1
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Selenoproteins: Zoom-In to Their Metal-Binding Properties in Neurodegenerative Diseases. Int J Mol Sci 2025; 26:1305. [PMID: 39941073 PMCID: PMC11818150 DOI: 10.3390/ijms26031305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Selenoproteins contain selenium (Se), which is included in the 21st proteinogenic amino acid selenocysteine (Sec). Selenium (Se) is an essential trace element that exerts its biological actions mainly through selenoproteins. Selenoproteins have crucial roles in maintaining healthy brain activity. At the same time, brain-function-associated selenoproteins may also be involved in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The selenoproteins GPx4 (glutathione peroxidase 4), GPx1 (glutathione peroxidase 1), SELENOP (selenoprotein P), SELENOK (selenoprotein K), SELENOS (selenoprotein S), SELENOW (selenoprotein W), and SELENOT (selenoprotein T) are highly expressed, specifically in AD-related brain regions being closely correlated to brain function. Only a few selenoproteins, mentioned above (especially SELENOP), can bind transition and heavy metals. Metal ion homeostasis accomplishes the vital physiological function of the brain. Dyshomeostasis of these metals induces and entertains neurodegenerative diseases. In this review, we described some of the proposed and established mechanisms underlying the actions and properties of the above-mentioned selenoproteins having the characteristic feature of binding transition or heavy metals.
Collapse
Affiliation(s)
| | | | - Carmen Beatrice Dogaru
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (C.M.); (I.S.)
| | | |
Collapse
|
2
|
Skalny AV, Aschner M, Santamaria A, Filippini T, Gritsenko VA, Tizabi Y, Zhang F, Guo X, Rocha JBT, Tinkov AA. The Role of Gut Microbiota in the Neuroprotective Effects of Selenium in Alzheimer's Disease. Mol Neurobiol 2025; 62:1675-1692. [PMID: 39012446 DOI: 10.1007/s12035-024-04343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
The objective of the present review was to provide a timely update on the molecular mechanisms underlying the beneficial role of Se in Alzheimer's disease pathogenesis, and discuss the potential role of gut microbiota modulation in this neuroprotective effect. The existing data demonstrate that selenoproteins P, M, S, R, as well as glutathione peroxidases and thioredoxin reductases are involved in regulation of Aβ formation and aggregation, tau phosphorylation and neurofibrillary tangles formation, as well as mitigate the neurotoxic effects of Aβ and phospho-tau. Correspondingly, supplementation with various forms of Se in cellular and animal models of AD was shown to reduce Aβ formation, tau phosphorylation, reverse the decline in brain antioxidant levels, inhibit neuronal oxidative stress and proinflammatory cytokine production, improve synaptic plasticity and neurogenesis, altogether resulting in improved cognitive functions. In addition, most recent findings demonstrate that these neuroprotective effects are associated with Se-induced modulation of gut microbiota. In animal models of AD, Se supplementation was shown to improve gut microbiota biodiversity with a trend to increased relative abundance of Lactobacillus, Bifidobacterium, and Desulfivibrio, while reducing that of Lachnospiracea_NK4A136, Rikenella, and Helicobacter. Moreover, the relative abundance of Se-affected taxa was significantly associated with Aβ accumulation, tau phosphorylation, neuronal oxidative stress, and neuroinflammation, indicative of the potential role of gut microbiota to mediate the neuroprotective effects of Se in AD. Hypothetically, modulation of gut microbiota along with Se supplementation may improve the efficiency of the latter in AD, although further detailed laboratory and clinical studies are required.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School, University of Modena and Reggio Emilia, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Viktor A Gritsenko
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, 460000, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Health Science Center, School of Public Health, National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, Health Science Center, School of Public Health, National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an 710061, China
| | - Joao B T Rocha
- Departamento de Bioquímica E Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia.
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia.
| |
Collapse
|
3
|
Turovsky EA, Plotnikov EY, Varlamova EG. Regulatory Role and Cytoprotective Effects of Exogenous Recombinant SELENOM under Ischemia-like Conditions and Glutamate Excitotoxicity in Cortical Cells In Vitro. Biomedicines 2024; 12:1756. [PMID: 39200220 PMCID: PMC11351740 DOI: 10.3390/biomedicines12081756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Despite the successes in the prevention and treatment of strokes, it is still necessary to search for effective cytoprotectors that can suppress the damaging factors of cerebral ischemia. Among the known neuroprotectors, there are a number of drugs with a protein nature. In the present study, we were able to obtain recombinant SELENOM, a resident of the endoplasmic reticulum that exhibits antioxidant properties in its structure and functions. The resulting SELENOM was tested in two brain injury (in vitro) models: under ischemia-like conditions (oxygen-glucose deprivation/reoxygenation, OGD/R) and glutamate excitotoxicity (GluTox). Using molecular biology methods, fluorescence microscopy, and immunocytochemistry, recombinant SELENOM was shown to dose-dependently suppress ROS production in cortical cells in toxic models, reduce the global increase in cytosolic calcium ([Ca2+]i), and suppress necrosis and late stages of apoptosis. Activation of SELENOM's cytoprotective properties occurs due to its penetration into cortical cells through actin-dependent transport and activation of the Ca2+ signaling system. The use of SELENOM resulted in increased antioxidant protection of cortical cells and suppression of the proinflammatory factors and cytokines expression.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
4
|
Nunes LGA, Cain A, Comyns C, Hoffmann PR, Krahn N. Deciphering the Role of Selenoprotein M. Antioxidants (Basel) 2023; 12:1906. [PMID: 38001759 PMCID: PMC10668967 DOI: 10.3390/antiox12111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Selenocysteine (Sec), the 21st amino acid, is structurally similar to cysteine but with a sulfur to selenium replacement. This single change retains many of the chemical properties of cysteine but often with enhanced catalytic and redox activity. Incorporation of Sec into proteins is unique, requiring additional translation factors and multiple steps to insert Sec at stop (UGA) codons. These Sec-containing proteins (selenoproteins) are found in all three domains of life where they often are involved in cellular homeostasis (e.g., reducing reactive oxygen species). The essential role of selenoproteins in humans requires us to maintain appropriate levels of selenium, the precursor for Sec, in our diet. Too much selenium is also problematic due to its toxic effects. Deciphering the role of Sec in selenoproteins is challenging for many reasons, one of which is due to their complicated biosynthesis pathway. However, clever strategies are surfacing to overcome this and facilitate production of selenoproteins. Here, we focus on one of the 25 human selenoproteins, selenoprotein M (SELENOM), which has wide-spread expression throughout our tissues. Its thioredoxin motif suggests oxidoreductase function; however, its mechanism and functional role(s) are still being uncovered. Furthermore, the connection of both high and low expression levels of SELENOM to separate diseases emphasizes the medical application for studying the role of Sec in this protein. In this review, we aim to decipher the role of SELENOM through detailing and connecting current evidence. With multiple proposed functions in diverse tissues, continued research is still necessary to fully unveil the role of SELENOM.
Collapse
Affiliation(s)
- Lance G. A. Nunes
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813-5525, USA
| | - Antavius Cain
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Cody Comyns
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511-4902, USA
| | - Peter R. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813-5525, USA
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511-4902, USA
| |
Collapse
|
5
|
Dogaru CB, Duță C, Muscurel C, Stoian I. "Alphabet" Selenoproteins: Implications in Pathology. Int J Mol Sci 2023; 24:15344. [PMID: 37895024 PMCID: PMC10607139 DOI: 10.3390/ijms242015344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Selenoproteins are a group of proteins containing selenium in the form of selenocysteine (Sec, U) as the 21st amino acid coded in the genetic code. Their synthesis depends on dietary selenium uptake and a common set of cofactors. Selenoproteins accomplish diverse roles in the body and cell processes by acting, for example, as antioxidants, modulators of the immune function, and detoxification agents for heavy metals, other xenobiotics, and key compounds in thyroid hormone metabolism. Although the functions of all this protein family are still unknown, several disorders in their structure, activity, or expression have been described by researchers. They concluded that selenium or cofactors deficiency, on the one hand, or the polymorphism in selenoproteins genes and synthesis, on the other hand, are involved in a large variety of pathological conditions, including type 2 diabetes, cardiovascular, muscular, oncological, hepatic, endocrine, immuno-inflammatory, and neurodegenerative diseases. This review focuses on the specific roles of selenoproteins named after letters of the alphabet in medicine, which are less known than the rest, regarding their implications in the pathological processes of several prevalent diseases and disease prevention.
Collapse
Affiliation(s)
| | | | - Corina Muscurel
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania (I.S.)
| | | |
Collapse
|
6
|
Jafari D, Eslami SS, Malih S, Tarighi P. Protective effect of selenium on vincristine-induced peripheral neuropathy in PC12 cell line. Cytotechnology 2022; 74:539-547. [PMID: 36238267 PMCID: PMC9525541 DOI: 10.1007/s10616-022-00543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
Vincristine-induced peripheral neuropathy (VIPN) is the main side effect and major reason for neuropathic pain in cancer survivors treated with vincristine. Vincristine, a chemotherapeutic antimitotic drug, is used frequently in combination chemotherapy. The primary purpose of the current study was to assess the protective effect of sodium selenite (SSe) on VIPN in vitro. Cytotoxicity effects of vincristine were evaluated using PC12 cells as a neuronal model. The cell culture studies were conducted in three groups based on the various treatments, including vincristine, SSe, and co-exposure to both compositions. Cell viability and cell cycle analyses were performed using MTT assay and flow cytometry, respectively. The level of mRNA expression of Bax and Bcl-2 was determined using qRT-PCR. According to the results, vincristine decreased the survival rate of PC12 cells. After 24 and 48 h exposure to different concentrations of vincristine (0.1-20 μΜ), the survival rate of PC12 cells decreased as compared to the control group. The results showed that treatment with 5 μΜ of vincristine resulted in apoptosis of PC12 cells. Interestingly,co-incubation of these cells with SSe significantly reduced the cell damage induced by vincristine. Furthermore, vincristine induced the inhibition of the G2 phase in PC 12 cells, and using SSe in combination with vincristine eliminated the inhibition of the cell cycle in the G2 phase. Briefly, our in vitro preliminary study showed that SSe might protect PC12 cells from vincristine-induced peripheral neuropathy during chemotherapy.
Collapse
Affiliation(s)
- Davod Jafari
- Student Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Sadegh Eslami
- Student Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Malih
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Jehan C, Cartier D, Bucharles C, Anouar Y, Lihrmann I. Emerging roles of ER-resident selenoproteins in brain physiology and physiopathology. Redox Biol 2022; 55:102412. [PMID: 35917681 PMCID: PMC9344019 DOI: 10.1016/j.redox.2022.102412] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 12/23/2022] Open
Abstract
The brain has a very high oxygen consumption rate and is particularly sensitive to oxidative stress. It is also the last organ to suffer from a loss of selenium (Se) in case of deficiency. Se is a crucial trace element present in the form of selenocysteine, the 21st proteinogenic amino acid present in selenoproteins, an essential protein family in the brain that participates in redox signaling. Among the most abundant selenoproteins in the brain are glutathione peroxidase 4 (GPX4), which reduces lipid peroxides and prevents ferroptosis, and selenoproteins W, I, F, K, M, O and T. Remarkably, more than half of them are proteins present in the ER and recent studies have shown their involvement in the maintenance of ER homeostasis, glycoprotein folding and quality control, redox balance, ER stress response signaling pathways and Ca2+ homeostasis. However, their molecular functions remain mostly undetermined. The ER is a highly specialized organelle in neurons that maintains the physical continuity of axons over long distances through its continuous distribution from the cell body to the nerve terminals. Alteration of this continuity can lead to degeneration of distal axons and subsequent neuronal death. Elucidation of the function of ER-resident selenoproteins in neuronal pathophysiology may therefore become a new perspective for understanding the pathophysiology of neurological diseases. Here we summarize what is currently known about each of their molecular functions and their impact on the nervous system during development and stress.
Collapse
Affiliation(s)
- Cédric Jehan
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Dorthe Cartier
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Christine Bucharles
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Youssef Anouar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Isabelle Lihrmann
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France.
| |
Collapse
|
8
|
Zhang ZH, Song GL. Roles of Selenoproteins in Brain Function and the Potential Mechanism of Selenium in Alzheimer's Disease. Front Neurosci 2021; 15:646518. [PMID: 33762907 PMCID: PMC7982578 DOI: 10.3389/fnins.2021.646518] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Selenium (Se) and its compounds have been reported to have great potential in the prevention and treatment of Alzheimer's disease (AD). However, little is known about the functional mechanism of Se in these processes, limiting its further clinical application. Se exerts its biological functions mainly through selenoproteins, which play vital roles in maintaining optimal brain function. Therefore, selenoproteins, especially brain function-associated selenoproteins, may be involved in the pathogenesis of AD. Here, we analyze the expression and distribution of 25 selenoproteins in the brain and summarize the relationships between selenoproteins and brain function by reviewing recent literature and information contained in relevant databases to identify selenoproteins (GPX4, SELENOP, SELENOK, SELENOT, GPX1, SELENOM, SELENOS, and SELENOW) that are highly expressed specifically in AD-related brain regions and closely associated with brain function. Finally, the potential functions of these selenoproteins in AD are discussed, for example, the function of GPX4 in ferroptosis and the effects of the endoplasmic reticulum (ER)-resident protein SELENOK on Ca2+ homeostasis and receptor-mediated synaptic functions. This review discusses selenoproteins that are closely associated with brain function and the relevant pathways of their involvement in AD pathology to provide new directions for research on the mechanism of Se in AD.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
9
|
Solovyev N. Selenoprotein P and its potential role in Alzheimer's disease. Hormones (Athens) 2020; 19:73-79. [PMID: 31250406 DOI: 10.1007/s42000-019-00112-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease associated with cognitive decline, loss of memory, and progressive cerebral atrophy. The trace element selenium (Se) is known to be involved in brain pathology. Selenoprotein P (SELENOP), as the main Se transport protein, is, to a great extent, responsible for maintaining Se homeostasis and the hierarchy of selenoprotein expression in the body. Adequate Se supply through SELENOP is vital for proper brain development and function. Additionally, SELENOP may be implicated in pathological processes in the central nervous system, including those in AD. The current review summarizes recent findings on the possible role of SELENOP in AD, with a focus on probable mechanisms: Se delivery to neurons, antioxidant activity, cytoskeleton assembly, interaction with redox-active metals (e.g., copper and iron), and misfolded proteins (amyloid beta and tau protein). The use of SELENOP as a biomarker of Se status is also briefly discussed. Epidemiological studies on Se supplementation are beyond the scope of the current review.
Collapse
Affiliation(s)
- Nikolay Solovyev
- Institute of Chemistry, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russian Federation, 199034.
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan, 281-S12, 9000, Ghent, Belgium.
| |
Collapse
|
10
|
Leonardi A, Evke S, Lee M, Melendez JA, Begley TJ. Epitranscriptomic systems regulate the translation of reactive oxygen species detoxifying and disease linked selenoproteins. Free Radic Biol Med 2019; 143:573-593. [PMID: 31476365 PMCID: PMC7650020 DOI: 10.1016/j.freeradbiomed.2019.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Here we highlight the role of epitranscriptomic systems in post-transcriptional regulation, with a specific focus on RNA modifying writers required for the incorporation of the 21st amino acid selenocysteine during translation, and the pathologies linked to epitranscriptomic and selenoprotein defects. Epitranscriptomic marks in the form of enzyme-catalyzed modifications to RNA have been shown to be important signals regulating translation, with defects linked to altered development, intellectual impairment, and cancer. Modifications to rRNA, mRNA and tRNA can affect their structure and function, while the levels of these dynamic tRNA-specific epitranscriptomic marks are stress-regulated to control translation. The tRNA for selenocysteine contains five distinct epitranscriptomic marks and the ALKBH8 writer for the wobble uridine (U) has been shown to be vital for the translation of the glutathione peroxidase (GPX) and thioredoxin reductase (TRXR) family of selenoproteins. The reactive oxygen species (ROS) detoxifying selenocysteine containing proteins are a prime examples of how specialized translation can be regulated by specific tRNA modifications working in conjunction with distinct codon usage patterns, RNA binding proteins and specific 3' untranslated region (UTR) signals. We highlight the important role of selenoproteins in detoxifying ROS and provide details on how epitranscriptomic marks and selenoproteins can play key roles in and maintaining mitochondrial function and preventing disease.
Collapse
Affiliation(s)
- Andrea Leonardi
- Colleges of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, NY, USA
| | - Sara Evke
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA
| | - May Lee
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA
| | - J Andres Melendez
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA.
| | - Thomas J Begley
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA; RNA Institute, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
11
|
Solovyev N, Drobyshev E, Bjørklund G, Dubrovskii Y, Lysiuk R, Rayman MP. Selenium, selenoprotein P, and Alzheimer's disease: is there a link? Free Radic Biol Med 2018; 127:124-133. [PMID: 29481840 DOI: 10.1016/j.freeradbiomed.2018.02.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022]
Abstract
The essential trace element, selenium (Se), is crucial to the brain but it may be potentially neurotoxic, depending on dosage and speciation; Se has been discussed for decades in relation to Alzheimer's disease (AD). Selenoprotein P (SELENOP) is a secreted heparin-binding glycoprotein which serves as the main Se transport protein in mammals. In vivo studies showed that this protein might have additional functions such as a contribution to redox regulation. The current review focuses on recent research on the possible role of SELENOP in AD pathology, based on model and human studies. The review also briefly summarizes results of epidemiological studies on Se supplementation in relation to brain diseases, including PREADViSE, EVA, and AIBL. Although mainly positive effects of Se are assessed in this review, possible detrimental effects of Se supplementation or exposure, including potential neurotoxicity, are also mentioned. In relation to AD, various roles of SELENOP are discussed, i.e. as the means of Se delivery to neurons, as an antioxidant, in cytoskeleton assembly, in interaction with redox-active metals (copper, iron, and mercury) and with misfolded proteins (amyloid-beta and hyperphosphorylated tau-protein).
Collapse
Affiliation(s)
- Nikolay Solovyev
- St. Petersburg State University, Institute of Chemistry, St. Petersburg, Russian Federation.
| | - Evgenii Drobyshev
- Universität Potsdam, Institut für Ernährungswissenschaft, Potsdam, Germany
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Yaroslav Dubrovskii
- St. Petersburg State University, Institute of Chemistry, St. Petersburg, Russian Federation
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Margaret P Rayman
- Department of Nutritional Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
12
|
Guo L, Yang W, Huang Q, Qiang J, Hart JR, Wang W, Hu J, Zhu J, Liu N, Zhang Y. Selenocysteine-Specific Mass Spectrometry Reveals Tissue-Distinct Selenoproteomes and Candidate Selenoproteins. Cell Chem Biol 2018; 25:1380-1388.e4. [PMID: 30174312 DOI: 10.1016/j.chembiol.2018.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/11/2018] [Accepted: 08/06/2018] [Indexed: 01/05/2023]
Abstract
Selenoproteins, defined by the presence of selenocysteines (Sec), play important roles in a wide range of biological processes. All known selenoproteins are marked by the presence of Sec insertion sequence (SECIS) at their mRNA. The lack of an effective analytical method has hindered our ability to explore the selenoproteome and new selenoproteins beyond SECIS. Here, we develop a Sec-specific mass spectrometry-based technique, termed "SecMS," which allows the systematic profiling of selenoproteomes by selective alkylation of Sec. Using SecMS, we quantitatively characterized the age- and stress-regulated selenoproteomes for nine tissues from mice of different ages and mammalian cells, demonstrating tissue-specific selenoproteomes and an age-dependent decline in specific selenoproteins in brains and hearts. We established an integrated platform using SecMS and SECIS-independent selenoprotein (SIS) database and further identified five candidate selenoproteins. The application of this integrated platform provides an effective strategy to explore the selenoproteome independent of SECIS.
Collapse
Affiliation(s)
- Lin Guo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Pudong, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wu Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Pudong, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Huang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Pudong, Shanghai 201210, China
| | - Jiali Qiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Pudong, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jonathan Ross Hart
- Departments of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Pudong, Shanghai 201210, China
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Pudong, Shanghai 201210, China
| | - Jidong Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Pudong, Shanghai 201210, China
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Pudong, Shanghai 201210, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Pudong, Shanghai 201210, China.
| |
Collapse
|
13
|
Emerging roles of endoplasmic reticulum-resident selenoproteins in the regulation of cellular stress responses and the implications for metabolic disease. Biochem J 2018; 475:1037-1057. [PMID: 29559580 DOI: 10.1042/bcj20170920] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022]
Abstract
Chronic metabolic stress leads to cellular dysfunction, characterized by excessive reactive oxygen species, endoplasmic reticulum (ER) stress and inflammation, which has been implicated in the pathogenesis of obesity, type 2 diabetes and cardiovascular disease. The ER is gaining recognition as a key organelle in integrating cellular stress responses. ER homeostasis is tightly regulated by a complex antioxidant system, which includes the seven ER-resident selenoproteins - 15 kDa selenoprotein, type 2 iodothyronine deiodinase and selenoproteins S, N, K, M and T. Here, the findings from biochemical, cell-based and mouse studies investigating the function of ER-resident selenoproteins are reviewed. Human experimental and genetic studies are drawn upon to highlight the relevance of these selenoproteins to the pathogenesis of metabolic disease. ER-resident selenoproteins have discrete roles in the regulation of oxidative, ER and inflammatory stress responses, as well as intracellular calcium homeostasis. To date, only two of these ER-resident selenoproteins, selenoproteins S and N have been implicated in human disease. Nonetheless, the potential of all seven ER-resident selenoproteins to ameliorate metabolic dysfunction warrants further investigation.
Collapse
|
14
|
Liu J, Chen Q, Rozovsky S. Selenocysteine-Mediated Expressed Protein Ligation of SELENOM. Methods Mol Biol 2018; 1661:265-283. [PMID: 28917051 DOI: 10.1007/978-1-4939-7258-6_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A sizeable fraction of the selenoproteome encodes oxidoreductases possessing a thioredoxin fold, a structural motif that is shared among a diverse group of enzymes. In these oxidoreductases, the active site is comprised of a cysteine and a selenocysteine separated by one to two amino acids. In a subset of these selenoproteins, such as human SELENOH, SELENOM, SELENOT, SELENOV, SELENOW, and SELENOF, this redox motif is positioned immediately after the first β-sheet in a short loop, and is essential for interactions with its substrate or partners. Here, we describe the preparation of a representative member of this group, SELENOM, by selenocysteine-driven expressed protein ligation. The preparation employs a peptide bond formation between two protein fragments expressed recombinantly in E. coli. This method can be employed to prepare other selenoproteins.
Collapse
Affiliation(s)
- Jun Liu
- Department of Chemistry and Biochemistry, University of Delaware, 136 Brown Laboratory, Newark, DE, 19716, USA
| | - Qingqing Chen
- Department of Chemistry and Biochemistry, University of Delaware, 136 Brown Laboratory, Newark, DE, 19716, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, 136 Brown Laboratory, Newark, DE, 19716, USA.
| |
Collapse
|
15
|
Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium 2017; 70:76-86. [PMID: 28506443 DOI: 10.1016/j.ceca.2017.05.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/30/2017] [Indexed: 01/07/2023]
Abstract
The human selenoprotein family contains 25 members that share the common feature of containing the amino acid, selenocysteine (Sec). Seven selenoproteins are localized to the endoplasmic reticulum (ER) and exhibit different structural features contributing to a range of cellular functions. Some of these functions are either directly or indirectly related to calcium (Ca2+) flux or homeostasis. The presence of the unique Sec residue within these proteins allows some to exert oxidoreductase activity, while the function of the Sec in other ER selenoproteins remains unclear. Some functional insight has been achieved by identifying domains within the ER selenoproteins or through the identification of binding partners. For example, selenoproteins K and N (SELENOK AND SELENON) have been characterized through interactions detected with the inositol 1,4,5-triphosphate receptors (IP3Rs) and the SERCA2b pump, respectively. Others have been linked to chaperone functions related to ER stress or Ca2+ homeostasis. This review summarizes the details gathered to date regarding the ER-resident selenoproteins and their effect on Ca2+ regulated pathways and outcomes in cells.
Collapse
|
16
|
Dominiak A, Wilkaniec A, Wroczyński P, Adamczyk A. Selenium in the Therapy of Neurological Diseases. Where is it Going? Curr Neuropharmacol 2016; 14:282-99. [PMID: 26549649 PMCID: PMC4857624 DOI: 10.2174/1570159x14666151223100011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 08/20/2015] [Accepted: 09/16/2015] [Indexed: 12/19/2022] Open
Abstract
Selenium (34Se), an antioxidant trace element, is an important regulator of brain function. These beneficial properties that Se possesses are attributed to its ability to be incorporated into selenoproteins as an amino acid. Several selenoproteins are expressed in the brain, in which some of them, e.g. glutathione peroxidases (GPxs), thioredoxin reductases (TrxRs) or selenoprotein P (SelP), are strongly involved in antioxidant defence and in maintaining intercellular reducing conditions. Since increased oxidative stress has been implicated in neurological disorders, including Parkinson’s disease, Alzheimer’s disease, stroke, epilepsy and others, a growing body of evidence suggests that Se depletion followed by decreased activity of Se-dependent enzymes may be important factors connected with those pathologies. Undoubtedly, the remarkable progress that has been made in understanding the biological function of Se in the brain has opened up new potential possibilities for the treatment of neurological diseases by using Se as a potential drug. However, further research in the search for optimal Se donors is necessary in order to achieve an effective and safe therapeutic income.
Collapse
Affiliation(s)
| | - Anna Wilkaniec
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland.
| | | | | |
Collapse
|
17
|
García-Triana A, Peregrino-Uriarte AB, Yepiz-Plascencia G. Selenoprotein M gene expression, peroxidases activity and hydrogen peroxide concentration are differentially regulated in gill and hepatopancreas of the white shrimp Litopenaeus vannamei during hypoxia and reoxygenation. Comp Biochem Physiol A Mol Integr Physiol 2016; 199:14-20. [DOI: 10.1016/j.cbpa.2016.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/10/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
|
18
|
Zhao H, Tang J, Xu J, Cao L, Jia G, Long D, Liu G, Chen X, Wang K. Selenoprotein Genes Exhibit Differential Expression Patterns Between Hepatoma HepG2 and Normal Hepatocytes LO2 Cell Lines. Biol Trace Elem Res 2015; 167:236-41. [PMID: 25846212 DOI: 10.1007/s12011-015-0323-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/24/2015] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to compare messenger RNA (mRNA) expression of selenoprotein genes between hepatoma HepG2 and normal hepatocytes LO2 cell lines. Liver HepG2 and LO2 cells were cultured in 12-well plates under the same condition until cells grew to complete confluence, and then cells were harvested for total RNA and protein extraction. The qPCRs were performed to compare gene expression of 14 selenoprotein genes and 5 cancer signaling-related genes. Enzyme activities were also assayed. The results showed that human hepatoma HepG2 cells grew faster than normal hepatocytes LO2 cells. Among the genes investigated, 10 selenoprotein genes (Gpx1, Gpx3, Gpx4, Selx, Sepp, Sepw1, Sepn1, Selt, Seli, Selh) and 3 cancer signaling-related genes (Bcl-2A, caspase-3, and P38) were upregulated (P < 0.05), while Selo and Bcl-2B were downregulated (P < 0.05) in hepatoma HepG2 cells compared to LO2 cells. Significant correlations were found between selenoprotein genes and the cancer signaling-related genes Caspase3, P53, Bc1-2A, and Bc1-2B. Our results revealed that selenoprotein genes were aberrantly expressed in hepatoma HepG2 cells compared to normal liver LO2 cells, which indicated that those selenoprotein genes may play important roles in the occurrence and development of liver carcinogenesis.
Collapse
Affiliation(s)
- Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, Sichuan, 611130, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Solovyev ND. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J Inorg Biochem 2015; 153:1-12. [PMID: 26398431 DOI: 10.1016/j.jinorgbio.2015.09.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022]
Abstract
Multiple biological functions of selenium manifest themselves mainly via 25 selenoproteins that have selenocysteine at their active centre. Selenium is vital for the brain and seems to participate in the pathology of disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and epilepsy. Since selenium was shown to be involved in diverse functions of the central nervous system, such as motor performance, coordination, memory and cognition, a possible role of selenium and selenoproteins in brain signalling pathways may be assumed. The aim of the present review is to analyse possible relations between selenium and neurotransmission. Selenoproteins seem to be of special importance in the development and functioning of GABAergic (GABA, γ-aminobutyric acid) parvalbumin positive interneurons of the cerebral cortex and hippocampus. Dopamine pathway might be also selenium dependent as selenium shows neuroprotection in the nigrostriatal pathway and also exerts toxicity towards dopaminergic neurons under higher concentrations. Recent findings also point to acetylcholine neurotransmission involvement. The role of selenium and selenoproteins in neurotransmission might not only be limited to their antioxidant properties but also to inflammation, influencing protein phosphorylation and ion channels, alteration of calcium homeostasis and brain cholesterol metabolism. Moreover, a direct signalling function was proposed for selenoprotein P through interaction with post-synaptic apoliprotein E receptors 2 (ApoER2).
Collapse
Affiliation(s)
- Nikolay D Solovyev
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russian Federation.
| |
Collapse
|
20
|
Pitts MW, Byrns CN, Ogawa-Wong AN, Kremer P, Berry MJ. Selenoproteins in nervous system development and function. Biol Trace Elem Res 2014; 161:231-45. [PMID: 24974905 PMCID: PMC4222985 DOI: 10.1007/s12011-014-0060-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/23/2014] [Indexed: 01/03/2023]
Abstract
Selenoproteins are a distinct class of proteins that are characterized by the co-translational incorporation of selenium (Se) in the form of the 21st amino acid selenocysteine. Selenoproteins provide a key defense against oxidative stress, as many of these proteins participate in oxidation-reduction reactions neutralizing reactive oxygen species, where selenocysteine residues act as catalytic sites. Many selenoproteins are highly expressed in the brain, and mouse knockout studies have determined that several are required for normal brain development. In parallel with these laboratory studies, recent reports of rare human cases with mutations in genes involved in selenoprotein biosynthesis have described individuals with an assortment of neurological problems that mirror those detailed in knockout mice. These deficits include impairments in cognition and motor function, seizures, hearing loss, and altered thyroid metabolism. Additionally, due to the fact that oxidative stress is a key feature of neurodegenerative disease, there is considerable interest in the therapeutic potential of selenium supplementation for human neurological disorders. Studies performed in cell culture and rodent models have demonstrated that selenium administration attenuates oxidative stress, prevents neurodegeneration, and counters cell signaling mechanisms known to be dysregulated in certain disease states. However, there is currently no definitive evidence in support of selenium supplementation to prevent and/or treat common neurological conditions in the general population. It appears likely that, in humans, supplementation with selenium may only benefit certain subpopulations, such as those that are either selenium-deficient or possess genetic variants that affect selenium metabolism.
Collapse
Affiliation(s)
- Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St, Honolulu, HI, 96813, USA,
| | | | | | | | | |
Collapse
|
21
|
Pillai R, Uyehara-Lock JH, Bellinger FP. Selenium and selenoprotein function in brain disorders. IUBMB Life 2014; 66:229-39. [PMID: 24668686 DOI: 10.1002/iub.1262] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/10/2014] [Indexed: 01/14/2023]
Abstract
Selenoproteins are important for normal brain function, and decreased function of selenoproteins can lead to impaired cognitive function and neurological disorders. This review examines the possible roles of selenoproteins in Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and epilepsy. Selenium deficiency is associated with cognitive decline, and selenoproteins may be helpful in preventing neurodegeneration in AD. PD is associated with impaired function of glutathione peroxidase selenoenzymes. In HD, selenium deters lipid peroxidation by increasing specific glutathione peroxidases. Selenium deficiency increases risk of seizures in epilepsy, whereas supplementation may help to alleviate seizures. Further studies on the mechanisms of selenoprotein function will increase our understanding of how selenium and selenoproteins can be used in treatment and prevention of brain disorders.
Collapse
Affiliation(s)
- Roshan Pillai
- Department of Cell and Molecular Biology, University of Hawaii, John A. Burns School of Medicine, Honolulu, HI, USA
| | | | | |
Collapse
|
22
|
Jiang L, Cheng A, Wang Y, Zhang B. Genomic and expression analysis of a solute carrier protein (CcSLC25a5) gene from Cyprinus carpio Linnaeus. SPRINGERPLUS 2013; 2:458. [PMID: 24133640 PMCID: PMC3795872 DOI: 10.1186/2193-1801-2-458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/04/2013] [Indexed: 01/06/2023]
Abstract
Using the Genefishing method, we identified seven potential regulatory genes involved in the process of scale morphogenesis in fishes. We further characterized a novel solute carrier protein gene (CcSLC), from the common carp which is differentially expressed in mirror carp and Jianli. The ORF encodes a peptide of 298 amino acids with a molecular mass of 31.5 kDa and a theoretical isoelectric point of 7.49. ScanProsite analysis indicated that it is a putative solute carrier protein that contains a substrate binding site. CcSLC was detected in carp embryos by in situ hybridization in the 70%-epiboly, 6-somite, and 14-somite embryonic stages. Gene expression stopped at the long pec stage. However, CcSLC25a5 was re-expressed during the initiation of scale formation in the regions that were scale covered. These findings provide novel insights into the features of early carp embryo and scale development.
Collapse
Affiliation(s)
- Li Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023 China
| | | | | | | |
Collapse
|
23
|
Goo JS, Kim YN, Choi KM, Hwang IS, Kim JE, Lee YJ, Kwak MH, Shim SB, Jee SW, Lim CJ, Seong JK, Hwang DY. Proteomic analysis of kidneys from selenoprotein M transgenic rats in response to increased bioability of selenium. Clin Proteomics 2013; 10:10. [PMID: 23937859 PMCID: PMC3751301 DOI: 10.1186/1559-0275-10-10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 07/31/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To characterize changes in global protein expression in kidneys of transgenic rats overexpressing human selenoprotein M (SelM) in response to increased bioabivility of selenium (Sel), total proteins extracted from kidneys of 10-week-old CMV/hSelM Tg and wild-type rats were separated by 2-dimensional gel electrophoresis and measured for changes in expression. RESULTS Ten and three proteins showing high antioxidant enzymatic activity were up- and down-regulated, respectively, in SelM-overexpressing CMV/hSelM Tg rats compared to controls based on an arbitrary 2-fold difference. Up-regulated proteins included LAP3, BAIAP2L1, CRP2, CD73 antigen, PDGF D, KIAA143 homolog, PRPPS-AP2, ZFP313, HSP-60, and N-WASP, whereas down-regulated proteins included ALKDH3, rMCP-3, and STC-1. After Sel treatment, five of the up-regulated proteins were significantly increased in expression in wild-type rats, whereas there were no changes in CMV/hSelM Tg rats. Only two of the down-regulated proteins showed reduced expression in wild-type and Tg rats after Sel treatment. CONCLUSIONS These results show the primary novel biological evidences that new functional protein groups and individual proteins in kidneys of Tg rats relate to Sel biology including the response to Sel treatment and SelM expression.
Collapse
Affiliation(s)
- Jun Seo Goo
- Department of Biomaterials Science, College of Natural Resources & Life Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea
| | - Yo Na Kim
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - Kyung Mi Choi
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - In Sik Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea
| | - Ji Eun Kim
- Department of Biomaterials Science, College of Natural Resources & Life Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea
| | - Young Ju Lee
- Department of Biomaterials Science, College of Natural Resources & Life Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea
| | - Moon Hwa Kwak
- Department of Biomaterials Science, College of Natural Resources & Life Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea
| | - Sun Bo Shim
- Department of Laboratory Animal Resources, National Institute of Food and Drug Safety, Korea FDA, Osong 363-700, Korea
| | - Seung Wan Jee
- Department of Laboratory Animal Resources, National Institute of Food and Drug Safety, Korea FDA, Osong 363-700, Korea
| | - Chul Joo Lim
- Department of Laboratory Animal Resources, National Institute of Food and Drug Safety, Korea FDA, Osong 363-700, Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, South Korea.,Interdisciplinary Program for Bioinformatics, Program or Cancer Biology and BIO-MAX Institute, Seoul National University, Seoul 151-742, South Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea
| |
Collapse
|
24
|
Pitts MW, Reeves MA, Hashimoto AC, Ogawa A, Kremer P, Seale LA, Berry MJ. Deletion of selenoprotein M leads to obesity without cognitive deficits. J Biol Chem 2013; 288:26121-26134. [PMID: 23880772 DOI: 10.1074/jbc.m113.471235] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Selenium is an essential trace element that is co-translationally incorporated into selenoproteins in the form of the 21st amino acid, selenocysteine. This class of proteins largely functions in oxidation-reduction reactions and is critically involved in maintaining proper redox balance essential to health. Selenoprotein M (SelM) is a thioredoxin-like endoplasmic reticulum-resident protein that is highly expressed in the brain and possesses neuroprotective properties. In this study, we first assessed the regional pattern of SelM expression in the mouse brain to provide insights into the potential functional implications of this protein in physiology and behavior. Next, we generated transgenic mice with a targeted deletion of the SelM gene and subjected them to a battery of neurobehavioral tests to evaluate motor coordination, locomotion, and cognitive function in comparison with wild-type controls. Finally, these mice were tested for several measures of metabolic function and body composition. Our results show that SelM knock-out (KO) mice display no deficits in measures of motor coordination and cognitive function but exhibit increased weight gain, elevated white adipose tissue deposition, and diminished hypothalamic leptin sensitivity. These findings suggest that SelM plays an important role in the regulation of body weight and energy metabolism.
Collapse
Affiliation(s)
- Matthew W Pitts
- From the Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813.
| | - Mariclair A Reeves
- From the Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813
| | - Ann C Hashimoto
- From the Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813
| | - Ashley Ogawa
- From the Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813
| | - Penny Kremer
- From the Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813
| | - Lucia A Seale
- From the Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813
| | - Marla J Berry
- From the Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813
| |
Collapse
|
25
|
LEE YOUNGJU, KIM JIEUN, HWANG INSIK, KWAK MOONHWA, LEE JAEHO, JUNG YOUNGJIN, AN BEUMSOO, KWON HYEOGSOONG, KIM BYOUNGCHUL, KIM SEONJONG, KIM JOOMAN, HWANG DAEYOUN. Alzheimer’s phenotypes induced by overexpression of human presenilin 2 mutant proteins stimulate significant changes in key factors of glucose metabolism. Mol Med Rep 2013; 7:1571-8. [DOI: 10.3892/mmr.2013.1404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/20/2013] [Indexed: 11/06/2022] Open
|
26
|
Chen P, Wang RR, Ma XJ, Liu Q, Ni JZ. Different Forms of Selenoprotein M Differentially Affect Aβ Aggregation and ROS Generation. Int J Mol Sci 2013; 14:4385-99. [PMID: 23439548 PMCID: PMC3634452 DOI: 10.3390/ijms14034385] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 11/24/2022] Open
Abstract
Selenoprotein M (SelM), one of the executants of selenium in vivo, is highly expressed in human brain and most probably involved in antioxidation, neuroprotection, and intracellular calcium regulation, which are the key factors for preventing the onset and progression of Alzheimer’s disease (AD). In this paper, human SelM was successfully overexpressed in human embryonic kidney cells HEK293T. Sodium selenite (Na2SeO3 0.5 μmol/L) increased the expression of full-length SelM and inhibited the expression of truncated SelM. The full-length SelM exhibited higher antioxidant activity than its selenocysteine-to-cysteine mutation form SelM’, whereas the truncated SelM had an adverse effect that increased the oxidative stress level of cells. When β-amyloid (Aβ42, an AD relevant peptide) was cotransfected with the empty expression vector, SelM, or SelM’ under the induction of 0.5 μmol/L Na2SeO3, the intracellular Aβ42 aggregation rates were detected to be 57.9% ± 5.5%, or 22.3% ± 2.6%, or 26.3% ± 2.1%, respectively, showing the inhibitory effects on Aβ aggregation by the full-length SelM and SelM’. Meanwhile, the intumescentia of mitochondria caused by Aβ42 transfection was significantly mitigated by the cotransfection of SelM or SelM’ with Aβ42 under the induction of 0.5 μmol/L Na2SeO3. On the contrary, cotransfection of SelM and Aβ42 without the induction of Na2SeO3 increased Aβ42 aggregation rate to 65.1% ± 3.2%, and it could not inhibit the Aβ-induced intumescent mitochondria. In conclusion, full-length SelM and SelM’ might prevent Aβ aggregation by resisting oxidative stress generated during the formation of Aβ oligomers in cells.
Collapse
Affiliation(s)
- Ping Chen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Department of Marine Biology, Shenzhen University, Shenzhen 518060, China; E-Mails: (P.C.); (X.-J.M.)
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ruo-Ran Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, China; E-Mail:
| | - Xiao-Jie Ma
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Department of Marine Biology, Shenzhen University, Shenzhen 518060, China; E-Mails: (P.C.); (X.-J.M.)
| | - Qiong Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (Q.L.); (J.-Z.N.); Tel.: +86-755-2653-5432 (Q.L.); Fax: +86-755-2653-4274 (Q.L.)
| | - Jia-Zuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Department of Marine Biology, Shenzhen University, Shenzhen 518060, China; E-Mails: (P.C.); (X.-J.M.)
- Authors to whom correspondence should be addressed; E-Mails: (Q.L.); (J.-Z.N.); Tel.: +86-755-2653-5432 (Q.L.); Fax: +86-755-2653-4274 (Q.L.)
| |
Collapse
|
27
|
Abstract
Neural basic helix-loop-helix (bHLH) transcription factors are crucial in regulating the differentiation and neuronal subtype specification of neurons. Precisely how these transcription factors direct such processes is largely unknown due to the lack of bona fide targets in vivo. Genetic evidence suggests that bHLH factors have shared targets in their common differentiation role, but unique targets with respect to their distinct roles in neuronal subtype specification. However, whether neuronal subtype-specific targets exist remains an unsolved question. To address this question, we focused on Atoh1 (Math1), a bHLH transcription factor that specifies distinct neuronal subtypes of the proprioceptive pathway in mammals including the dI1 (dorsal interneuron 1) population of the developing spinal cord. We identified transcripts unique to the Atoh1-derived lineage using microarray analyses of specific bHLH-sorted populations from mouse. Chromatin immunoprecipitation-sequencing experiments followed by enhancer reporter analyses identified five direct neuronal subtype-specific targets of Atoh1 in vivo along with their Atoh1-responsive enhancers. These targets, Klf7, Rab15, Rassf4, Selm, and Smad7, have diverse functions that range from transcription factors to regulators of endocytosis and signaling pathways. Only Rab15 and Selm are expressed across several different Atoh1-specified neuronal subtypes including external granule cells (external granule cell layer) in the developing cerebellum, hair cells of the inner ear, and Merkel cells. Our work establishes on a molecular level that neuronal differentiation bHLH transcription factors have distinct lineage-specific targets.
Collapse
|
28
|
Liu L, Li Q, Sapolsky R, Liao M, Mehta K, Bhargava A, Pasricha PJ. Transient gastric irritation in the neonatal rats leads to changes in hypothalamic CRF expression, depression- and anxiety-like behavior as adults. PLoS One 2011; 6:e19498. [PMID: 21589865 PMCID: PMC3093391 DOI: 10.1371/journal.pone.0019498] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 04/05/2011] [Indexed: 12/27/2022] Open
Abstract
AIMS A disturbance of the brain-gut axis is a prominent feature in functional bowel disorders (such as irritable bowel syndrome and functional dyspepsia) and psychological abnormalities are often implicated in their pathogenesis. We hypothesized that psychological morbidity in these conditions may result from gastrointestinal problems, rather than causing them. METHODS Functional dyspepsia was induced by neonatal gastric irritation in male rats. 10-day old male Sprague-Dawley rats received 0.1% iodoacetamide (IA) or vehicle by oral gavage for 6 days. At 8-10 weeks of age, rats were tested with sucrose preference and forced-swimming tests to examine depression-like behavior. Elevated plus maze, open field and light-dark box tests were used to test anxiety-like behaviors. ACTH and corticosterone responses to a minor stressor, saline injection, and hypothalamic CRF expression were also measured. RESULTS Behavioral tests revealed changes of anxiety- and depression-like behaviors in IA-treated, but not control rats. As compared with controls, hypothalamic and amygdaloid CRF immunoreactivity, basal levels of plasma corticosterone and stress-induced ACTH were significantly higher in IA-treated rats. Gastric sensory ablation with resiniferatoxin had no effect on behaviors but treatment with CRF type 1 receptor antagonist, antalarmin, reversed the depression-like behavior in IA-treated rats CONCLUSIONS The present results suggest that transient gastric irritation in the neonatal period can induce a long lasting increase in depression- and anxiety-like behaviors, increased expression of CRF in the hypothalamus, and an increased sensitivity of HPA axis to stress. The depression-like behavior may be mediated by the CRF1 receptor. These findings have significant implications for the pathogenesis of psychological co-morbidity in patients with functional bowel disorders.
Collapse
Affiliation(s)
- Liansheng Liu
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, United States of America
| | - Qian Li
- Department of Pharmacology and Toxicology, University of Kansas, Kansas City, Kansas, United States of America
| | - Robert Sapolsky
- Department of Biology, School of Humanities and Sciences, Stanford University, Stanford, California, United States of America
| | - Min Liao
- Department of Surgery, University of California San Francisco, San Francisco, United States of America
| | - Kshama Mehta
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, United States of America
| | - Aditi Bhargava
- Department of Surgery, University of California San Francisco, San Francisco, United States of America
| | - Pankaj J. Pasricha
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Reeves MA, Bellinger FP, Berry MJ. The neuroprotective functions of selenoprotein M and its role in cytosolic calcium regulation. Antioxid Redox Signal 2010; 12:809-18. [PMID: 19769485 PMCID: PMC2864655 DOI: 10.1089/ars.2009.2883] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Selenoproteins contain the trace element selenium incorporated as selenocysteine, the 21st amino acid. Some members of the selenoprotein family, such as the glutathione peroxidases, have well-characterized antioxidant activity, functioning in enzymatic breakdown of hydroperoxides to protect cells against oxidative stress. However, the functions of many of the 25 human selenoproteins, including the brain-enriched selenoprotein M, are unknown. We investigated selenoprotein M function by manipulating expression in murine hippocampal HT22 cells, cerebellar astrocyte C8-D1A cells, and primary neuronal cultures. Overexpression of the protein resulted in a reduction in reactive oxygen species and apoptotic cell death in response to oxidative challenge with hydrogen peroxide. In contrast, knock-down of selenoprotein M using shRNA in primary neuronal cultures caused apoptotic cell death comparable to levels resulting from addition of hydrogen peroxide. Calcium measurements with the indicator cameleon demonstrated that overexpression of selenoprotein M decreased calcium influx in response to hydrogen peroxide. Additionally, knock-down of selenoprotein M expression in cortical cultures caused higher baseline levels of cytosolic calcium than in control cells. These results suggest that selenoprotein M may have an important role in protecting against oxidative damage in the brain and may potentially function in calcium regulation.
Collapse
Affiliation(s)
- Mariclair A Reeves
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i , 651 Ilalo Street, Honolulu, HI 96813, USA.
| | | | | |
Collapse
|
30
|
Abstract
Selenoproteins are proteins containing selenium in the form of the 21st amino acid, selenocysteine. Members of this protein family have many diverse functions, but their synthesis is dependent on a common set of cofactors and on dietary selenium. Although the functions of many selenoproteins are unknown, several disorders involving changes in selenoprotein structure, activity or expression have been reported. Selenium deficiency and mutations or polymorphisms in selenoprotein genes and synthesis cofactors are implicated in a variety of diseases, including muscle and cardiovascular disorders, immune dysfunction, cancer, neurological disorders and endocrine function. Members of this unusual family of proteins have roles in a variety of cell processes and diseases.
Collapse
Affiliation(s)
- Frederick P Bellinger
- Department of Cell and Molecular Biology, John A Burns School of Medicine, University of Hawai'i, Honolulu, HI 96813, USA.
| | | | | | | |
Collapse
|
31
|
Bellinger FP, He QP, Bellinger MT, Lin Y, Raman AV, White LR, Berry MJ. Association of selenoprotein p with Alzheimer's pathology in human cortex. J Alzheimers Dis 2008; 15:465-72. [PMID: 18997300 PMCID: PMC2695562 DOI: 10.3233/jad-2008-15313] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Selenium is known for its antioxidant properties, making selenoproteins candidate molecules for mitigation of neurological disorders in which oxidative stress has been implicated. The selenium transport protein, selenoprotein P, is essential for neuronal survival and function. We sought to determine whether selenoprotein P expression is associated with Alzheimer's disease pathology. We examined postmortem tissue from individuals with the hallmark lesions of Alzheimer's disease and individuals without these lesions. Selenoprotein P immunoreactivity was co-localized with amyloid-beta plaques and neurofibrillary tangles. Dense-core and other non-diffuse amyloid-beta plaques were nearly always associated with selenoprotein P immunopositive cells. Analysis of spatial distribution showed a significant association between amyloid-beta plaques and selenoprotein P. Numerous cells also exhibited immunoreactivity to selenoprotein P and intraneuronal neurofibrillary tangles. Confocal microscopy confirmed co-localization of amyloid-beta protein and selenoprotein P. These findings suggest an association of selenoprotein P with Alzheimer's pathology.
Collapse
Affiliation(s)
- Frederick P Bellinger
- Department of Cell Biology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI 96813, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Poirier G, Shires K, Sugden D, Amin E, Thomas K, Carter D, Aggleton J. Anterior thalamic lesions produce chronic and profuse transcriptional de-regulation in retrosplenial cortex: A model of retrosplenial hypoactivity and covert pathology. THALAMUS & RELATED SYSTEMS 2008; 4:59-77. [PMID: 21289865 PMCID: PMC3031093 DOI: 10.1017/s1472928808000368] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Anterior thalamic lesions are thought to produce 'covert pathology' in retrosplenial cortex, but the causes are unknown. Microarray analyses tested the hypothesis that thalamic damage causes a chronic, hypo-function of metabolic and plasticity-related pathways (Experiment 1). Rats with unilateral, anterior thalamic lesions were exposed to a novel environment for 20 minutes, and granular retrosplenial tissue sampled from both hemispheres 30 minutes, 2h, or 8h later. Complementary statistical approaches (analyses of variance, predictive patterning and gene set enrichment analysis) revealed pervasive gene expression differences between retrosplenial cortex ipsilateral to the thalamic lesion and contralateral to the lesion. Selected gene differences were validated by QPCR, immunohistochemistry (Experiment 1), and in situ hybridisation (Experiment 2). Following thalamic lesions, the retrosplenial cortex undergoes profuse cellular transcriptome changes including lower relative levels of specific mRNAs involved in energy metabolism and neuronal plasticity. These changes in functional gene expression may be largely driven by decreases in the expression of multiple transcription factors, including brd8, c-fos, fra-2, klf5, nfix, nr4a1, smad3, smarcc2, and zfp9, with a much smaller number (nfat5, neuroD1, RXRγ) showing increases. These findings have implications for conditions such as diencephalic amnesia and Alzheimer's disease, where both anterior thalamic pathology and retrosplenial cortex hypometabolism are prominent.
Collapse
Affiliation(s)
- G.L. Poirier
- School of Psychology, Cardiff University, Wales, UK
| | - K.L. Shires
- School of Psychology, Cardiff University, Wales, UK
- School of Biosciences, Cardiff University, Wales, UK
| | - D. Sugden
- Division of Reproduction and Endocrinology, School of Biomedical and Health Sciences, King’s College, London, UK
| | - E. Amin
- School of Psychology, Cardiff University, Wales, UK
| | - K.L. Thomas
- School of Biosciences, Cardiff University, Wales, UK
| | - D.A. Carter
- School of Biosciences, Cardiff University, Wales, UK
| | | |
Collapse
|
33
|
Papp LV, Lu J, Holmgren A, Khanna KK. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 2007; 9:775-806. [PMID: 17508906 DOI: 10.1089/ars.2007.1528] [Citation(s) in RCA: 891] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The requirement of the trace element selenium for life and its beneficial role in human health has been known for several decades. This is attributed to low molecular weight selenium compounds, as well as to its presence within at least 25 proteins, named selenoproteins, in the form of the amino acid selenocysteine (Sec). Incorporation of Sec into selenoproteins employs a unique mechanism that involves decoding of the UGA codon. This process requires multiple features such as the selenocysteine insertion sequence (SECIS) element and several protein factors including a specific elongation factor EFSec and the SECIS binding protein 2, SBP2. The function of most selenoproteins is currently unknown; however, thioredoxin reductases (TrxR), glutathione peroxidases (GPx) and thyroid hormone deiodinases (DIO) are well characterised selenoproteins involved in redox regulation of intracellular signalling, redox homeostasis and thyroid hormone metabolism. Recent evidence points to a role for selenium compounds as well as selenoproteins in the prevention of some forms of cancer. A number of clinical trials are either underway or being planned to examine the effects of selenium on cancer incidence. In this review we describe some of the recent progress in our understanding of the mechanism of selenoprotein synthesis, the role of selenoproteins in human health and disease and the therapeutic potential of some of these proteins.
Collapse
Affiliation(s)
- Laura Vanda Papp
- Queensland Institute of Medical Research, Cancer and Cell Biology Division, Herston, QLD, Australia
| | | | | | | |
Collapse
|