1
|
Talukder AK, Naib AA, Mamo S, Thompson L, Ferst JG, Rabaglino MB, Browne JA, Fair T, Lonergan P. Specificity protein 1 (SP1) plays an essential role in early bovine embryo development. Theriogenology 2025; 242:117455. [PMID: 40286422 DOI: 10.1016/j.theriogenology.2025.117455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
A previous RNA-Seq study revealed that the transcript abundance of specificity protein 1 (SP1) was significantly higher in Day 7 bovine blastocysts compared to conceptuses on Days 10, 13, 16, and 19, suggesting a stage-specific role in early bovine embryo development. The present study aimed to characterize the mRNA expression of SP1 and associated candidate genes (ACSS1, C1QBP, ATF3, MAT2A, and POLD1) during early bovine embryo development from the 2-cell to blastocyst stage. Further, the effects of SP1 inhibition on embryo development were evaluated by culturing embryos with the SP1 inhibitor, mithramycin A (MT) at varying concentrations (0, 25, 50, 100, and 1000 nM). As further validation, we examined expression of SP1 and associated genes by interrogating transcriptomic data from Day 4 (16-cell stage) embryos cultured in vitro or in vivo in the oviducts of lactating or nonlactating dairy cows. The relative abundance of SP1 peaked at the time of embryonic genome activation, being higher (P < 0.05) in 8- and 16-cell embryos compared to the 2-cell stage, and decreasing thereafter (at the morula and blastocyst stages). Similarly, transcript abundance for most of the selected candidate genes involved in the SP1 network were upregulated (P < 0.05) at the 8- and 16-cell stage, but not at other stages investigated. Inhibition of SP1 with MT did not affect embryo development up to the 8-cell stage but reduced (P < 0.05) the proportion of embryos reaching the 16-cell and blastocyst stages in a dose-dependent manner. Moreover, blastocysts produced in the presence of MT contained fewer (P < 0.05) cells than blastocysts developed without MT. Expression of SP1 and associated genes in 16-cell stage (Day 4) embryos produced either in vitro or in vivo was higher (P < 0.05) compared to in vitro-produced 2- to 4- cell stage (Day 2) embryos. These findings suggest an essential role of SP1 during early embryo development, particularly around the time of embryonic genomic activation.
Collapse
Affiliation(s)
- Anup K Talukder
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; Department of Gynecology, Obstetrics and Reproductive Health, Gazipur Agricultural University, Gazipur, 1706, Bangladesh
| | - Abdullah A Naib
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Solomon Mamo
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Laura Thompson
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Juliana G Ferst
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Maria B Rabaglino
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Netherlands
| | - John A Browne
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Patnam S, Singh AD, Ali MS, Thakur BK, Rengan AK, Manda SV. Development and In Vitro Characterization of Milk-Derived Extracellular Vesicle-Mithramycin Formulations for Potential Glioma Therapy. Mol Pharm 2025. [PMID: 40138182 DOI: 10.1021/acs.molpharmaceut.4c01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor with resistance to conventional therapies. Mithramycin (Mit-A), a potent antitumor agent, has shown promise in several tumor types including, GBM. However, its clinical application is limited by toxicity. To address this, we explored the use of milk-derived extracellular vesicles (mEVs) as a delivery system to enhance the therapeutic efficacy of Mit-A. In this study, mEVs were isolated using a 3000 PEG precipitation method and confirmed their size, morphology, and stability through dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The isolated vesicles with a size of 125.6 ± 2.78 nm, a polydispersity index (PDI) of 0.083 ± 0.02, and a ζ-potential of 15 ± 0.57 mV. The presence of typical EV markers such as TSG101, HSP70, and CD63 confirmed their purity. Encapsulation of Mit-A within mEVs led to a slight increase in size to 131.8 ± 6.9 nm, a PDI of 0.081 ± 0.006, and a decrease in ζ-potential to -17 ± 2.0 mV, with an encapsulation efficiency of 58% by the freeze-thaw method. The in vitro transepithelial transport assay revealed that mEV(Mit-A) transported Mit-A more effectively than free Mit-A. The mEV(Mit-A) formulation demonstrated excellent stability in simulated salivary and gastrointestinal fluids, with a sustained release of Mit-A observed over 24 h in vitro in PBS (pH 6.8). Furthermore, mEV(Mit-A) formulations significantly inhibited glioma cell growth, and migration, and induced apoptosis, showing a 2-fold lower IC50 than free Mit-A, indicating superior efficacy. These findings suggest that mEVs represent a promising delivery vehicle for Mit-A, enhancing its potential as an effective treatment for glioblastoma.
Collapse
Affiliation(s)
- Sreekanth Patnam
- Apollo Hospitals Educational and Research Foundation (AHERF), Hyderabad, Telangana 500096, India
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
- Exomed Therapeutics Private Ltd., Hyderabad, Telangana 500096, India
| | - Anula Divyash Singh
- Apollo Hospitals Educational and Research Foundation (AHERF), Hyderabad, Telangana 500096, India
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Basant Kumar Thakur
- Department of Pediatrics III, University Hospital Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Sasidhar Venkata Manda
- Apollo Hospitals Educational and Research Foundation (AHERF), Hyderabad, Telangana 500096, India
- UrvogelBio Private Ltd., Hyderabad, Telangana 500096, India
| |
Collapse
|
3
|
Derfi KV, Vasiljevic T, Dragicevic T, Glavan TM. Mithramycin targets head and neck cancer stem cells by inhibiting Sp1 and UFMylation. Cancer Cell Int 2024; 24:412. [PMID: 39702263 DOI: 10.1186/s12935-024-03609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The development of resistance to therapy is characteristic of head and neck squamous cell carcinoma (HNSCC), the 6th most common cancer, and is often attributed to cancer stem cells (CSCs). By proteomic approach, we determined that UFMylation plays an important role in HNSCC CSCs. Because of the necessity for innovative therapeutic strategies, we explore here the therapy targeting CSCs based on mithramycin and its inhibitory effect on Sp1 transcription factor, UFMylation, and CSCs survival and stemness. METHODS HNSCC-derived cancer cell lines Detroit 562, FaDu, and Cal27, and tumor spheres are used as a model for CSCs. Proteomic analysis identified the importance of the UFMylation pathway in CSCs which we further studied by bioinformatics, western blot, immunocytochemistry, and cytotoxicity assay. RESULTS Proteomic analysis and subsequent confirmation revealed UFSP2 and DDRGK1 were strongly expressed in tumor spheres. Bioinformatic analysis indicated high expression of UFM1 is linked with worse overall and disease-free survival, and it correlated with main EMT proteins (Zeb, Twist, and Fn) in HNSCC. UFM1 was also strongly expressed in tumor spheres compared to the adherent cells. Silencing of UFM1 reduced sphere number, size, and stemness. As Sp1 is the main transcription factor for the genes of the UFMylation system, we explored its inhibitor mithramycin, as a potential drug for CSCs inhibition. We proved mithramycin inhibits CSCs survival, induces apoptosis, and reduces UFMylation and stemness. CONCLUSION UFMylation is an important process in CSCs, and mithramycin, or its lesser toxic analogs, should be further explored as CSCs targeted therapy in HNSCC.
Collapse
Affiliation(s)
- Kristina Vukovic Derfi
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, Zagreb, 10000, Croatia
| | - Tea Vasiljevic
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, Zagreb, 10000, Croatia
| | - Tea Dragicevic
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, Zagreb, 10000, Croatia
| | - Tanja Matijevic Glavan
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, Zagreb, 10000, Croatia.
| |
Collapse
|
4
|
Zhou Y, Luo Z, Guo J, Wu L, Zhou X, Huang JJ, Huang D, Xiao L, Duan Q, Chang J, Gong L, Hang J. Pan-cancer analysis of Sp1 with a focus on immunomodulatory roles in gastric cancer. Cancer Cell Int 2024; 24:338. [PMID: 39402565 PMCID: PMC11476248 DOI: 10.1186/s12935-024-03521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Sp1, a transcription factor, regulates essential cellular processes and plays important tumorigenic roles across diverse cancers. However, comprehensive pan-cancer analyses of its expression and potential immunomodulatory roles remain unexplored. METHODS Utilizing bioinformatics tools and public datasets, we examined the expression of Sp1 across normal tissues, tumors, and immune cells, and screened for pre- and post-transcriptional modifications, including genetic alterations, DNA methylation, and protein phosphorylation, affecting its expression or function. The association of Sp1 expression with immune cell infiltration, tumor mutational burden, and immune checkpoint signaling was also investigated. Single-cell transcriptome data was used to assess Sp1 expression in immune cells in gastric cancer (GC), and findings were corroborated using immunohistochemistry and multiplex immunofluorescence in an immunotherapy-treated patient cohort. The prognostic value of Sp1 in GC patients receiving immunotherapy was evaluated with Cox regression models. RESULTS Elevated Sp1 levels were observed in various cancers compared to normal tissues, with notable prominence in GC. High Sp1 expression correlated with advanced stage, poor prognosis, elevated tumor mutational burden (TMB), and microsatellite instability (MSI) status, particularly in GC. Significant correlations between Sp1 levels and CD8+ T cell and the M1 phenotype of tumor-associated macrophages were further detected upon multiplex immunofluorescence in GC samples. Interestingly, we verified that GC patients with higher Sp1 levels exhibited improved response to immunotherapy. Moreover, Sp1 emerged as a prognostic and predictive biomarker for GC patients undergoing immunotherapy. CONCLUSIONS Our pan-cancer analysis sheds light on the multifaceted role of Sp1 in tumorigenesis and underscores its potential as a prognostic and predictive biomarker for patients with GC undergoing immunotherapy.
Collapse
Affiliation(s)
- Yang Zhou
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Zhenzhen Luo
- Department of Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China
| | - Jinfeng Guo
- Department of Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China
| | - Lixia Wu
- Department of Oncology, Shanghai JingAn District ZhaBei Central Hospital, Shanghai, 200070, China
| | - Xiaoli Zhou
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Jun Jie Huang
- JC School of Public Health and Primary Care, Faculty of Medicine, Centre for Health Education and Health Promotion, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Daijia Huang
- Department of Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China
| | - Li Xiao
- Department of Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China
| | - Qiuhua Duan
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Jianhua Chang
- Department of Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China.
| | - Libao Gong
- Department of Oncology, The Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China.
| | - Junjie Hang
- Department of Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
5
|
Misir S, Ozer Yaman S, Petrović N, Šami A, Akidan O, Hepokur C, Aliyazicioglu Y. Identification of a Novel hsa_circ_0058058/miR-324-5p Axis and Prognostic/Predictive Molecules for Acute Myeloid Leukemia Outcome by Bioinformatics-Based Analysis. BIOLOGY 2024; 13:487. [PMID: 39056681 PMCID: PMC11273384 DOI: 10.3390/biology13070487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Acute myeloid leukemia (LAML) is one of the most prevalent hematological malignancies. In recent years, while targeted approaches have shown promise in the fight against cancer, the treatability and prognosis of patients remain inadequate due to the shortage of drugs. Noncoding RNAs, especially circular RNA (circRNA) and microRNA (miRNA), have been shown to play a unique role in tumor development. This study aims to identify the disease-associated circRNA-miRNA-mRNA network by bioinformatic analysis and investigate the mechanisms in the development and progression of LAML. Additionally, it reveals the promising roles of these molecules as a diagnostic biomarker and therapeutic target for LAML treatment. Using various bioinformatics approaches, we identified the hsa_circ_0058058/miR-324-5p axis in LAML and its possible functions in LAML development. According to our results, hsa circ-0058058 can regulate the expression of AP1G1 and SP1 through miR-324-5p to support angiogenesis, the cell cycle, and DNA replication processes. Downregulation of hsa circ-0058058 may contribute to the anticancer functions of miR-324-5p on LAML tumorigenesis, and upregulation of miR-324-5p can abolish the oncogenic effects of AP1G1 and SP1 on LAML tumorigenesis. Additionally, highly enriched pathways indicated possible interactions between molecules underlying LAML pathology. Targeted molecules within this network may be able to function as therapeutic and diagnostic biomarkers for disease, while more research and clinical confirmation are needed.
Collapse
Affiliation(s)
- Sema Misir
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Serap Ozer Yaman
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey; (S.O.Y.); (Y.A.)
- Department of Medical Biochemistry, Trabzon Faculty of Medicine, University of Health Sciences, 61080 Trabzon, Turkey
| | - Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia;
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, 11351 Belgrade, Serbia
| | - Ahmad Šami
- Cellular and Molecular Radiation Oncology Laboratory, Department of Radiation Oncology, Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Osman Akidan
- Department of Hematology, Mengücek Gazi Education and Research Hospital, 24100 Erzincan, Turkey;
| | - Ceylan Hepokur
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey; (S.O.Y.); (Y.A.)
| |
Collapse
|
6
|
El‐Ayoubi A, Arakelyan A, Klawitter M, Merk L, Hakobyan S, Gonzalez‐Menendez I, Quintanilla Fend L, Holm PS, Mikulits W, Schwab M, Danielyan L, Naumann U. Development of an optimized, non-stem cell line for intranasal delivery of therapeutic cargo to the central nervous system. Mol Oncol 2024; 18:528-546. [PMID: 38115217 PMCID: PMC10920084 DOI: 10.1002/1878-0261.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/23/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Neural stem cells (NSCs) are considered to be valuable candidates for delivering a variety of anti-cancer agents, including oncolytic viruses, to brain tumors. However, owing to the previously reported tumorigenic potential of NSC cell lines after intranasal administration (INA), here we identified the human hepatic stellate cell line LX-2 as a cell type capable of longer resistance to replication of oncolytic adenoviruses (OAVs) as a therapeutic cargo, and that is non-tumorigenic after INA. Our data show that LX-2 cells can longer withstand the OAV XVir-N-31 replication and oncolysis than NSCs. By selecting the highly migratory cell population out of LX-2, an offspring cell line with a higher and more stable capability to migrate was generated. Additionally, as a safety backup, we applied genomic herpes simplex virus thymidine kinase (HSV-TK) integration into LX-2, leading to high vulnerability to ganciclovir (GCV). Histopathological analyses confirmed the absence of neoplasia in the respiratory tracts and brains of immuno-compromised mice 3 months after INA of LX-2 cells. Our data suggest that LX-2 is a novel, robust, and safe cell line for delivering anti-cancer and other therapeutic agents to the brain.
Collapse
Affiliation(s)
- Ali El‐Ayoubi
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
| | - Arsen Arakelyan
- Research Group of BioinformaticsInstitute of Molecular Biology NAS RAYerevanArmenia
| | - Moritz Klawitter
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
| | - Luisa Merk
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
| | - Siras Hakobyan
- Research Group of BioinformaticsInstitute of Molecular Biology NAS RAYerevanArmenia
- Armenian Institute of BioinformaticsYerevanArmenia
| | - Irene Gonzalez‐Menendez
- Institute for Pathology, Department of General and Molecular PathologyUniversity Hospital TübingenGermany
- Cluster of Excellence iFIT (EXC 2180) "Image‐Guided and Functionally Instructed Tumor Therapies"Eberhard Karls University of TübingenGermany
| | - Leticia Quintanilla Fend
- Institute for Pathology, Department of General and Molecular PathologyUniversity Hospital TübingenGermany
- Cluster of Excellence iFIT (EXC 2180) "Image‐Guided and Functionally Instructed Tumor Therapies"Eberhard Karls University of TübingenGermany
| | - Per Sonne Holm
- Department of Urology, Klinikum rechts der IsarTechnical University of MunichGermany
- Department of Oral and Maxillofacial SurgeryMedical University InnsbruckAustria
- XVir Therapeutics GmbHMunichGermany
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer CenterMedical University of ViennaAustria
| | - Matthias Schwab
- Cluster of Excellence iFIT (EXC 2180) "Image‐Guided and Functionally Instructed Tumor Therapies"Eberhard Karls University of TübingenGermany
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- Department of Pharmacy and BiochemistryUniversity of TübingenGermany
- Department of Clinical PharmacologyUniversity Hospital TübingenGermany
- Neuroscience Laboratory and Departments of Biochemistry and Clinical PharmacologyYerevan State Medical UniversityArmenia
| | - Lusine Danielyan
- Department of Pharmacy and BiochemistryUniversity of TübingenGermany
- Department of Clinical PharmacologyUniversity Hospital TübingenGermany
- Neuroscience Laboratory and Departments of Biochemistry and Clinical PharmacologyYerevan State Medical UniversityArmenia
| | - Ulrike Naumann
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
- Gene and RNA Therapy Center (GRTC)Faculty of Medicine University TübingenGermany
| |
Collapse
|
7
|
Patnam S, Majumder B, Joshi P, Singh AD, Nagalla B, Kumar D, Biswas M, Ranjan A, Majumder PK, Rengan AK, Kamath AV, Ray A, Manda SV. Differential Expression of SRY-Related HMG-Box Transcription Factor 2, Oligodendrocyte Lineage Transcription Factor 2, and Zinc Finger E-Box Binding Homeobox 1 in Serum-Derived Extracellular Vesicles: Implications for Mithramycin Sensitivity and Targeted Therapy in High-Grade Glioma. ACS Pharmacol Transl Sci 2024; 7:137-149. [PMID: 38230292 PMCID: PMC10789128 DOI: 10.1021/acsptsci.3c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of glioma and is often resistant to traditional therapies. Evidence suggests that glioma stem cells (GSCs) contribute to this resistance. Mithramycin (Mit-A) targets GSCs and exhibits antitumor activity in GBM by affecting transcriptional targets such as SRY-related HMG-box transcription factor 2 (SOX2), oligodendrocyte lineage transcription factor 2 (OLIG2), and zinc finger E-box binding homeobox 1 (ZEB1). However, its clinical use has been limited by toxicity. This study explored the diagnostic potential of serum extracellular vesicles (EVs) to identify Mit-A responders. Serum EVs were isolated from 70 glioma patients, and targeted gene expression was analyzed using qRT-PCR. Using chemosensitivity assay, we identified 8 Mit-A responders and 17 nonresponders among 25 glioma patients. The M-score showed a significant correlation (p = 0.045) with isocitrate dehydrogenase 1 mutation but not other clinical variables. The genes SOX2 (p = 0.005), OLIG2 (p = 0.003), and ZEB1 (p = 0.0281) were found to be upregulated in the responder EVs. SOX2 had the highest diagnostic potential (AUC = 0.875), followed by OLIG2 (AUC = 0.772) and ZEB1 (AUC = 0.632).The combined gene panel showed significant diagnostic efficacy (AUC = 0.956) through logistic regression analysis. The gene panel was further validated in the serum EVs of 45 glioma patients. These findings highlight the potential of Mit-A as a targeted therapy for high-grade glioma based on differential gene expression in serum EVs. The gene panel could serve as a diagnostic tool to predict Mit-A sensitivity, offering a promising approach for personalized treatment strategies and emphasizing the role of GSCs in therapeutic resistance.
Collapse
Affiliation(s)
- Sreekanth Patnam
- Apollo
Hospitals Educational and Research Foundation (AHERF), Hyderabad, Hyderabad, Telangana 500033, India
- Department
of Biomedical Engineering, Indian Institute
of Technology, Kandi, Hyderabad 502285, India
| | - Biswanath Majumder
- Farcast
Biosciences, Bangalore, Karnataka 560100, India
- Oncology
Division, Bugworks Research India Pvt. Ltd., C-CAMP, Bangalore, Karnataka 560065, India
| | - Parth Joshi
- Department
of Neurosurgery, Apollo Hospitals, Hyderabad, Telangana 500029, India
| | - Anula Divyash Singh
- Apollo
Hospitals Educational and Research Foundation (AHERF), Hyderabad, Hyderabad, Telangana 500033, India
- Department
of Biomedical Engineering, Indian Institute
of Technology, Kandi, Hyderabad 502285, India
| | - Balakrishna Nagalla
- Apollo
Institute of Medical Sciences and Research, Hyderabad, Telangana, Hyderabad 500090, India
| | - Dilli Kumar
- Farcast
Biosciences, Bangalore, Karnataka 560100, India
| | | | - Alok Ranjan
- Department
of Neurosurgery, Apollo Hospitals, Hyderabad, Telangana 500029, India
| | - Pradip K. Majumder
- Department
of Cancer Biology, Praesidia Biotherapeutics, 1167 Massachusetts Avenue, Arlington, Massachusetts 02476, United States
| | - Aravind Kumar Rengan
- Department
of Biomedical Engineering, Indian Institute
of Technology, Kandi, Hyderabad 502285, India
| | | | - Amitava Ray
- Department
of Neurosurgery, Apollo Hospitals, Hyderabad, Telangana 500029, India
- Exsegen
Genomics Research Pvt.Ltd, Hyderabad, Telangana 500033, India
| | - Sasidhar Venkata Manda
- Apollo
Hospitals Educational and Research Foundation (AHERF), Hyderabad, Hyderabad, Telangana 500033, India
- UrvogelBio
Private Ltd, Hyderabad, Telangana 500096, India
| |
Collapse
|
8
|
Finotti A, Gasparello J, Zuccato C, Cosenza LC, Fabbri E, Bianchi N, Gambari R. Effects of Mithramycin on BCL11A Gene Expression and on the Interaction of the BCL11A Transcriptional Complex to γ-Globin Gene Promoter Sequences. Genes (Basel) 2023; 14:1927. [PMID: 37895276 PMCID: PMC10606601 DOI: 10.3390/genes14101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
The anticancer drug mithramycin (MTH), has been proposed for drug repurposing after the finding that it is a potent inducer of fetal hemoglobin (HbF) production in erythroid precursor cells (ErPCs) from β-thalassemia patients. In this respect, previously published studies indicate that MTH is very active in inducing increased expression of γ-globin genes in erythroid cells. This is clinically relevant, as it is firmly established that HbF induction is a valuable approach for the therapy of β-thalassemia and for ameliorating the clinical parameters of sickle-cell disease (SCD). Therefore, the identification of MTH biochemical/molecular targets is of great interest. This study is inspired by recent robust evidence indicating that the expression of γ-globin genes is controlled in adult erythroid cells by different transcriptional repressors, including Oct4, MYB, BCL11A, Sp1, KLF3 and others. Among these, BCL11A is very important. In the present paper we report evidence indicating that alterations of BCL11A gene expression and biological functions occur during MTH-mediated erythroid differentiation. Our study demonstrates that one of the mechanisms of action of MTH is a down-regulation of the transcription of the BCL11A gene, while a second mechanism of action is the inhibition of the molecular interactions between the BCL11A complex and specific sequences of the γ-globin gene promoter.
Collapse
Affiliation(s)
- Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Nicoletta Bianchi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
- Department of Translational Medicine and for Romagna, Ferrara University, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Ferrara University, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Xu X, Wang X, Chen Q, Zheng A, Li D, Meng Z, Li X, Cai H, Li W, Huang S, Wang F. Sp1 promotes tumour progression by remodelling the mitochondrial network in cervical cancer. J Transl Med 2023; 21:307. [PMID: 37147632 PMCID: PMC10163764 DOI: 10.1186/s12967-023-04141-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Cervical cancer remains one of the most prevalent cancers worldwide. Accumulating evidence suggests that specificity protein 1 (Sp1) plays a pivotal role in tumour progression. The underlying role and mechanism of Sp1 in tumour progression remain unclear. METHODS The protein level of Sp1 in tumour tissues was determined by immunohistochemistry. The effect of Sp1 expression on the biological characteristics of cervical cancer cells was assessed by colony, wound healing, transwell formation, EdU, and TUNEL assays. Finally, the underlying mechanisms and effects of Sp1 on the mitochondrial network and metabolism of cervical cancer were analysed both in vitro and in vivo. RESULTS Sp1 expression was upregulated in cervical cancer. Sp1 knockdown suppressed cell proliferation both in vitro and in vivo, while overexpression of Sp1 had the opposite effects. Mechanistically, Sp1 facilitated mitochondrial remodelling by regulating mitofusin 1/2 (Mfn1/2), OPA1 mitochondrial dynamin-like GTPase (Opa1), and dynamin 1-like (Drp1). Additionally, the Sp1-mediated reprogramming of glucose metabolism played a critical role in the progression of cervical cancer cells. CONCLUSIONS Our study demonstrates that Sp1 plays a vital role in cervical tumorigenesis by regulating the mitochondrial network and reprogramming glucose metabolism. Targeting Sp1 could be an effective strategy for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Xu Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou City, 325000, Zhejiang Province, China
| | - Xiaona Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China
| | - Qihui Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou City, 325000, Zhejiang Province, China
| | - Aman Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou City, 325000, Zhejiang Province, China
| | - Donglu Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou City, 325000, Zhejiang Province, China
| | - Ziqi Meng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou City, 325000, Zhejiang Province, China
| | - Xinran Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou City, 325000, Zhejiang Province, China
| | - Hanchen Cai
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou City, 325000, Zhejiang Province, China
| | - Wangzhi Li
- School of Stomatology, Wenzhou Medical University, Wenzhou City, 325000, Zhejiang Province, China
| | - Shiyuan Huang
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China.
| | - Fan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou City, 325000, Zhejiang Province, China.
| |
Collapse
|
10
|
The addition of arginine deiminase potentiates Mithramycin A-induced cell death in patient-derived glioblastoma cells via ATF4 and cytochrome C. Cancer Cell Int 2023; 23:38. [PMID: 36843002 PMCID: PMC9969664 DOI: 10.1186/s12935-023-02873-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/14/2023] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND Arginine auxotrophy constitutes a shortcoming for ~ 30% of glioblastoma multiforme (GBM). Indeed, arginine-depleting therapy using arginine deiminase from Streptococcus pyogenes (SpyADI) has proven activity against GBM in preclinical studies. The good safety profile of SpyADI renders this agent an ideal combination partner for cytostatic therapy. METHODS In this study, we combined the antineoplastic antibiotic Mithramycin A (MitA) with SpyADI to boost single-agent activity and analyzed underlying response mechanisms in-depth. RESULTS MitA monotherapy induced a time- and dose-dependent cytotoxicity in eight patient-derived GBM cell lines and had a radiosensitizing effect in all but one cell line. Combination treatment boosted the effects of the monotherapy in 2D- and 3D models. The simultaneous approach was superior to the sequential application and significantly impaired colony formation after repetitive treatment. MitA monotherapy significantly inhibited GBM invasiveness. However, this effect was not enhanced in the combination. Functional analysis identified SpyADI-triggered senescence induction accompanied by increased mitochondrial membrane polarization upon mono- and combination therapy. In HROG63, induction of lysosomes was seen after both monotherapies, indicative of autophagy. These cells seemed swollen and had a more pronounced cortically formed cytoskeleton. Also, cytochrome C and endoplasmatic reticulum-stress-associated proteins ATF4 and Calnexin were enhanced in the combination, contributing to apoptosis. Notably, no significant increases in glioma-stemness marker were seen. CONCLUSIONS Therapeutic utilization of a metabolic defect in GBM along with cytostatic therapy provides a novel combination approach. Whether this SpyADI/MitA regimen will provide a safe alternative to combat GBM, will have to be addressed in subsequent (pre-)clinical trials.
Collapse
|
11
|
Yang P, Qiao Y, Liao H, Huang Y, Meng M, Chen Y, Zhou Q. The Cancer/Testis Antigen CT45A1 Promotes Transcription of Oncogenic Sulfatase-2 Gene in Breast Cancer Cells and Is Sensible Targets for Cancer Therapy. J Breast Cancer 2023; 26:168-185. [PMID: 37095619 PMCID: PMC10139848 DOI: 10.4048/jbc.2023.26.e5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
PURPOSE Invasive breast carcinomas (BRCAs) are highly lethal. The molecular mechanisms underlying progression of invasive BRCAs are unclear, and effective therapies are highly desired. The cancer-testis antigen CT45A1 promotes overexpression of pro-metastatic sulfatase-2 (SULF2) and breast cancer metastasis to the lungs, but its mechanisms are largely unknown. In this study, we aimed to elucidate the mechanism of CT45A1-induced SULF2 overexpression and provide evidence for targeting CT45A1 and SULF2 for breast cancer therapy. METHODS The effect of CT45A1 on SULF2 expression was assessed using reverse transcription polymerase chain reaction and western blot. The mechanism of CT45A1-induced SULF2 gene transcription was studied using protein-DNA binding assay and a luciferase activity reporter system. The interaction between CT45A1 and SP1 proteins was assessed using immunoprecipitation and western blot. Additionally, the suppression of breast cancer cell motility by SP1 and SULF2 inhibitors was measured using cell migration and invasion assays. RESULTS CT45A1 and SULF2 are aberrantly overexpressed in patients with BRCA; importantly, overexpression of CT45A1 is closely associated with poor prognosis. Mechanistically, gene promoter demethylation results in overexpression of both CT45A1 and SULF2. CT45A1 binds directly to the core sequence GCCCCC in the promoter region of SULF2 gene and activates the promoter. Additionally, CT45A1 interacts with the oncogenic master transcription factor SP1 to drive SULF2 gene transcription. Interestingly, SP1 and SULF2 inhibitors suppress breast cancer cell migration, invasion, and tumorigenicity. CONCLUSION Overexpression of CT45A1 is associated with poor prognosis in patients with BRCA. CT45A1 promotes SULF2 overexpression by activating the promoter and interacting with SP1. Additionally, SP1 and SULF2 inhibitors suppress breast cancer cell migration, invasion, and tumorigenesis. Our findings provide new insight into the mechanisms of breast cancer metastasis and highlight CT45A1 and SULF2 as sensible targets for developing novel therapeutics against metastatic breast cancer.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, P.R. China
| | - Yingnan Qiao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, P.R. China
| | - Huaidong Liao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, P.R. China
| | - Yizheng Huang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, P.R. China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, P.R. China
| | - Yu Chen
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, P.R. China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, P.R. China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, P.R. China
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P.R. China
- National Clinical Research Center for Hematologic Diseases, The Affiliated Hospital of Soochow University, Suzhou, P.R. China
| |
Collapse
|
12
|
Gao Q, Deng S, Jiang T. Recent developments in the identification and biosynthesis of antitumor drugs derived from microorganisms. ENGINEERING MICROBIOLOGY 2022; 2:100047. [PMID: 39628704 PMCID: PMC11611020 DOI: 10.1016/j.engmic.2022.100047] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/06/2024]
Abstract
Secondary metabolites in microorganisms represent a resource for drug discovery and development. In particular, microbial-derived antitumor agents are in clinical use worldwide. Herein, we provide an overview of the development of classical antitumor drugs derived from microorganisms. Currently used drugs and drug candidates are comprehensively described in terms of pharmacological activities, mechanisms of action, microbial sources, and biosynthesis. We further discuss recent studies that have demonstrated the utility of gene-editing technologies and synthetic biology tools for the identification of new gene clusters, expansion of natural products, and elucidation of biosynthetic pathways. This review summarizes recent progress in the discovery and development of microbial-derived anticancer compounds with emphasis on biosynthesis.
Collapse
Affiliation(s)
- Qi Gao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Sizhe Deng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Tianyu Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, Guangdong, China
| |
Collapse
|
13
|
Liao C, Wang D, Qin S, Zhang Y, Chen J, Xu R, Xu F, Zhang P. Inflammatory-Dependent Bidirectional Effect of Bile Acids on NLRP3 Inflammasome and Its Role in Ameliorating CPT-11-Induced Colitis. Front Pharmacol 2022; 13:677738. [PMID: 35712724 PMCID: PMC9193974 DOI: 10.3389/fphar.2022.677738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/12/2022] [Indexed: 12/08/2022] Open
Abstract
Irinotecan (CPT-11) in combination with 5-fluorouracil and leucovorin is a first-line chemotherapy regimen for the treatment of colorectal cancer; however, its clinical application is limited by the dose-limiting gastrointestinal toxicity of colitis. In our previous studies, several bile acids (BAs) were found significantly elevated in the colon of the CPT-11-induced rat colitis model. On the other hand, NLRP3 inflammasome has been reported to play important roles in mediating colitis. Interestingly, BA was stated to activate the NLRP3 inflammasome in some studies, while in some other reports, it showed an inhibitory effect. We assumed that the inflammatory status in different circumstances might have contributed to the controversial findings. In this study, we first discovered, under non-inflammatory conditions, that supplementing BA could activate the NLRP3 inflammasome in THP-1-differentiated macrophages and promote inflammation. In lipopolysaccharide (LPS)-induced inflammatory macrophages, however, BA inhibited the NLRP3 inflammasome and reduced inflammation. Further experiments demonstrated that Takeda G protein-coupled receptor 5 (TGR5) is essential in mediating the inhibitory effect of BA, while phospho-SP1 (p-SP1) is key to the activation. Furthermore, we applied the above findings to ameliorate CPT-11-caused colitis in rats by inhibiting SP1 with mithramycin A (MitA) or activating TGR5 using oleanolic acid (OA). Our findings may shed light on the discovery of effective interventions for reducing dose-limiting chemotherapy-induced colitis.
Collapse
Affiliation(s)
- Chuyao Liao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Di Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Siyuan Qin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Ying Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Jie Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Ruijie Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
Ilina EI, Cialini C, Gerloff DL, Garcia-Escudero MD, Janty C, Thézénas ML, Lesur A, Puard V, Bernardin F, Moter A, Schuster A, Dieterle M, Golebiewska A, Gérardy JJ, Dittmar G, Niclou SP, Müller T, Mittelbronn M. Enzymatic activity of glycosyltransferase GLT8D1 promotes human glioblastoma cell migration. iScience 2022; 25:103842. [PMID: 35198895 PMCID: PMC8850796 DOI: 10.1016/j.isci.2022.103842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/27/2021] [Accepted: 01/27/2022] [Indexed: 11/15/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor characterized by infiltrative growth of malignant glioma cells into the surrounding brain parenchyma. In this study, our analysis of GBM patient cohorts revealed a significantly higher expression of Glycosyltransferase 8 domain containing 1 (GLT8D1) compared to normal brain tissue and could be associated with impaired patient survival. Increased in vitro expression of GLT8D1 significantly enhanced migration of two different sphere-forming GBM cell lines. By in silico analysis we predicted the 3D-structure as well as the active site residues of GLT8D1. The introduction of point mutations in the predicted active site reduced its glycosyltransferase activity in vitro and consequently impaired GBM tumor cell migration. Examination of GLT8D1 interaction partners by LC-MS/MS implied proteins associated with cytoskeleton and intracellular transport as potential substrates. In conclusion, we demonstrated that the enzymatic activity of glycosyltransferase GLT8D1 promotes GBM cell migration. The glycosyltransferase GLT8D1 is enriched in GBM tissue and cells In silico analysis predicts the 3D structure and the active site of GLT8D1 Enzymatically active GLT8D1 promotes GBM migration Manipulation of GLT8D1 enzymatic activity decreases GBM migration
Collapse
|
15
|
Widodo SS, Dinevska M, Furst LM, Stylli SS, Mantamadiotis T. IL-10 in glioma. Br J Cancer 2021; 125:1466-1476. [PMID: 34349251 PMCID: PMC8609023 DOI: 10.1038/s41416-021-01515-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
The prognosis for patients with glioblastoma (GBM), the most common and malignant type of primary brain tumour, is very poor, despite current standard treatments such as surgery, radiotherapy and chemotherapy. Moreover, the immunosuppressive tumour microenvironment hinders the development of effective immunotherapies for GBM. Cytokines such as interleukin-10 (IL-10) play a major role in modulating the activity of infiltrating immune cells and tumour cells in GBM, predominantly conferring an immunosuppressive action; however, in some circumstances, IL-10 can have an immunostimulatory effect. Elucidating the function of IL-10 in GBM is necessary to better strategise and improve the efficacy of immunotherapy. This review discusses the immunostimulatory and immunosuppressive roles of IL-10 in the GBM tumour microenvironment while considering IL-10-targeted treatment strategies. The molecular mechanisms that underlie the expression of IL-10 in various cell types are also outlined, and how this resulting information might provide an avenue for the improvement of immunotherapy in GBM is explored.
Collapse
Affiliation(s)
- Samuel S. Widodo
- grid.1008.90000 0001 2179 088XDepartment of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC Australia
| | - Marija Dinevska
- grid.1008.90000 0001 2179 088XDepartment of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC Australia
| | - Liam M. Furst
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC Australia
| | - Stanley S. Stylli
- grid.1008.90000 0001 2179 088XDepartment of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC Australia ,grid.416153.40000 0004 0624 1200Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC Australia
| | - Theo Mantamadiotis
- grid.1008.90000 0001 2179 088XDepartment of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC Australia ,grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, VIC Australia
| |
Collapse
|
16
|
Yang J, Wang J, Zhang H, Li C, Chen C, Zhu T. Transcription factor Sp1 is upregulated by PKCι to drive the expression of YAP1 during pancreatic carcinogenesis. Carcinogenesis 2021; 42:344-356. [PMID: 33146712 DOI: 10.1093/carcin/bgaa113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, we identified that the atypical protein kinase C isoform ι (PKCι) enhances the expression of Yes-associated protein 1 (YAP1) to promote the tumorigenesis of pancreatic adenocarcinoma harboring mutant KRAS (mu-KRAS). To advance our understanding about underlying mechanisms, we analyze the transcription of YAP1 in pancreatic cancer cells and reveal that transcription factor specificity protein 1 (Sp1) is upregulated by PKCι and subsequently binds to multiple sites in YAP1 promoter to drive the transactivation of YAP1 in pancreatic cancer cells carrying mu-KRAS. The bioinformatics analysis further substantiates that the expression of PKCι, Sp1 and YAP1 is correlated and associated with the stages and prognosis of pancreatic tumors. Moreover, our apoptotic detection data demonstrate that combination of PKCι and Sp1 inhibitors at subtoxic doses displays synergistic effects on inducing apoptosis and reversing the immunosuppression of pancreatic cancer cells, establishing the combination of PKCι and Sp1 inhibitors as a promising novel therapeutic approach, or an adjuvant strategy to potentiate the antitumor effects of other immunotherapeutic agents in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jinhe Yang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Junli Wang
- Department of Biochemistry, West China School of Basic Medical Sciences & Forensic Medicine, Sichan University, Chengdu, Sichuan, PR China
| | - Hongmei Zhang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Changlong Li
- Department of Biochemistry, West China School of Basic Medical Sciences & Forensic Medicine, Sichan University, Chengdu, Sichuan, PR China
| | - Changyan Chen
- The Center of Drug Discovery, Northeastern University, Boston, MA, USA
| | - Tongbo Zhu
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
17
|
Zaragoza-Ojeda M, Apatiga-Vega E, Arenas-Huertero F. Role of aryl hydrocarbon receptor in central nervous system tumors: Biological and therapeutic implications. Oncol Lett 2021; 21:460. [PMID: 33907570 PMCID: PMC8063300 DOI: 10.3892/ol.2021.12721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, whose canonical pathway mainly regulates the genes involved in xenobiotic metabolism. However, it can also regulate several responses in a non-canonical manner, such as proliferation, differentiation, cell death and cell adhesion. AhR plays an important role in central nervous system tumors, as it can regulate several cellular responses via different pathways. The polymorphisms of the AHR gene have been associated with the development of gliomas. In addition, the metabolism of tumor cells promotes tumor growth, particularly in tryptophan synthesis, where some metabolites, such as kynurenine, can activate the AhR pathway, triggering cell proliferation in astrocytomas, medulloblastomas and glioblastomas. Furthermore, as part of the changes in neuroblastomas, AHR is able to downregulate the expression of proto-oncogene c-Myc, induce differentiation in tumor cells, and cause cell cycle arrest and apoptosis. Collectively, these data suggested that the modulation of the AhR pathway may downregulate tumor growth, providing a novel strategy for applications for the treatment of certain tumors through the control of the AhR pathway.
Collapse
Affiliation(s)
- Montserrat Zaragoza-Ojeda
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, México.,Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, México
| | - Elisa Apatiga-Vega
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, México
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, México
| |
Collapse
|
18
|
Lin H, Zuo D, He J, Ji T, Wang J, Jiang T. Long Noncoding RNA WEE2-AS1 Plays an Oncogenic Role in Glioblastoma by Functioning as a Molecular Sponge for MicroRNA-520f-3p. Oncol Res 2020; 28:591-603. [PMID: 32838835 PMCID: PMC7962937 DOI: 10.3727/096504020x15982623243955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The long noncoding RNA WEE2 antisense RNA 1 (WEE2-AS1) plays an oncogenic role in hepatocellular carcinoma and triple negative breast cancer progression. In this study, we investigated the expression and roles of WEE2-AS1 in glioblastoma (GBM). Furthermore, the molecular mechanisms behind the oncogenic actions of WEE2-AS1 in GBM cells were explored in detail. WEE2-AS1 expression was detected using quantitative real-time polymerase chain reaction. The roles of WEE2-AS1 in GBM cells were evaluated by the cell counting kit-8 assay, flow cytometric analysis, Transwell cell migration and invasion assays, and tumor xenograft experiments. WEE2-AS1 expression was evidently enhanced in GBM tissues and cell lines compared with their normal counterparts. An increased level of WEE2-AS1 was correlated with the average tumor diameter, Karnofsky Performance Scale score, and shorter overall survival among GBM patients. Functionally, depleted WEE2-AS1 attenuated GBM cell proliferation, migration, and invasion in vitro, promoted cell apoptosis, and impaired tumor growth in vivo. Mechanistically, WEE2-AS1 functioned as a molecular sponge for microRNA-520f-3p (miR-520f-3p) and consequently increased specificity protein 1 (SP1) expression in GBM cells. A series of recovery experiments revealed that the inhibition of miR-520f-3p and upregulation of SP1 could partially abrogate the influences of WEE2-AS1 downregulation on GBM cells. In conclusion, WEE2-AS1 can adsorb miR-520f-3p to increase endogenous SP1 expression, thereby facilitating the malignancy of GBM. Therefore, targeting the WEE2-AS1–miR-520f-3p–SP1 pathway might be a promising therapy for the management of GBM in the future.
Collapse
Affiliation(s)
- Hengzhou Lin
- Department of Neurosurgery, Shenzhen Second Peoples Hospital, the First Affiliated Hospital of Shenzhen University, Health Science CenterShenzhenP.R. China
| | - Dahui Zuo
- Department of Neurosurgery, Shenzhen Second Peoples Hospital, the First Affiliated Hospital of Shenzhen University, Health Science CenterShenzhenP.R. China
| | - Jiabin He
- Department of Neurosurgery, Shenzhen Second Peoples Hospital, the First Affiliated Hospital of Shenzhen University, Health Science CenterShenzhenP.R. China
| | - Tao Ji
- Department of Neurosurgery, Shenzhen Second Peoples Hospital, the First Affiliated Hospital of Shenzhen University, Health Science CenterShenzhenP.R. China
| | - Jianzhong Wang
- Department of Neurosurgery, Shenzhen Second Peoples Hospital, the First Affiliated Hospital of Shenzhen University, Health Science CenterShenzhenP.R. China
| | - Taipeng Jiang
- Department of Neurosurgery, Shenzhen Second Peoples Hospital, the First Affiliated Hospital of Shenzhen University, Health Science CenterShenzhenP.R. China
| |
Collapse
|
19
|
Federico A, Steinfass T, Larribère L, Novak D, Morís F, Núñez LE, Umansky V, Utikal J. Mithramycin A and Mithralog EC-8042 Inhibit SETDB1 Expression and Its Oncogenic Activity in Malignant Melanoma. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:83-99. [PMID: 32637583 PMCID: PMC7327877 DOI: 10.1016/j.omto.2020.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022]
Abstract
Malignant melanoma is the most deadly skin cancer, associated with rising incidence and mortality rates. Most of the patients with melanoma, treated with current targeted therapies, develop a drug resistance, causing tumor relapse. The attainment of a better understanding of novel cancer-promoting molecular mechanisms driving melanoma progression is essential for the development of more effective targeted therapeutic approaches. Recent studies, including the research previously conducted in our laboratory, reported that the histone methyltransferase SETDB1 contributes to melanoma pathogenesis. In this follow-up study, we further elucidated the role of SETDB1 in melanoma, showing that SETDB1 modulated relevant transcriptomic effects in melanoma, in particular, as activator of cancer-related secreted (CRS) factors and as repressor of melanocyte-lineage differentiation (MLD) and metabolic enzymes. Next, we investigated the effects of SETDB1 inhibition via compounds belonging to the mithramycin family, mithramycin A and mithramycin analog (mithralog) EC-8042: melanoma cells showed strong sensitivity to these drugs, which effectively suppressed the expression of SETDB1 and induced changes at the transcriptomic, morphological, and functional level. Moreover, SETDB1 inhibitors enhanced the efficacy of mitogen-activated protein kinase (MAPK) inhibitor-based therapies against melanoma. Taken together, this work highlights the key regulatory role of SETDB1 in melanoma and supports the development of SETDB1-targeting therapeutic strategies for the treatment of melanoma patients.
Collapse
Affiliation(s)
- Aniello Federico
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Tamara Steinfass
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Francisco Morís
- EntreChem SL, Vivero Ciencias de la Salud, 33011 Oviedo, Spain
| | - Luz-Elena Núñez
- EntreChem SL, Vivero Ciencias de la Salud, 33011 Oviedo, Spain
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| |
Collapse
|
20
|
Zabala D, Song L, Dashti Y, Challis GL, Salas JA, Méndez C. Heterologous reconstitution of the biosynthesis pathway for 4-demethyl-premithramycinone, the aglycon of antitumor polyketide mithramycin. Microb Cell Fact 2020; 19:111. [PMID: 32448325 PMCID: PMC7247220 DOI: 10.1186/s12934-020-01368-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mithramycin is an anti-tumor compound of the aureolic acid family produced by Streptomyces argillaceus. Its biosynthesis gene cluster has been cloned and characterized, and several new analogs with improved pharmacological properties have been generated through combinatorial biosynthesis. To further study these compounds as potential new anticancer drugs requires their production yields to be improved significantly. The biosynthesis of mithramycin proceeds through the formation of the key intermediate 4-demethyl-premithramycinone. Extensive studies have characterized the biosynthesis pathway from this intermediate to mithramycin. However, the biosynthesis pathway for 4-demethyl-premithramycinone remains unclear. RESULTS Expression of cosmid cosAR7, containing a set of mithramycin biosynthesis genes, in Streptomyces albus resulted in the production of 4-demethyl-premithramycinone, delimiting genes required for its biosynthesis. Inactivation of mtmL, encoding an ATP-dependent acyl-CoA ligase, led to the accumulation of the tricyclic intermediate 2-hydroxy-nogalonic acid, proving its essential role in the formation of the fourth ring of 4-demethyl-premithramycinone. Expression of different sets of mithramycin biosynthesis genes as cassettes in S. albus and analysis of the resulting metabolites, allowed the reconstitution of the biosynthesis pathway for 4-demethyl-premithramycinone, assigning gene functions and establishing the order of biosynthetic steps. CONCLUSIONS We established the biosynthesis pathway for 4-demethyl-premithramycinone, and identified the minimal set of genes required for its assembly. We propose that the biosynthesis starts with the formation of a linear decaketide by the minimal polyketide synthase MtmPKS. Then, the cyclase/aromatase MtmQ catalyzes the cyclization of the first ring (C7-C12), followed by formation of the second and third rings (C5-C14; C3-C16) catalyzed by the cyclase MtmY. Formation of the fourth ring (C1-C18) requires MtmL and MtmX. Finally, further oxygenation and reduction is catalyzed by MtmOII and MtmTI/MtmTII respectively, to generate the final stable tetracyclic intermediate 4-demethyl-premithramycinone. Understanding the biosynthesis of this compound affords enhanced possibilities to generate new mithramycin analogs and improve their production titers for bioactivity investigation.
Collapse
Affiliation(s)
- Daniel Zabala
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), University of Oviedo, Oviedo, Spain
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Lijiang Song
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Yousef Dashti
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), University of Oviedo, Oviedo, Spain.
- Instituto de Investigación Sanitaria de Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
21
|
Liu YS, Hsu JW, Lin HY, Lai SW, Huang BR, Tsai CF, Lu DY. Bradykinin B1 receptor contributes to interleukin-8 production and glioblastoma migration through interaction of STAT3 and SP-1. Neuropharmacology 2019; 144:143-154. [PMID: 30366000 DOI: 10.1016/j.neuropharm.2018.10.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 01/05/2023]
Abstract
Glioblastoma (GBM), the most aggressive brain tumor, has a poor prognosis due to the ease of migration to surrounding healthy brain tissue. Recent studies have shown that bradykinin receptors are involved in the progression of various cancers. However, the molecular mechanism and pathological role of bradykinin receptors remains unclear. We observed the expressions of two major bradykinin receptors, B1R and B2R, in two different human GBM cell lines, U87 and GBM8901. Cytokine array analysis showed that bradykinin increases the production of interleukin (IL)-8 in GBM via B1R. Higher B1R levels correlate with IL-8 expression in U87 and GBM8901. We observed increased levels of phosphorylated STAT3 and SP-1 in the nucleus as well. Using chromatin immunoprecipitation assay, we found that STAT3 and SP-1 mediate IL-8 expression, which gets abrogated by the inhibition of FAK and STAT3. We further demonstrated that IL-8 expression and cell migration are also regulated by the SP-1. In addition, expression levels of STAT3 and SP-1 positively correlate with clinicopathological grades of gliomas. Interestingly, our results found that inhibition of HDAC increases IL-8 expression. Moreover, stimulation with bradykinin caused increases in acetylated SP-1 and p300 complex formation, which are abrogated by inhibition of FAK and STAT3. Meanwhile, knockdown of SP-1 and p300 decreased the augmentation of bradykinin-induced IL-8 expression. These results indicate that bradykinin-induced IL-8 expression is dependent on B1R which causes phosphorylated STAT3 and acetylated SP-1 to translocate to the nucleus, hence resulting in GBM migration.
Collapse
Affiliation(s)
- Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Jhih-Wen Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsiao-Yun Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Wei Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Bor-Ren Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
22
|
Chiu YC, Hsiao TH, Wang LJ, Chen Y, Chuang EY. Analyzing Differential Regulatory Networks Modulated by Continuous-State Genomic Features in Glioblastoma Multiforme. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1754-1764. [PMID: 28114032 DOI: 10.1109/tcbb.2016.2635646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gene regulatory networks are a global representation of complex interactions between molecules that dictate cellular behavior. Study of a regulatory network modulated by single or multiple modulators' expression levels, including microRNAs (miRNAs) and transcription factors (TFs), in different conditions can further reveal the modulators' roles in diseases such as cancers. Existing computational methods for identifying such modulated regulatory networks are typically carried out by comparing groups of samples dichotomized with respect to the modulator status, ignoring the fact that most biological features are intrinsically continuous variables. Here, we devised a sliding window-based regression scheme and proposed the Regression-based Inference of Modulation (RIM) algorithm to infer the dynamic gene regulation modulated by continuous-state modulators. We demonstrated the improvement in performance as well as computation efficiency achieved by RIM. Applying RIM to genome-wide expression profiles of 520 glioblastoma multiforme (GBM) tumors, we investigated miRNA- and TF-modulated gene regulatory networks and showed their association with dynamic cellular processes and brain-related functions in GBM. Overall, the proposed algorithm provides an efficient and robust scheme for comprehensively studying modulated gene regulatory networks.
Collapse
|
23
|
Li S, Ma F, Jiang K, Shan H, Shi M, Chen B. Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 promotes lung adenocarcinoma by directly interacting with specificity protein 1. Cancer Sci 2018; 109:1346-1356. [PMID: 29575609 PMCID: PMC5980339 DOI: 10.1111/cas.13587] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/05/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (malat1) is an oncogenic long non-coding RNA (lncRNA) which has been proven to be associated with various types of tumors. Transcription factor specificity protein 1 (SP1) is overexpressed in many types of cancers. Previously, we observed that malat1 expression level is regulated by SP1 in lung cancer. In the present study, we found that transfection of expression construct of malat1 5' end fragment M5 enhances stability and transcriptional activity of SP1. Various SP1 target genes are also upregulated following overexpression of malat1 M5 in lung adenocarcinoma cells. We also showed that malat1 M5 interacts with the C-terminal domain of SP1 by RNA immunoprecipitation (RIP) assay coupled with UV cross-linking. Malat1-SP1 association results in increase of SP1 stability. In turn, SP1 promotes malat1 transcription, thus forming a positive feedback loop. In conclusion, our data show that in lung adenocarcinoma cells, malat1 interacts with SP1 protein and promotes SP1-mediated transcriptional regulation of SP1 target genes.
Collapse
Affiliation(s)
- Shufeng Li
- Key Laboratory of Developmental Genes and Human Disease in Ministry of EducationDepartment of Biochemistry and Molecular BiologyMedical School of Southeast UniversityNanjingChina
| | - Fang Ma
- Key Laboratory of Developmental Genes and Human Disease in Ministry of EducationDepartment of Biochemistry and Molecular BiologyMedical School of Southeast UniversityNanjingChina
| | - Kunpeng Jiang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of EducationDepartment of Biochemistry and Molecular BiologyMedical School of Southeast UniversityNanjingChina
| | - Haitao Shan
- Key Laboratory of Developmental Genes and Human Disease in Ministry of EducationDepartment of Biochemistry and Molecular BiologyMedical School of Southeast UniversityNanjingChina
| | - Minke Shi
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Baojun Chen
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
24
|
Wang Q, Zhao G, Yang Z, Liu X, Xie P. Downregulation of microRNA‑124‑3p suppresses the mTOR signaling pathway by targeting DDIT4 in males with major depressive disorder. Int J Mol Med 2018; 41:493-500. [PMID: 29115444 DOI: 10.3892/ijmm.2017.3235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/26/2017] [Indexed: 11/06/2022] Open
Abstract
Recent investigations have suggested that microRNAs (miRNAs or miRs) are involved in several pathways that may contribute to the pathomechanism of major depressive disorder (MDD). Sex may not only act as a demographic factor in clinical practive, but may also play a vital role in the molecular heterogeneity of MDD. Although many molecular changes correlated with MDD are found in males, the molecular mechanisms of MDD remain poorly understood. The present study performed bioinformatics analysis to investigate the pathomechanism of MDD in males. The present study identified miR‑124‑3p as one of the most dysregulated miRNAs in MDD, with decreased expression in the post‑mortem BA44 brain area of male patients with MDD. In addition, miR‑124‑3p targets DNA damage‑inducible transcript 4 (DDIT4) and specificity protein 1 (SP1), a DDIT4 transcription factor, in the validated target module of the miRWalk 2.0 database. This is concurrent with an increase in the expression level of DDIT4, which is an inhibitor of the mammalian target of rapamycin (mTOR) signaling pathway. It was also demonstrated that miR‑124‑3p expression was positively associated with mTOR signaling and this relationship was dependent on the tuberous sclerosis proteins 1/2 complex. Taken together, these results provided a novel insight on miR‑124‑3p involvement in the biological alterations of male patients with MDD and suggested that this miRNA may also serve as a male‑specific target for antidepressant treatment.
Collapse
Affiliation(s)
- Qiuling Wang
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Gaofeng Zhao
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Zhenzhen Yang
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Xia Liu
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Ping Xie
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
25
|
Aasland D, Reich TR, Tomicic MT, Switzeny OJ, Kaina B, Christmann M. Repair gene O 6 -methylguanine-DNA methyltransferase is controlled by SP1 and up-regulated by glucocorticoids, but not by temozolomide and radiation. J Neurochem 2018; 144:139-151. [PMID: 29164620 DOI: 10.1111/jnc.14262] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022]
Abstract
Therapy of malignant glioma relies on treatment with the O6 -methylating agent temozolomide (TMZ) concomitant with ionizing radiation followed by adjuvant TMZ. For the treatment of recurrences, DNA chloroethylating drugs are also used. The main killing lesion induced by these drugs is O6 -alkylguanine. Since this damage is repaired by O6 -methylguanine-DNA methyltransferase (MGMT), the repair enzyme represents a most important factor of drug resistance, limiting the therapy of malignant high-grade gliomas. Although MGMT has been shown to be transcriptionally up-regulated in rodents following genotoxic stress, it is still unclear whether human MGMT is subject to up-regulation. Here, we addressed the question whether MGMT in glioma cells is enhanced following alkylating drugs or ionizing radiation, using promoter assays. We also checked the response of glioma cell lines to dexamethasone. In a series of experiments, we found no evidence that the human MGMT promoter is significantly up-regulated following treatment with TMZ, the chloroethylating agent nimustine or radiation. It was activated, however, by dexamethasone. Using deletion constructs, we further show that the basal level of MGMT is mainly determined by the transcription factor SP1. The high amount of SP1 sites in the MGMT promoter likely prevents transcriptional up-regulation following genotoxic stress by neutralizing inducible signals. The regulation of MGMT by miRNAs plays only a minor role, as shown by DICER knockdown experiments. Since high dose dexamethasone concomitant with temozolomide is frequently used in glioblastoma therapy, induction of the MGMT gene through glucocorticoids in MGMT promoter unmethylated cases might cause further elevation of drug resistance, while radiation and alkylating drugs seem not to induce MGMT at transcriptional level.
Collapse
Affiliation(s)
- Dorthe Aasland
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Thomas R Reich
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Maja T Tomicic
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Olivier J Switzeny
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Bernd Kaina
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Markus Christmann
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
26
|
Extracellular vesicles from human-induced pluripotent stem cell-derived mesenchymal stromal cells (hiPSC-MSCs) protect against renal ischemia/reperfusion injury via delivering specificity protein (SP1) and transcriptional activating of sphingosine kinase 1 and inhibiting necroptosis. Cell Death Dis 2017; 8:3200. [PMID: 29233979 PMCID: PMC5870585 DOI: 10.1038/s41419-017-0041-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023]
Abstract
Renal ischemia-reperfusion is a main cause of acute kidney injury (AKI), which is associated with high mortality. Here we show that extracellular vesicles (EVs) secreted from hiPSC-MSCs play a critical role in protection against renal I/R injury. hiPSC-MSCs-EVs can fuse with renal cells and deliver SP1 into target cells, subsequently active SK1 expression and increase S1P formation. Chromatin immunoprecipitation (ChIP) analyses and luciferase assay were used to confirm SP1 binds directly to the SK1 promoter region and promote promoter activity. Moreover, SP1 inhibition (MIT) or SK1 inhibition (SKI-II) completely abolished the renal protective effect of hiPSC-MSCs-EVs in rat I/R injury mode. However, pre-treatment of necroptosis inhibitor Nec-1 showed no difference with the administration of hiPSC-MSCs-EVs only. We then generated an SP1 knockout hiPSC-MSC cell line by CRISPR/Cas9 system and found that SP1 knockout failed to show the protective effect of hiPSC-MSCs-EVs unless restoring the level of SP1 by Ad-SP1 in vitro and in vivo. In conclusion, this study describes an anti-necroptosis effect of hiPSC-MSCs-EVs against renal I/R injury via delivering SP1 into target renal cells and intracellular activating the expression of SK1 and the generation of S1P. These findings suggest a novel mechanism for renal protection against I/R injury, and indicate a potential therapeutic approach for a variety of renal diseases and renal transplantation.
Collapse
|
27
|
Chang KY, Hsu TI, Hsu CC, Tsai SY, Liu JJ, Chou SW, Liu MS, Liou JP, Ko CY, Chen KY, Hung JJ, Chang WC, Chuang CK, Kao TJ, Chuang JY. Specificity protein 1-modulated superoxide dismutase 2 enhances temozolomide resistance in glioblastoma, which is independent of O 6-methylguanine-DNA methyltransferase. Redox Biol 2017; 13:655-664. [PMID: 28822335 PMCID: PMC5561972 DOI: 10.1016/j.redox.2017.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022] Open
Abstract
Acquisition of temozolomide (TMZ) resistance is a major factor leading to the failure of glioblastoma (GBM) treatment. The exact mechanism by which GBM evades TMZ toxicity is not always related to the expression of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT), and so remains unclear. In this study, TMZ-resistant variants derived from MGMT-negative GBM clinical samples and cell lines were studied, revealing there to be increased specificity protein 1 (Sp1) expression associated with reduced reactive oxygen species (ROS) accumulation following TMZ treatment. Analysis of gene expression databases along with cell studies identified the ROS scavenger superoxide dismutase 2 (SOD2) as being disease-related. SOD2 expression was also increased, and it was found to be co-expressed with Sp1 in TMZ-resistant cells. Investigation of the SOD2 promoter revealed Sp1 as a critical transcriptional activator that enhances SOD2 gene expression. Co-treatment with an Sp1 inhibitor restored the inhibitory effects of TMZ, and decreased SOD2 levels in TMZ-resistant cells. This treatment strategy restored susceptibility to TMZ in xenograft animals, leading to prolonged survival in an orthotopic model. Thus, our results suggest that Sp1 modulates ROS scavengers as a novel mechanism to increase cancer malignancy and resistance to chemotherapy. Inhibition of this pathway may represent a potential therapeutic target for restoring treatment susceptibility in GBM.
Collapse
Affiliation(s)
- Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, Taiwan
| | - Tsung-I Hsu
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taiwan
| | - Che-Chia Hsu
- Graduate Institute of Medical Science, Taipei Medical University, Taiwan; Department of Cancer Biology, Wake Forest School of Medicine, USA
| | | | - Jr-Jiun Liu
- National Institute of Cancer Research, National Health Research Institutes, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taiwan
| | - Shao-Wen Chou
- National Institute of Cancer Research, National Health Research Institutes, Taiwan
| | - Ming-Sheng Liu
- National Institute of Cancer Research, National Health Research Institutes, Taiwan
| | | | - Chiung-Yuan Ko
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taiwan
| | - Kai-Yun Chen
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taiwan
| | - Jan-Jong Hung
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Science, Taipei Medical University, Taiwan
| | - Cheng-Keng Chuang
- Department of Medicine, Chang Gung University, Taiwan; Department of Urology, Linkou Chang Gung Memorial Hospital, Taiwan
| | - Tzu-Jen Kao
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taiwan.
| | - Jian-Ying Chuang
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taiwan.
| |
Collapse
|
28
|
Ilina EI, Armento A, Sanchez LG, Reichlmeir M, Braun Y, Penski C, Capper D, Sahm F, Jennewein L, Harter PN, Zukunft S, Fleming I, Schulte D, Le Guerroué F, Behrends C, Ronellenfitsch MW, Naumann U, Mittelbronn M. Effects of soluble CPE on glioma cell migration are associated with mTOR activation and enhanced glucose flux. Oncotarget 2017; 8:67567-67591. [PMID: 28978054 PMCID: PMC5620194 DOI: 10.18632/oncotarget.18747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/12/2017] [Indexed: 01/05/2023] Open
Abstract
Carboxypeptidase E (CPE) has recently been described as a multifunctional protein that regulates proliferation, migration and survival in several tumor entities. In glioblastoma (GBM), the most malignant primary brain tumor, secreted CPE (sCPE) was shown to modulate tumor cell migration. In our current study, we aimed at clarifying the underlying molecular mechanisms regulating anti-migratory as well as novel metabolic effects of sCPE in GBM. Here we show that sCPE activates mTORC1 signaling in glioma cells detectable by phosphorylation of its downstream target RPS6. Additionally, sCPE diminishes glioma cell migration associated with a negative regulation of Rac1 signaling via RPS6, since both inhibition of mTOR and stimulation of Rac1 results in a reversed effect of sCPE on migration. Knockdown of CPE leads to a decrease of active RPS6 associated with increased GBM cell motility. Apart from this, we show that sCPE enhances glucose flux into the tricarboxylic acid cycle at the expense of lactate production, thereby decreasing aerobic glycolysis, which might as well contribute to a less invasive behavior of tumor cells. Our data contributes to a better understanding of the complexity of GBM cell migration and sheds new light on how tumor cell invasion and metabolic plasticity are interconnected.
Collapse
Affiliation(s)
- Elena I Ilina
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany.,Luxembourg Centre of Neuropathology (LCNP), 3555 Dudelange, Luxembourg.,NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), 1526 Luxembourg, Luxembourg
| | - Angela Armento
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Leticia Garea Sanchez
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Marina Reichlmeir
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Yannick Braun
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Cornelia Penski
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - David Capper
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, 69120 Heidelberg, Germany
| | - Felix Sahm
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, 69120 Heidelberg, Germany
| | - Lukas Jennewein
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Patrick N Harter
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sven Zukunft
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe University, 60590 Frankfurt, Germany
| | - Ingrid Fleming
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe University, 60590 Frankfurt, Germany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Francois Le Guerroué
- Institute of Biochemistry II, Medical School Goethe University, 60528 Frankfurt, Germany
| | - Christian Behrends
- Institute of Biochemistry II, Medical School Goethe University, 60528 Frankfurt, Germany.,Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Michael W Ronellenfitsch
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Senckenberg Institute of Neurooncology, Goethe University, 60528 Frankfurt, Germany
| | - Ulrike Naumann
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Michel Mittelbronn
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany.,Luxembourg Centre of Neuropathology (LCNP), 3555 Dudelange, Luxembourg.,NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), 1526 Luxembourg, Luxembourg.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Laboratoire National de Santé, Department of Pathology, 3555 Dudelange, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4361 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
29
|
Enabling techniques in the search for new antibiotics: Combinatorial biosynthesis of sugar-containing antibiotics. Biochem Pharmacol 2017; 134:56-73. [DOI: 10.1016/j.bcp.2016.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
|
30
|
MiR-181b modulates EGFR-dependent VCAM-1 expression and monocyte adhesion in glioblastoma. Oncogene 2017; 36:5006-5022. [PMID: 28459461 DOI: 10.1038/onc.2017.129] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022]
Abstract
Tumor-associated macrophages (TAMs) originate as circulating monocytes, and are recruited to gliomas, where they facilitate tumor growth and migration. Understanding the interaction between TAM and cancer cells may identify therapeutic targets for glioblastoma multiforme (GBM). Vascular cell adhesion molecule-1 (VCAM-1) is a cytokine-induced adhesion molecule expressed on the surface of cancer cells, which is involved in interactions with immune cells. Analysis of the glioma patient database and tissue immunohistochemistry showed that VCAM-1 expression correlated with the clinico-pathological grade of gliomas. Here, we found that VCAM-1 expression correlated positively with monocyte adhesion to GBM, and knockdown of VCAM-1 abolished the enhancement of monocyte adhesion. Importantly, upregulation of VCAM-1 is dependent on epidermal-growth-factor-receptor (EGFR) expression, and inhibition of EGFR effectively reduced VCAM-1 expression and monocyte adhesion activity. Moreover, GBM possessing higher EGFR levels (U251 cells) had higher VCAM-1 levels compared to GBMs with lower levels of EGFR (GL261 cells). Using two- and three-dimensional cultures, we found that monocyte adhesion to GBM occurs via integrin α4β1, which promotes tumor growth and invasion activity. Increased proliferation and tumor necrosis factor-α and IFN-γ levels were also observed in the adherent monocytes. Using a genetic modification approach, we demonstrated that VCAM-1 expression and monocyte adhesion were regulated by the miR-181 family, and lower levels of miR-181b correlated with high-grade glioma patients. Our results also demonstrated that miR-181b/protein phosphatase 2A-modulated SP-1 de-phosphorylation, which mediated the EGFR-dependent VCAM-1 expression and monocyte adhesion to GBM. We also found that the EGFR-dependent VCAM-1 expression is mediated by the p38/STAT3 signaling pathway. Our study suggested that VCAM-1 is a critical modulator of EGFR-dependent interaction of monocytes with GBM, which raises the possibility of developing effective and improved therapies for GBM.
Collapse
|
31
|
Shu J, Wang XH, Zhou LB, Jiang CM, Yang WX, Jin R, Wang LL, Zhou GP. Expression of interferon regulatory factor 5 is regulated by the Sp1 transcription factor. Mol Med Rep 2016; 14:2815-22. [PMID: 27484157 DOI: 10.3892/mmr.2016.5565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 07/20/2016] [Indexed: 11/05/2022] Open
Abstract
The transcription factor, interferon regulatory factor 5 (IRF5), is important in the induction of type I interferon, proinflammatory cytokines and chemokines, and is involved in autoimmune diseases and tumourigenesis. However, the mechanisms underlying the transcriptional regulation of wild‑type IRF5 remain to be fully elucidated. The present study was primarily designed to clarify whether specificity protein 1 (Sp1) was involved in the regulation of IRF5. Initially, the IRF5 promoter region was cloned and its promoter activity was examined using Hela and HEK 293 cells. Deletion analyses revealed that the region spanning ‑179 to +62 was the minimal promoter of IRF5. Bioinformatics analyses showed that this region contained three putative Sp1 binding sites, and mutational analyses revealed that all the Sp1 sites contributed to transcriptional activity. Secondly, the overexpression of Sp1 was found to increase the activity of the IRF5 promoter and the mRNA level of IRF5, determined using reporter gene assays and polymerase chain reaction analysis, respectively. By contrast, treatment with mithramycin and Sp1 small interfering RNA significantly reduced the activity of the IRF5 promoter and the mRNA level of IRF5. Finally, the results of an electrophoretic mobility shift assay and a chromatin immunoprecipitation assay demonstrated that Sp1 bound to the promoter region of IRF5 in vitro and in vivo. These results suggested that the Sp1 transcription factor is the primary determinant for activating the basal transcription of the IRF5.
Collapse
Affiliation(s)
- Jin Shu
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Hua Wang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lan-Bo Zhou
- 2013 Clinical Class 7, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chun-Ming Jiang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei-Xia Yang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Rui Jin
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lu-Lu Wang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
32
|
LIU LIANG, JI PING, QU NING, PU WEILIN, JIANG DAOWEN, LIU WEIYAN, LI YAQI, SHI RONGLIANG. The impact of high co-expression of Sp1 and HIF1α on prognosis of patients with hepatocellular cancer. Oncol Lett 2016; 12:504-512. [PMID: 27347172 PMCID: PMC4906840 DOI: 10.3892/ol.2016.4634] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/12/2016] [Indexed: 12/12/2022] Open
Abstract
Transcription factor specificity protein 1 (Sp1) and hypoxia-inducible factor 1α (HIF1α) serve vital roles in tumor growth and metastasis. The present study aimed to evaluate the impact of co-expression of Sp1 and HIF1α on the prognosis of patients with hepatocellular cancer (HCC) using The Cancer Genome Atlas (TCGA) database and to validate the association between the expression levels of Sp1/HIF1α in HCC specimens and patient survival using immunohistochemical analysis. A total of 214 eligible patients with HCC from TCGA database were collected for the study. The expression profile of Sp1 and HIF1α were obtained from the TCGA RNAseq database. Clinicopathological characteristics, including age, height, weight, gender, race, ethnicity, family cancer history, serum α-fetoprotein (AFP), surgical procedures and TNM stage were collected. The Cox proportional hazards regression model and Kaplan-Meier curves were used to assess the relative factors. Receiver operating characteristic (ROC) curves for cancer-specific survival (CSS) prediction were plotted to compare the prediction ability of expression of Sp1 and HIF1α and their co-expression. The location and expression of Sp1 and HIF1α in the HCC tissues were detected by immunohistochemistry (IHC) to verify the association between these two genes and CSS. The results demonstrated that the expressions of Sp1 and HIF1α were significantly increased in the succumbed group (P=0.001), compared with the surviving group. The CSS rates were 60.1% at 3 years (1,067 days), 35.8% at 5 years (1,823 days) and 9.5% at 10 years (3,528 days). Multivariate Cox regression analysis demonstrated that only the high expression levels of Sp1 and HIF1α (≥2×103) were independent predictors for cancer mortality, with P=0.001 and P=0.029, respectively. The area under the curve for the ROC was found to be higher using the combination testing for two genes (0.751) in predicting cancer mortality, compared to a single gene (0.632 for Sp1 and 0.717 for HIF1α). Based on the cutoff points for gene expression, patients were divided into 3 groups: G1 (both genes <2×103), G2 (either gene ≥2×103) and G3 (both genes ≥2×103). The risk of cancer mortality increased with high expression of genes, and G3 exhibited a greater risk than G2 when compared with the G1 group (HR=5.420, 95% CI 2.767-10.616, P=0.001; HR=3.270, 95% CI 1.843-5.803, P=0.001). The IHC staining results indicated that patients who died of cancer presented with significantly higher expression levels of these genes compared with those that did not (P=0.001). In summary, high expression levels of Sp1 and HIF1α in HCC tissues were associated with poor prognosis; in particular, the co-expression of these two genes increased the risk of cancer mortality.
Collapse
Affiliation(s)
- LIANG LIU
- Department of Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - PING JI
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 201508, P.R. China
| | - NING QU
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - WEI-LIN PU
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, P.R. China
| | - DAO-WEN JIANG
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - WEI-YAN LIU
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - YA-QI LI
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - RONG-LIANG SHI
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| |
Collapse
|
33
|
Zheng C, Yang K, Zhang M, Zou M, Bai E, Ma Q, Xu R. Specific protein 1 depletion attenuates glucose uptake and proliferation of human glioma cells by regulating GLUT3 expression. Oncol Lett 2016; 12:125-131. [PMID: 27347112 PMCID: PMC4906678 DOI: 10.3892/ol.2016.4599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/18/2016] [Indexed: 12/02/2022] Open
Abstract
It has been reported previously that the expression of glucose transporter member 3 (GLUT3) is increased in malignant glioma cells compared with normal glial cells. However, the regulating mechanism that causes this phenomenon remains unknown. The present study investigated the regulating role of transcription factor specific protein 1 (Sp1) in GLUT3 expression in a human glioma cell line. In the present study, Sp1 was identified to directly bind to the GLUT3 5′-untranslated region in human glioma U251 cells. Small interfering RNA- and the Sp1-inhibitor mithramycin A-mediated Sp1 knockdown experiments revealed that Sp1 depletion decreased glucose uptake and inhibited cell growth and invasion of U251 cells by downregulating GLUT3 expression. Therefore Sp1 is an important positive regulator for the expression of GLUT3 in human glioma cells, and may explain the overexpression of GLUT3 in U251 cells. These results suggest that Sp1 may have a role in glioma treatment.
Collapse
Affiliation(s)
- Chuanyi Zheng
- Affiliated Bayi Brain Hospital, General Hospital of Beijing Military Region, Southern Medical University, Beijing 100072, P.R. China; Department of Neurosurgery, The Affiliated Hospital of Hainan Medical College, Haikou, Hainan 570102, P.R. China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Hospital of Hainan Medical College, Haikou, Hainan 570102, P.R. China
| | - Maoying Zhang
- Affiliated Bayi Brain Hospital, General Hospital of Beijing Military Region, Southern Medical University, Beijing 100072, P.R. China; Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510610, P.R. China
| | - Mingming Zou
- Affiliated Bayi Brain Hospital, General Hospital of Beijing Military Region, Southern Medical University, Beijing 100072, P.R. China
| | - Enqi Bai
- Department of Neurosurgery, The Affiliated Hospital of Hainan Medical College, Haikou, Hainan 570102, P.R. China
| | - Quanhong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Ruxiang Xu
- Affiliated Bayi Brain Hospital, General Hospital of Beijing Military Region, Southern Medical University, Beijing 100072, P.R. China
| |
Collapse
|
34
|
Zhao T, Wang H, Ma H, Wang H, Chen B, Deng Y. Starvation after Cobalt-60 γ-Ray Radiation Enhances Metastasis in U251 Glioma Cells by Regulating the Transcription Factor SP1. Int J Mol Sci 2016; 17:386. [PMID: 27058528 PMCID: PMC4848883 DOI: 10.3390/ijms17040386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 01/15/2023] Open
Abstract
Radiation is of clinical importance during glioma therapy; however, vasculature damage is observed over the treatment course. This type of tissue damage might lead to starvation conditions, affecting tumor metastasis. To test this possibility, we compared starvation conditions in conjunction with radiation treatment to monitor metastatic ability in the U251 glioma cell line. Transcriptome, western blot, and immunofluorescence analyses were used to measure the RNA and protein expression changes of the U251 cells after various treatments. We found that starvation combined with radiation treatment yielded the most significant expression changes in metastasis-related factors compared to that in the control groups. In addition, a metastasis assay was used to directly measure the metastatic ability of the treated cells, which confirmed that the U251 cells treated with starvation combined with radiation possessed the highest metastatic ability. Furthermore, bioinformatics analysis demonstrated that SP1 represented a common transcription factor associated with changes in metastasis-related factors. Blocking SP1 activity by an inhibitor suppressed the starvation-plus-radiation treatment-mediated enhancement of U251 cell metastasis. Our study provides the first evidence that starvation caused by radiation might play a significant role in enhancing the ability of the glioma cell line U251 to metastasize via regulation of the transcription factor SP1.
Collapse
Affiliation(s)
- Tuo Zhao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hailong Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hao Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Bo Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
35
|
Saha S, Mukherjee S, Mazumdar M, Manna A, Khan P, Adhikary A, Kajal K, Jana D, Sa G, Mukherjee S, Sarkar DK, Das T. Mithramycin A sensitizes therapy-resistant breast cancer stem cells toward genotoxic drug doxorubicin. Transl Res 2015; 165:558-77. [PMID: 25468484 DOI: 10.1016/j.trsl.2014.10.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 01/05/2023]
Abstract
Chemotherapy resistance is a major clinical challenge for the management of locally advanced breast cancer. Accumulating evidence suggests a major role of cancer stem cells (CSCs) in chemoresistance evoking the requirement of drugs that selectively target CSCs in combination with chemotherapy. Here, we report that mithramycin A, a known specificity protein (Sp)1 inhibitor, sensitizes breast CSCs (bCSCs) by perturbing the expression of drug efflux transporters, ATP-binding cassette sub-family G, member 2 (ABCG2) and ATP-binding cassette sub-family C, member 1 (ABCC1), survival factors, B-cell lymphoma 2 (Bcl-2) and X-linked inhibitor of apoptosis (XIAP), and, stemness regulators, octamer-binding transcription factor 4 (Oct4) and Nanog, which are inherently upregulated in these cells compared with the rest of the tumor population. In-depth analysis revealed that aberrant overexpression of Sp1 in bCSCs transcriptionally upregulates (1) resistance-promoting genes to protect these cells from genotoxic therapy, and (2) stemness regulators to sustain self-renewal potential of these cells. However, mithramycin A causes transcriptional suppression of these chemoresistant and self-renewal genes by inhibiting Sp1 recruitment to their promoters. Under such antisurvival microenvironment, chemotherapeutic agent doxorubicin induces apoptosis in bCSCs via DNA damage-induced reactive oxygen species generation. Cumulatively, our findings raise the possibility that mithramycin A might emerge as a promising drug in combinatorial therapy with the existing chemotherapeutic agents that fail to eliminate CSCs. This will consequently lead to the improvement of therapeutic outcome for the treatment-resistant breast carcinomas.
Collapse
Affiliation(s)
- Shilpi Saha
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | | | - Minakshi Mazumdar
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Argha Manna
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Poulami Khan
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Arghya Adhikary
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Kirti Kajal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Debarshi Jana
- Department of Surgery, SSKM Hospital, Kolkata, West Bengal, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Sanhita Mukherjee
- Department of Physiology, Bankura Sammilani Medical College, Bankura, West Bengal, India
| | | | - Tanya Das
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India.
| |
Collapse
|
36
|
Luo J, Wang X, Xia Z, Yang L, Ding Z, Chen S, Lai B, Zhang N. Transcriptional factor specificity protein 1 (SP1) promotes the proliferation of glioma cells by up-regulating midkine (MDK). Mol Biol Cell 2015; 26:430-9. [PMID: 25428991 PMCID: PMC4310735 DOI: 10.1091/mbc.e14-10-1443] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/21/2022] Open
Abstract
Midkine (MDK) expression is associated with the proliferation of many cancers, including glioma. However, the upstream signaling that leads to MDK accumulation remains elusive. This study investigates the molecular mechanism that induces MDK overexpression in human glioma. The Repository for Molecular Brain Neoplasia Data was analyzed to identify potential MDK regulators. Expression of MDK and specificity protein 1 (SP1) was compared in glioma specimens. Chromatin immunoprecipitation assay was used to confirm the transcriptional regulation. MDK-force-expressed, SP1-silenced glioma cells were used to test rescue effects in vitro and in vivo. MDK and SP1 expression in gliomas was significantly higher than in adjacent tissues and was positively correlated in glioma clinical samples and cell lines. The promoter of the human MDK gene has a putative SP1 binding site. SP1 binds to the promoter of the MDK gene and directly regulates MDK expression. MDK or SP1 gene silencing inhibited the proliferation of glioma cells and reduced the tumor volume in nude mice. Overexpression of MDK in SP1-silenced cells could partially rescue the SP1 inhibition effects in vivo and in vitro. SP1 directly up-regulated the expression of MDK, and the SP1-MDK axis cooperated in glioma tumorigenesis.
Collapse
Affiliation(s)
- Jingyan Luo
- Forevergen Biosciences Center, R&D Unit 602, Guangzhou 510000, China Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxiao Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Zhibo Xia
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lixuan Yang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiming Ding
- Department of Neurosurgery, Huang Pu Division, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Shiyuan Chen
- Department of Neurology and Northwestern Brain Tumor Institute, Center of Genetic Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
| | - Bingquan Lai
- Forevergen Biosciences Center, R&D Unit 602, Guangzhou 510000, China
| | - Nu Zhang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
37
|
Beishline K, Azizkhan-Clifford J. Sp1 and the 'hallmarks of cancer'. FEBS J 2015; 282:224-58. [PMID: 25393971 DOI: 10.1111/febs.13148] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
For many years, transcription factor Sp1 was viewed as a basal transcription factor and relegated to a role in the regulation of so-called housekeeping genes. Identification of Sp1's role in recruiting the general transcription machinery in the absence of a TATA box increased its importance in gene regulation, particularly in light of recent estimates that the majority of mammalian genes lack a TATA box. In this review, we briefly consider the history of Sp1, the founding member of the Sp family of transcription factors. We review the evidence suggesting that Sp1 is highly regulated by post-translational modifications that positively and negatively affect the activity of Sp1 on a wide array of genes. Sp1 is over-expressed in many cancers and is associated with poor prognosis. Targeting Sp1 in cancer treatment has been suggested; however, our review of the literature on the role of Sp1 in the regulation of genes that contribute to the 'hallmarks of cancer' illustrates the extreme complexity of Sp1 functions. Sp1 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, as well as genes involved in essential cellular functions, including proliferation, differentiation, the DNA damage response, apoptosis, senescence and angiogenesis. Sp1 is also implicated in inflammation and genomic instability, as well as epigenetic silencing. Given the apparently opposing effects of Sp1, a more complete understanding of the function of Sp1 in cancer is required to validate its potential as a therapeutic target.
Collapse
Affiliation(s)
- Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
38
|
Identification of differentially expressed genes regulated by transcription factors in glioblastomas by bioinformatics analysis. Mol Med Rep 2014; 11:2548-54. [PMID: 25514975 PMCID: PMC4337481 DOI: 10.3892/mmr.2014.3094] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 11/07/2014] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to identify differentially expressed genes (DEGs) regulated by transcription factors (TFs) in glioblastoma, by conducting a bioinformatics analysis. The results of the present study may provide potential therapeutic targets that are involved in the development of glioblastoma. The GSE4290 raw data set was downloaded from the Gene Expression Omnibus database, and consisted of 23 non‑tumor samples and 77 glioblastoma (grade 4) tumor samples. Robust Multichip Averaging was used to identify DEGs between the glioblastoma and non‑tumor samples. Functional enrichment analysis of the DEGs was also performed. Based on the TRANSFAC® database, TFs associated with the glioblastoma gene expression profile were used to construct a regulatory network. Furthermore, trimmed subnets were identified according to calculated Z‑scores. A total of 676 DEGs were identified, of which 190 were upregulated and 496 were downregulated. Gene Ontology analysis demonstrated that the majority of these DEGs were functionally enriched in synaptic transmission, regulation of vesicle‑mediated transport and ion‑gated channel activity. In addition, the enriched Kyoto Encyclopedia of Genes and Genomes pathway included neuroactive ligand‑receptor interaction, calcium signaling pathway, p53 signaling pathway and cell cycle. Based on the TRANSFAC® database, transcriptional regulatory networks with 2,246 nodes and 4,515 regulatory pairs were constructed. According to the Z‑scores, the following candidate TFs were identified: TP53, SP1, JUN, STAT3 and SPI1; alongside their downstream DEGs. TP53 was the only differentially expressed TF. These candidate TFs and their downstream DEGs may have important roles in the progression of glioblastoma, and could be potential biomarkers for clinical treatment.
Collapse
|
39
|
Choi ES, Nam JS, Jung JY, Cho NP, Cho SD. Modulation of specificity protein 1 by mithramycin A as a novel therapeutic strategy for cervical cancer. Sci Rep 2014; 4:7162. [PMID: 25418289 PMCID: PMC4241519 DOI: 10.1038/srep07162] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/03/2014] [Indexed: 11/09/2022] Open
Abstract
Cervical cancer is the third most common cancer and the third leading cause of death among women. However, the standard treatment for cervical cancer includes cisplatin, which can cause side effects such as hematological damage or renal toxicity. New innovations in cervical cancer treatment focus on developing more effective and better-tolerated therapies such as Sp1-targeting drugs. Previous studies suggested that mithramycin A (Mith) inhibits the growth of various cancers by decreasing Sp1 protein. However, how Sp1 protein is decreased by Mith is not clear. Few studies have investigated the regulation of Sp1 protein by proteasome-dependent degradation as a possible control mechanism for the regulation of Sp1 in cancer cells. Here, we show that Mith decreased Sp1 protein by inducing proteasome-dependent degradation, thereby suppressing cervical cancer growth through a DR5/caspase-8/Bid signaling pathway. We found that prolonged Mith treatment was well tolerated after systemic administration to mice carrying cervical cancer cells. Reduction of body weight was minimal, indicating that Mith was a good therapeutic candidate for treatment of cancers in which Sp1 is involved in promoting and developing disease.
Collapse
Affiliation(s)
- Eun-Sun Choi
- Division of High-risk Pathogen Research, Korea Centers for Disease Control and Prevention, Osong, Republic of Korea
| | - Jeong-Seok Nam
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Graduate School of Medicine, Incheon 406-840, Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 314-701, Republic of Korea
| | - Nam-Pyo Cho
- Department of Oral Pathology, School of Dentistry and Institute of Biodegradable Material, Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeon-ju 561-756, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Institute of Biodegradable Material, Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeon-ju 561-756, Republic of Korea
| |
Collapse
|
40
|
Roth J, Peer CJ, Widemann B, Cole DE, Ershler R, Helman L, Schrump D, Figg WD. Quantitative determination of mithramycin in human plasma by a novel, sensitive ultra-HPLC-MS/MS method for clinical pharmacokinetic application. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 970:95-101. [PMID: 25247492 PMCID: PMC4188709 DOI: 10.1016/j.jchromb.2014.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/15/2014] [Accepted: 08/17/2014] [Indexed: 12/17/2022]
Abstract
Mithramycin is a neoplastic antibiotic synthesized by various Streptomyces bacteria. It is under investigation as a chemotherapeutic treatment for a wide variety of cancers. Ongoing and forthcoming clinical trials will require pharmacokinetic analysis of mithramycin in humans, both to see if target concentrations are achieved and to optimize dosing and correlate outcomes (response/toxicity) with pharmacokinetics. Two published methods for mithramycin quantitation exist, but both are immunoassays that lack current bioanalytical standards of selectivity and sensitivity. To provide an upgraded and more widely applicable assay, a UPLC-MS/MS method for quantitation of mithramycin in human plasma was developed. Solid-phase extraction allowed for excellent recoveries (>90%) necessary for high throughput analyses on sensitive instrumentation. However, a ∼55% reduction in analyte signal was observed as a result of plasma matrix effects. Mithramycin and the internal standard chromomycin were separated on a Waters Acquity BEH C18 column (2.1×50 mm, 1.7 μm) and detected using electrospray ionization operated in the negative mode at mass transitions m/z 1083.5→268.9 and 1181.5→269.0, respectively, on an AB Sciex QTrap 5500. The assay range was 0.5-500 ng/mL and proved to be linear (r(2)>0.996), accurate (≤10% deviation), and precise (CV<15%). Mithramycin was stable in plasma at room temperature for 24 h, as well as through three freeze-thaw cycles. This method was subsequently used to quantitate mithramycin plasma concentrations from patients enrolled on two clinical trials at the NCI.
Collapse
Affiliation(s)
- Jeffrey Roth
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD, United States
| | - Cody J Peer
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD, United States
| | - Brigitte Widemann
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Diane E Cole
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Rachel Ershler
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Lee Helman
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - David Schrump
- Thoracic Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - William D Figg
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD, United States.
| |
Collapse
|
41
|
Heroux MS, Chesnik MA, Halligan BD, Al-Gizawiy M, Connelly JM, Mueller WM, Rand SD, Cochran EJ, LaViolette PS, Malkin MG, Schmainda KM, Mirza SP. Comprehensive characterization of glioblastoma tumor tissues for biomarker identification using mass spectrometry-based label-free quantitative proteomics. Physiol Genomics 2014; 46:467-81. [PMID: 24803679 PMCID: PMC4587597 DOI: 10.1152/physiolgenomics.00034.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/05/2014] [Indexed: 01/21/2023] Open
Abstract
Cancer is a complex disease; glioblastoma (GBM) is no exception. Short survival, poor prognosis, and very limited treatment options make it imperative to unravel the disease pathophysiology. The critically important identification of proteins that mediate various cellular events during disease is made possible with advancements in mass spectrometry (MS)-based proteomics. The objective of our study is to identify and characterize proteins that are differentially expressed in GBM to better understand their interactions and functions that lead to the disease condition. Further identification of upstream regulators will provide new potential therapeutic targets. We analyzed GBM tumors by SDS-PAGE fractionation with internal DNA markers followed by liquid chromatography-tandem mass spectrometry (MS). Brain tissue specimens obtained for clinical purposes during epilepsy surgeries were used as controls, and the quantification of MS data was performed by label-free spectral counting. The differentially expressed proteins were further characterized by Ingenuity Pathway Analysis (IPA) to identify protein interactions, functions, and upstream regulators. Our study identified several important proteins that are involved in GBM progression. The IPA revealed glioma activation with z score 2.236 during unbiased core analysis. Upstream regulators STAT3 and SP1 were activated and CTNNα was inhibited. We verified overexpression of several proteins by immunoblot to complement the MS data. This work represents an important step towards the identification of GBM biomarkers, which could open avenues to identify therapeutic targets for better treatment of GBM patients. The workflow developed represents a powerful and efficient method to identify biomarkers in GBM.
Collapse
Affiliation(s)
- Maxime S Heroux
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marla A Chesnik
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian D Halligan
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mona Al-Gizawiy
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Wade M Mueller
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Scott D Rand
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elizabeth J Cochran
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Peter S LaViolette
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Mark G Malkin
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia
| | - Kathleen M Schmainda
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Shama P Mirza
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin;
| |
Collapse
|
42
|
Bosserman MA, Downey T, Noinaj N, Buchanan SK, Rohr J. Molecular insight into substrate recognition and catalysis of Baeyer-Villiger monooxygenase MtmOIV, the key frame-modifying enzyme in the biosynthesis of anticancer agent mithramycin. ACS Chem Biol 2013; 8:2466-77. [PMID: 23992662 DOI: 10.1021/cb400399b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) have been shown to play key roles for the biosynthesis of important natural products. MtmOIV, a homodimeric FAD- and NADPH-dependent BVMO, catalyzes the key frame-modifying steps of the mithramycin biosynthetic pathway, including an oxidative C-C bond cleavage, by converting its natural substrate premithramycin B into mithramycin DK, the immediate precursor of mithramycin. The drastically improved protein structure of MtmOIV along with the high-resolution structure of MtmOIV in complex with its natural substrate premithramycin B are reported here, revealing previously undetected key residues that are important for substrate recognition and catalysis. Kinetic analyses of selected mutants allowed us to probe the substrate binding pocket of MtmOIV and also to discover the putative NADPH binding site. This is the first substrate-bound structure of MtmOIV providing new insights into substrate recognition and catalysis, which paves the way for the future design of a tailored enzyme for the chemo-enzymatic preparation of novel mithramycin analogues.
Collapse
Affiliation(s)
- Mary A. Bosserman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Theresa Downey
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Nicholas Noinaj
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Susan K. Buchanan
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
43
|
Fang Y, Cao Z, Hou Q, Ma C, Yao C, Li J, Wu XR, Huang C. Cyclin d1 downregulation contributes to anticancer effect of isorhapontigenin on human bladder cancer cells. Mol Cancer Ther 2013; 12:1492-503. [PMID: 23723126 DOI: 10.1158/1535-7163.mct-12-0922] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Isorhapontigenin (ISO) is a new derivative of stilbene compound that was isolated from the Chinese herb Gnetum Cleistostachyum and has been used for treatment of bladder cancers for centuries. In our current studies, we have explored the potential inhibitory effect and molecular mechanisms underlying isorhapontigenin anticancer effects on anchorage-independent growth of human bladder cancer cell lines. We found that isorhapontigenin showed a significant inhibitory effect on human bladder cancer cell growth and was accompanied with related cell cycle G(0)-G(1) arrest as well as downregulation of cyclin D1 expression at the transcriptional level in UMUC3 and RT112 cells. Further studies identified that isorhapontigenin downregulated cyclin D1 gene transcription via inhibition of specific protein 1 (SP1) transactivation. Moreover, ectopic expression of GFP-cyclin D1 rendered UMUC3 cells resistant to induction of cell-cycle G(0)-G(1) arrest and inhibition of cancer cell anchorage-independent growth by isorhapontigenin treatment. Together, our studies show that isorhapontigenin is an active compound that mediates Gnetum Cleistostachyum's induction of cell-cycle G(0)-G(1) arrest and inhibition of cancer cell anchorage-independent growth through downregulating SP1/cyclin D1 axis in bladder cancer cells. Our studies provide a novel insight into understanding the anticancer activity of the Chinese herb Gnetum Cleistostachyum and its isolate isorhapontigenin.
Collapse
Affiliation(s)
- Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, ZheJiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Scott D, Chen JM, Bae Y, Rohr J. Semi-synthetic mithramycin SA derivatives with improved anticancer activity. Chem Biol Drug Des 2013; 81:615-24. [PMID: 23331575 DOI: 10.1111/cbdd.12107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 12/13/2012] [Accepted: 12/31/2012] [Indexed: 11/29/2022]
Abstract
Mithramycin (MTM) is a potent anti-cancer agent that has recently garnered renewed attention. This manuscript describes the design and development of mithramycin derivatives through a combinational approach of biosynthetic analogue generation followed by synthetic manipulation for further derivatization. Mithramycin SA is a previously discovered analogue produced by the M7W1 mutant strain alongside the improved mithramycin analogues mithramycin SK and mithramycin SDK. Mithramycin SA shows decreased anti-cancer activity compared to mithramycin and has a shorter, two carbon aglycon side chain that is terminated in a carboxylic acid. The aglycon side chain is responsible for an interaction with the DNA-phosphate backbone as mithramycin interacts with its target DNA. It was therefore decided to further functionalize this side chain through reactions with the terminal carboxylic acid in an effort to enhance the interaction with the DNA phosphate backbone and improve the anti-cancer activity. This side chain was modified with a variety of molecules increasing the anti-cancer activity to a comparable level to mithramycin SK. This work shows the ability to transform the previously useless mithramycin SA into a valuable molecule and opens the door to further functionalization and semi-synthetic modification for the development of molecules with increased specificity and/or drug formulation.
Collapse
Affiliation(s)
- Daniel Scott
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA
| | | | | | | |
Collapse
|
45
|
Abstract
AbstractDiffuse human gliomas constitute a group of most treatment-refractory tumors even if maximum treatment strategies including neurosurgical resection followed by combined radio-/chemotherapy are applied. In contrast to most other neoplasms, diffusely infiltrating gliomas invade the brain along pre-existing structures such as axonal tracts and perivascular spaces. Even in cases of early diagnosis single or small clusters of glioma cells are already encountered far away from the main tumor bulk. Complex interactions between glioma cells and the surrounding extracellular matrix and considerable changes in the cytoskeletal apparatus are prerequisites for the cellular movement of glioma cells through the brain thereby escaping from most current treatments. This review provides an overview about classical and current concepts of glioma cell migration/invasion and promising preclinical treatment approaches.
Collapse
|
46
|
Shin JA, Jung JY, Ryu MH, Safe S, Cho SD. Mithramycin A inhibits myeloid cell leukemia-1 to induce apoptosis in oral squamous cell carcinomas and tumor xenograft through activation of Bax and oligomerization. Mol Pharmacol 2013; 83:33-41. [PMID: 23019217 DOI: 10.1124/mol.112.081364] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In several human malignancies, overexpression of myeloid cell leukemia-1 (Mcl-1) confers resistance to induction of apoptosis; however, Mcl-1-mediated inhibition of apoptosis in oral squamous cell carcinoma (OSCC) is not fully understood and has been investigated in this study. The Mcl-1 promoter activators (TPA) and epidermal growth factor (EGF) enhanced neoplastic transformation of JB6 cells and this response was accompanied by enhanced expression of Mcl-1, and knockdown of Mcl-1 by RNA interference (RNAi) decreased JB6 cell transformation. In the same cell line, we also demonstrated that mithramycin A (Mith) decreased TPA-induced JB6 cell transformation and Mcl-1 expression. Mcl-1 was overexpressed in human oral tumors compared with normal oral mucosa and also in several OSCC cell lines including HN22 and HSC-4 cells. Treatment of these cells with Mith also decreased Mcl-1 expression and neoplastic cell transformation, and this was accompanied by induction of several markers of apoptosis. Knockdown of Mcl-1 by RNAi also induced apoptotic cell death. The downregulation of Mcl-1 by Mith and RNAi increased pro-apoptotic protein Bax, resulting in the Bax translocation into mitochondria and its oligomerization. Mith also suppressed tumor growth in vivo and induced apoptosis in tumor by also regulating expression of Mcl-1 and Bax proteins. These indicate a critical role for Mcl-1 in the growth and survival of OSCC and demonstrate that Mith may be a potential anticancer drug candidate for clinical treatment of OSCC.
Collapse
Affiliation(s)
- Ji-Ae Shin
- Assistant Professor, Department of Oral Pathology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | | | | | | | | |
Collapse
|
47
|
García-Huerta P, Díaz-Hernandez M, Delicado EG, Pimentel-Santillana M, Miras-Portugal MT, Gómez-Villafuertes R. The specificity protein factor Sp1 mediates transcriptional regulation of P2X7 receptors in the nervous system. J Biol Chem 2012; 287:44628-44. [PMID: 23139414 PMCID: PMC3531778 DOI: 10.1074/jbc.m112.390971] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P2X7 receptors are involved not only in physiological functions but also in pathological brain processes. Although an increasing number of findings indicate that altered receptor expression has a causative role in neurodegenerative diseases and cancer, little is known about how expression of P2rx7 gene is controlled. Here we reported the first molecular and functional evidence that Specificity protein 1 (Sp1) transcription factor plays a pivotal role in the transcriptional regulation of P2X7 receptor. We delimited a minimal region in the murine P2rx7 promoter containing four SP1 sites, two of them being highly conserved in mammals. The functionality of these SP1 sites was confirmed by site-directed mutagenesis and Sp1 overexpression/down-regulation in neuroblastoma cells. Inhibition of Sp1-mediated transcriptional activation by mithramycin A reduced endogenous P2X7 receptor levels in primary cultures of cortical neurons and astrocytes. Using P2rx7-EGFP transgenic mice that express enhanced green fluorescent protein under the control of P2rx7 promoter, we found a high correlation between reporter expression and Sp1 levels in the brain, demonstrating that Sp1 is a key element in the transcriptional regulation of P2X7 receptor in the nervous system. Finally, we found that Sp1 mediates P2X7 receptor up-regulation in neuroblastoma cells cultured in the absence of serum, a condition that enhances chromatin accessibility and facilitates the exposure of SP1 binding sites.
Collapse
Affiliation(s)
- Paula García-Huerta
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Sankpal UT, Abdelrahim M, Connelly SF, Lee CM, Madero-Visbal R, Colon J, Smith J, Safe S, Maliakal P, Basha R. Small molecule tolfenamic acid inhibits PC-3 cell proliferation and invasion in vitro, and tumor growth in orthotopic mouse model for prostate cancer. Prostate 2012; 72:1648-1658. [PMID: 22473873 DOI: 10.1002/pros.22518] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 02/24/2012] [Indexed: 02/02/2023]
Abstract
BACKGROUND Specificity protein (Sp) transcription factors are implicated in critical cellular and molecular processes associated with cancer that impact tumor growth and metastasis. The non-steroidal anti-inflammatory drug, tolfenamic acid (TA) is known to inhibit Sp proteins in some human cancer cells and laboratory animal models. We evaluated the anti-cancer activity of TA using in vitro and in vivo models for prostate cancer. METHODS The anti-proliferative efficacy of TA was evaluated using DU-145, PC-3, and LNCaP cells. PC-3 cells were treated with DMSO or 50 µM TA for 48 hr. Whole cell lysates were evaluated for the expression of Sp1, survivin, c-PARP, Akt/p-Akt, c-Met, cdk4, cdc2, cyclin D3, and E2F1 by Western blot analysis. Cell invasion was assessed by Boyden-chamber assay and flow cytometry analysis was used to study apoptosis and cell cycle distribution. An orthotopic mouse model for prostate cancer with PC-3-Luc cells was used to study the in vivo effect of TA. RESULTS TA inhibited the expression of Sp1, c-Met, p-Akt, and survivin; increased c-PARP expression and caspases activity in PC-3 cells. TA caused cell arrest at G(0) /G(1) phase accompanied by a decrease in cdk4, cdc2, cyclin D3, and E2F1 and an increase in critical apoptotic markers. TA augmented annexin-V staining, caspase activity, and c-PARP expression indicating the activation of apoptotic pathways. TA also decreased PC-3 cell invasion. TA significantly decreased the tumor weight and volume which was associated with low expression of Sp1 and survivin in tumor sections. CONCLUSION TA targets critical pathways associated with tumorigenesis and invasion. These pre-clinical data strongly demonstrated the anti-cancer activity of TA in prostate cancer.
Collapse
Affiliation(s)
- Umesh T Sankpal
- Cancer Research Institute, MD Anderson Cancer Center Orlando, Orlando, Florida 32827, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fermented mistletoe extract as a multimodal antitumoral agent in gliomas. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:501796. [PMID: 23133496 PMCID: PMC3485514 DOI: 10.1155/2012/501796] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/05/2012] [Indexed: 01/03/2023]
Abstract
In Europe, commercially available extracts from the white-berry mistletoe (Viscum album L.) are widely used as a complementary cancer therapy. Mistletoe lectins have been identified as main active components and exhibit cytotoxic effects as well as immunomodulatory activity. Since it is still not elucidated in detail how mistle toe extracts such as ISCADOR communicate their effects, we analyzed the mechanisms that might be responsible for their antitumoral function on a molecular and functional level. ISCADOR-treated glioblastoma (GBM) cells down-regulate central genes involved in glioblastoma progression and malignancy such as the cytokine TGF-β and matrix-metalloproteinases. Using in vitro glioblastoma/immune cell co-cultivation assays as well as measurement of cell migration and invasion, we could demonstrate that in glioblastoma cells, lectin-rich ISCADOR M and ISCADOR Q significantly enforce NK-cell-mediated GBM cell lysis. Beside its immune stimulatory effect, ISCADOR reduces the migratory and invasive potential of glioblastoma cells. In a syngeneic as well as in a xenograft glioblastoma mouse model, both pretreatment of tumor cells and intratumoral therapy of subcutaneously growing glioblastoma cells with ISCADOR Q showed delayed tumor growth. In conclusion, ISCADOR Q, showing multiple positive effects in the treatment of glioblastoma, may be a candidate for concomitant treatment of this cancer.
Collapse
|
50
|
Myeloid cell leukemia-1 is a key molecular target for mithramycin A-induced apoptosis in androgen-independent prostate cancer cells and a tumor xenograft animal model. Cancer Lett 2012; 328:65-72. [PMID: 23000424 DOI: 10.1016/j.canlet.2012.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/21/2012] [Accepted: 09/12/2012] [Indexed: 11/21/2022]
Abstract
Mithramycin A (Mith) is a natural polyketide that has been used in multiple areas of research including apoptosis of various cancer cells. Here, we examined the critical role of Mith in apoptosis and its molecular mechanism in DU145 and PC3 prostate cancer cells and tumor xenografts. Mith decreased cell growth and induced apoptosis in DU145 and PC-3 cells. Myeloid cell leukemia-1 (Mcl-1) was over-expressed in both cell lines compared to RWPE1 cells. Mith inhibited Mcl-1 protein expression in both cells, but only altered Mcl-1 mRNA levels in PC-3 cells. We also found that Mith reduced Mcl-1 protein levels through both proteasome-dependent protein degradation and the inhibition of protein synthesis in DU145 cells. Studies using siRNA confirmed that the knockdown of Mcl-1 induced apoptosis. Mith significantly suppressed TPA-induced neoplastic cell transformation through the down-regulation of the Mcl-1 protein in JB6 cells, and suppressed the transforming activity of both cell types. Mith also inhibited tumor growth and Mcl-1 levels, in addition to inducing apoptosis, in athymic nude mice bearing DU145 cell xenografts without affecting five normal organs. Therefore, Mith inhibits cell growth and induces apoptosis by suppressing Mcl-1 in both prostate cancer cells and xenograft tumors, and thus is a potent anticancer drug candidate for prostate cancer.
Collapse
|