL6. The transcript abundance of 5 genes was modified by VEGFA, 19 by CXCL12, and 19 by IL6. A total of 11 genes were modified in a similar manner by CXCL12 and IL6. Most differentially expressed genes for CXCL12 and IL6 were downregulated, suggesting that the embryokines may promote a less energetically demanding metabolic state than would be the case in their absence.
Collapse
Affiliation(s)
| | - Maria Belen Rabaglino
- Department of Population Health Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Gabrielle Heather Cannon
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC 27599-7555, USA
| | - Peter James Hansen
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Michalska Z, Ostaszewska A, Fularczyk M, Dzierżyńska M, Bielak K, Morytz J, Sieradzan AK, Archacka K, Brzoska E, Rodziewicz-Motowidło S, Ciemerych MA. In Vitro Bioactivity Evaluation of IL-4 and SDF-1 Mimicking Peptides Engineered to Enhance Skeletal Muscle Reconstruction. J Biomed Mater Res A 2025; 113:e37898. [PMID: 40087853 DOI: 10.1002/jbm.a.37898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Skeletal muscle regeneration depends on satellite cells, which, in response to injury, activate, proliferate, and reconstruct damaged tissue. However, under certain conditions, such as large injuries or myopathies, this process may not be properly executed, and muscle function may be affected. Thus, pro-regenerative actions, such as the use of various factors or cells, are widely tested as a tool to improve muscle regeneration. In the current study, we designed peptides derived from the IL-4 and SDF-1 proteins, namely IL-4-X, IL-4-Y, SDF-1-X, and SDF-1-Y. We showed that these peptides can bind to appropriate receptors and can adopt proper structure in solution. Importantly, we documented, using in vitro culture, that they do not negatively affect the cells that are present and active in skeletal muscles, such as myoblasts and fibroblasts, bone marrow stromal cells, as well as induced pluripotent stem cells, which can serve as a source of myoblasts. The presence of peptides did not affect cell proliferation compared to untreated cells. In vitro culture and differentiation protocols documented that selected IL-4 and SDF-1 peptides increased cell migration and inhibited undesirable adipogenic differentiation. Thus, we proved that these peptides are safe to use in in vivo studies aimed at improving skeletal muscle regeneration.
Collapse
Affiliation(s)
- Zuzanna Michalska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Ostaszewska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Martyna Fularczyk
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Maria Dzierżyńska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Kacper Bielak
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Justyna Morytz
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adam K Sieradzan
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Maria A Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Barrow P. Review of embryo-fetal developmental toxicity studies performed for pharmaceuticals approved by FDA in 2022 and 2023. Reprod Toxicol 2024; 130:108727. [PMID: 39332698 DOI: 10.1016/j.reprotox.2024.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
92 novel drugs were approved by the FDA in 2022-2023. 48 of these approvals were for orphan indications. Embryofetal development (EFD) studies were conducted for 79 % of approvals. Rats and rabbits were the most common species used (77 % and 62 % of studies, respectively). For the testing of biopharmaceuticals, rodents were more often used (43 % of EFD studies) than non-human primates (29 %) and rabbits (29 %). Most (75 %) biopharmaceuticals intended to treat cancer were approved without EFD studies. Amongst the 41 drugs for which both rat and rabbit EFD studies were performed, the rabbit appeared more sensitive to both maternal toxicity and developmental toxicity (61 % and 63 % of drugs, respectively). Most drugs (76 %) showed more than a 2-fold difference in the LOAEL for developmental toxicity between the rat and rabbit. EFD studies were not required for drugs with a mode of action known to pose a clear hazard for pregnancy and further EFD studies were generally not performed when clinically relevant developmental effects had already been observed in one species or in a preliminary EFD study. Many drug labels showed minor deviations from the PLLR rule: the metric used to calculate exposure margins and the presence or absence of maternal toxicity were not always specified. These omissions, however, are of little significance for the prescriber. The five reviews in this series now show compiled information on EFD studies for all small molecule pharmaceuticals approved since 2014 and for all therapeutic monoclonal antibodies approved to date.
Collapse
Affiliation(s)
- Paul Barrow
- Freelance Consultant, Aeschengraben 29, Basel CH-4051, Switzerland.
| |
Collapse
|
10
|
Chen B, Yu X, Horvath-Diano C, Ortuño MJ, Tschöp MH, Jastreboff AM, Schneeberger M. GLP-1 programs the neurovascular landscape. Cell Metab 2024; 36:2173-2189. [PMID: 39357509 DOI: 10.1016/j.cmet.2024.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Readily available nutrient-rich foods exploit our inherent drive to overconsume, creating an environment of overnutrition. This transformative setting has led to persistent health issues, such as obesity and metabolic syndrome. The development of glucagon-like peptide-1 receptor (GLP-1R) agonists reveals our ability to pharmacologically manage weight and address metabolic conditions. Obesity is directly linked to chronic low-grade inflammation, connecting our metabolic environment to neurodegenerative diseases. GLP-1R agonism in curbing obesity, achieved by impacting appetite and addressing associated metabolic defects, is revealing additional benefits extending beyond weight loss. Whether GLP-1R agonism directly impacts brain health or does so indirectly through improved metabolic health remains to be elucidated. In exploring the intricate connection between obesity and neurological conditions, recent literature suggests that GLP-1R agonism may have the capacity to shape the neurovascular landscape. Thus, GLP-1R agonism emerges as a promising strategy for addressing the complex interplay between metabolic health and cognitive well-being.
Collapse
Affiliation(s)
- Bandy Chen
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Claudia Horvath-Diano
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - María José Ortuño
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | - Ania M Jastreboff
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Marc Schneeberger
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT, USA.
| |
Collapse
|
11
|
Zhao Y, Liang W, Liu Z, Chen X, Lin C. Impact of SDF-1 and AMD3100 on Hair Follicle Dynamics in a Chronic Stress Model. Biomolecules 2024; 14:1206. [PMID: 39456139 PMCID: PMC11505668 DOI: 10.3390/biom14101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic stress is a common cause of hair loss, involving inflammatory responses and changes in cellular signaling pathways. This study explores the mechanism of action of the SDF-1/CXCR4 signaling axis in chronic stress-induced hair loss. The research indicates that SDF-1 promotes hair follicle growth through the PI3K/Akt and JAK/STAT signaling pathways. Transcriptome sequencing analysis was conducted to identify differentially expressed genes in the skin of normal and stressed mice, with key genes SDF-1/CXCR4 selected through machine learning and a protein-protein interaction network established. A chronic stress mouse model was created, with injections of SDF-1 and AMD3100 administered to observe hair growth, weight changes, and behavioral alterations and validate hair follicle activity. Skin SDF-1 concentrations were measured, differentially expressed genes were screened, and pathways were enriched. Activation of the PI3K/Akt and JAK/STAT signaling pathways was assessed, and siRNA technology was used in vitro to inhibit the expression of SDF-1 or CXCR4. SDF-1 promoted hair follicle activity, with the combined injection of SDF-1 and AMD3100 weakening this effect. The activation of the PI3K/Akt and JAK/STAT signaling pathways was observed in the SDF-1 injection group, confirmed by Western blot and immunofluorescence. Silencing SDF-1 through siRNA-mediated inhibition reduced cell proliferation and migration abilities. SDF-1 promotes hair growth in chronic stress mice by activating the PI3K/Akt and JAK/STAT pathways, an effect reversible by AMD3100. The SDF-1/CXCR4 axis may serve as a potential therapeutic target for stress-induced hair loss.
Collapse
Affiliation(s)
- Yinglin Zhao
- Department of Psychosomatic Medicine, Shantou University Mental Health Center, Wanji Industrial Zone, Taishan North Road, Shantou 515041, China;
| | - Wenzi Liang
- Department of Histology and Embryology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (W.L.); (Z.L.); (X.C.)
| | - Zhehui Liu
- Department of Histology and Embryology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (W.L.); (Z.L.); (X.C.)
| | - Xiuwen Chen
- Department of Histology and Embryology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (W.L.); (Z.L.); (X.C.)
| | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (W.L.); (Z.L.); (X.C.)
| |
Collapse
|
12
|
Djataou P, Djuidje Ngounoue M, Nkenfou-Tchinda CN, Ngoufack MN, Elong E, Tiga A, Muluh C, Kadji Kameni J, Djaouda M, Ndjolo A, Nkenfou CN. Low prevalence of HIV in the northern Cameroon: contribution of some AIDS restriction genes and potential implications for gene therapy. Front Genet 2024; 15:1447971. [PMID: 39346778 PMCID: PMC11427317 DOI: 10.3389/fgene.2024.1447971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
Background HIV infection and its progression to AIDS depend on several factors including host genetic factors. The immunological mechanisms of host resistance to HIV infection greatly influence the prevalence of HIV in a given region. Worldwide, Cameroon not exempted, the frequency of AIDS-associated genes varies and may influence this prevalence. The North and Far North Regions of Cameroon have had the lowest HIV prevalence in the country for many years despite risky behaviors associated with their customs and habits. In this work, we seek to explore the contribution of host genes to the HIV low prevalence in these regions. Methodology Five genes variants previously described as HIV AIDS related were studied. These genes are: CCR5Δ32, CCR5promoter59029G, CCR2-64I, SDF1-3'A and Trim5α(R136Q). A total of 384 consented participants were included in this study. The HIV serological status was confirmed using national algorithm. Genomic DNA was extracted from the buffy coats and used for genotyping. The results obtained were compiled in Excel 2016, Epi Info 7.1 and snpStats software and Chi two tests allowed us to compare the frequencies of the AIDS related alleles in the North with those in other Regions of Cameroon and to measure the impact of these ARGs on protection against HIV. Results The frequency of protective alleles CCR5Δ32, CCR5promoter59029G, CCR2-64I, SDF1-3'A and Trim5α(R136Q) was the allelic frequencies should be expressed as percentages i.e. 0.52%; 37.56%; 36.46%; 25.19% and 69.33%. These allelic frequencies exhibited a significant difference when compared to those obtained in other regions of Cameroon (p < 0.01). Protective alleles were predominant in the Northern region compared to others and were associated with resistance to HIV [(p < 0.0001); OR = 2.02 CI, 95%]. Conclusion The higher frequency of HIV-protective alleles in the northern regions may be a contributing factor to the lower prevalence of HIV. Nevertheless, this should be reinforced by other preventive and surveillance methods to guarantee the sustained low prevalence. HIV can develop resistance through the process of mutation, but the host targets themselves are genetically stable. The study of these host genetic restriction factors is of great value in the design of a practical cure for HIV infection or an effective vaccine.
Collapse
Affiliation(s)
- Patrice Djataou
- Chantal BIYA International Reference Center (CBIRC), Yaounde, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | | | - Carine Nguefeu Nkenfou-Tchinda
- Department of Biochemistry, Faculty of Medicine and Pharmaceutical Sciences of Sangmelima, Ebolowa University, Sangmelima, Cameroon
| | | | - Elise Elong
- Chantal BIYA International Reference Center (CBIRC), Yaounde, Cameroon
| | - Aline Tiga
- Chantal BIYA International Reference Center (CBIRC), Yaounde, Cameroon
| | | | | | - Moussa Djaouda
- Department of Life and Earth Sciences, University of Maroua, Maroua, Cameroon
| | - Alexis Ndjolo
- Chantal BIYA International Reference Center (CBIRC), Yaounde, Cameroon
| | - Celine Nguefeu Nkenfou
- Chantal BIYA International Reference Center (CBIRC), Yaounde, Cameroon
- Department of Biological Sciences, Higher Teachers Training College, Yaounde, Cameroon
| |
Collapse
|
13
|
Yang J, Tian E, Chen L, Liu Z, Ren Y, Mao W, Zhang Y, Zhang J. Development and therapeutic perspectives of CXCR4 antagonists for disease therapy. Eur J Med Chem 2024; 275:116594. [PMID: 38879970 DOI: 10.1016/j.ejmech.2024.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Chemokine receptor 4 (CXCR4) is a subtype receptor protein of the GPCR family with a seven-transmembrane structure widely distributed in human tissues. CXCR4 is involved in diseases (e.g., HIV-1 infection), cancer proliferation and metastasis, inflammation signaling pathways, and leukemia, making it a promising drug target. Clinical trials on CXCR4 antagonists mainly focused on peptides and antibodies, with a few small molecule compounds, such as AMD11070 (2) and MSX-122 (3), showing promise in cancer treatment. This perspective discusses the structure-activity relationship (SAR) of CXCR4 and its role in diseases, mainly focusing on the SAR of CXCR4 antagonists. It also explores the standard structural features and target interactions of CXCR4 binding in different disease categories. Furthermore, it investigates various modification strategies to propose potential improvements in the effectiveness of CXCR4 drugs.
Collapse
Affiliation(s)
- Jun Yang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Erkang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Li Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zihang Liu
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Wuyu Mao
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yiwen Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
14
|
Ludwig-Husemann A, Schertl P, Shrivastava A, Geckle U, Hafner J, Schaarschmidt F, Willenbacher N, Freudenberg U, Werner C, Lee-Thedieck C. A Multifunctional Nanostructured Hydrogel as a Platform for Deciphering Niche Interactions of Hematopoietic Stem and Progenitor Cells. Adv Healthc Mater 2024; 13:e2304157. [PMID: 38870600 DOI: 10.1002/adhm.202304157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/10/2024] [Indexed: 06/15/2024]
Abstract
For over half a century, hematopoietic stem cells (HSCs) have been used for transplantation therapy to treat severe hematologic diseases. Successful outcomes depend on collecting sufficient donor HSCs as well as ensuring efficient engraftment. These processes are influenced by dynamic interactions of HSCs with the bone marrow niche, which can be revealed by artificial niche models. Here, a multifunctional nanostructured hydrogel is presented as a 2D platform to investigate how the interdependencies of cytokine binding and nanopatterned adhesive ligands influence the behavior of human hematopoietic stem and progenitor cells (HSPCs). The results indicate that the degree of HSPC polarization and motility, observed when cultured on gels presenting the chemokine SDF-1α and a nanoscale-defined density of a cellular (IDSP) or extracellular matrix (LDV) α4β1 integrin binding motif, are differently influenced on hydrogels functionalized with the different ligand types. Further, SDF-1α promotes cell polarization but not motility. Strikingly, the degree of differentiation correlates negatively with the nanoparticle spacing, which determines ligand density, but only for the cellular-derived IDSP motif. This mechanism potentially offers a means of predictably regulating early HSC fate decisions. Consequently, the innovative multifunctional hydrogel holds promise for deciphering dynamic HSPC-niche interactions and refining transplantation therapy protocols.
Collapse
Affiliation(s)
- Anita Ludwig-Husemann
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peter Schertl
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Ananya Shrivastava
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Udo Geckle
- Institute for Applied Materials - Energy Storage Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Johanna Hafner
- Institute for Mechanical Process Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, 76131, Karlsruhe, Germany
| | - Frank Schaarschmidt
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, 76131, Karlsruhe, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden e.V, Max Bergmann Center of Biomaterials, Hohe Str. 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden e.V, Max Bergmann Center of Biomaterials, Hohe Str. 6, 01069, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technical University Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
15
|
Mullis DM, Padilla-Lopez A, Wang H, Zhu Y, Elde S, Bonham SA, Yajima S, Kocher ON, Krieger M, Woo YJ. Stromal cell-derived factor-1 alpha improves cardiac function in a novel diet-induced coronary atherosclerosis model, the SR-B1ΔCT/LDLR KO mouse. Atherosclerosis 2024; 395:117518. [PMID: 38627162 PMCID: PMC11254567 DOI: 10.1016/j.atherosclerosis.2024.117518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND AND AIMS There are a limited number of pharmacologic therapies for coronary artery disease, and few rodent models of occlusive coronary atherosclerosis and consequent myocardial infarction with which one can rapidly test new therapeutic approaches. Here, we characterize a novel, fertile, and easy-to-use HDL receptor (SR-B1)-based model of atherogenic diet-inducible, fatal coronary atherosclerosis, the SR-B1ΔCT/LDLR KO mouse. Additionally, we test intramyocardial injection of Stromal Cell-Derived Factor-1 alpha (SDF-1α), a potent angiogenic cytokine, as a possible therapy to rescue cardiac function in this mouse. METHODS SR-B1ΔCT/LDLR KO mice were fed the Paigen diet or standard chow diet, and we determined the effects of the diets on cardiac function, histology, and survival. After two weeks of feeding either the Paigen diet (n = 24) or standard chow diet (n = 20), the mice received an intramyocardial injection of either SDF-1α or phosphate buffered saline (PBS). Cardiac function and angiogenesis were assessed two weeks later. RESULTS When six-week-old mice were fed the Paigen diet, they began to die as early as 19 days later and 50% had died by 38 days. None of the mice maintained on the standard chow diet died by day 72. Hearts from mice on the Paigen diet showed evidence of cardiomegaly, myocardial infarction, and occlusive coronary artery disease. For the five mice that survived until day 28 that underwent an intramyocardial injection of PBS on day 15, the average ejection fraction (EF) decreased significantly from day 14 (the day before injection, 52.1 ± 4.3%) to day 28 (13 days after the injection, 30.6 ± 6.8%) (paired t-test, n = 5, p = 0.0008). Of the 11 mice fed the Paigen diet and injected with SDF-1α on day 15, 8 (72.7%) survived to day 28. The average EF for these 8 mice increased significantly from 48.2 ± 7.2% on day 14 to63.6 ± 6.9% on day 28 (Paired t-test, n = 8, p = 0.003). CONCLUSIONS This new mouse model and treatment with the promising angiogenic cytokine SDF-1α may lead to new therapeutic approaches for ischemic heart disease.
Collapse
MESH Headings
- Animals
- Chemokine CXCL12/metabolism
- Chemokine CXCL12/genetics
- Disease Models, Animal
- Mice, Knockout
- Coronary Artery Disease
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Scavenger Receptors, Class B/genetics
- Male
- Neovascularization, Physiologic/drug effects
- Mice, Inbred C57BL
- Diet, Atherogenic
- Mice
- Ventricular Function, Left
- Myocardium/pathology
- Myocardium/metabolism
- Diet, High-Fat
Collapse
Affiliation(s)
- Danielle M Mullis
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Stefan Elde
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Spencer A Bonham
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Shin Yajima
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Olivier N Kocher
- Department of Pathology, Beth Israel Hospital, Harvard Medical School, Boston, MA, USA
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, MA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
You H, Zhao P, Zhao X, Zheng Q, Ma W, Cheng K, Li M, Kou J, Feng W. Promotion of tumor angiogenesis and growth induced by low-dose antineoplastic agents via bone-marrow-derived cells in tumor tissues. Front Pharmacol 2024; 15:1414832. [PMID: 39119610 PMCID: PMC11306047 DOI: 10.3389/fphar.2024.1414832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
Background More research is needed to solidify the basis for reasonable metronomic chemotherapy regimens due to the inconsistent clinical outcomes from studies on metronomic chemotherapy with antineoplastic agents, along with signs of a nonlinear dose-response relationship at low doses. The present study therefore explored the dose-response relationships of representative antineoplastic agents in low dose ranges and their underlying mechanisms. Methods Cyclophosphamide (CPA) and 5-fluorouracil (5-Fu) were employed to observe the effects of the frequent administration of low-dose antineoplastic agents on tumor growth, tumor angiogenesis, and bone-marrow-derived cell (BMDC) mobilization in mouse models. The effects of antineoplastic agents on tumor and endothelial cell functions with or without BMDCs were analyzed in vitro. Results Tumor growth and metastasis were significantly promoted after the administration of CPA or 5-Fu at certain low dose ranges, and were accompanied by enhanced tumor angiogenesis and proangiogenic factor expression in tumor tissues, increased proangiogenic BMDC release in the circulating blood, and augmented proangiogenic BMDC retention in tumor tissues. Low concentrations of CPA or 5-Fu were found to significantly promote tumor cell migration and invasion, and enhance BMDC adhesion to endothelial cells in vitro. Conclusion These results suggest that there are risks in empirical metronomic chemotherapy using low-dose antineoplastic agents and the optimal dosage and administration schedule of antineoplastic agents need to be determined through further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weiyi Feng
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
17
|
Yang W, Liu M, Sun Q, Liu L, Wu W, Liu F, Liu Z. Needle-scalpel therapy inhibits the apoptosis of nucleus pulposus cells via the SDF-1/CXCR4 axis in a rat degenerative cervical intervertebral disc model. Aging (Albany NY) 2024; 16:10868-10881. [PMID: 38949514 PMCID: PMC11272114 DOI: 10.18632/aging.205959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024]
Abstract
As a common disease, cervical spondylosis (CS) results from the degeneration of the cervical intervertebral disc. However, there are still no effective clinical strategies for the treatment of this disease. Needle-scalpel (Ns), a therapy guided by traditional Chinese medicine theory, alleviates intervertebral disc degradation and is widely used in the clinic to treat CS. Stromal cell-derived factor-1 (SDF-1) and its receptor CXC receptor 4 (CXCR4) in nucleus pulposus cells play an important role in CS onset and development. This study aimed to explore whether Ns can relieve pain and regulate the SDF-1/CXCR4 axis in nucleus pulposus cells to inhibit apoptosis, thereby delaying cervical intervertebral disc degradation in a rat model of CS. It was found that the Ns-treated groups exhibited higher mechanical allodynia scores than the model group, and H&E staining, MRI, and scanning electron microscopy revealed that Ns therapy inhibited intervertebral disc degeneration. Additionally, Ns therapy significantly inhibited increases in the RNA and protein expression levels of SDF-1 and CXCR4. Furthermore, these treatments alleviated the apoptosis of nucleus pulposus cells, which manifested as a decline in the proportion of apoptotic nucleus pulposus cells and inhibition of the decrease in the levels of Bcl-2/Bax. These findings indicated that Ns mitigated CS-induced pain, inhibited the apoptosis of nucleus pulposus cells, and alleviated intervertebral disc degeneration in CS rats. These effects may be mediated by specifically regulating the SDF-1/CXCR4 signaling axis. Based on these findings, we conclude that Ns might serve as a promising therapy for the treatment of CS.
Collapse
Affiliation(s)
- Wenlong Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Muqing Liu
- School of Acupuncture-Tuina, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Qinran Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Lei Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Wenqing Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Fangming Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Zhizhen Liu
- School of Acupuncture-Tuina, Shandong University of Traditional Chinese Medicine, Shandong, China
| |
Collapse
|
18
|
Kim SY, Son MK, Park JH, Na HS, Chung J. The Anti-Inflammatory Effect of SDF-1 Derived Peptide on Porphyromonas gingivalis Infection via Regulation of NLRP3 and AIM2 Inflammasome. Pathogens 2024; 13:474. [PMID: 38921772 PMCID: PMC11207117 DOI: 10.3390/pathogens13060474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024] Open
Abstract
(1) Background: Peptides are appealing as pharmacological materials because they are easily produced, safe, and tolerable. Despite increasing gum-care awareness, periodontitis is still prevalent and is influenced by factors like high sugar consumption, smoking, and aging. Porphyromonas gingivalis is considered a major etiologic agent of periodontitis and activates the NLR family pyrin domain containing 3 (NLRP3) but is absent in melanoma 2 (AIM2) inflammasomes, resulting in pro-inflammatory cytokine release. (2) Methods: We examined the anti-inflammatory effects of 18 peptides derived from human stromal cell-derived factor-1 (SDF-1) on THP-1 macrophages. Inflammation was induced by P. gingivalis, and the anti-inflammatory effects were analyzed using molecular biological techniques. In a mouse periodontitis model, alveolar bone resorption was assessed using micro-CT. (3) Results: Of the 18 SDF-1-derived peptides, S10 notably reduced IL-1β and TNF-α secretion. S10 also diminished the P. gingivalis-induced expression of NLRP3, AIM2, ASC (apoptosis-associated speck-like protein), caspase-1, and IL-1β. Furthermore, S10 attenuated the enhanced TLR (toll-like receptor) signaling pathway and decreased the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). In addition, S10 mitigated alveolar bone loss in our P. gingivalis-induced mouse model of periodontitis. (4) Conclusions: S10 suppressed TLR/NF-κB/NLRP3 inflammasome signaling and the AIM2 inflammasome in our P. gingivalis-induced murine periodontitis model, which suggests that it has potential use as a therapeutic treatment for periodontitis.
Collapse
Affiliation(s)
- Si Yeong Kim
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.K.); (M.K.S.); (J.H.P.); (H.S.N.)
- Oral Genomics Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Min Kee Son
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.K.); (M.K.S.); (J.H.P.); (H.S.N.)
| | - Jung Hwa Park
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.K.); (M.K.S.); (J.H.P.); (H.S.N.)
- Oral Genomics Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.K.); (M.K.S.); (J.H.P.); (H.S.N.)
- Oral Genomics Research Center, Pusan National University, Yangsan 50612, Republic of Korea
- BK21 PLUS Project, Dental Research Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.K.); (M.K.S.); (J.H.P.); (H.S.N.)
- Oral Genomics Research Center, Pusan National University, Yangsan 50612, Republic of Korea
- BK21 PLUS Project, Dental Research Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
19
|
Liao J, Gong L, Xu Q, Wang J, Yang Y, Zhang S, Dong J, Lin K, Liang Z, Sun Y, Mu Y, Chen Z, Lu Y, Zhang Q, Lin Z. Revolutionizing Neurocare: Biomimetic Nanodelivery Via Cell Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402445. [PMID: 38583077 DOI: 10.1002/adma.202402445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Brain disorders represent a significant challenge in medical science due to the formidable blood-brain barrier (BBB), which severely limits the penetration of conventional therapeutics, hindering effective treatment strategies. This review delves into the innovative realm of biomimetic nanodelivery systems, including stem cell-derived nanoghosts, tumor cell membrane-coated nanoparticles, and erythrocyte membrane-based carriers, highlighting their potential to circumvent the BBB's restrictions. By mimicking native cell properties, these nanocarriers emerge as a promising solution for enhancing drug delivery to the brain, offering a strategic advantage in overcoming the barrier's selective permeability. The unique benefits of leveraging cell membranes from various sources is evaluated and advanced technologies for fabricating cell membrane-encapsulated nanoparticles capable of masquerading as endogenous cells are examined. This enables the targeted delivery of a broad spectrum of therapeutic agents, ranging from small molecule drugs to proteins, thereby providing an innovative approach to neurocare. Further, the review contrasts the capabilities and limitations of these biomimetic nanocarriers with traditional delivery methods, underlining their potential to enable targeted, sustained, and minimally invasive treatment modalities. This review is concluded with a perspective on the clinical translation of these biomimetic systems, underscoring their transformative impact on the therapeutic landscape for intractable brain diseases.
Collapse
Affiliation(s)
- Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Qingqiang Xu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Jingya Wang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuanyuan Yang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shiming Zhang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Junwei Dong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Kerui Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zichao Liang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuhan Sun
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yongxu Mu
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Zhengju Chen
- Pooling Medical Research Institutes of 100Biotech, Beijing, 100006, China
| | - Ying Lu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
20
|
Ragkousis A, Kazantzis D, Georgalas I, Theodossiadis P, Kroupis C, Chatziralli I. PON1, APOE and SDF-1 Gene Polymorphisms and Risk of Retinal Vein Occlusion: A Case-Control Study. Genes (Basel) 2024; 15:712. [PMID: 38927649 PMCID: PMC11203263 DOI: 10.3390/genes15060712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Numerous studies have tried to evaluate the potential role of thrombophilia-related genes in retinal vein occlusion (RVO); however, there is limited research on genes related to different pathophysiological mechanisms involved in RVO. In view of the strong contribution of oxidative stress and inflammation to the pathogenesis of RVO, the purpose of the present study was to investigate the association of inflammation- and oxidative-stress-related polymorphisms from three different genes [apolipoprotein E (APOE), paraoxonase 1 (PON1) and stromal cell-derived factor 1 (SDF-1)] and the risk of RVO in a Greek population. Participants in this case-control study were 50 RVO patients (RVO group) and 50 healthy volunteers (control group). Blood samples were collected on EDTA tubes and genomic DNA was extracted. Genotyping of rs854560 (L55M) and rs662 (Q192R) for the PON1 gene, rs429358 and rs7412 for the APOE gene and rs1801157 [SDF1-3'G(801)A] for SDF-1 gene was performed using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Multiple genetic models (codominant, dominant, recessive, overdominant and log-additive) and haplotype analyses were performed using the SNPStats web tool to assess the correlation between the genetic polymorphisms and the risk of RVO. Binary logistic regression analysis was used for the association analysis between APOE gene variants and RVO. Given the multifactorial nature of the disease, our statistical analysis was adjusted for the most important systemic risk factors (age, hypertension and diabetes mellitus). The dominant genetic model for the PON1 Q192R single nucleotide polymorphism (SNP) of the association analysis revealed that there was a statistically significant difference between the RVO group and the control group. Specifically, after adjusting for age and hypertension, the PON1 192 R allele (QR + RR) was found to be associated with a statistically significantly higher risk of RVO compared to the QQ genotype (OR = 2.51; 95% CI = 1.02-6.14, p = 0.04). The statistically significant results were maintained after including diabetes in the multivariate model in addition to age and hypertension (OR = 2.83; 95% CI = 1.01-7.97, p = 0.042). No statistically significant association was revealed between the other studied polymorphisms and the risk of RVO. Haplotype analysis for PON1 SNPs, L55M and Q192R, revealed no statistically significant correlation. In conclusion, PON1 192 R allele carriers (QR + RR) were associated with a statistically significantly increased risk of RVO compared to the QQ homozygotes. These findings suggest that the R allele of the PON1 Q192R is likely to play a role as a risk factor for retinal vein occlusion.
Collapse
Affiliation(s)
- Antonios Ragkousis
- 2nd Department of Ophthalmology, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (D.K.); (P.T.); (I.C.)
| | - Dimitrios Kazantzis
- 2nd Department of Ophthalmology, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (D.K.); (P.T.); (I.C.)
| | - Ilias Georgalas
- 1st Department of Ophthalmology, “G. Gennimatas” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Panagiotis Theodossiadis
- 2nd Department of Ophthalmology, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (D.K.); (P.T.); (I.C.)
| | - Christos Kroupis
- Department of Clinical Biochemistry, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Irini Chatziralli
- 2nd Department of Ophthalmology, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (D.K.); (P.T.); (I.C.)
| |
Collapse
|
21
|
Tan J, Wang H, Liu S, Li L, Liu H, Liu T, Chen J. Multifunctional nanocoatings with synergistic controlled release of zinc ions and cytokines for precise modulation of vascular intimal reconstruction. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 57:102739. [PMID: 38341009 DOI: 10.1016/j.nano.2024.102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Vascular stent implantation remains the major therapeutic method for cardiovascular diseases currently. We here introduced crucial biological functional biological function factors (SDF-1α, VEGF) and vital metal ions (Zn2+) into the stent surface to explore their synergistic effect in the microenvironment. The combination of the different factors is known to effectively regulate cellular inflammatory response and selectively regulate cell biological behavior. Meanwhile, in the implemented method, VEGF and Zn2+ were loaded into heparin and poly-l-lysine (Hep-PLL) nanoparticles, ensuring a controlled release of functional molecules with a multi-factor synergistic effect and excellent biological functions in vitro and in vivo. Notably, after 150 days of implantation of the modified stent in rabbits, a thin and smooth new intima was obtained. This study offers a new idea for constructing a modified surface microenvironment and promoting tissue repair.
Collapse
Affiliation(s)
- Jianying Tan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Huanran Wang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Hengquan Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Tao Liu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
22
|
Chen TY, Cheng KC, Yang PS, Shrestha LK, Ariga K, Hsu SH. Interaction of vascular endothelial cells with hydrophilic fullerene nanoarchitectured structures in 2D and 3D environments. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2315014. [PMID: 38419801 PMCID: PMC10901190 DOI: 10.1080/14686996.2024.2315014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
The interaction between diverse nanoarchitectured fullerenes and cells is crucial for biomedical applications. Here, we detailed the preparation of hydrophilic self-assembled fullerenes by the liquid-liquid interfacial precipitation (LLIP) method and hydrophilic coating of the materials as a possible vascularization strategy. The interactions of vascular endothelial cells (ECs) with hydrophilic fullerene nanotubes (FNT-P) and hydrophilic fullerene nanowhiskers (FNW-P) were investigated. The average length and diameter of FNT-P were 16 ± 2 μm and 3.4 ± 0.4 μm (i.e. aspect ratios of 4.6), respectively. The average length and diameter of FNW-P were 65 ± 8 μm and 1.2 ± 0.2 μm (i.e. aspect ratios of 53.9), respectively. For two-dimensional (2D) culture after 7 days, the ECs remained viable and proliferated up to ~ 420% and ~ 400% with FNT-P and FNW-P of 50 μg/mL, respectively. Furthermore, an optimized chitosan-based self-healing hydrogel with a modulus of ~400 Pa was developed and used to incorporate self-assembled fullerenes as in vitro three-dimensional (3D) platforms to investigate the impact of FNT-P and FNW-P on ECs within a 3D environment. The addition of FNW-P or FNT-P (50 μg/mL) in the hydrogel system led to proliferation rates of ECs up to ~323% and ~280%, respectively, after 7 days of culture. The ECs in FNW-P hydrogel displayed an elongated shape with aligned morphology, while those in FNT-P hydrogel exhibited a rounded and clustered distribution. Vascular-related gene expressions of ECs were significantly upregulated through interactions with these fullerenes. Thus, the combined use of different nanoarchitectured self-assembled fullerenes and self-healing hydrogels may offer environmental cues influencing EC development in a 3D biomimetic microenvironment, holding promise for advancing vascularization strategy in tissue engineering.
Collapse
Affiliation(s)
- Tsai-Yu Chen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Kun-Chih Cheng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Pei-Syuan Yang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Lok Kumar Shrestha
- Supermolecules Group, Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Katsuhiko Ariga
- Supermolecules Group, Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan, R.O.C
| |
Collapse
|
23
|
Wang C, Dong J, Liu F, Liu N, Li L. 3D-printed PCL@BG scaffold integrated with SDF-1α-loaded hydrogel for enhancing local treatment of bone defects. J Biol Eng 2024; 18:1. [PMID: 38167201 PMCID: PMC10763424 DOI: 10.1186/s13036-023-00401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The long-term nonunion of bone defects is always a difficult problem in orthopaedics treatment. Artificial bone implants made of polymeric materials are expected to solve this problem due to their suitable degradation rate and good biocompatibility. However, the lack of mechanical strength, low osteogenic induction ability and poor hydrophilicity of these synthetic polymeric materials limit their large-scale clinical application. RESULTS In this study, we used bioactive glass (BG) (20%, W/W) and polycaprolactone (PCL, 80%, W/W) as raw materials to prepare a bone repair scaffold (PCL@BG20) using fused deposition modelling (FDM) three-dimensional (3D) printing technology. Subsequently, stromal cell-derived factor-1α (SDF-1α) chemokines were loaded into the PCL@BG20 scaffold pores with gelatine methacryloyl (GelMA) hydrogel. The experimental results showed that the prepared scaffold had a porous biomimetic structure mimicking that of cancellous bone, and the compressive strength (44.89 ± 3.45 MPa) of the scaffold was similar to that of cancellous bone. Transwell experiments showed that scaffolds loaded with SDF-1α could promote the recruitment of bone marrow stromal cells (BMSCs). In vivo data showed that treatment with scaffolds containing SDF-1α and BG (PCL@BG-GelMA/SDF-1α) had the best effect on bone defect repair compared to the other groups, with a large amount of new bone and mature collagen forming at the bone defect site. No significant organ toxicity or inflammatory reactions were observed in any of the experimental groups. CONCLUSIONS The results show that this kind of scaffold containing BG and SDF-1α serves the dual functions of recruiting stem cell migration in vivo and promoting bone repair in situ. We envision that this scaffold may become a new strategy for the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Orthopaedics Surgery, Shandong Trauma Center, Jinan, 2500021, China
| | - Jinlei Dong
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Orthopaedics Surgery, Shandong Trauma Center, Jinan, 2500021, China
| | - Fanxiao Liu
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Orthopaedics Surgery, Shandong Trauma Center, Jinan, 2500021, China
| | - Nan Liu
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Orthopaedics Surgery, Shandong Trauma Center, Jinan, 2500021, China
| | - Lianxin Li
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
- Department of Orthopaedics Surgery, Shandong Trauma Center, Jinan, 2500021, China.
| |
Collapse
|
24
|
Ji S, Kim K, Park SJ, Lee JY, Jung HW, Yoo HJ, Jang IY, Lee E, Baek JY, Kim BJ. Higher Plasma Stromal Cell-Derived Factor 1 Is Associated with Lower Risk for Sarcopenia in Older Asian Adults. Endocrinol Metab (Seoul) 2023; 38:701-708. [PMID: 37849050 PMCID: PMC10764998 DOI: 10.3803/enm.2023.1783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGRUOUND Despite the protective effects of stromal cell-derived factor 1 (SDF-1) in stimulating muscle regeneration shown in experimental research, there is a lack of clinical studies linking circulating SDF-1 concentrations with muscle phenotypes. In order to elucidate the role of SDF-1 as a potential biomarker reflecting human muscle health, we investigated the association of plasma SDF-1 levels with sarcopenia in older adults. METHODS This cross-sectional study included 97 community-dwelling participants who underwent a comprehensive geriatric assessment at a tertiary hospital in South Korea. Sarcopenia was defined by specific cutoff values applicable to the Asian population, whereas plasma SDF-1 levels were determined using an enzyme immunoassay. RESULTS After accounting for sex, age, and body mass index, participants with sarcopenia and low muscle mass exhibited plasma SDF-1 levels that were 21.8% and 18.3% lower than those without these conditions, respectively (P=0.008 and P=0.009, respectively). Consistently, higher plasma SDF-1 levels exhibited a significant correlation with higher skeletal muscle mass index (SMI) and gait speed (both P=0.043), and the risk of sarcopenia and low muscle mass decreased by 58% and 55% per standard deviation increase in plasma SDF-1 levels, respectively (P=0.045 and P=0.030, respectively). Furthermore, participants in the highest SDF-1 tertile exhibited significantly higher SMI compared to those in the lowest tertile (P=0.012). CONCLUSION These findings clinically corroborate earlier experimental discoveries highlighting the muscle anabolic effects of SDF- 1 and support the potential role of circulating SDF-1 as a biomarker reflecting human muscle health in older adults.
Collapse
Affiliation(s)
- Sunghwan Ji
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Digital Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - So Jeong Park
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Young Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee-Won Jung
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Il-Young Jang
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunju Lee
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Yeon Baek
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Beom-Jun Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Zheng X, Zhao D, Liu Y, Jin Y, Liu T, Li H, Liu D. Regeneration and anti-inflammatory effects of stem cells and their extracellular vesicles in gynecological diseases. Biomed Pharmacother 2023; 168:115739. [PMID: 37862976 DOI: 10.1016/j.biopha.2023.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
There are many gynecological diseases, among which breast cancer (BC), cervical cancer (CC), endometriosis (EMs), and polycystic ovary syndrome (PCOS) are common and difficult to cure. Stem cells (SCs) are a focus of regenerative medicine. They are commonly used to treat organ damage and difficult diseases because of their potential for self-renewal and multidirectional differentiation. SCs are also commonly used for difficult-to-treat gynecological diseases because of their strong directional differentiation ability with unlimited possibilities, their tendency to adhere to the diseased tissue site, and their use as carriers for drug delivery. SCs can produce exosomes in a paracrine manner. Exosomes can be produced in large quantities and have the advantage of easy storage. Their safety and efficacy are superior to those of SCs, which have considerable potential in gynecological treatment, such as inhibiting endometrial senescence, promoting vascular reconstruction, and improving anti-inflammatory and immune functions. In this paper, we review the mechanisms of the regenerative and anti-inflammatory capacity of SCs and exosomes in incurable gynecological diseases and the current progress in their application in genetic engineering to provide a foundation for further research.
Collapse
Affiliation(s)
- Xu Zheng
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dan Zhao
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Yang Liu
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Ye Jin
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Tianjia Liu
- Changchun University of Chinese Medicine, Changchun 130117, China; Baicheng Medical College, Baicheng 137000, China.
| | - Huijing Li
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Da Liu
- Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
26
|
Chen Y, Wan G, Li Z, Liu X, Zhao Y, Zou L, Liu W. Endothelial progenitor cells in pregnancy-related diseases. Clin Sci (Lond) 2023; 137:1699-1719. [PMID: 37986615 PMCID: PMC10665129 DOI: 10.1042/cs20230853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Placental neovascularization plays a crucial role in fetomaternal circulation throughout pregnancy and is dysregulated in several pregnancy-related diseases, including preeclampsia, gestational diabetes mellitus, and fetal growth restriction. Endothelial progenitor cells (EPCs) are a heterogeneous population of cells that differentiate into mature endothelial cells, which influence vascular homeostasis, neovascularization, and endothelial repair. Since their discovery in 1997 by Asahara et al., the role of EPCs in vascular biology has garnered a lot of interest. However, although pregnancy-related conditions are associated with changes in the number and function of EPCs, the reported findings are conflicting. This review discusses the discovery, isolation, and classification of EPCs and highlights discrepancies between current studies. Overviews of how various diseases affect the numbers and functions of EPCs, the role of EPCs as biomarkers of pregnancy disorders, and the potential therapeutic applications involving EPCs are also provided.
Collapse
Affiliation(s)
- Yangyang Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gui Wan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zeyun Li
- The First Clinical School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
27
|
Merrick BA, Martin NP, Brooks AM, Foley JF, Dunlap PE, Ramaiahgari S, Fannin RD, Gerrish KE. Insights into Repeated Renal Injury Using RNA-Seq with Two New RPTEC Cell Lines. Int J Mol Sci 2023; 24:14228. [PMID: 37762531 PMCID: PMC10531624 DOI: 10.3390/ijms241814228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Renal proximal tubule epithelial cells (RPTECs) are a primary site for kidney injury. We created two RPTEC lines from CD-1 mice immortalized with hTERT (human telomerase reverse transcriptase) or SV40 LgT antigen (Simian Virus 40 Large T antigen). Our hypothesis was that low-level, repeated exposure to subcytotoxic levels of 0.25-2.5 μM cisplatin (CisPt) or 12.5-100 μM aflatoxin B1 (AFB1) would activate distinctive genes and pathways in these two differently immortalized cell lines. RNA-seq showed only LgT cells responded to AFB1 with 1139 differentially expressed genes (DEGs) at 72 h. The data suggested that AFB1 had direct nephrotoxic properties on the LgT cells. However, both the cell lines responded to 2.5 μM CisPt from 3 to 96 h expressing 2000-5000 total DEGs. For CisPt, the findings indicated a coordinated transcriptional program of injury signals and repair from the expression of immune receptors with cytokine and chemokine secretion for leukocyte recruitment; robust expression of synaptic and substrate adhesion molecules (SAMs) facilitating the expression of neural and hormonal receptors, ion channels/transporters, and trophic factors; and the expression of nephrogenesis transcription factors. Pathway analysis supported the concept of a renal repair transcriptome. In summary, these cell lines provide in vitro models for the improved understanding of repeated renal injury and repair mechanisms. High-throughput screening against toxicant libraries should provide a wider perspective of their capabilities in nephrotoxicity.
Collapse
Affiliation(s)
- B. Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Negin P. Martin
- Viral Vector Core, Neurobiology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Ashley M. Brooks
- Biostatistics and Computational Biology Branch, Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Julie F. Foley
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Paul E. Dunlap
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Sreenivasa Ramaiahgari
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Rick D. Fannin
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (R.D.F.)
| | - Kevin E. Gerrish
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (R.D.F.)
| |
Collapse
|
28
|
Duan L, Wang Z, Fan S, Wang C, Zhang Y. Research progress of biomaterials and innovative technologies in urinary tissue engineering. Front Bioeng Biotechnol 2023; 11:1258666. [PMID: 37645598 PMCID: PMC10461011 DOI: 10.3389/fbioe.2023.1258666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Substantial interests have been attracted to multiple bioactive and biomimetic biomaterials in recent decades because of their ability in presenting a structural and functional reconstruction of urinary tissues. Some innovative technologies have also been surging in urinary tissue engineering and urological regeneration by providing insights into the physiological behavior of the urinary system. As such, the hierarchical structure and tissue function of the bladder, urethra, and ureter can be reproduced similarly to the native urinary tissues. This review aims to summarize recent advances in functional biomaterials and biomimetic technologies toward urological reconstruction. Various nanofirous biomaterials derived from decellularized natural tissues, synthetic biopolymers, and hybrid scaffolds were developed with desired microstructure, surface chemistry, and mechanical properties. Some growth factors, drugs, as well as inorganic nanomaterials were also utilized to enhance the biological activity and functionality of scaffolds. Notably, it is emphasized that advanced approaches, such as 3D (bio) printing and organoids, have also been developed to facilitate structural and functional regeneration of the urological system. So in this review, we discussed the fabrication strategies, physiochemical properties, and biofunctional modification of regenerative biomaterials and their potential clinical application of fast-evolving technologies. In addition, future prospective and commercial products are further proposed and discussed.
Collapse
Affiliation(s)
- Liwei Duan
- The Second Hospital, Jilin University, Changchun, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shuang Fan
- The Second Hospital, Jilin University, Changchun, China
| | - Chen Wang
- The Second Hospital, Jilin University, Changchun, China
| | - Yi Zhang
- The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
29
|
Zheng X, Zhao X, Wang Y, Chen J, Wang X, Peng X, Ma L, Du J. Inhibition of Cxcr4 Disrupts Mouse Embryonic Palatal Mesenchymal Cell Migration and Induces Cleft Palate Occurrence. Int J Mol Sci 2023; 24:12740. [PMID: 37628919 PMCID: PMC10454820 DOI: 10.3390/ijms241612740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Many processes take place during embryogenesis, and the development of the palate mainly involves proliferation, migration, osteogenesis, and epithelial-mesenchymal transition. Abnormalities in any of these processes can be the cause of cleft palate (CP). There have been few reports on whether C-X-C motif chemokine receptor 4 (CXCR4), which is involved in embryonic development, participates in these processes. In our study, the knockdown of Cxcr4 inhibited the migration of mouse embryonic palatal mesenchymal (MEPM) cells similarly to the use of its inhibitor plerixafor, and the inhibition of cell migration in the Cxcr4 knockdown group was partially reversed by supplementation with C-X-C motif chemokine ligand 12 (CXCL12). In combination with low-dose retinoic acid (RA), plerixafor increased the incidence of cleft palates in mice by decreasing the expression of Cxcr4 and its downstream migration-regulating gene Rac family small GTPase 1 (RAC1) mediating actin cytoskeleton to affect lamellipodia formation and focal complex assembly and ras homolog family member A (RHOA) regulating the actin cytoskeleton to affect stress fiber formation and focal complex maturation into focal adhesions. Our results indicate that the disruption of cell migration and impaired normal palatal development by inhibition of Cxcr4 expression might be mediated through Rac1 with RhoA. The combination of retinoic acid and plerixafor might increase the incidence of cleft palate, which also provided a rationale to guide the use of the drug during conception.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Juan Du
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.Z.); (Y.W.); (J.C.); (X.W.); (X.P.); (L.M.)
| |
Collapse
|
30
|
Alsbrook DL, Di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, Farahabadi MH, Jafarli A, Divani AA. Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Curr Neurol Neurosci Rep 2023; 23:407-431. [PMID: 37395873 PMCID: PMC10544736 DOI: 10.1007/s11910-023-01282-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of neuroinflammation in ischemic and hemorrhagic stroke, including recent findings on the mechanisms and cellular players involved in the inflammatory response to brain injury. RECENT FINDINGS Neuroinflammation is a crucial process following acute ischemic stroke (AIS) and hemorrhagic stroke (HS). In AIS, neuroinflammation is initiated within minutes of the ischemia onset and continues for several days. In HS, neuroinflammation is initiated by blood byproducts in the subarachnoid space and/or brain parenchyma. In both cases, neuroinflammation is characterized by the activation of resident immune cells, such as microglia and astrocytes, and infiltration of peripheral immune cells, leading to the release of pro-inflammatory cytokines, chemokines, and reactive oxygen species. These inflammatory mediators contribute to blood-brain barrier disruption, neuronal damage, and cerebral edema, promoting neuronal apoptosis and impairing neuroplasticity, ultimately exacerbating the neurologic deficit. However, neuroinflammation can also have beneficial effects by clearing cellular debris and promoting tissue repair. The role of neuroinflammation in AIS and ICH is complex and multifaceted, and further research is necessary to develop effective therapies that target this process. Intracerebral hemorrhage (ICH) will be the HS subtype addressed in this review. Neuroinflammation is a significant contributor to brain tissue damage following AIS and HS. Understanding the mechanisms and cellular players involved in neuroinflammation is essential for developing effective therapies to reduce secondary injury and improve stroke outcomes. Recent findings have provided new insights into the pathophysiology of neuroinflammation, highlighting the potential for targeting specific cytokines, chemokines, and glial cells as therapeutic strategies.
Collapse
Affiliation(s)
- Diana L Alsbrook
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Kunal Bhatia
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - José Biller
- Department of Neurology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Archana Hinduja
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Roysten Rodrigues
- Department of Neurology, University of Louisville, Louisville, KY, USA
| | - Miguel Rodriguez
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sara Y Sabbagh
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Alibay Jafarli
- Department of Neurology, Tufts Medical Center, Boston, MA, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
31
|
Yu Y, Zhang X, Chen Y, Li Y, Bian S, Yang Y, Song H, Zhang C, Dong Z, Li G, Xu L, Jia Z, Liu Y, He X, Yang M, Guo J, Zhou Z, Zhang Y. Single-cell sequencing of immune cells after marathon and symptom-limited cardiopulmonary exercise. iScience 2023; 26:106532. [PMID: 37123249 PMCID: PMC10130917 DOI: 10.1016/j.isci.2023.106532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/07/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Vigorous-intensity leisure-time physical activity, such as marathon, has become increasingly popular, but its effect on immune functions and health is poorly understood. Here, we performed scRNA-seq analysis of peripheral blood mononuclear cells (PBMCs) after a bout of symptom-limited cardiopulmonary exercise (CPX) test or marathon. Time-series single-cell analysis revealed the detailed series of landscapes of immune cells in response to short and long vigorous-intensity activities. Reduction of effective T cells was observed with the cell migration and motility pathways enriched in circulation following marathon. Baseline values of PBMCs abundance were reached around 1 h after CPX and 24 h following marathon, but longer time was required for expression recovery of cytotoxicity genes. The ratio of effector/naive T cells was found to change uniformly among the participants and could serve as a better indicator for exercise intensity than the CD4+/CD8+ T cell ratio. Moreover, we identified time-dependent monocyte state transitions after marathon.
Collapse
Affiliation(s)
- Yanli Yu
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing 100191, China
| | - Xiaolu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanjing Chen
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing 100191, China
| | - Yanze Li
- CapitalBio Technology, Beijing, China
| | - Suying Bian
- Beijing Zijing Biological Co., LTD, Beijing, China
| | - Yizhuo Yang
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing 100191, China
| | - Hanan Song
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing 100191, China
| | - Cheng Zhang
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing 100191, China
- Taizhou Vocational College of Science & Technology, Taizhou, Zhejiang 318020, China
| | - Zhenhe Dong
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing 100191, China
| | - Guanghui Li
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing 100191, China
| | - Luyou Xu
- Institute for Sport Performance and Health Promotion, Capital University of Physical Education and Sports, Beijing 100191, China
| | - Zhuang Jia
- Institute for Sport Performance and Health Promotion, Capital University of Physical Education and Sports, Beijing 100191, China
| | - Yu Liu
- Institute for Sport Performance and Health Promotion, Capital University of Physical Education and Sports, Beijing 100191, China
| | - Xiaoyi He
- Institute for Sport Performance and Health Promotion, Capital University of Physical Education and Sports, Beijing 100191, China
| | - Ming Yang
- Institute for Sport Performance and Health Promotion, Capital University of Physical Education and Sports, Beijing 100191, China
| | - Jianjun Guo
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing 100191, China
| | - Zhixiong Zhou
- Institute for Sport Performance and Health Promotion, Capital University of Physical Education and Sports, Beijing 100191, China
| | - Yan Zhang
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing 100191, China
| |
Collapse
|
32
|
Duan JL, Liu JJ, Ruan B, Ding J, Fang ZQ, Xu H, Song P, Xu C, Li ZW, Du W, Xu M, Ling YW, He F, Wang L. Age-related liver endothelial zonation triggers steatohepatitis by inactivating pericentral endothelium-derived C-kit. NATURE AGING 2023; 3:258-274. [PMID: 37118422 DOI: 10.1038/s43587-022-00348-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/02/2022] [Indexed: 04/30/2023]
Abstract
Aging leads to systemic metabolic disorders, including steatosis. Here we show that liver sinusoidal endothelial cell (LSEC) senescence accelerates liver sinusoid capillarization and promotes steatosis by reprogramming liver endothelial zonation and inactivating pericentral endothelium-derived C-kit, which is a type III receptor tyrosine kinase. Specifically, inhibition of endothelial C-kit triggers cellular senescence, perturbing LSEC homeostasis in male mice. During diet-induced nonalcoholic steatohepatitis (NASH) development, Kit deletion worsens hepatic steatosis and exacerbates NASH-associated fibrosis and inflammation. Mechanistically, C-kit transcriptionally inhibits chemokine (C-X-C motif) receptor (CXCR)4 via CCAAT enhancer-binding protein α (CEBPA). Blocking CXCR4 signaling abolishes LSEC-macrophage-neutrophil cross-talk and leads to the recovery of C-kit-deficient mice with NASH. Of therapeutic relevance, infusing C-kit-expressing LSECs into aged mice or mice with diet-induced NASH counteracts age-associated senescence and steatosis and improves the symptoms of diet-induced NASH by restoring metabolic homeostasis of the pericentral liver endothelium. Our work provides an alternative approach that could be useful for treating aging- and diet-induced NASH.
Collapse
Affiliation(s)
- Juan-Li Duan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing-Jing Liu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
- Center of Clinical Aerospace Medicine and Department of Aviation Medicine, Fourth Military Medical University, Xi'an, China
| | - Jian Ding
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi-Qiang Fang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ping Song
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi-Wen Li
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Du
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ming Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Wei Ling
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei He
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
33
|
Collier AD, Yasmin N, Karatayev O, Abdulai AR, Yu B, Khalizova N, Fam M, Leibowitz SF. Neuronal chemokine concentration gradients mediate effects of embryonic ethanol exposure on ectopic hypocretin/orexin neurons and behavior in zebrafish. Sci Rep 2023; 13:1447. [PMID: 36702854 PMCID: PMC9880007 DOI: 10.1038/s41598-023-28369-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Embryonic ethanol exposure in zebrafish and rats, while stimulating hypothalamic hypocretin/orexin (Hcrt) neurons along with alcohol consumption and related behaviors, increases the chemokine receptor Cxcr4 that promotes neuronal migration and may mediate ethanol's effects on neuronal development. Here we performed a more detailed anatomical analysis in zebrafish of ethanol's effects on the Cxcl12a/Cxcr4b system throughout the entire brain as it relates to Hcrt neurons developing within the anterior hypothalamus (AH) where they are normally located. We found that ethanol increased these Hcrt neurons only in the anterior part of the AH and induced ectopic Hcrt neurons further anterior in the preoptic area, and these effects along with ethanol-induced behaviors were completely blocked by a Cxcr4 antagonist. Analysis of cxcl12a transcripts and internalized Cxcr4b receptors throughout the brain showed they both exhibited natural posterior-to-anterior concentration gradients, with levels lowest in the posterior AH and highest in the anterior telencephalon. While stimulating their density in all areas and maintaining these gradients, ethanol increased chemokine expression only in the more anterior and ectopic Hcrt neurons, effects blocked by the Cxcr4 antagonist. These findings demonstrate how increased chemokine expression acting along natural gradients mediates ethanol-induced anterior migration of ectopic Hcrt neurons and behavioral disturbances.
Collapse
Affiliation(s)
- Adam D Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Nushrat Yasmin
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Olga Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Abdul R Abdulai
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Boyi Yu
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Nailya Khalizova
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Milisia Fam
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
34
|
Butt E, Howard CM, Raman D. LASP1 in Cellular Signaling and Gene Expression: More than Just a Cytoskeletal Regulator. Cells 2022; 11:cells11233817. [PMID: 36497077 PMCID: PMC9741313 DOI: 10.3390/cells11233817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
LIM and SH3 protein 1 was originally identified as a structural cytoskeletal protein with scaffolding function. However, recent data suggest additional roles in cell signaling and gene expression, especially in tumor cells. These novel functions are primarily regulated by the site-specific phosphorylation of LASP1. This review will focus on specific phosphorylation-dependent interaction between LASP1 and cellular proteins that orchestrate primary tumor progression and metastasis. More specifically, we will describe the role of LASP1 in chemokine receptor, and PI3K/AKT signaling. We outline the nuclear role for LASP1 in terms of epigenetics and transcriptional regulation and modulation of oncogenic mRNA translation. Finally, newly identified roles for the cytoskeletal function of LASP1 next to its known canonical F-actin binding properties are included.
Collapse
Affiliation(s)
- Elke Butt
- Institute of Experimental Biochemistry II, University Clinic Wuerzburg, 97080 Wuerzburg, Germany
- Correspondence: (E.B.); (D.R.); Tel.: +49-(0)931-201-48333 (E.B.); +1-419-383-4616 (D.R.)
| | - Cory M. Howard
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, MS 1010, Toledo, OH 43614, USA
| | - Dayanidhi Raman
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, MS 1010, Toledo, OH 43614, USA
- Correspondence: (E.B.); (D.R.); Tel.: +49-(0)931-201-48333 (E.B.); +1-419-383-4616 (D.R.)
| |
Collapse
|
35
|
Condelipes PGM, Fontes PM, Godinho-Santos A, Brás EJS, Marques V, Afonso MB, Rodrigues CMP, Chu V, Gonçalves J, Conde JP. Towards personalized antibody cancer therapy: development of a microfluidic cell culture device for antibody selection. LAB ON A CHIP 2022; 22:4717-4728. [PMID: 36349999 DOI: 10.1039/d2lc00918h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antibody therapy has been one of the most successful therapies for a wide range of diseases, including cancer. One way of expediting antibody therapy development is through phage display technology. Here, by screening thousands of randomly assembled peptide sequences, it is possible to identify potential therapeutic candidates. Conventional screening technologies do not accommodate perfusion through the system, as is the case of standard plate-based cultures. This leads to a poor translation of the experimental results obtained in vitro when moving to a more physiologically relevant setting, such as the case of preclinical animal models or clinical trials. Microfluidics is a technology that can improve screening efficacy by replicating more physiologically relevant conditions such as shear stress. In this work, a polydimethylsiloxane/polystyrene-based microfluidic system for a continuously perfused culture of cancer cells is reported. Human colorectal adenocarcinoma cells (HCT116) expressing CXCR4 were used as a cell target. Fluorescently labeled M13 phages anti-CXCR4 were used to study the efficiency of the microfluidic system as a tool to study the binding kinetics of the engineered bacteriophages. Using our microfluidic platform, we estimated a dissociation constant of 0.45 pM for the engineered phage. Additionally, a receptor internalization assay was developed using SDF-1α to verify phage specificity to the CXCR4 receptor. Upon receptor internalization there was a signal reduction, proving that the anti-CXCR4 fluorescently labelled M13 phages bound specifically to the CXCR4 receptor. The simplicity and ease of use of the microfluidic device design presented in this work can form the basis of a generic platform that facilitates the study and optimization of therapies based on interaction with biological entities such as mammalian cells.
Collapse
Affiliation(s)
- Pedro G M Condelipes
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Pedro Mendes Fontes
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Godinho-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Eduardo J S Brás
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
| | - João Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - João Pedro Conde
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
36
|
Bona A, Seifert M, Thünauer R, Zodel K, Frew IJ, Römer W, Walz G, Yakulov TA. MARVEL domain containing CMTM4 affects CXCR4 trafficking. Mol Biol Cell 2022; 33:ar116. [PMID: 36044337 PMCID: PMC9634968 DOI: 10.1091/mbc.e22-05-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The MARVEL proteins CMTM4 and CMTM6 control PD-L1, thereby influencing tumor immunity. We found that defective zebrafish cmtm4 slowed the development of the posterior lateral line (pLL) by altering the Cxcr4b gradient across the pLL primordium (pLLP). Analysis in mammalian cells uncovered that CMTM4 interacted with CXCR4, altering its glycosylation pattern, but did not affect internalization or degradation of CXCR4 in the absence of its ligand CXCL12. Synchronized release of CXCR4 from the endoplasmic reticulum revealed that CMTM4 slowed CXCR4 trafficking from the endoplasmic reticulum to the plasma membrane without affecting overall cell surface expression. Altered CXCR4 trafficking reduced ligand-induced CXCR4 degradation and affected AKT but not ERK1/2 activation. CMTM4 expression, in contrast to that of CXCR4, correlated with the survival of patients with renal cell cancer in the TCGA cohort. Furthermore, we observed that cmtm4 depletion promotes the separation of cells from the pLLP cell cluster in zebrafish embryos. Collectively, our findings indicate that CMTM4 exerts general roles in the biosynthetic pathway of cell surface molecules and seems to affect CXCR4-dependent cell migration.
Collapse
Affiliation(s)
- Alexandra Bona
- Renal Division and,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany,*Address correspondence to: Alexandra Bona (); Toma A. Yakulov ()
| | | | - Roland Thünauer
- Technology Platform Light Microscopy and Image Analysis (TP MIA), Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany,Advanced Light and Fluorescence Microscopy (ALFM) Facility, Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| | - Kyra Zodel
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Ian J. Frew
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany,German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany,Signalling Research Centres BIOSS and CIBSS
| | - Winfried Römer
- Signalling Research Centres BIOSS and CIBSS,Freiburg Institute for Advanced Studies (FRIAS), and,Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Gerd Walz
- Renal Division and,Signalling Research Centres BIOSS and CIBSS
| | - Toma A. Yakulov
- Renal Division and,*Address correspondence to: Alexandra Bona (); Toma A. Yakulov ()
| |
Collapse
|
37
|
Zaczyńska E, Kaczmarek K, Zabrocki J, Artym J, Zimecki M. Antiviral Activity of a Cyclic Pro-Pro- β3-HoPhe-Phe Tetrapeptide against HSV-1 and HAdV-5. Molecules 2022; 27:3552. [PMID: 35684487 PMCID: PMC9182219 DOI: 10.3390/molecules27113552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
The core of Cyclolinopeptide A (CLA, cyclo(LIILVPPFF)), responsible for its high immunosuppressive activity, contains a Pro-Pro-Phe-Phe sequence. A newly synthesized cyclic tetrapeptide, cyclo(Pro-Pro-β3-HoPhe-Phe) (denoted as 4B8M) bearing the active sequence of CLA, was recently shown to exhibit a wide array of anti-inflammatory properties in mouse models. In this investigation, we demonstrate that the peptide significantly inhibits the replication of human adenovirus C serotype 5 (HAdV-5) and Herpes simplex virus type-1 (HSV-1) in epithelial lung cell line A-549, applying Cidofovir and Acyclovir as reference drugs. Based on a previously established mechanism of its action, we propose that the peptide may inhibit virus replication by the induction of PGE2 acting via EP2/EP4 receptors in epithelial cells. In summary, we reveal a new, antiviral property of this anti-inflammatory peptide.
Collapse
Affiliation(s)
- Ewa Zaczyńska
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Immunobiology, R. Weigla Str. 12, 53-114 Wrocław, Poland; (E.Z.); (J.A.)
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Lodz University of Technology, S. Żeromskiego Str. 116, 90-924 Łódź, Poland; (K.K.); (J.Z.)
| | - Janusz Zabrocki
- Institute of Organic Chemistry, Lodz University of Technology, S. Żeromskiego Str. 116, 90-924 Łódź, Poland; (K.K.); (J.Z.)
| | - Jolanta Artym
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Immunobiology, R. Weigla Str. 12, 53-114 Wrocław, Poland; (E.Z.); (J.A.)
| | - Michał Zimecki
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Immunobiology, R. Weigla Str. 12, 53-114 Wrocław, Poland; (E.Z.); (J.A.)
| |
Collapse
|