1
|
Sabahi M, Fathi Jouzdani A, Sadeghian Z, Dabbagh Ohadi MA, Sultan H, Salehipour A, Maniakhina L, Rezaei N, Adada B, Mansouri A, Borghei-Razavi H. CAR-engineered NK cells versus CAR T cells in treatment of glioblastoma; strength and flaws. J Neurooncol 2025; 171:495-530. [PMID: 39538038 DOI: 10.1007/s11060-024-04876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive primary brain tumor that carries a grim prognosis. Because of the dearth of treatment options available for treatment of GBM, Chimeric Antigen Receptor (CAR)-engineered T cell and Natural Killer (NK) therapy could provide alternative strategies to address the challenges in GBM treatment. In these approaches, CAR T and NK cells are engineered for cancer-specific immunotherapy by recognizing surface antigens independently of major histocompatibility complex (MHC) molecules. However, the efficacy of CAR T cells is hindered by GBM's downregulation of its targeted antigens. CAR NK cells face similar challenges, but, in contrast, they offer advantages as off-the-shelf allogeneic products, devoid of graft-versus-host disease (GVHD) risk as well as anti-cancer activity beyond CAR specificity, potentially reducing the risk of relapse or resistance. Despite CAR T cell therapies being extensively studied in clinical settings, the use of CAR-modified NK cells in GBM treatment remains largely in the preclinical stage. This review aims to discuss recent advancements in NK cell and CAR T cell therapies for GBM, including methods for introducing CARs into both NK cells and T cells, addressing manufacturing challenges, and providing evidence supporting the efficacy of these approaches from preclinical and early-phase clinical studies. The comprehensive evaluation of CAR-engineered NK cells and CAR T cells seeks to identify the optimal therapeutic approach for GBM, contributing to the development of effective immunotherapies for this devastating disease.
Collapse
Affiliation(s)
- Mohammadmahdi Sabahi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA
| | - Ali Fathi Jouzdani
- Neurosurgery Research Group (NRG), Hamadan University of Medical Sciences, Hamadan, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohre Sadeghian
- Department of Pathology & Laboratory Medicine, Cleveland Clinic Florida, Weston, FL, USA
| | | | - Hadi Sultan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Arash Salehipour
- Neurosurgery Research Group (NRG), Hamadan University of Medical Sciences, Hamadan, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Lana Maniakhina
- Department of Neurosurgery, Geisinger and Geisinger Commonwealth School of Medicine, Wilkes-Barre, PA, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Badih Adada
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.
| | - Hamid Borghei-Razavi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA
| |
Collapse
|
2
|
Li Z, Jiang S, Wang J, Li W, Yang J, Liu W, Gao H, Huang Y, Ruan S. Peptide-drug conjugates repolarize glioblastoma-associated macrophages to resensitize chemo-immunotherapy of glioblastoma. SCIENCE ADVANCES 2025; 11:eadr8841. [PMID: 39823328 PMCID: PMC11740939 DOI: 10.1126/sciadv.adr8841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
The prevalent tumor-supporting glioblastoma-associated macrophages (GAMs) promote glioblastoma multiforme (GBM) progression and resistance to multiple therapies. Repolarizing GAMs from tumor-supporting to tumor-inhibiting phenotype may troubleshoot. However, sufficient accumulation of drugs at the GBM site is restricted by blood-brain barrier (BBB). Herein, we designed peptide-drug conjugates (PDCs) by conjugating camptothecin or resiquimod to a tandem peptide composed of matrix metalloproteinase 2-responsive peptide and angiopep-2 via disulfonyl-ethyl carbonate/carbamate (MAPDCs). The mixed self-assembly MAPDCs could recognize low-density lipoprotein receptor-related protein 1 (LRP1) to facilitate BBB transport. Once reaching the GBM site, the responsive peptide would be cleaved to shed the angiopep-2, blocking abluminal LRP1-mediated brain-to-blood efflux and enhancing drug retention. Sequentially, drugs are released under the high level of intracellular glutathione. In vivo studies demonstrated that MAPDCs repolarized GAMs, boosted immune response, and resensitized chemotherapeutic toxicity, offering a much-improved anti-GBM effect. The effectiveness of MAPDCs validates GAMs as therapeutic target and PDCs as versatile brain delivery system with high design flexibility.
Collapse
Affiliation(s)
- Zhi Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Shaoping Jiang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Wenpei Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jun Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Weimin Liu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Huile Gao
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuanyu Huang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Shaobo Ruan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Yi MH, Lee J, Moon S, So E, Bang G, Moon KS, Lee KH. Divergent Crosstalk Between Microglia and T Cells in Brain Cancers: Implications for Novel Therapeutic Strategies. Biomedicines 2025; 13:216. [PMID: 39857798 PMCID: PMC11763300 DOI: 10.3390/biomedicines13010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Brain cancers represent a formidable oncological challenge characterized by their aggressive nature and resistance to conventional therapeutic interventions. The tumor microenvironment has emerged as a critical determinant of tumor progression and treatment efficacy. Within this complex ecosystem, microglia and macrophages play fundamental roles, forming intricate networks with peripheral immune cell populations, particularly T cells. The precise mechanisms underlying microglial interactions with T cells and their contributions to immunosuppression remain incompletely understood. Methods: This review comprehensively examines the complex cellular dialogue between microglia and T cells in two prominent brain malignancies: primary glioblastoma and secondary brain metastases. Results: Through a comprehensive review of the current scientific literature, we explore the nuanced mechanisms through which microglial-T cell interactions modulate tumor growth and immune responses. Conclusions: Our analysis seeks to unravel the cellular communication pathways that potentially underpin tumor progression, with the ultimate goal of illuminating novel therapeutic strategies for brain cancer intervention.
Collapse
Affiliation(s)
- Min-Hee Yi
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea; (M.-H.Y.)
- Biomedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanam-do, Republic of Korea
| | - Jinkyung Lee
- Biomedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanam-do, Republic of Korea
| | - Subin Moon
- Department of Medicine, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - EunA So
- Biomedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanam-do, Republic of Korea
| | - Geonhyeok Bang
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea; (M.-H.Y.)
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Hwasun 58128, Jeollanam-do, Republic of Korea;
| | - Kyung-Hwa Lee
- Biomedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanam-do, Republic of Korea
- Department of Pathology, Chonnam National University Hwasun Hospital, Hwasun 58128, Jeollanam-do, Republic of Korea
| |
Collapse
|
4
|
Shan H, Zheng G, Bao S, Yang H, Shrestha UD, Li G, Duan X, Du X, Ke T, Liao C. Tumor perfusion enhancement by focus ultrasound-induced blood-brain barrier opening to potentiate anti-PD-1 immunotherapy of glioma. Transl Oncol 2024; 49:102115. [PMID: 39217852 PMCID: PMC11402623 DOI: 10.1016/j.tranon.2024.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE To demonstrate the feasibility of using focused ultrasound to enhance delivery of PD-1 inhibitors in glioma rats and determine if such an approach increases treatment efficacy. METHODS C6 glioma in situ rat model was used in this study. Transcranial irradiation with FUS combined with microbubbles was administered to open the blood-brain barrier (BBB). The efficacy of BBB opening was evaluated in normal rats. The rats with glioma were grouped to evaluate the role of PD-1 inhibitors combined with FUS-induced immune responses in suppressing glioma when the BBB opens. Flow cytometry was used to examine the changes of immune cell populations of lymphocytes in peripheral blood, tumor tissue and spleen tissue of the rats. A section of rat brain tissue was also used for histological and immunohistochemical analysis. The survival of the rats was then monitored; the tumor progression and changes in blood perfusion of tumor were dynamically observed in vivo using multimodal MRI. RESULTS FUS combined with microbubbles could enhance the blood perfusion of tumors by increasing the permeability of BBB (p < 0.0001), thus promoting the infiltration of CD4+ T lymphocytes (p < 0.01). Compared with the control group, the combination treatment group had increased in the infiltration number of CD4+(p < 0.05) and CD8+ T (p < 0.05); the tumor volume of the combined treatment group was smaller than that of the control group (p < 0.01) and the survival rate of the rats was prolonged (p < 0.05). CONCLUSIONS In this study, we demonstrated that the transient opening of the BBB induced by FUS enhanced tumor vascular perfusion and facilitated the delivery of PD-1 inhibitors, ultimately improving the therapeutic efficacy for glioblastoma.
Collapse
Affiliation(s)
- Haiyan Shan
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China.
| | - Guangrong Zheng
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China.
| | - Shasha Bao
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China
| | - Haiyan Yang
- Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing 401147, China
| | | | - Guochen Li
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China
| | - Xirui Duan
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China
| | - Xiaolan Du
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China
| | - Tengfei Ke
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Chengde Liao
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China.
| |
Collapse
|
5
|
Wang C, Feng Q, Shi S, Qin Y, Lu H, Zhang P, Liu J, Chen B. The Rational Engineered Bacteria Based Biohybrid Living System for Tumor Therapy. Adv Healthc Mater 2024; 13:e2401538. [PMID: 39051784 DOI: 10.1002/adhm.202401538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Living therapy based on bacterial cells has gained increasing attention for their applications in tumor treatments. Bacterial cells can naturally target to tumor sites and active the innate immunological responses. The intrinsic advantages of bacteria attribute to the development of biohybrid living carriers for targeting delivery toward hypoxic environments. The rationally engineered bacterial cells integrate various functions to enhance the tumor therapy and reduce toxic side effects. In this review, the antitumor effects of bacteria and their application are discussed as living therapeutic agents across multiple antitumor platforms. The various kinds of bacteria used for cancer therapy are first introduced and demonstrated the mechanism of antitumor effects as well as the immunological effects. Additionally, this study focused on the genetically modified bacteria for the production of antitumor agents as living delivery system to treat cancer. The combination of living bacterial cells with functional nanomaterials is then discussed in the cancer treatments. In brief, the rational design of living therapy based on bacterial cells highlighted a rapid development in tumor therapy and pointed out the potentials in clinical applications.
Collapse
Affiliation(s)
- Chen Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Qiliner Feng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Si Shi
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Yuxuan Qin
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Hongli Lu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Peng Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Baizhu Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
6
|
Bugakova AS, Chudakova DA, Myzina MS, Yanysheva EP, Ozerskaya IV, Soboleva AV, Baklaushev VP, Yusubalieva GM. Non-Tumor Cells within the Tumor Microenvironment-The "Eminence Grise" of the Glioblastoma Pathogenesis and Potential Targets for Therapy. Cells 2024; 13:808. [PMID: 38786032 PMCID: PMC11119139 DOI: 10.3390/cells13100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignancy of the central nervous system in adults. GBM has high levels of therapy failure and its prognosis is usually dismal. The phenotypic heterogeneity of the tumor cells, dynamic complexity of non-tumor cell populations within the GBM tumor microenvironment (TME), and their bi-directional cross-talk contribute to the challenges of current therapeutic approaches. Herein, we discuss the etiology of GBM, and describe several major types of non-tumor cells within its TME, their impact on GBM pathogenesis, and molecular mechanisms of such an impact. We also discuss their value as potential therapeutic targets or prognostic biomarkers, with reference to the most recent works on this subject. We conclude that unless all "key player" populations of non-tumor cells within the TME are considered, no breakthrough in developing treatment for GBM can be achieved.
Collapse
Affiliation(s)
- Aleksandra S. Bugakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Daria A. Chudakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Maria S. Myzina
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Elvira P. Yanysheva
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Iuliia V. Ozerskaya
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Alesya V. Soboleva
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Department of Medical Nanobiotechnology of Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
7
|
Low JT, Brown MC, Reitman ZJ, Bernstock JD, Markert JM, Friedman GK, Waitkus MS, Bowie ML, Ashley DM. Understanding and therapeutically exploiting cGAS/STING signaling in glioblastoma. J Clin Invest 2024; 134:e163452. [PMID: 38226619 PMCID: PMC10786687 DOI: 10.1172/jci163452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Since the discovery that cGAS/STING recognizes endogenous DNA released from dying cancer cells and induces type I interferon and antitumor T cell responses, efforts to understand and therapeutically target the STING pathway in cancer have ensued. Relative to other cancer types, the glioma immune microenvironment harbors few infiltrating T cells, but abundant tumor-associated myeloid cells, possibly explaining disappointing responses to immune checkpoint blockade therapies in cohorts of patients with glioblastoma. Notably, unlike most extracranial tumors, STING expression is absent in the malignant compartment of gliomas, likely due to methylation of the STING promoter. Nonetheless, several preclinical studies suggest that inducing cGAS/STING signaling in the glioma immune microenvironment could be therapeutically beneficial, and cGAS/STING signaling has been shown to mediate inflammatory and antitumor effects of other modalities either in use or being developed for glioblastoma therapy, including radiation, tumor-treating fields, and oncolytic virotherapy. In this Review, we discuss cGAS/STING signaling in gliomas, its implications for glioma immunobiology, compartment-specific roles for STING signaling in influencing immune surveillance, and efforts to target STING signaling - either directly or indirectly - for antiglioma therapy.
Collapse
Affiliation(s)
| | | | - Zachary J. Reitman
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gregory K. Friedman
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | |
Collapse
|
8
|
Gillard AG, Shin DH, Hampton LA, Lopez-Rivas A, Parthasarathy A, Fueyo J, Gomez-Manzano C. Targeting Innate Immunity in Glioma Therapy. Int J Mol Sci 2024; 25:947. [PMID: 38256021 PMCID: PMC10815900 DOI: 10.3390/ijms25020947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Currently, there is a lack of effective therapies for the majority of glioblastomas (GBMs), the most common and malignant primary brain tumor. While immunotherapies have shown promise in treating various types of cancers, they have had limited success in improving the overall survival of GBM patients. Therefore, advancing GBM treatment requires a deeper understanding of the molecular and cellular mechanisms that cause resistance to immunotherapy. Further insights into the innate immune response are crucial for developing more potent treatments for brain tumors. Our review provides a brief overview of innate immunity. In addition, we provide a discussion of current therapies aimed at boosting the innate immunity in gliomas. These approaches encompass strategies to activate Toll-like receptors, induce stress responses, enhance the innate immune response, leverage interferon type-I therapy, therapeutic antibodies, immune checkpoint antibodies, natural killer (NK) cells, and oncolytic virotherapy, and manipulate the microbiome. Both preclinical and clinical studies indicate that a better understanding of the mechanisms governing the innate immune response in GBM could enhance immunotherapy and reinforce the effects of chemotherapy and radiotherapy. Consequently, a more comprehensive understanding of the innate immune response against cancer should lead to better prognoses and increased overall survival for GBM patients.
Collapse
Affiliation(s)
- Andrew G. Gillard
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Dong Ho Shin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Lethan A. Hampton
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
| | - Andres Lopez-Rivas
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Akhila Parthasarathy
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
9
|
Huang Q, Pan X, Zhu W, Zhao W, Xu H, Hu K. Natural Products for the Immunotherapy of Glioma. Nutrients 2023; 15:2795. [PMID: 37375698 DOI: 10.3390/nu15122795] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Glioma immunotherapy has attracted increasing attention since the immune system plays a vital role in suppressing tumor growth. Immunotherapy strategies are already being tested in clinical trials, such as immune checkpoint inhibitors (ICIs), vaccines, chimeric antigen receptor T-cell (CAR-T cell) therapy, and virus therapy. However, the clinical application of these immunotherapies is limited due to their tremendous side effects and slight efficacy caused by glioma heterogeneity, antigen escape, and the presence of glioma immunosuppressive microenvironment (GIME). Natural products have emerged as a promising and safe strategy for glioma therapy since most of them possess excellent antitumor effects and immunoregulatory properties by reversing GIME. This review summarizes the status of current immunotherapy strategies for glioma, including their obstacles. Then we discuss the recent advancement of natural products for glioma immunotherapy. Additionally, perspectives on the challenges and opportunities of natural compounds for modulating the glioma microenvironment are also illustrated.
Collapse
Affiliation(s)
- Qi Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xier Pan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenhao Zhu
- Department of Anaesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wen Zhao
- Department of Anaesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hongzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
10
|
Yu H, Wang M, Wang X, Jiang X. Immune-related matrisomes are potential biomarkers to predict the prognosis and immune microenvironment of glioma patients. FEBS Open Bio 2022; 13:307-322. [PMID: 36560848 PMCID: PMC9900094 DOI: 10.1002/2211-5463.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) plays a vital role in the progression and metastasis of glioma and is an important part of the tumor microenvironment. The matrisome is composed of ECM components and related proteins. There have been several studies on the effects of matrisomes on the glioma immune microenvironment, but most of these studies were performed on individual glioma immune-related matrisomes rather than integral analysis. Hence, an overall analysis of all potential immune-related matrisomes in gliomas is needed. Here, we divided 667 glioma patients in The Cancer Genome Atlas (TCGA) database into low, moderate, and high immune infiltration groups. Immune-related matrisomes differentially expressed among the three groups were analyzed, and a risk signature was established. Eight immune-related matrisomes were screened, namely, LIF, LOX, MMP9, S100A4, SRPX2, SLIT1, SMOC1, and TIMP1. Kaplan-Meier analysis, operating characteristic curve analysis, and nomogram were constructed to analyze the relationships between risk signatures and the prognosis of glioma patients. The risk signature was significantly correlated with the overall survival of glioma patients. Both high- and low-risk signatures were also associated with some immune checkpoints. In addition, analysis of somatic mutations and anti-PD1/L1 immunotherapy responses in the high- and low-risk groups showed that the high-risk group had worse prognosis and a higher response to anti-PD1/L1 immunotherapy. Our analysis of immune-related matrisomes may improve understanding of the characteristics of the glioma immune microenvironment and provide direction for glioma immunotherapy development in the future.
Collapse
Affiliation(s)
- Hao Yu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Minjie Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeWuhanChina
| | - Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeWuhanChina
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
11
|
Xuan W, Hsu WH, Khan F, Dunterman M, Pang L, Wainwright DA, Ahmed AU, Heimberger AB, Lesniak MS, Chen P. Circadian Regulator CLOCK Drives Immunosuppression in Glioblastoma. Cancer Immunol Res 2022; 10:770-784. [PMID: 35413115 PMCID: PMC9177794 DOI: 10.1158/2326-6066.cir-21-0559] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/12/2021] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
Abstract
The symbiotic interactions between cancer stem cells and the tumor microenvironment (TME) are critical for tumor progression. However, the molecular mechanism underlying this symbiosis in glioblastoma (GBM) remains enigmatic. Here, we show that circadian locomotor output cycles kaput (CLOCK) and its heterodimeric partner brain and muscle ARNT-like 1 (BMAL1) in glioma stem cells (GSC) drive immunosuppression in GBM. Integrated analyses of the data from transcriptome profiling, single-cell RNA sequencing, and TCGA datasets, coupled with functional studies, identified legumain (LGMN) as a direct transcriptional target of the CLOCK-BMAL1 complex in GSCs. Moreover, CLOCK-directed olfactomedin-like 3 (OLFML3) upregulates LGMN in GSCs via hypoxia-inducible factor 1-alpha (HIF1α) signaling. Consequently, LGMN promotes microglial infiltration into the GBM TME via upregulating CD162 and polarizes infiltrating microglia toward an immune-suppressive phenotype. In GBM mouse models, inhibition of the CLOCK-OLFML3-HIF1α-LGMN-CD162 axis reduces intratumoral immune-suppressive microglia, increases CD8+ T-cell infiltration, activation, and cytotoxicity, and synergizes with anti-programmed cell death protein 1 (anti-PD-1 therapy). In human GBM, the CLOCK-regulated LGMN signaling correlates positively with microglial abundance and poor prognosis. Together, these findings uncover the CLOCK-OLFML3-HIF1α-LGMN axis as a molecular switch that controls microglial biology and immunosuppression, thus revealing potential new therapeutic targets for patients with GBM.
Collapse
Affiliation(s)
- Wenjing Xuan
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- These authors contributed equally to this work
| | - Fatima Khan
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- These authors contributed equally to this work
| | - Madeline Dunterman
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- These authors contributed equally to this work
| | - Lizhi Pang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- These authors contributed equally to this work
| | - Derek A. Wainwright
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Atique U. Ahmed
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peiwen Chen
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
12
|
Himes BT, Geiger PA, Ayasoufi K, Bhargav AG, Brown DA, Parney IF. Immunosuppression in Glioblastoma: Current Understanding and Therapeutic Implications. Front Oncol 2021; 11:770561. [PMID: 34778089 PMCID: PMC8581618 DOI: 10.3389/fonc.2021.770561] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults an carries and carries a terrible prognosis. The current regiment of surgical resection, radiation, and chemotherapy has remained largely unchanged in recent years as new therapeutic approaches have struggled to demonstrate benefit. One of the most challenging hurdles to overcome in developing novel treatments is the profound immune suppression found in many GBM patients. This limits the utility of all manner of immunotherapeutic agents, which have revolutionized the treatment of a number of cancers in recent years, but have failed to show similar benefit in GBM therapy. Understanding the mechanisms of tumor-mediated immune suppression in GBM is critical to the development of effective novel therapies, and reversal of this effect may prove key to effective immunotherapy for GBM. In this review, we discuss the current understanding of tumor-mediated immune suppression in GBM in both the local tumor microenvironment and systemically. We also discuss the effects of current GBM therapy on the immune system. We specifically explore some of the downstream effectors of tumor-driven immune suppression, particularly myeloid-derived suppressor cells (MDSCs) and other immunosuppressive monocytes, and the manner by which GBM induces their formation, with particular attention to the role of GBM-derived extracellular vesicles (EVs). Lastly, we briefly review the current state of immunotherapy for GBM and discuss additional hurdles to overcome identification and implementation of effective therapeutic strategies.
Collapse
Affiliation(s)
- Benjamin T Himes
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Philipp A Geiger
- Department of Neurosurgery, University Hospital Innsbruck, Tirol, Austria
| | | | - Adip G Bhargav
- Department of Neurosurgery, University of Kansas, Kansas City, KS, United States
| | - Desmond A Brown
- Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Immunology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
13
|
Vinel C, Rosser G, Guglielmi L, Constantinou M, Pomella N, Zhang X, Boot JR, Jones TA, Millner TO, Dumas AA, Rakyan V, Rees J, Thompson JL, Vuononvirta J, Nadkarni S, El Assan T, Aley N, Lin YY, Liu P, Nelander S, Sheer D, Merry CLR, Marelli-Berg F, Brandner S, Marino S. Comparative epigenetic analysis of tumour initiating cells and syngeneic EPSC-derived neural stem cells in glioblastoma. Nat Commun 2021; 12:6130. [PMID: 34675201 PMCID: PMC8531305 DOI: 10.1038/s41467-021-26297-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic mechanisms which play an essential role in normal developmental processes, such as self-renewal and fate specification of neural stem cells (NSC) are also responsible for some of the changes in the glioblastoma (GBM) genome. Here we develop a strategy to compare the epigenetic and transcriptional make-up of primary GBM cells (GIC) with patient-matched expanded potential stem cell (EPSC)-derived NSC (iNSC). Using a comparative analysis of the transcriptome of syngeneic GIC/iNSC pairs, we identify a glycosaminoglycan (GAG)-mediated mechanism of recruitment of regulatory T cells (Tregs) in GBM. Integrated analysis of the transcriptome and DNA methylome of GBM cells identifies druggable target genes and patient-specific prediction of drug response in primary GIC cultures, which is validated in 3D and in vivo models. Taken together, we provide a proof of principle that this experimental pipeline has the potential to identify patient-specific disease mechanisms and druggable targets in GBM.
Collapse
Affiliation(s)
- Claire Vinel
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Gabriel Rosser
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Loredana Guglielmi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Myrianni Constantinou
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Nicola Pomella
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Xinyu Zhang
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - James R Boot
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Tania A Jones
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Thomas O Millner
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Anaelle A Dumas
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Vardhman Rakyan
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Jeremy Rees
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, UK
| | - Jamie L Thompson
- Stem Cell Glycobiology Group, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Juho Vuononvirta
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Suchita Nadkarni
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Tedani El Assan
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, UK
| | - Natasha Aley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Yung-Yao Lin
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
- Stem Cell Laboratory, National Bowel Research Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London, UK
| | - Pentao Liu
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Sven Nelander
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Denise Sheer
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Catherine L R Merry
- Stem Cell Glycobiology Group, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Federica Marelli-Berg
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK.
| |
Collapse
|
14
|
Yang Z, Gong W, Zhang T, Gao H. Molecular Features of Glioma Determined and Validated Using Combined TCGA and GTEx Data Analyses. Front Oncol 2021; 11:729137. [PMID: 34660294 PMCID: PMC8516354 DOI: 10.3389/fonc.2021.729137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Gliomas are among the most common intracranial tumors which originated from neuroepithelial cells. Increasing evidence has revealed that long noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA module regulation and tumor-infiltrating immune cells play important regulatory roles in the occurrence and progression of gliomas. However, the precise underlying molecular mechanisms remain largely unknown. Data on gliomas in The Cancer Genome Atlas lack normal control samples; to overcome this limitation, we combined 665 The Cancer Genome Atlas glioma RNA sequence datasets with 188 Genotype-Tissue Expression normal brain RNA sequences to construct an expression matrix profile after normalization. We systematically analyzed the expression of mRNAs, lncRNAs, and miRNAs between gliomas and normal brain tissues. Kaplan–Meier survival analyses were conducted to screen differentially expressed mRNAs, lncRNAs, and miRNAs. A prognostic miRNA-related competitive endogenous RNA network was constructed, and the core subnetworks were filtered using 6 miRNAs, 3 lncRNAs, and 11 mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to investigate the biological functions of significantly dysregulated mRNAs. Co-expression network analysis was performed to analyze and screen the core genes. Furthermore, single-sample Gene Set Enrichment Analysis and immune checkpoint gene expression analysis were performed, as co-expression analysis indicated immune gene dysregulation in glioma. Finally, the expression of representative dysregulated genes was validated in U87 cells at the transcriptional level, establishing a foundation for further research. We identified 7017 mRNAs, 437 lncRNAs, and 9 miRNAs that were differentially expressed in gliomas. Kaplan–Meier survival analysis revealed 5684 mRNAs, 61 lncRNAs, and 7 miRNAs with potential as prognostic signatures in patients with glioma. The hub subnetwork of the competing endogenous RNA network between PART1-hsa-mir-25-SLC12A5/TACC2/BSN/TLN2/ZDHHC8 was screened out. Gene co-expression network, single-sample Gene Set Enrichment Analysis, and immune checkpoint expression analysis demonstrated that tumor-infiltrating immune cells are closely related to gliomas. We identified novel potential biomarkers to predict survival and therapeutic targets for patients with gliomas based on a large-scale sample. Importantly, we filtered pivotal genes that provide valuable information for further exploration of the molecular mechanisms underlying glioma tumorigenesis and progression.
Collapse
Affiliation(s)
- Zijiang Yang
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Weiyi Gong
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Ting Zhang
- Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical College, Jiangyin, China
| | - Heng Gao
- Department of Neurosurgery, Jiangyin Clinical College of Xuzhou Medical College, Jiangyin, China
| |
Collapse
|
15
|
Liu S, Zhang C, Wang B, Zhang H, Qin G, Li C, Cao L, Gao Q, Ping Y, Zhang K, Lian J, Zhao Q, Wang D, Zhang Z, Zhao X, Yang L, Huang L, Yang B, Zhang Y. Regulatory T cells promote glioma cell stemness through TGF-β-NF-κB-IL6-STAT3 signaling. Cancer Immunol Immunother 2021; 70:2601-2616. [PMID: 33576874 PMCID: PMC8360896 DOI: 10.1007/s00262-021-02872-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
Glioma stem cells (GSCs) contribute to the malignant growth of glioma, but little is known about the interaction between GSCs and tumor microenvironment. Here, we found that intense infiltration of regulatory T cells (Tregs) facilitated the qualities of GSCs through TGF-β secretion that helped coordinately tumor growth. Mechanistic investigations indicated that TGF-β acted on cancer cells to induce the core cancer stem cell-related genes CD133, SOX2, NESTIN, MUSASHI1 and ALDH1A expression and spheres formation via NF-κB-IL6-STAT3 signaling pathway, resulting in the increased cancer stemness and tumorigenic potential. Furthermore, Tregs promoted glioma tumor growth, and this effect could be abrogated with blockade of IL6 receptor by tocilizumab which also demonstrated certain level of therapeutic efficacy in xenograft model. Additionally, expression levels of CD133, IL6 and TGF-β were found to serve as prognosis markers of glioma patients. Collectively, our findings reveal a new immune-associated mechanism underlying Tregs-induced GSCs. Moreover, efforts to target this network may be an effective strategy for treating glioma.
Collapse
Affiliation(s)
- Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chaoqi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Boqiao Wang
- Henan University of Chinese Medicine, Zhengzhou, 450052, Henan, China
| | - Huanyu Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guohui Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Congcong Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ling Cao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qun Gao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Kai Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jingyao Lian
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qitai Zhao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Dan Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xuan Zhao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
16
|
Qiu R, Zhong Y, Li Q, Li Y, Fan H. Metabolic Remodeling in Glioma Immune Microenvironment: Intercellular Interactions Distinct From Peripheral Tumors. Front Cell Dev Biol 2021; 9:693215. [PMID: 34211978 PMCID: PMC8239469 DOI: 10.3389/fcell.2021.693215] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/19/2021] [Indexed: 01/29/2023] Open
Abstract
During metabolic reprogramming, glioma cells and their initiating cells efficiently utilized carbohydrates, lipids and amino acids in the hypoxic lesions, which not only ensured sufficient energy for rapid growth and improved the migration to normal brain tissues, but also altered the role of immune cells in tumor microenvironment. Glioma cells secreted interferential metabolites or depriving nutrients to injure the tumor recognition, phagocytosis and lysis of glioma-associated microglia/macrophages (GAMs), cytotoxic T lymphocytes, natural killer cells and dendritic cells, promoted the expansion and infiltration of immunosuppressive regulatory T cells and myeloid-derived suppressor cells, and conferred immune silencing phenotypes on GAMs and dendritic cells. The overexpressed metabolic enzymes also increased the secretion of chemokines to attract neutrophils, regulatory T cells, GAMs, and dendritic cells, while weakening the recruitment of cytotoxic T lymphocytes and natural killer cells, which activated anti-inflammatory and tolerant mechanisms and hindered anti-tumor responses. Therefore, brain-targeted metabolic therapy may improve glioma immunity. This review will clarify the metabolic properties of glioma cells and their interactions with tumor microenvironment immunity, and discuss the application strategies of metabolic therapy in glioma immune silence and escape.
Collapse
Affiliation(s)
- Runze Qiu
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Zhong
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qingquan Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingbin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongwei Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Wang S, Xu X. An Immune-Related Gene Pairs Signature for Predicting Survival in Glioblastoma. Front Oncol 2021; 11:564960. [PMID: 33859933 PMCID: PMC8042321 DOI: 10.3389/fonc.2021.564960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 02/12/2021] [Indexed: 01/06/2023] Open
Abstract
Background: Glioblastoma (GBM) is the frequently occurring and most aggressive form of brain tumors. In the study, we constructed an immune-related gene pairs (IRGPs) signature to predict overall survival (OS) in patients with GBM. Methods: We established IRGPs with immune-related gene (IRG) matrix from The Cancer Genome Atlas (TCGA) database (Training cohort). After screened by the univariate regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis, IRGPs were subjected to the multivariable Cox regression to develop an IRGP signature. Then, the predicting accuracy of the signature was assessed with the area under the receiver operating characteristic curve (AUC) and validated the result using the Chinese Glioma Genome Atlas (CGGA) database (Validation cohorts 1 and 2). Results: A 10-IRGP signature was established for predicting the OS of patients with GBM. The AUC for predicting 1-, 3-, and 5-year OS in Training cohort was 0.801, 0.901, and 0.964, respectively, in line with the AUC of Validation cohorts 1 and 2 [Validation cohort 1 (1 year: 0.763; 3 years: 0.786; and 5 years: 0.884); Validation cohort 2 (1 year: 0.745; 3 years: 0.989; and 5 years: 0.987)]. Moreover, survival analysis in three cohorts suggested that patients with low-risk GBM had better clinical outcomes than patients with high-risk GBM. The univariate and multivariable Cox regression demonstrated that the IRGPs signature was an independent prognostic factor. Conclusions: We developed a novel IRGPs signature for predicting OS in patients with GBM.
Collapse
Affiliation(s)
- Sheng Wang
- Zhejiang Jinhua Guangfu Hospital, Jinhua, China
| | - Xia Xu
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Benecke L, Coray M, Umbricht S, Chiang D, Figueiró F, Muller L. Exosomes: Small EVs with Large Immunomodulatory Effect in Glioblastoma. Int J Mol Sci 2021; 22:3600. [PMID: 33808435 PMCID: PMC8036988 DOI: 10.3390/ijms22073600] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastomas are among the most aggressive tumors, and with low survival rates. They are characterized by the ability to create a highly immunosuppressive tumor microenvironment. Exosomes, small extracellular vesicles (EVs), mediate intercellular communication in the tumor microenvironment by transporting various biomolecules (RNA, DNA, proteins, and lipids), therefore playing a prominent role in tumor proliferation, differentiation, metastasis, and resistance to chemotherapy or radiation. Exosomes are found in all body fluids and can cross the blood-brain barrier due to their nanoscale size. Recent studies have highlighted the multiple influences of tumor-derived exosomes on immune cells. Owing to their structural and functional properties, exosomes can be an important instrument for gaining a better molecular understanding of tumors. Furthermore, they qualify not only as diagnostic and prognostic markers, but also as tools in therapies specifically targeting aggressive tumor cells, like glioblastomas.
Collapse
Affiliation(s)
- Laura Benecke
- Department of Biomedicine, University of Basel, 4051 Basel, Switzerland; (L.B.); (M.C.); (D.C.)
- Department of Otolaryngology and Head & Neck Surgery, University Hospital Basel, 4051 Basel, Switzerland
| | - Mali Coray
- Department of Biomedicine, University of Basel, 4051 Basel, Switzerland; (L.B.); (M.C.); (D.C.)
| | - Sandra Umbricht
- Faculty of Medicine, University of Basel, 4051 Basel, Switzerland;
| | - Dapi Chiang
- Department of Biomedicine, University of Basel, 4051 Basel, Switzerland; (L.B.); (M.C.); (D.C.)
| | - Fabrício Figueiró
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil;
| | - Laurent Muller
- Department of Biomedicine, University of Basel, 4051 Basel, Switzerland; (L.B.); (M.C.); (D.C.)
- Department of Otolaryngology and Head & Neck Surgery, University Hospital Basel, 4051 Basel, Switzerland
| |
Collapse
|
19
|
Jara N, Ramirez E, Ferrada L, Salazar K, Espinoza F, González-Chavarría I, Nualart F. Vitamin C deficient reduces proliferation in a human periventricular tumor stem cell-derived glioblastoma model. J Cell Physiol 2021; 236:5801-5817. [PMID: 33432597 DOI: 10.1002/jcp.30264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor with a median survival of 14.6 months. GBM is highly resistant to radio- and chemotherapy, and remains without a cure; hence, new treatment strategies are constantly sought. Vitamin C, an essential micronutrient and antioxidant, was initially described as an antitumor molecule; however, several studies have shown that it can promote tumor progression and angiogenesis. Thus, considering the high concentrations of vitamin C present in the brain, our aim was to study the effect of vitamin C deficiency on the progression of GBM using a GBM model generated by the stereotactic injection of human GBM cells (U87-MG or HSVT-C3 cells) in the subventricular zone of guinea pig brain. Initial characterization of U87-MG and HSVT-C3 cells showed that HSVT-C3 are highly proliferative, overexpress p53, and are resistant to ferroptosis. To induce intraperiventricular tumors, animals received control or a vitamin C-deficient diet for 3 weeks, after which histopathological and confocal microscopy analyses were performed. We demonstrated that the vitamin C-deficient condition reduced the glomeruloid vasculature and microglia/macrophage infiltration in U87-MG tumors. Furthermore, tumor size, proliferation, glomeruloid vasculature, microglia/macrophage infiltration, and invasion were reduced in C3 tumors carried by vitamin C-deficient guinea pigs. In conclusion, the effect of the vitamin C deficiency was dependent on the tumor cell used for GBM induction. HSVT-C3 cells, a cell line with stem cell features isolated from a human subventricular GBM, showed higher sensitivity to the deficient condition; however, vitamin C deficiency displayed an antitumor effect in both GBM models analyzed.
Collapse
Affiliation(s)
- Nery Jara
- Department of Cellular Biology, Laboratory of Neurobiology and Stem Cells NeuroCellT, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Eder Ramirez
- Department of Cellular Biology, Laboratory of Neurobiology and Stem Cells NeuroCellT, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Luciano Ferrada
- Faculty of Biological Sciences, Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| | - Katterine Salazar
- Department of Cellular Biology, Laboratory of Neurobiology and Stem Cells NeuroCellT, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Faculty of Biological Sciences, Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| | - Francisca Espinoza
- Department of Cellular Biology, Laboratory of Neurobiology and Stem Cells NeuroCellT, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Iván González-Chavarría
- Department of Pathophysiology, Laboratory of Biotechnology and Biopharmaceuticals, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Francisco Nualart
- Department of Cellular Biology, Laboratory of Neurobiology and Stem Cells NeuroCellT, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Faculty of Biological Sciences, Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| |
Collapse
|
20
|
Manini I, Caponnetto F, Dalla E, Ius T, Pepa GMD, Pegolo E, Bartolini A, Rocca GL, Menna G, Loreto CD, Olivi A, Skrap M, Sabatino G, Cesselli D. Heterogeneity Matters: Different Regions of Glioblastoma Are Characterized by Distinctive Tumor-Supporting Pathways. Cancers (Basel) 2020; 12:cancers12102960. [PMID: 33066172 PMCID: PMC7601979 DOI: 10.3390/cancers12102960] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary 5-ALA Fluorescence Guided Surgery aims at extending the boundaries of glioblastoma (GBM) resection. It is based on the use of a fluorescent dye, 5-aminolevulinic acid (5-ALA). Depending on the fluorescence levels, it is possible to distinguish the core of the tumor, the infiltrating borders and the healthy tissue. Since GBM progression is supported by tumor cells and their interaction with the surrounding microenvironment, we hypothesized that 5-ALA intensity could identify microenvironments with different tumor supporting properties. Taking advantage of glioma-associated stem cells; a human in vitro model of the glioma microenvironment, we demonstrate that all regions of the tumor support the tumor growth, but through different pathways. This study highlights the importance of understanding the TME to obtain key information on GBM biology and develop new therapeutic approaches. Abstract The glioblastoma microenvironment plays a substantial role in glioma biology. However, few studies have investigated its spatial heterogeneity. Exploiting 5-ALA Fluorescence Guided Surgery (FGS), we were able to distinguish between the tumor core (ALA+), infiltrating area (ALA-PALE) and healthy tissue (ALA−) of the glioblastoma, based on the level of accumulated fluorescence. The aim of this study was to investigate the properties of the microenvironments associated with these regions. For this purpose, we isolated glioma-associated stem cells (GASC), resident in the glioma microenvironment, from ALA+, ALA-PALE and ALA− samples and compared them in terms of growth kinetic, phenotype and for the expression of 84 genes associated with cancer inflammation and immunity. Differentially expressed genes were correlated with transcriptomic datasets from TCGA/GTEX. Our results show that GASC derived from the three distinct regions, despite a similar phenotype, were characterized by different transcriptomic profiles. Moreover, we identified a GASC-based genetic signature predictive of overall survival and disease-free survival. This signature, highly expressed in ALA+ GASC, was also well represented in ALA PALE GASC. 5-ALA FGS allowed to underline the heterogeneity of the glioma microenvironments. Deepening knowledge of these differences can contribute to develop new adjuvant therapies targeting the crosstalk between tumor and its supporting microenvironment.
Collapse
Affiliation(s)
- Ivana Manini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
- Correspondence:
| | - Federica Caponnetto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (F.C.); (E.D.)
| | - Emiliano Dalla
- Department of Medicine, University of Udine, 33100 Udine, Italy; (F.C.); (E.D.)
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Giuseppe Maria Della Pepa
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
| | - Enrico Pegolo
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
| | - Anna Bartolini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
| | - Giuseppe La Rocca
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy
| | - Grazia Menna
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
| | - Carla Di Loreto
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
- Department of Medicine, University of Udine, 33100 Udine, Italy; (F.C.); (E.D.)
| | - Alessandro Olivi
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy
| | - Daniela Cesselli
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
- Department of Medicine, University of Udine, 33100 Udine, Italy; (F.C.); (E.D.)
| |
Collapse
|
21
|
Martins TA, Schmassmann P, Shekarian T, Boulay JL, Ritz MF, Zanganeh S, Vom Berg J, Hutter G. Microglia-Centered Combinatorial Strategies Against Glioblastoma. Front Immunol 2020; 11:571951. [PMID: 33117364 PMCID: PMC7552736 DOI: 10.3389/fimmu.2020.571951] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated microglia (MG) and macrophages (MΦ) are important components of the glioblastoma (GBM) immune tumor microenvironment (iTME). From the recent advances in understanding how MG and GBM cells evolve and interact during tumorigenesis, we emphasize the cooperation of MG with other immune cell types of the GBM-iTME, mainly MΦ and T cells. We provide a comprehensive overview of current immunotherapeutic clinical trials and approaches for the treatment of GBM, which in general, underestimate the counteracting contribution of immunosuppressive MG as a main factor for treatment failure. Furthermore, we summarize new developments and strategies in MG reprogramming/re-education in the GBM context, with a focus on ways to boost MG-mediated tumor cell phagocytosis and associated experimental models and methods. This ultimately converges in our proposal of novel combinatorial regimens that locally modulate MG as a central paradigm, and therefore may lead to additional, long-lasting, and effective tumoricidal responses.
Collapse
Affiliation(s)
- Tomás A Martins
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Tala Shekarian
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jean-Louis Boulay
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Marie-Françoise Ritz
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Steven Zanganeh
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Chemical and Biomolecular Engineering, New York University, New York, NY, United States
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Schlieren, Switzerland
| | - Gregor Hutter
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
22
|
Human cytomegalovirus DNA detection in a recurrent glioblastoma multiforme tumour, but not in whole blood: a case report and discussion about the HCMV latency and therapy perspectives. J Neurovirol 2020; 26:984-987. [PMID: 32880872 DOI: 10.1007/s13365-020-00901-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/01/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022]
Abstract
In the current study, a 58-year-old male patient presented with recurrent glioblastoma multiforme (GBM). The patient underwent surgical resection, 4 months earlier, followed by radiotherapy and chemotherapy. During the second surgical intervention, tumour tissue and whole blood were sampled and analysed for human cytomegalovirus (HCMV) DNA, immediate early (IE) mRNA and pp65 mRNA. HCMV DNA was detected only in the recurrent tumour tissue but not in the whole blood. Neither IE mRNA nor pp65 mRNA was expressed. Our result suggests HCMV latency in the brain tumour with detectable level of viral DNA. More data are needed to understand the HCMV infection chronology in the brain tumours but our data could be important for further studies of HCMV antigens on the tumour surface and anti-GBM therapy.
Collapse
|
23
|
Pi Castro D, José-López R, Fernández Flores F, Rabanal Prados RM, Mandara MT, Arús C, Pumarola Batlle M. Expression of FOXP3 in Canine Gliomas: Immunohistochemical Study of Tumor-Infiltrating Regulatory Lymphocytes. J Neuropathol Exp Neurol 2020; 79:184-193. [PMID: 31846038 DOI: 10.1093/jnen/nlz120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/15/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
Dogs develop gliomas with similar histopathological features to human gliomas and share with them the limited success of current therapeutic regimens such as surgery and radiation. The tumor microenvironment in gliomas is influenced by immune cell infiltrates. The present study aims to immunohistochemically characterize the tumor-infiltrating lymphocyte (TIL) population of naturally occurring canine gliomas, focusing on the expression of Forkhead box P3-positive (FOXP3+) regulatory T-cells (Tregs). Forty-three canine gliomas were evaluated immunohistochemically for the presence of CD3+, FOXP3+, and CD20+ TILs. In low-grade gliomas, CD3+ TILs were found exclusively within the tumor tissue. In high-grade gliomas, they were present in significantly higher numbers throughout the tumor and in the brain-tumor junction. CD20+ TILs were rarely found in comparison to CD3+ TILs. FOXP3+ TILs shared a similar distribution with CD3+ TILs. The accumulation of FOXP3+ Tregs within the tumor was more pronounced in astrocytic gliomas than in tumors of oligodendroglial lineage and the difference in expression was significant when comparing low-grade oligodendrogliomas and high-grade astrocytomas. Only high-grade astrocytomas presented FOXP3+ cells with tumoral morphology. In spontaneous canine gliomas, TILs display similar characteristics (density and distribution) as described for human gliomas, supporting the use of the dog as an animal model for translational immunotherapeutic studies.
Collapse
Affiliation(s)
- Dolors Pi Castro
- From the Unit of Murine and Comparative Pathology (UPMiC), Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autónoma de Barcelona, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roberto José-López
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Francisco Fernández Flores
- Department of Veterinary Pathology and Public Health, Institute of Veterinary Science, University of Liverpool, UK
| | - Rosa M Rabanal Prados
- From the Unit of Murine and Comparative Pathology (UPMiC), Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autónoma de Barcelona, Barcelona, Spain
| | | | - Carles Arús
- From the Unit of Murine and Comparative Pathology (UPMiC), Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autónoma de Barcelona, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Martí Pumarola Batlle
- From the Unit of Murine and Comparative Pathology (UPMiC), Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autónoma de Barcelona, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Chen P, Hsu WH, Chang A, Tan Z, Lan Z, Zhou A, Spring DJ, Lang FF, Wang YA, DePinho RA. Circadian Regulator CLOCK Recruits Immune-Suppressive Microglia into the GBM Tumor Microenvironment. Cancer Discov 2020; 10:371-381. [PMID: 31919052 PMCID: PMC7058515 DOI: 10.1158/2159-8290.cd-19-0400] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/26/2019] [Accepted: 01/06/2020] [Indexed: 01/11/2023]
Abstract
Glioblastoma (GBM) is a lethal brain tumor containing a subpopulation of glioma stem cells (GSC). Pan-cancer analyses have revealed that stemness of cancer cells correlates positively with immunosuppressive pathways in many solid tumors, including GBM, prompting us to conduct a gain-of-function screen of epigenetic regulators that may influence GSC self-renewal and tumor immunity. The circadian regulator CLOCK emerged as a top hit in enhancing stem-cell self-renewal, which was amplified in about 5% of human GBM cases. CLOCK and its heterodimeric partner BMAL1 enhanced GSC self-renewal and triggered protumor immunity via transcriptional upregulation of OLFML3, a novel chemokine recruiting immune-suppressive microglia into the tumor microenvironment. In GBM models, CLOCK or OLFML3 depletion reduced intratumoral microglia density and extended overall survival. We conclude that the CLOCK-BMAL1 complex contributes to key GBM hallmarks of GSC maintenance and immunosuppression and, together with its downstream target OLFML3, represents new therapeutic targets for this disease. SIGNIFICANCE: Circadian regulator CLOCK drives GSC self-renewal and metabolism and promotes microglia infiltration through direct regulation of a novel microglia-attracting chemokine, OLFML3. CLOCK and/or OLFML3 may represent novel therapeutic targets for GBM.This article is highlighted in the In This Issue feature, p. 327.
Collapse
Affiliation(s)
- Peiwen Chen
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew Chang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhi Tan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhengdao Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ashley Zhou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frederick F Lang
- Department of Neurosurgery and Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
25
|
Salinas RD, Durgin JS, O'Rourke DM. Potential of Glioblastoma-Targeted Chimeric Antigen Receptor (CAR) T-Cell Therapy. CNS Drugs 2020; 34:127-145. [PMID: 31916100 DOI: 10.1007/s40263-019-00687-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the established efficacy of chimeric antigen receptor (CAR) T-cell therapy in hematologic malignancies, translating CAR T therapy to solid tumors has remained investigational. Glioblastoma, the most aggressive and lethal form of primary brain tumor, has recently been among the malignancies being trialed clinically with CAR T cells. Glioblastoma in particular holds several unique features that have hindered clinical translation, including its vast intertumoral and intratumoral heterogeneity, associated immunosuppressive environment, and lack of clear experimental models to predict response and analyze resistant phenotypes. Here, we review the history of CAR T therapy development, its current progress in treating glioblastoma, as well as the current challenges and future directions in establishing CAR T therapy as a viable alternative to the current standard of care. Tremendous efforts are currently ongoing to identify novel CAR targets and target combinations for glioblastoma, to modify T cells to enhance their efficacy and to enable them to resist tumor-mediated immunosuppression, and to utilize adjunct therapies such as lymphodepletion, checkpoint inhibition, and bi-specific engagers to improve CAR T persistence. Furthermore, new preclinical models of CAR T therapy are being developed that better reflect the clinical features seen in human trials. Current clinical trials that rapidly incorporate key preclinical findings to patient translation are emerging.
Collapse
Affiliation(s)
- Ryan D Salinas
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph S Durgin
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Glioblastoma Translational Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
26
|
GARP as an Immune Regulatory Molecule in the Tumor Microenvironment of Glioblastoma Multiforme. Int J Mol Sci 2019; 20:ijms20153676. [PMID: 31357555 PMCID: PMC6695992 DOI: 10.3390/ijms20153676] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Glycoprotein A repetition predominant (GARP), a specific surface molecule of activated regulatory T cells, has been demonstrated to significantly contribute to tolerance in humans by induction of peripheral Treg and regulatory M2-macrophages and by inhibition of (tumorantigen-specific) T effector cells. Previous work identified GARP on Treg, and also GARP on the surface of several malignant tumors, as well as in a soluble form being shedded from their surface, contributing to tumor immune escape. Preliminary results also showed GARP expression on brain metastases of malignant melanoma. On the basis of these findings, we investigated whether GARP is also expressed on primary brain tumors. We showed GARP expression on glioblastoma (GB) cell lines and primary GB tissue, as well as on low-grade glioma, suggesting an important influence on the tumor micromilieu and the regulation of immune responses also in primary cerebral tumors. This was supported by the finding that GB cells led to a reduced, in part GARP-dependent effector T cell function (reduced proliferation and reduced cytokine secretion) in coculture experiments. Interestingly, GARP was localized not only on the cell surface but also in the cytoplasmatic, as well as nuclear compartments in tumor cells. Our findings reveal that GARP, as an immunoregulatory molecule, is located on, as well as in, tumor cells of GB and low-grade glioma, inhibiting effector T cell function, and thus contributing to the immunosuppressive tumor microenvironment of primary brain tumors. As GARP is expressed on activated Treg, as well as on brain tumors, it may be an interesting target for new immunotherapeutic approaches using antibody-based strategies as this indication.
Collapse
|
27
|
Ma Q, Long W, Xing C, Chu J, Luo M, Wang HY, Liu Q, Wang RF. Cancer Stem Cells and Immunosuppressive Microenvironment in Glioma. Front Immunol 2018; 9:2924. [PMID: 30619286 PMCID: PMC6308128 DOI: 10.3389/fimmu.2018.02924] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022] Open
Abstract
Glioma is one of the most common malignant tumors of the central nervous system and is characterized by extensive infiltrative growth, neovascularization, and resistance to various combined therapies. In addition to heterogenous populations of tumor cells, the glioma stem cells (GSCs) and other nontumor cells present in the glioma microenvironment serve as critical regulators of tumor progression and recurrence. In this review, we discuss the role of several resident or peripheral factors with distinct tumor-promoting features and their dynamic interactions in the development of glioma. Localized antitumor factors could be silenced or even converted to suppressive phenotypes, due to stemness-related cell reprogramming and immunosuppressive mediators in glioma-derived microenvironment. Furthermore, we summarize the latest knowledge on GSCs and key microenvironment components, and discuss the emerging immunotherapeutic strategies to cure this disease.
Collapse
Affiliation(s)
- Qianquan Ma
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China.,Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Wenyong Long
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Changsheng Xing
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Junjun Chu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Mei Luo
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China.,Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Helen Y Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Qing Liu
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States.,Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, United States.,Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, United States
| |
Collapse
|
28
|
Yin Y, Boesteanu AC, Binder ZA, Xu C, Reid RA, Rodriguez JL, Cook DR, Thokala R, Blouch K, McGettigan-Croce B, Zhang L, Konradt C, Cogdill AP, Panjwani MK, Jiang S, Migliorini D, Dahmane N, Posey AD, June CH, Mason NJ, Lin Z, O’Rourke DM, Johnson LA. Checkpoint Blockade Reverses Anergy in IL-13Rα2 Humanized scFv-Based CAR T Cells to Treat Murine and Canine Gliomas. Mol Ther Oncolytics 2018; 11:20-38. [PMID: 30306125 PMCID: PMC6174845 DOI: 10.1016/j.omto.2018.08.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 12/31/2022] Open
Abstract
We generated two humanized interleukin-13 receptor α2 (IL-13Rα2) chimeric antigen receptors (CARs), Hu07BBz and Hu08BBz, that recognized human IL-13Rα2, but not IL-13Rα1. Hu08BBz also recognized canine IL-13Rα2. Both of these CAR T cell constructs demonstrated superior tumor inhibitory effects in a subcutaneous xenograft model of human glioma compared with a humanized EGFRvIII CAR T construct used in a recent phase 1 clinical trial (ClinicalTrials.gov: NCT02209376). The Hu08BBz demonstrated a 75% reduction in orthotopic tumor growth using low-dose CAR T cell infusion. Using combination therapy with immune checkpoint blockade, humanized IL-13Rα2 CAR T cells performed significantly better when combined with CTLA-4 blockade, and humanized EGFRvIII CAR T cells' efficacy was improved by PD-1 and TIM-3 blockade in the same mouse model, which was correlated with the levels of checkpoint molecule expression in co-cultures with the same tumor in vitro. Humanized IL-13Rα2 CAR T cells also demonstrated benefit from a self-secreted anti-CTLA-4 minibody in the same mouse model. In addition to a canine glioma cell line (J3T), canine osteosarcoma lung cancer and leukemia cell lines also express IL-13Rα2 and were recognized by Hu08BBz. Canine IL-13Rα2 CAR T cell was also generated and tested in vitro by co-culture with canine tumor cells and in vivo in an orthotopic model of canine glioma. Based on these results, we are designing a pre-clinical trial to evaluate the safety of canine IL-13Rα2 CAR T cells in dog with spontaneous IL-13Rα2-positive glioma, which will help to inform a human clinical trial design for glioblastoma using humanized scFv-based IL-13Rα2 targeting CAR T cells.
Collapse
Affiliation(s)
- Yibo Yin
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alina C. Boesteanu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zev A. Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chong Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA
| | - Reiss A. Reid
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse L. Rodriguez
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle R. Cook
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Radhika Thokala
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristin Blouch
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bevin McGettigan-Croce
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Logan Zhang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christoph Konradt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandria P. Cogdill
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M. Kazim Panjwani
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA
| | - Shuguang Jiang
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Denis Migliorini
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA
| | - Nadia Dahmane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Avery D. Posey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA
| | - Carl H. June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA
| | - Nicola J. Mason
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA
| | - Zhiguo Lin
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Donald M. O’Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura A. Johnson
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Yelton CJ, Ray SK. Histone deacetylase enzymes and selective histone deacetylase inhibitors for antitumor effects and enhancement of antitumor immunity in glioblastoma. ACTA ACUST UNITED AC 2018; 5. [PMID: 30701185 PMCID: PMC6348296 DOI: 10.20517/2347-8659.2018.58] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM), which is the most common primary central nervous system malignancy in adults, has long presented a formidable challenge to researchers and clinicians alike. Dismal 5-year survival rates of the patients with these tumors and the ability of the recurrent tumors to evade primary treatment strategies have prompted a need for alternative therapies in the treatment of GBM. Histone deacetylase (HDAC) inhibitors are currently a potential epigenetic therapy modality under investigation for use in GBM with mixed results. While these agents show promise through a variety of proposed mechanisms in the pre-clinical realm, only several of these agents have shown this same promise when translated into the clinical arena, either as monotherapy or for use in combination regimens. This review will examine the current state of use of HDAC inhibitors in GBM, the mechanistic rationale for use of HDAC inhibitors in GBM, and then examine an exciting new mechanistic revelation of certain HDAC inhibitors that promote antitumor immunity in GBM. The details of this antitumor immunity will be discussed with an emphasis on application of this antitumor immunity towards developing alternative therapies for treatment of GBM. The final section of this article will provide an overview of the current state of immunotherapy targeted specifically to GBM.
Collapse
Affiliation(s)
- Caleb J Yelton
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
30
|
Buerki RA, Chheda ZS, Okada H. Immunotherapy of Primary Brain Tumors: Facts and Hopes. Clin Cancer Res 2018; 24:5198-5205. [PMID: 29871908 PMCID: PMC6214775 DOI: 10.1158/1078-0432.ccr-17-2769] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/28/2022]
Abstract
The field of cancer immunotherapy has made exciting progress for some cancer types in recent years. However, recent failures of late-phase clinical trials evaluating checkpoint blockade in patients with glioblastoma (GBM) represent continued challenges for brain cancer immunotherapy. This is likely due to multiple factors including but not limited to marked genetic and antigenic heterogeneity, relatively low mutational loads, and paucity of GBM-infiltrating T cells. We review recent and ongoing studies targeting the checkpoint molecules as monotherapy or in combination with other modalities, and discuss the mechanisms underlying the unresponsiveness of GBM to single-modality immunotherapy approaches. We also discuss other novel immunotherapy approaches that may promote T-cell responses and overcome the "cold tumor" status of GBM, including oncolytic viruses and adoptive T-cell therapy. Clin Cancer Res; 24(21); 5198-205. ©2018 AACR.
Collapse
Affiliation(s)
- Robin A Buerki
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Zinal S Chheda
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.
- The Parker Institute for Cancer Immunotherapy, San Francisco, California
- Cancer Immunotherapy Program, University of California, San Francisco, San Francisco, California
| |
Collapse
|
31
|
Broekman ML, Maas SLN, Abels ER, Mempel TR, Krichevsky AM, Breakefield XO. Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol 2018; 14:482-495. [PMID: 29985475 PMCID: PMC6425928 DOI: 10.1038/s41582-018-0025-8] [Citation(s) in RCA: 405] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glioblastomas are heterogeneous and invariably lethal tumours. They are characterized by genetic and epigenetic variations among tumour cells, which makes the development of therapies that eradicate all tumour cells challenging and currently impossible. An important component of glioblastoma growth is communication with and manipulation of other cells in the brain environs, which supports tumour progression and resistance to therapy. Glioblastoma cells recruit innate immune cells and change their phenotype to support tumour growth. Tumour cells also suppress adaptive immune responses, and our increasing understanding of how T cells access the brain and how the tumour thwarts the immune response offers new strategies for mobilizing an antitumour response. Tumours also subvert normal brain cells - including endothelial cells, neurons and astrocytes - to create a microenviron that favours tumour success. Overall, after glioblastoma-induced phenotypic modifications, normal cells cooperate with tumour cells to promote tumour proliferation, invasion of the brain, immune suppression and angiogenesis. This glioblastoma takeover of the brain involves multiple modes of communication, including soluble factors such as chemokines and cytokines, direct cell-cell contact, extracellular vesicles (including exosomes and microvesicles) and connecting nanotubes and microtubes. Understanding these multidimensional communications between the tumour and the cells in its environs could open new avenues for therapy.
Collapse
Affiliation(s)
- Marike L Broekman
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Brain Center Rudolf Magnus, Institute of Neurosciences, University Medical Center, Heidelberglaan, Utrecht, Netherlands.
| | - Sybren L N Maas
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brain Center Rudolf Magnus, Institute of Neurosciences, University Medical Center, Heidelberglaan, Utrecht, Netherlands
| | - Erik R Abels
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Thorsten R Mempel
- The Center for Immunology and Inflammatory Diseases and Department of Medicine, Massachusetts General Hospital, Charlestown, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Anna M Krichevsky
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Initiative for RNA Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xandra O Breakefield
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Marx S, Splittstöhser M, Kinnen F, Moritz E, Joseph C, Paul S, Paland H, Seifert C, Marx M, Böhm A, Schwedhelm E, Holzer K, Singer S, Ritter CA, Bien-Möller S, Schroeder HW, Rauch BH. Platelet activation parameters and platelet-leucocyte-conjugate formation in glioblastoma multiforme patients. Oncotarget 2018; 9:25860-25876. [PMID: 29899827 PMCID: PMC5995223 DOI: 10.18632/oncotarget.25395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/28/2018] [Indexed: 01/15/2023] Open
Abstract
Patients with glioblastoma multiforme (GBM) suffer from an increased incidence of vascular thrombotic events. However, key influencing factors of the primary hemostasis have not been characterized in GBM patients to date. Thus, the present study determines the activation level of circulating platelets in GBM patients, in-vitro reactivity to agonist-induced platelet stimulation and the formation of circulating platelet-leucocyte conjugates as well as the plasma levels of the proinflammatory lipid mediator sphingosine-1-phosphate (S1P). The endogenous thrombin potential (ETP) was determined as global marker for hemostasis. The 21 GBM patients and 21 gender and age matched healthy individuals enrolled in this study did not differ in mean total platelet count. Basal surface expression of platelet CD63 determined by flow cytometry was significantly increased in GBM patients compared to controls as was observed for the concentration of soluble P-selectin in the plasma of GBM patients. While the ETP was not affected, the immunomodulatory lipid S1P was significantly decreased in peripheral blood in GBM. Interestingly, monocyte expression of PSGL-1 (CD162) was decreased in GBM patient blood, possibly explaining the rather decreased formation of platelet-monocyte conjugates. Our study reveals an increased CD63 expression and P-selectin expression/ secretion of circulating platelets in GBM patients. In parallel a down-modulated PSGL-1 expression in circulating monocytes and a trend towards a decreased formation of heterotypic platelet-monocyte conjugates in GBM patients was seen. Whether this and the observed decreased plasma level of the immunomodulatory S1P reflects a systemic anti-inflammatory status needs to be addressed in future studies.
Collapse
Affiliation(s)
- Sascha Marx
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Maximilian Splittstöhser
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| | - Frederik Kinnen
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Eileen Moritz
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| | - Christy Joseph
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| | - Sebastian Paul
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Heiko Paland
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| | - Carolin Seifert
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| | - Madlen Marx
- Department of Paediatric Oncology and Haematology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Böhm
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center, Hamburg, Germany
| | - Kerstin Holzer
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Singer
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Christoph A. Ritter
- Clinical Pharmacy, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Sandra Bien-Möller
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| | | | - Bernhard H. Rauch
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
33
|
Wang YG, Long J, Shao DC, Song H. Hyperbaric oxygen inhibits production of CD3+ T cells in the thymus and facilitates malignant glioma cell growth. J Int Med Res 2018; 46:2780-2791. [PMID: 29785863 PMCID: PMC6124287 DOI: 10.1177/0300060518767796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective Hyperbaric oxygen (HBO) is an emerging complementary alternative medical approach in glioma treatment. However, its mode of action is unknown, so this was investigated in the present study. Methods We constructed an intracranial glioma model of congenic C57BL/6J mice. Glioma growth under HBO stimulation was assessed by bioluminescent imaging and magnetic resonance imaging. Flow cytometry assessed direct effects of HBO on reactive oxygen species (ROS) signaling of transplanted glioma cells and organs, and quantified mature T cells and subgroups in tumors, the brain, and blood. Results HBO promoted the growth of transplanted GL261-Luc glioma in the intracranial glioma mouse model. ROS signaling of glioma cells and brain cells was significantly downregulated under HBO stimulation, but thymus ROS levels were significantly upregulated. CD3+ T cells were significantly downregulated, while both Ti/Th cells (CD3+CD4+) and Ts/Tc cells (CD3+CD8+) were inhibited in tumors of the HBO group. The percentage of regulatory T cells in Ti/Th (CD3+CD4+) cells was elevated in the tumors and thymuses of the HBO group. Conclusion HBO induced ROS signaling in the thymus, inhibited CD3+ T cell generation, and facilitated malignant glioma cell growth in vivo in the intracranial glioma mouse model.
Collapse
Affiliation(s)
- Yong-Gang Wang
- 1 Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jiang Long
- 1 Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Dong-Chuan Shao
- 2 Department of Neurosurgery, First People's Hospital of Kunming, Kunming, Yunnan 650032, China
| | - Hai Song
- 1 Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| |
Collapse
|
34
|
Mohme M, Schliffke S, Maire CL, Rünger A, Glau L, Mende KC, Matschke J, Gehbauer C, Akyüz N, Zapf S, Holz M, Schaper M, Martens T, Schmidt NO, Peine S, Westphal M, Binder M, Tolosa E, Lamszus K. Immunophenotyping of Newly Diagnosed and Recurrent Glioblastoma Defines Distinct Immune Exhaustion Profiles in Peripheral and Tumor-infiltrating Lymphocytes. Clin Cancer Res 2018; 24:4187-4200. [DOI: 10.1158/1078-0432.ccr-17-2617] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/24/2017] [Accepted: 02/06/2018] [Indexed: 11/16/2022]
|
35
|
Schetters STT, Gomez-Nicola D, Garcia-Vallejo JJ, Van Kooyk Y. Neuroinflammation: Microglia and T Cells Get Ready to Tango. Front Immunol 2018; 8:1905. [PMID: 29422891 PMCID: PMC5788906 DOI: 10.3389/fimmu.2017.01905] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/13/2017] [Indexed: 12/19/2022] Open
Abstract
In recent years, many paradigms concerning central nervous system (CNS) immunology have been challenged and shifted, including the discovery of CNS-draining lymphatic vessels, the origin and functional diversity of microglia, the impact of T cells on CNS immunological homeostasis and the role of neuroinflammation in neurodegenerative diseases. In parallel, antigen presentation outside the CNS has revealed the vital role of antigen-presenting cells in maintaining tolerance toward self-proteins, thwarting auto-immunity. Here, we review recent findings that unite these shifted paradigms of microglial functioning, antigen presentation, and CNS-directed T cell activation, focusing on common neurodegenerative diseases. It provides an important update on CNS adaptive immunity, novel targets, and a concept of the microglia T-cell equilibrium.
Collapse
Affiliation(s)
- Sjoerd T T Schetters
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Diego Gomez-Nicola
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Yvette Van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
36
|
Korbecki J, Gutowska I, Kojder I, Jeżewski D, Goschorska M, Łukomska A, Lubkowska A, Chlubek D, Baranowska-Bosiacka I. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget 2018; 9:7219-7270. [PMID: 29467963 PMCID: PMC5805549 DOI: 10.18632/oncotarget.24102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022] Open
Abstract
Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the 'hallmarks of cancer' in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.,Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biała, 43-309 Bielsko-Biała, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ireneusz Kojder
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
37
|
Felthun J, Reddy R, McDonald KL. How immunotherapies are targeting the glioblastoma immune environment. J Clin Neurosci 2017; 47:20-27. [PMID: 29042147 DOI: 10.1016/j.jocn.2017.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022]
Abstract
The diagnosis of glioblastoma remains one of the most dismal in medical practice, with current standard care only providing a median survival of 14.6 months. The need for new therapies is desperately clear. Components of the tumour microenvironment are demonstrating growing importance in the field, given they allow the tumour to utilise pathways involved in autoimmune prevention, something that enables the tumour's establishment and growth. As with many different cancers, the search for a new standard has progressed to the design of immunotherapies, which aim to counteract the immune changes within this microenvironment. Serotherapy, adoptive lymphocyte transfer, peptide and dendritic cell vaccines and a range of other methods are currently under investigation, while intracranial infection has also been researched for its capacity to reverse glioblastoma mediated immunosuppression. Some of these new therapies have shown promise, but it is a long road ahead before their incorporation into glioblastoma standard therapy.
Collapse
Affiliation(s)
- Jonathan Felthun
- Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | - Rajesh Reddy
- Faculty of Medicine, University of New South Wales, Sydney, Australia; Department of Neurosurgery, Prince of Wales Hospital, Sydney, Australia
| | - Kerrie Leanne McDonald
- Cure Brain Cancer Foundation Biomarkers & Translational Research Group, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
38
|
Lakin N, Rulach R, Nowicki S, Kurian KM. Current Advances in Checkpoint Inhibitors: Lessons from Non-Central Nervous System Cancers and Potential for Glioblastoma. Front Oncol 2017; 7:141. [PMID: 28730140 PMCID: PMC5498463 DOI: 10.3389/fonc.2017.00141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 01/05/2023] Open
Abstract
The adaptive immune system depends on the sequence of antigen presentation, activation, and then inhibition to mount a proportionate response to a threat. Tumors evade the immune response partly by suppressing T-cell activity using immune checkpoints. The use of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death 1 (PD-1), and programmed cell death ligand 1 (PD-L1) antibodies counteract this suppression, thereby enhancing the antitumor activity of the immune system. This approach has proven efficacy in melanoma, renal cancer, and lung cancer. There is growing evidence that the central nervous system is accessible to the immune system in the diseased state. Moreover, glioblastomas (GBMs) attract CTLA-4-expressing T-cells and express PD-L1, which inhibit activation and continuation of a cytotoxic T-cell response, respectively. This may contribute to the evasion of the host immune response by GBM. Trials are in progress to determine if checkpoint inhibitors will be of benefit in GBM. Radiotherapy could also be helpful in promoting inflammation, enhancing the immunogenicity of tumors, disrupting the blood–brain barrier and creating greater antigen release. The combination of radiotherapy and checkpoint inhibitors has been promising in preclinical trials but is yet to show efficacy in humans. In this review, we summarize the mechanism and current evidence for checkpoint inhibitors in gliomas and other solid tumors, examine the rationale of combining radiotherapy with checkpoint inhibitors, and discuss the potential benefits and pitfalls of this approach.
Collapse
Affiliation(s)
- Natasha Lakin
- Brain Tumour Research Group, Institute of Clinical Neurosciences, Level 1, Learning and Research Building, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Robert Rulach
- The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Stefan Nowicki
- The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Kathreena M Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, Level 1, Learning and Research Building, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
39
|
Duffy SS, Keating BA, Perera CJ, Moalem-Taylor G. The role of regulatory T cells in nervous system pathologies. J Neurosci Res 2017; 96:951-968. [DOI: 10.1002/jnr.24073] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Samuel S. Duffy
- School of Medical Sciences; University of New South Wales UNSW; Sydney Australia
| | - Brooke A. Keating
- School of Medical Sciences; University of New South Wales UNSW; Sydney Australia
| | - Chamini J. Perera
- School of Medical Sciences; University of New South Wales UNSW; Sydney Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences; University of New South Wales UNSW; Sydney Australia
| |
Collapse
|
40
|
Abstract
Glioblastoma Multiforme (GBM) is the most common malignant primary brain neoplasm having a mean survival time of <24 months. This figure remains constant, despite significant progress in medical research and treatment. The lack of an efficient anti-tumor immune response and the micro-invasive nature of the glioma malignant cells have been explained by a multitude of immune-suppressive mechanisms, proven in different models. These immune-resistant capabilities of the tumor result in a complex interplay this tumor shares with the immune system. We present a short review on the immunology of GBM, discussing the different unique pathological and molecular features of GBM, current treatment modalities, the principles of cancer immunotherapy and the link between GBM and melanoma. Current knowledge on immunological features of GBM, as well as immunotherapy past and current clinical trials, is discussed in an attempt to broadly present the complex and formidable challenges posed by GBM.
Collapse
|
41
|
Ahluwalia MS, Bou-Anak S, Burgett ME, Sarmey N, Khosla D, Dahiya S, Weil RJ, Bae E, Huang P, McGraw M, Grove LM, Olman MA, Prayson RA, Suh JH, Gillespie GY, Barnholtz-Sloan J, Nowacki AS, Barnett GH, Gladson CL. Correlation of higher levels of soluble TNF-R1 with a shorter survival, independent of age, in recurrent glioblastoma. J Neurooncol 2017; 131:449-458. [PMID: 27858267 PMCID: PMC5352462 DOI: 10.1007/s11060-016-2319-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/08/2016] [Indexed: 11/30/2022]
Abstract
The circulating levels of soluble tumor necrosis factor receptor-1 (sTNF-R1) and sTNF-R2 are altered in numerous diseases, including several types of cancer. Correlations with the risk of progression in some cancers, as well as systemic manifestations of the disease and therapeutic side-effects, have been described. However, there is very little information on the levels of these soluble receptors in glioblastoma (GBM). Here, we report on an exploratory retrospective study of the levels of sTNF-Rs in the vascular circulation of patients with GBM. Banked samples were obtained from 112 GBM patients (66 untreated, newly-diagnosed patients and 46 with recurrent disease) from two institutions. The levels of sTNF-R1 in the plasma were significantly lower in patients with newly-diagnosed or recurrent GBM than apparently healthy individuals and correlated with the intensity of expression of TNF-R1 on the tumor-associated endothelial cells (ECs) in the corresponding biopsies. Elevated levels of sTNF-R1 in patients with recurrent, but not newly-diagnosed GBM, were significantly associated with a shorter survival, independent of age (p = 0.02) or steroid medication. In contrast, the levels of circulating sTNF-R2 were significantly higher in recurrent GBM than healthy individuals and there was no significant correlation with expression of TNF-R2 on the tumor-associated ECs or survival time. The results indicate that larger, prospective studies are warranted to determine the predictive value of the levels of sTNF-R1 in patients with recurrent GBM and the factors that regulate the levels of sTNF-Rs in the circulation in GBM patients.
Collapse
Affiliation(s)
- Manmeet S Ahluwalia
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Taussig Cancer Center, The Cleveland Clinic, Cleveland, OH, USA
| | - Stephanie Bou-Anak
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, NB40, Cleveland, OH, 44195, USA
| | - Monica E Burgett
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, NB40, Cleveland, OH, 44195, USA
| | - Nehaw Sarmey
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Taussig Cancer Center, The Cleveland Clinic, Cleveland, OH, USA
| | - Divya Khosla
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, NB40, Cleveland, OH, 44195, USA
| | - Saurabh Dahiya
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Taussig Cancer Center, The Cleveland Clinic, Cleveland, OH, USA
| | - Robert J Weil
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Taussig Cancer Center, The Cleveland Clinic, Cleveland, OH, USA
| | - Eunnyung Bae
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, NB40, Cleveland, OH, 44195, USA
| | - Ping Huang
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, NB40, Cleveland, OH, 44195, USA
| | - Mary McGraw
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Taussig Cancer Center, The Cleveland Clinic, Cleveland, OH, USA
| | - Lisa M Grove
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Mitchell A Olman
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Richard A Prayson
- Anatomic Pathology Laboratory, The Cleveland Clinic, Cleveland, OH, USA
| | - John H Suh
- Radiation Oncology, The Cleveland Clinic, Cleveland, OH, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jill Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Amy S Nowacki
- Quantitative Health Sciences, The Cleveland Clinic, Cleveland, OH, USA
| | - Gene H Barnett
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Taussig Cancer Center, The Cleveland Clinic, Cleveland, OH, USA
| | - Candece L Gladson
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Taussig Cancer Center, The Cleveland Clinic, Cleveland, OH, USA.
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, NB40, Cleveland, OH, 44195, USA.
| |
Collapse
|
42
|
GuhaSarkar D, Neiswender J, Su Q, Gao G, Sena-Esteves M. Intracranial AAV-IFN-β gene therapy eliminates invasive xenograft glioblastoma and improves survival in orthotopic syngeneic murine model. Mol Oncol 2017; 11:180-193. [PMID: 28098415 PMCID: PMC5288127 DOI: 10.1002/1878-0261.12020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/20/2016] [Accepted: 10/30/2016] [Indexed: 12/27/2022] Open
Abstract
The highly invasive property of glioblastoma (GBM) cells and genetic heterogeneity are largely responsible for tumor recurrence after the current standard‐of‐care treatment and thus a direct cause of death. Previously, we have shown that intracranial interferon‐beta (IFN‐β) gene therapy by locally administered adeno‐associated viral vectors (AAV) successfully treats noninvasive orthotopic glioblastoma models. Here, we extend these findings by testing this approach in invasive human GBM xenograft and syngeneic mouse models. First, we show that a single intracranial injection of AAV encoding human IFN‐β eliminates invasive human GBM8 tumors and promotes long‐term survival. Next, we screened five AAV‐IFN‐β vectors with different promoters to drive safe expression of mouse IFN‐β in the brain in the context of syngeneic GL261 tumors. Two AAV‐IFN‐β vectors were excluded due to safety concerns, but therapeutic studies with the other three vectors showed extensive tumor cell death, activation of microglia surrounding the tumors, and a 56% increase in median survival of the animals treated with AAV/P2‐Int‐mIFN‐β vector. We also assessed the therapeutic effect of combining AAV‐IFN‐β therapy with temozolomide (TMZ). As TMZ affects DNA replication, an event that is crucial for second‐strand DNA synthesis of single‐stranded AAV vectors before active transcription, we tested two TMZ treatment regimens. Treatment with TMZ prior to AAV‐IFN‐β abrogated any benefit from the latter, while the reverse order of treatment doubled the median survival compared to controls. These studies demonstrate the therapeutic potential of intracranial AAV‐IFN‐β therapy in a highly migratory GBM model as well as in a syngeneic mouse model and that combination with TMZ is likely to enhance its antitumor potency.
Collapse
Affiliation(s)
- Dwijit GuhaSarkar
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - James Neiswender
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Miguel Sena-Esteves
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
43
|
Cikankowitz A, Clavreul A, Tétaud C, Lemaire L, Rousseau A, Lepareur N, Dabli D, Bouchet F, Garcion E, Menei P, Couturier O, Hindré F. Characterization of the distribution, retention, and efficacy of internal radiation of 188Re-lipid nanocapsules in an immunocompromised human glioblastoma model. J Neurooncol 2017; 131:49-58. [PMID: 27783195 DOI: 10.1007/s11060-016-2289-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
Abstract
Internal radiation strategies hold great promise for glioblastoma (GB) therapy. We previously developed a nanovectorized radiotherapy that consists of lipid nanocapsules loaded with a lipophilic complex of Rhenium-188 (LNC188Re-SSS). This approach resulted in an 83 % cure rate in the 9L rat glioma model, showing great promise. The efficacy of LNC188Re-SSS treatment was optimized through the induction of a T-cell immune response in this model, as it is highly immunogenic. However, this is not representative of the human situation where T-cell suppression is usually encountered in GB patients. Thus, in this study, we investigated the efficacy of LNC188Re-SSS in a human GB model implanted in T-cell deficient nude mice. We also analyzed the distribution and tissue retention of LNC188Re-SSS. We observed that intratumoral infusion of LNCs by CED led to their complete distribution throughout the tumor and peritumoral space without leakage into the contralateral hemisphere except when large volumes were used. Seventy percent of the 188Re-SSS activity was present in the tumor region 24 h after LNC188Re-SSS injection and no toxicity was observed in the healthy brain. Double fractionated internal radiotherapy with LNC188Re-SSS triggered survival responses in the immunocompromised human GB model with a cure rate of 50 %, which was not observed with external radiotherapy. In conclusion, LNC188Re-SSS can induce long-term survival in an immunosuppressive environment, highlighting its potential for GB therapy.
Collapse
Affiliation(s)
- Annabelle Cikankowitz
- INSERM U1066 MINT (Micro et Nanomédecines Biomimétiques), Université d'Angers, Angers, France
- AMaROC, ONIRIS, Ecole Nationale Véterinaire de Nantes, Nantes, France
- PRIMEX (Plateforme de Radiobiologie et d'Imagerie Expérimentale), Université d'Angers, Angers, France
| | - Anne Clavreul
- INSERM U1066 MINT (Micro et Nanomédecines Biomimétiques), Université d'Angers, Angers, France.
- Service de Neurochirurgie, CHU d'Angers, Angers, France.
| | - Clément Tétaud
- INSERM U1066 MINT (Micro et Nanomédecines Biomimétiques), Université d'Angers, Angers, France
- PRIMEX (Plateforme de Radiobiologie et d'Imagerie Expérimentale), Université d'Angers, Angers, France
| | - Laurent Lemaire
- INSERM U1066 MINT (Micro et Nanomédecines Biomimétiques), Université d'Angers, Angers, France
| | - Audrey Rousseau
- Laboratoire de Pathologie Cellulaire et Tissulaire, CHU d'Angers, Angers, France
| | - Nicolas Lepareur
- Centre Régional de Lutte Contre le Cancer (CRLCC) Eugène Marquis, Rennes, France
| | - Djamel Dabli
- Médecine Nucléaire et Biophysique, CHU d'Angers, Angers, France
| | - Francis Bouchet
- Médecine Nucléaire et Biophysique, CHU d'Angers, Angers, France
| | - Emmanuel Garcion
- INSERM U1066 MINT (Micro et Nanomédecines Biomimétiques), Université d'Angers, Angers, France
| | - Philippe Menei
- INSERM U1066 MINT (Micro et Nanomédecines Biomimétiques), Université d'Angers, Angers, France
- Service de Neurochirurgie, CHU d'Angers, Angers, France
| | - Olivier Couturier
- INSERM U1066 MINT (Micro et Nanomédecines Biomimétiques), Université d'Angers, Angers, France
- Médecine Nucléaire et Biophysique, CHU d'Angers, Angers, France
| | - François Hindré
- INSERM U1066 MINT (Micro et Nanomédecines Biomimétiques), Université d'Angers, Angers, France
- PRIMEX (Plateforme de Radiobiologie et d'Imagerie Expérimentale), Université d'Angers, Angers, France
| |
Collapse
|
44
|
Glioblastoma multiforme targeted therapy: The Chlorotoxin story. J Clin Neurosci 2016; 33:52-58. [DOI: 10.1016/j.jocn.2016.04.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/28/2016] [Accepted: 04/02/2016] [Indexed: 12/12/2022]
|
45
|
Coniglio S, Miller I, Symons M, Segall JE. Coculture Assays to Study Macrophage and Microglia Stimulation of Glioblastoma Invasion. J Vis Exp 2016. [PMID: 27805587 DOI: 10.3791/53990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (grade IV glioma) is a very aggressive human cancer with a median survival of 1 year post diagnosis. Despite the increased understanding of the molecular events that give rise to glioblastomas, this cancer still remains highly refractory to conventional treatment. Surgical resection of high grade brain tumors is rarely complete due to the highly infiltrative nature of glioblastoma cells. Therapeutic approaches which attenuate glioblastoma cell invasion therefore is an attractive option. Our laboratory and others have shown that tumor associated macrophages and microglia (resident brain macrophages) strongly stimulate glioblastoma invasion. The protocol described in this paper is used to model glioblastoma-macrophage/microglia interaction using in vitro culture assays. This approach can greatly facilitate the development and/or discovery of drugs that disrupt the communication with the macrophages that enables this malignant behavior. We have established two robust coculture invasion assays where microglia/macrophages stimulate glioma cell invasion by 5 - 10 fold. Glioblastoma cells labelled with a fluorescent marker or constitutively expressing a fluorescent protein are plated without and with macrophages/microglia on matrix-coated polycarbonate chamber inserts or embedded in a three dimensional matrix. Cell invasion is assessed by using fluorescent microscopy to image and count only invasive cells on the underside of the filter. Using these assays, several pharmacological inhibitors (JNJ-28312141, PLX3397, Gefitinib, and Semapimod), have been identified which block macrophage/microglia stimulated glioblastoma invasion.
Collapse
Affiliation(s)
- Salvatore Coniglio
- New Jersey Center for Science, Technology and Mathematics, Kean University;
| | - Ian Miller
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland
| | - Marc Symons
- The Feinstein Institute for Medical Research at North Shore-LIJ
| | - Jeffrey E Segall
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine
| |
Collapse
|
46
|
Cohen-Inbar O, Xu Z, Sheehan JP. Focused ultrasound-aided immunomodulation in glioblastoma multiforme: a therapeutic concept. J Ther Ultrasound 2016; 4:2. [PMID: 26807257 PMCID: PMC4722768 DOI: 10.1186/s40349-016-0046-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
Patients with glioblastoma multiforme (GBM) exhibit a deficient anti-tumor immune response. Both arms of the immune system were shown to be hampered in GBM, namely the local cellular immunity mediated by the Th1 subset of helper T cells and the systemic humoral immunity mediated by the Th2 subset of helper T cells. Immunotherapy is rapidly becoming one of the pillars of anti-cancer therapy. GBM has not received similar clinical successes as of yet, which may be attributed to its relative inaccessibility (the blood-brain barrier (BBB)), its poor immunogenicity, few characterized cancer antigens, or any of the many other immune mechanisms known to be hampered. Focused ultrasound (FUS) is emerging as a promising treatment approach. The effects of FUS on the tissue are not merely thermal. Mounting evidence suggests that in addition to thermal ablation, FUS induces mechanical acoustic cavitation and immunomodulation plays a key role in boosting the host anti-tumor immune responses. We separately discuss the different pertinent immunosuppressive mechanisms harnessed by GBM and the immunomodulatory effects of FUS. The effect of FUS and microbubbles in disrupting the BBB and introducing antigens and drugs to the tumor milieu is discussed. The FUS-induced pro-inflammatory cytokines secretion and stress response, the FUS-induced change in the intra-tumoral immune-cells populations, the FUS-induced augmentation of dendritic cells activity, and the FUS-induced increased cytotoxic cells potency are all discussed. We next attempt at offering a conceptual synopsis of the synergistic treatment of GBM utilizing FUS and immunotherapy. In conclusion, it is increasingly apparent that no single treatment modality will triumph on GBM. The reviewed FUS-induced immunomodulation effects can be harnessed to current and developing immunotherapy approaches. Together, these may overcome GBM-induced immune-evasion and generate a clinically relevant anti-tumor immune response.
Collapse
Affiliation(s)
- Or Cohen-Inbar
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA USA ; Molecular Immunology & Tumor Immunotherapy Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhiyuan Xu
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA USA
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA USA
| |
Collapse
|