1
|
Nan X, Wang M, Du J, Liu Y, Cao L, Zhou J, Liu L, Li X. Single vesicle chemistry reveals partial release happens at the mechanical stress-induced exocytosis. Talanta 2024; 271:125637. [PMID: 38237284 DOI: 10.1016/j.talanta.2024.125637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Neuronal activity can be modulated by mechanical stress in the central nervous system (CNS) in neurodegenerative diseases, for example Alzheimer's disease. However, the impact of mechanical stress on chemical signal transmission, especially the storage and release of neurotransmitter in neuron vesicles, has not been fully clarified. In this study, a nanotip conical carbon fiber microelectrode (CFME) and a disk CFME are placed in and on a cell, respectively. The nanotip conical CFME functions for both the mechanical stress and the quantification of transmitter storage in single vesicles, while the disk CFME is used to monitor the transmitter release during exocytosis induced by mechanical stress at the same cell. By comparing the vesicular transmitter storage with its release during mechanical stress-induced exocytosis at the same cell, we find the release ratio of transmitter in chromaffin cells varies from 27 % to 100 %, while for PC12 cells from 30 % to 100 %. Our results indicate that the exocytosis of cells responding to mechanical stress shows individual difference obviously, with a significant population exhibiting partial release mode. The variation of Ca2+ channels and mechanosensitive ion channels on cell membrane may both contribute to this variation. Our discovery not only shows mechanical stress can change the transmission of cellular chemical signals at the vesicle level, but also provides an important reference perspective for the study of nervous system regulation and nervous system diseases.
Collapse
Affiliation(s)
- Xiaoke Nan
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Mengying Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
| | - Jinchang Du
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
| | - Yuying Liu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lijiao Cao
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Junlan Zhou
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Luyao Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
| | - Xianchan Li
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China.
| |
Collapse
|
2
|
Fadl S, Saleh AMM, Abou-Elmagd A, Abdel-Maksoud FM. Prehatching development of the adrenal gland in Japanese quail (Coturnix japonica): Histological, immunohistochemical, and electron microscopic studies. Microsc Res Tech 2024; 87:727-739. [PMID: 37990954 DOI: 10.1002/jemt.24462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/09/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023]
Abstract
The adrenal glands play a key role in maintaining the physiological balance of birds and helping them to survive environmental changes. The objective of the present work was to give a detailed investigation of the histological, ultrastructural, and immunohistochemical findings of the adrenal gland in Japanese quail during the prehatching phase. The current study was performed on 45 healthy Japanese quail embryos at different prehatching periods. Our results showed the primordium of the quail's adrenocortical tissue appeared at 3 days of incubation as a thickening of the splanchnic mesoderm. The prospective chromaffin cells appeared at 5 days as clusters of cells migrated from the neural crest cells along the dorsal aorta toward the interrenal tissue. TH immunoreactivity was observed in the neural crest cells during their migration toward the adrenal primordium. Furthermore, these TH immunopositive cells were intermingled with the developing interrenal cell cords that developed from the coelomic epithelium. NSE immunostaining was detected within the cytoplasm of interrenal cells, chromaffin cells, and ganglion cells. Sox10 is expressed in chromaffin and ganglion cells with different staining intensities. On the 13th day of prehatching, both interrenal and chromaffin cells were β-catenin immunonegative, but on the 17th day, both cells were immunopositively. Our findings show that during prenatal life, the adrenal gland undergoes significant morphological changes. Together, the present data suggest that studying the prenatal development of the adrenal gland in birds is important for advancing our understanding of this critical organ and its functions. RESEARCH HIGHLIGHTS: The present study aimed to give a detailed study of the histological, ultrastructural, and immunohistochemical investigations of the adrenal gland in Japanese quail during the prehatching period. The interrenal primordium was observed on the third embryonic day, on the fifth ED the primordium of the chromaffin tissue appeared as row of migrating neural crest cell. At the ultrastructural level, the interrenal cells take steroid-secreting cells characters, they have varying amounts of lipid droplets and abundant mitochondria at 15th ED contained moderate number of lysosomes and mitochondria.
Collapse
Affiliation(s)
- Saher Fadl
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Abdelmohaimen M M Saleh
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Abou-Elmagd
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Fatma M Abdel-Maksoud
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Senthilkumaran M, Koch C, Herselman MF, Bobrovskaya L. Role of the Adrenal Medulla in Hypoglycaemia-Associated Autonomic Failure-A Diabetic Perspective. Metabolites 2024; 14:100. [PMID: 38392992 PMCID: PMC10890365 DOI: 10.3390/metabo14020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Hypoglycaemia-associated autonomic failure (HAAF) is characterised by an impairment in adrenal medullary and neurogenic symptom responses following episodes of recurrent hypoglycaemia. Here, we review the status quo of research related to the regulatory mechanisms of the adrenal medulla in its response to single and recurrent hypoglycaemia in both diabetic and non-diabetic subjects with particular focus given to catecholamine synthesis, enzymatic activity, and the impact of adrenal medullary peptides. Short-term post-transcriptional modifications, particularly phosphorylation at specific residues of tyrosine hydroxylase (TH), play a key role in the regulation of catecholamine synthesis. While the effects of recurrent hypoglycaemia on catecholamine synthetic enzymes remain inconsistent, long-term changes in TH protein expression suggest species-specific responses. Adrenomedullary peptides such as neuropeptide Y (NPY), galanin, and proenkephalin exhibit altered gene and protein expression in response to hypoglycaemia, suggesting a potential role in the modulation of catecholamine secretion. Of note is NPY, since its antagonism has been shown to prevent reductions in TH protein expression. This review highlights the need for further investigation into the molecular mechanisms involved in the adrenal medullary response to hypoglycaemia. Despite advancements in our understanding of HAAF in non-diabetic rodents, a reliable diabetic rodent model of HAAF remains a challenge.
Collapse
Affiliation(s)
- Manjula Senthilkumaran
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Coen Koch
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Mauritz Frederick Herselman
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
4
|
Nerve growth factor causes epinephrine release dysfunction by regulating phenotype alterations and the function of adrenal medullary chromaffin cells in mice with allergic rhinitis. Mol Med Rep 2023; 27:39. [PMID: 36601769 PMCID: PMC9835056 DOI: 10.3892/mmr.2023.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/06/2022] [Indexed: 01/04/2023] Open
Abstract
The presence of allergic rhinitis (AR) is an increased risk factor for the occurrence of bronchial asthma (BA). Nerve growth factor (NGF), in addition to its key role in the development and differentiation of neurons, may also be an important inflammatory factor in AR and BA. However, the pathogenesis of the progression of AR to BA remains to be elucidated. The present study aimed to investigate the ability of NGF to mediate nasobronchial interactions and explore possible underlying molecular mechanisms. In the present study, an AR mouse model was established and histology of nasal mucosa tissue injury was determined. The level of phenylethanolamine N‑methyl transferase in adrenal medulla was determined by immunofluorescence. Primary adrenal medullary chromaffin cells (AMCCs) were isolated and cultured from the adrenal medulla of mice. The expression levels of synaptophysin (SYP), STAT1, JAK1, p38 and ERK in NGF‑treated and untreated AMCCs were detected by reverse‑transcription‑quantitative PCR and western blotting. The epinephrine (EPI) and norepinephrine (NE) concentrations were measured by ELISA. It was found that the expression of SYP in AMCCs was enhanced in the presence of NGF, whereas, the concentration of EPI decreased significantly under the same conditions. Furthermore, NGF mediated the phenotypic and functional changes of AMCCs, resulting in decreased EPI secretion via JAK1/STAT1, p38 and ERK signaling. In conclusion, these findings could provide novel evidence for the role of NGF in regulating neuroendocrine mechanisms.
Collapse
|
5
|
Watanabe-Asaka T, Hayashi M, Engel JD, Kawai Y, Moriguchi T. GATA2 functions in adrenal chromaffin cells. Genes Cells 2020; 25:607-614. [PMID: 32562431 DOI: 10.1111/gtc.12795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 11/29/2022]
Abstract
Catecholamine synthesized in the sympathoadrenal system, including sympathetic neurons and adrenal chromaffin cells, is vital for cardiovascular homeostasis. It has been reported that GATA2, a zinc finger transcription factor, is expressed in murine sympathoadrenal progenitor cells. However, a physiological role for GATA2 in adrenal chromaffin cells has not been established. In this study, we demonstrate that GATA2 is specifically expressed in adrenal chromaffin cells. We examined the consequences of Gata2 loss-of-function mutations, exploiting a Gata2 conditional knockout allele crossed to neural crest-specific Wnt1-Cre transgenic mice (Gata2 NC-CKO). The vast majority of Gata2 NC-CKO embryos died by embryonic day 14.5 (e14.5) and exhibited a decrease in catecholamine-producing adrenal chromaffin cells, implying that a potential catecholamine defect might lead to the observed embryonic lethality. When intercrossed pregnant dams were fed with synthetic adrenaline analogs, the lethality of the Gata2 NC-CKO embryos was partially rescued, indicating that placental transfer of the adrenaline analogs complements the lethal catecholamine deficiency in the Gata2 NC-CKO embryos. These results demonstrate that GATA2 participates in the development of neuroendocrine adrenaline biosynthesis, which is essential for fetal survival.
Collapse
Affiliation(s)
| | - Moyuru Hayashi
- Division of Physiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | | | - Yoshiko Kawai
- Division of Physiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
6
|
Cerrizuela S, Vega-Lopez GA, Aybar MJ. The role of teratogens in neural crest development. Birth Defects Res 2020; 112:584-632. [PMID: 31926062 DOI: 10.1002/bdr2.1644] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
Abstract
The neural crest (NC), discovered by Wilhelm His 150 years ago, gives rise to a multipotent migratory embryonic cell population that generates a remarkably diverse and important array of cell types during the development of the vertebrate embryo. These cells originate in the neural plate border (NPB), which is the ectoderm between the neural plate and the epidermis. They give rise to the neurons and glia of the peripheral nervous system, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies are a class of congenital diseases resulting from the abnormal induction, specification, migration, differentiation or death of NC cells (NCCs) during embryonic development and have an important medical and societal impact. In general, congenital defects affect an appreciable percentage of newborns worldwide. Some of these defects are caused by teratogens, which are agents that negatively impact the formation of tissues and organs during development. In this review, we will discuss the teratogens linked to the development of many birth defects, with a strong focus on those that specifically affect the development of the NC, thereby producing neurocristopathies. Although increasing attention is being paid to the effect of teratogens on embryonic development in general, there is a strong need to critically evaluate the specific role of these agents in NC development. Therefore, increased understanding of the role of these factors in NC development will contribute to the planning of strategies aimed at the prevention and treatment of human neurocristopathies, whose etiology was previously not considered.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Manuel J Aybar
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
7
|
Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 2018; 444 Suppl 1:S110-S143. [PMID: 29802835 DOI: 10.1016/j.ydbio.2018.05.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Collapse
|
8
|
Becker J, Wilting J. WNT signaling, the development of the sympathoadrenal-paraganglionic system and neuroblastoma. Cell Mol Life Sci 2018; 75:1057-1070. [PMID: 29058015 PMCID: PMC5814469 DOI: 10.1007/s00018-017-2685-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/22/2017] [Accepted: 10/11/2017] [Indexed: 12/04/2022]
Abstract
Neuroblastoma (NB) is a tumor of the sympathoadrenal system arising in children under 15 years of age. In Germany, NB accounts for 7% of childhood cancer cases, but 11% of cancer deaths. It originates from highly migratory progenitor cells that leave the dorsal neural tube and contribute neurons and glial cells to sympathetic ganglia, and chromaffin and supportive cells to the adrenal medulla and paraganglia. Clinically, histologically and molecularly, NBs present as extremely heterogeneous, ranging from very good to very poor prognosis. The etiology of NB still remains unclear and needs to be elucidated, however, aberrant auto- and paracrine embryonic cell communications seem to be likely candidates to initiate or facilitate the emergence, progression and regression of NB. The wingless-type MMTV integration site (WNT) family of proteins represents an evolutionary highly conserved signaling system that orchestrates embryogenesis. At least 19 ligands in the human, numerous receptors and co-receptors are known, which control not only proliferation, but also cell polarity, migration and differentiation. Here we seek to interconnect aspects of WNT signaling with sympathoadrenal and paraganglionic development to define new WNT signaling cues in the etiology and progression of NB.
Collapse
Affiliation(s)
- Jürgen Becker
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, 37075, Göttingen, Germany.
| | - Jörg Wilting
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, 37075, Göttingen, Germany
| |
Collapse
|
9
|
Abdullah AE, Guerin C, Imperiale A, Barlier A, Battini S, Pertuit M, Roche P, Essamet W, Vaisse B, Pacak K, Sebag F, Taïeb D. Paraganglioma of the organ of Zuckerkandl associated with a somatic HIF2α mutation: A case report. Oncol Lett 2017; 13:1083-1086. [PMID: 28454217 PMCID: PMC5403169 DOI: 10.3892/ol.2017.5599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 05/10/2016] [Indexed: 11/24/2022] Open
Abstract
Paragangliomas of the organ of Zuckerkandl (OZ-PGL) are rare tumors that, in >70% of cases, occur in association with succinate dehydrogenase complex iron sulfur subunit B (SDHB) or SDHD gene mutations. The aim of the current study was to determine whether a somatic genetic defect in the hypoxia-inducible factor 2α (HIF2α) gene was present in a case of sporadic OZ-PGL. A 32-year-old African female presented with uncontrolled hypertension during the first trimester of pregnancy. A diagnostic hysteroscopy was performed 3 months after delivery, precipitating a hypertensive crisis. Thereafter, the patient was diagnosed with noradrenaline-secreting OZ-PGL. A complete blood count identified mild normocytic anemia of an inflammatory origin. Surgical removal of the tumor resulted in normalization of plasma and urinary normetanephrine levels. Genetic testing for germline mutations (including large deletions) in the von Hippel-Lindau tumor suppressor, SDHB, SDHC and SDHD genes was normal. However, a heterozygous missense mutation (c.1589Cys>Tyr) was detected in exon 12 of HIF2α, which results in a substitution of alanine 530 with valine (Ala530Val) in the HIF2α protein. A germline mutation was excluded based on the negative results of blood DNA testing. A three-dimensional homology model of Ala530Val was constructed, which showed impaired HIF2α/VHL interaction and decreased HIF2α ubiquitination. 1H-high-resolution magic-angle-spinning nuclear magnetic resonance spectroscopy detected low succinate levels and high α and β glucose levels. To the best of our knowledge, the present case represents the first of its kind to associate a somatic HIF2α gain-of-function mutation with OZ-PGL. It is therefore recommended that patients without germline SDHx mutations should be tested for HIF2α mutations.
Collapse
Affiliation(s)
- Ahmad Esmaeel Abdullah
- Department of Nuclear Medicine, La Timone University Hospital, European Center for Research in Medical Imaging, Aix-Marseille University, 13385 Marseille Cedex 5, France
| | - Carole Guerin
- Department of Endocrine Surgery, Conception Hospital, Aix-Marseille University, 13005 Marseille, France
| | - Alessio Imperiale
- Department of Biophysics and Nuclear Medicine, Hautepierre Hospital, University Hospitals of Strasbourg, 67200 Strasbourg, France.,ICube Joint Research Unit 7357, University of Strasbourg/French National Center for Scientific Research and Federation of Translational Medicine of Strasbourg, Faculty of Medicine, 67085 Strasbourg, France
| | - Anne Barlier
- Laboratory of Biochemistry and Molecular Biology, Conception Hospital, Aix-Marseille University, 13005 Marseille, France
| | - Stéphanie Battini
- Integrative Structural and Chemical Biology and Interaction Dynamics and Drug Design Platform, Cancer Research Centre of Marseille, Institut Paoli Calmettes, 13273 Marseille, France.,Department of Neuropathology, La Timone University Hospital, Aix-Marseille University, 13385 Marseille Cedex 5, France
| | - Morgane Pertuit
- Laboratory of Biochemistry and Molecular Biology, Conception Hospital, Aix-Marseille University, 13005 Marseille, France
| | - Philippe Roche
- Integrative Structural and Chemical Biology and Interaction Dynamics and Drug Design Platform, Cancer Research Centre of Marseille, Institut Paoli Calmettes, 13273 Marseille, France
| | - Wassim Essamet
- Department of Neuropathology, La Timone University Hospital, Aix-Marseille University, 13385 Marseille Cedex 5, France
| | - Bernard Vaisse
- Department of Hypertension, La Timone University Hospital, Aix-Marseille University, 13385 Marseille Cedex 5, France
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fréderic Sebag
- Department of Endocrine Surgery, Conception Hospital, Aix-Marseille University, 13005 Marseille, France
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, European Center for Research in Medical Imaging, Aix-Marseille University, 13385 Marseille Cedex 5, France.,Cancer Research Centre of Marseille Affiliated to Inserm (UMR1068), Institut Paoli-Calmettes, 13273 Marseille, France
| |
Collapse
|
10
|
Morrison MA, Zimmerman MW, Look AT, Stewart RA. Studying the peripheral sympathetic nervous system and neuroblastoma in zebrafish. Methods Cell Biol 2016; 134:97-138. [PMID: 27312492 DOI: 10.1016/bs.mcb.2015.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The zebrafish serves as an excellent model to study vertebrate development and disease. Optically clear embryos, combined with tissue-specific fluorescent reporters, permit direct visualization and measurement of peripheral nervous system formation in real time. Additionally, the model is amenable to rapid cellular, molecular, and genetic approaches to determine how developmental mechanisms contribute to disease states, such as cancer. In this chapter, we describe the development of the peripheral sympathetic nervous system (PSNS) in general, and our current understanding of genetic pathways important in zebrafish PSNS development specifically. We also illustrate how zebrafish genetics is used to identify new mechanisms controlling PSNS development and methods for interrogating the potential role of PSNS developmental pathways in neuroblastoma pathogenesis in vivo using the zebrafish MYCN-driven neuroblastoma model.
Collapse
Affiliation(s)
- M A Morrison
- University of Utah, Salt Lake City, UT, United States
| | | | - A T Look
- Harvard Medical School, Boston, MA, United States
| | - R A Stewart
- University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
11
|
Chan WH, Gonsalvez DG, Young HM, Southard-Smith EM, Cane KN, Anderson CR. Differences in CART expression and cell cycle behavior discriminate sympathetic neuroblast from chromaffin cell lineages in mouse sympathoadrenal cells. Dev Neurobiol 2015; 76:137-49. [PMID: 25989220 DOI: 10.1002/dneu.22304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/22/2015] [Accepted: 05/13/2015] [Indexed: 12/31/2022]
Abstract
Adrenal medullary chromaffin cells and peripheral sympathetic neurons originate from a common sympathoadrenal (SA) progenitor cell. The timing and phenotypic changes that mark this lineage diversification are not fully understood. The present study investigated the expression patterns of phenotypic markers, and cell cycle dynamics, in the adrenal medulla and the neighboring suprarenal ganglion of embryonic mice. The noradrenergic marker, tyrosine hydroxylase (TH), was detected in both presumptive adrenal medulla and sympathetic ganglion cells, but with significantly stronger immunostaining in the former. There was intense cocaine and amphetamine-regulated transcript (CART) peptide immunostaining in most neuroblasts, whereas very few adrenal chromaffin cells showed detectable CART immunostaining. This phenotypic segregation appeared as early as E12.5, before anatomical segregation of the two cell types. Cell cycle dynamics were also examined. Initially, 88% of Sox10 positive (+) neural crest progenitors were proliferating at E10.5. Many SA progenitor cells withdrew from the cell cycle at E11.5 as they started to express TH. Whereas 70% of neuroblasts (TH+/CART+ cells) were back in the cell cycle at E12.5, only around 20% of chromaffin (CART negative) cells were in the cell cycle at E12.5 and subsequent days. Thus, chromaffin cell and neuroblast lineages showed differences in proliferative behavior from their earliest appearance. We conclude that the intensity of TH immunostaining and the expression of CART permit early discrimination of chromaffin cells and sympathetic neuroblasts, and that developing chromaffin cells exhibit significantly lower proliferative activity relative to sympathetic neuroblasts.
Collapse
Affiliation(s)
- Wing Hei Chan
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, 3010, Australia
| | - David G Gonsalvez
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, 3010, Australia
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, 3010, Australia
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, 529 Light Hall, 2215 Garland Avenue, Nashville, Tennessee
| | - Kylie N Cane
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, 3010, Australia
| | - Colin R Anderson
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
12
|
Abstract
The human adult adrenal cortex is composed of the zona glomerulosa (zG), zona fasciculata (zF), and zona reticularis (zR), which are responsible for production of mineralocorticoids, glucocorticoids, and adrenal androgens, respectively. The final completion of cortical zonation in humans does not occur until puberty with the establishment of the zR and its production of adrenal androgens; a process called adrenarche. The maintenance of the adrenal cortex involves the centripetal displacement and differentiation of peripheral Sonic hedgehog-positive progenitors cells into zG cells that later transition to zF cells and subsequently zR cells.
Collapse
Affiliation(s)
- Yewei Xing
- Internal Medicine, Medical School, University of Michigan, 109 Zina Pitcher Place, 1860 BSRB, Ann Arbor, MI 48109, USA
| | - Antonio M Lerario
- Internal Medicine, Medical School, University of Michigan, 109 Zina Pitcher Place, 1860 BSRB, Ann Arbor, MI 48109, USA
| | - William Rainey
- Internal Medicine, Medical School, University of Michigan, 109 Zina Pitcher Place, 1860 BSRB, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, 2560D MSRB II, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5622, USA
| | - Gary D Hammer
- Endocrine Oncology Program, Center for Organogenesis, University of Michigan, 109 Zina Pitcher Place, 1528 BSRB, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
13
|
Wylie LA, Hardwick LJA, Papkovskaia TD, Thiele CJ, Philpott A. Ascl1 phospho-status regulates neuronal differentiation in a Xenopus developmental model of neuroblastoma. Dis Model Mech 2015; 8:429-41. [PMID: 25786414 PMCID: PMC4415893 DOI: 10.1242/dmm.018630] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/13/2015] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB), although rare, accounts for 15% of all paediatric cancer mortality. Unusual among cancers, NBs lack a consistent set of gene mutations and, excluding large-scale chromosomal rearrangements, the genome seems to be largely intact. Indeed, many interesting features of NB suggest that it has little in common with adult solid tumours but instead has characteristics of a developmental disorder. NB arises overwhelmingly in infants under 2 years of age during a specific window of development and, histologically, NB bears striking similarity to undifferentiated neuroblasts of the sympathetic nervous system, its likely cells of origin. Hence, NB could be considered a disease of development arising when neuroblasts of the sympathetic nervous system fail to undergo proper differentiation, but instead are maintained precociously as progenitors with the potential for acquiring further mutations eventually resulting in tumour formation. To explore this possibility, we require a robust and flexible developmental model to investigate the differentiation of NB's presumptive cell of origin. Here, we use Xenopus frog embryos to characterise the differentiation of anteroventral noradrenergic (AVNA) cells, cells derived from the neural crest. We find that these cells share many characteristics with their mammalian developmental counterparts, and also with NB cells. We find that the transcriptional regulator Ascl1 is expressed transiently in normal AVNA cell differentiation but its expression is aberrantly maintained in NB cells, where it is largely phosphorylated on multiple sites. We show that Ascl1's ability to induce differentiation of AVNA cells is inhibited by its multi-site phosphorylation at serine-proline motifs, whereas overexpression of cyclin-dependent kinases (CDKs) and MYCN inhibit wild-type Ascl1-driven AVNA differentiation, but not differentiation driven by a phospho-mutant form of Ascl1. This suggests that the maintenance of ASCL1 in its multiply phosphorylated state might prevent terminal differentiation in NB, which could offer new approaches for differentiation therapy in NB. Highlighted Article: Neuroblastoma cells are stalled at a developmental stage at which they express high ASCL1. Multi-site phosphorylation of ASCL1, driven by elevated N-Myc and CDK activity, limits noradrenergic precursor and NB cell differentiation.
Collapse
Affiliation(s)
- Luke A Wylie
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK Pediatric Oncology Branch, Center for Cancer Research, NCI, CRC-1W-3940, 10 Center Dr. MSC-1105, Bethesda, MD 20892, USA
| | - Laura J A Hardwick
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Tatiana D Papkovskaia
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Carol J Thiele
- Pediatric Oncology Branch, Center for Cancer Research, NCI, CRC-1W-3940, 10 Center Dr. MSC-1105, Bethesda, MD 20892, USA
| | - Anna Philpott
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| |
Collapse
|
14
|
Lenders JWM, Eisenhofer G. Pathophysiology and diagnosis of disorders of the adrenal medulla: focus on pheochromocytoma. Compr Physiol 2014; 4:691-713. [PMID: 24715564 DOI: 10.1002/cphy.c130034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The principal function of the adrenal medulla is the production and secretion of catecholamines. During stressful challenging conditions, catecholamines exert a pivotal homeostatic role. Although the main adrenomedullary catecholamine, epinephrine, has a wide array of adrenoreceptor-mediated effects, its absence does not cause life-threatening problems. In contrast, excess production of catecholamines due to an adrenomedullary tumor, specifically pheochromocytoma, results in significant morbidity and mortality. Despite being rare, pheochromocytoma has a notoriously bad reputation because of its potential devastating effects if undetected and untreated. The paroxysmal signs and symptoms and the risks of missing or delaying the diagnosis are well known for most physicians. Nevertheless, even today the diagnosis is still overlooked in a considerable number of patients. Prevention and complete cure are however possible by early diagnosis and appropriate treatment but these patients remain a challenge for physicians. Yet, biochemical proof of presence or absence of catecholamine excess has become more easy and straightforward due to developments in assay methodology. This also applies to radiological and functional imaging techniques for locating the tumor. The importance of genetic testing for underlying germline mutations in susceptibility genes for patients and relatives is increasingly recognized. Yet, the effectiveness of genetic testing, in terms of costs and benefits to health, has not been definitively established. Further improvement in knowledge of genotype-phenotype relationships in pheochromocytoma will open new avenues to a more rationalized and personalized diagnostic approach of affected patients.
Collapse
Affiliation(s)
- Jacques W M Lenders
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
15
|
Kameda Y. Signaling molecules and transcription factors involved in the development of the sympathetic nervous system, with special emphasis on the superior cervical ganglion. Cell Tissue Res 2014; 357:527-48. [PMID: 24770894 DOI: 10.1007/s00441-014-1847-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/12/2014] [Indexed: 12/16/2022]
Abstract
The cells that constitute the sympathetic nervous system originate from the neural crest. This review addresses the current understanding of sympathetic ganglion development viewed from molecular and morphological perspectives. Development of the sympathetic nervous system is categorized into three main steps, as follows: (1) differentiation and migration of cells in the neural crest lineage for formation of the primary sympathetic chain, (2) differentiation of sympathetic progenitors, and (3) growth and survival of sympathetic ganglia. The signaling molecules and transcription factors involved in each of these developmental stages are elaborated mostly on the basis of the results of targeted mutation of respective genes. Analyses in mutant mice revealed differences between the superior cervical ganglion (SCG) and the other posterior sympathetic ganglia. This review provides a summary of the similarities and differences in the development of the SCG and other posterior sympathetic ganglia. Relevant to the development of sympathetic ganglia is the demonstration that neuroendocrine cells, such as adrenal chromaffin cells and carotid body glomus cells, share a common origin with the sympathetic ganglia. Neural crest cells at the trunk level give rise to common sympathoadrenal progenitors of sympathetic neurons and chromaffin cells, while progenitors segregated from the SCG give rise to glomus cells. After separation from the sympathetic primordium, the progenitors of both chromaffin cells and glomus cells colonize the anlage of the adrenal gland and carotid body, respectively. This review highlights the biological properties of chromaffin cells and glomus cells, because, although both cell types are derivatives of sympathetic primordium, they are distinct in many respects.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan,
| |
Collapse
|
16
|
Maggi R, Dondi D, Piccolella M, Casulari LA, Martini L. New insight on the molecular aspects of glucocorticoid effects in nervous system development. J Endocrinol Invest 2013; 36:775-80. [PMID: 23765505 DOI: 10.3275/9003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Adrenal glucocorticoids (Gc) are among the most significant hormones in the mammalian organisms; these steroids may reach and penetrate all tissues where they interact with cytoplasmic/nuclear receptors, through which they exert multiple and very multifaceted actions. The effects of physiological concentrations of Gc on brain functions have not been completely clarified, even though Gc are recognized to influence behavioral responses, emotions, cognitive processes and to take part in the neuroendocrine control of body homeostasis. Developmental programming effects of Gc in animal models and humans have been proposed. Actually, pre-natal stress, or exposure to high Gc levels, would somehow affect neuronal developmental events in some structure and this can lead to central nervous system altered functions, as the impairment of neuroendocrine activities, cognitive processes, sleep and mood disorders. Interestingly, it has been observed that these abnormalities may not be limited to the first directly exposed individuals but transmissible across generations. The establishment of animal models with localized pre-natal glucocorticoid receptors deficiency led to the accumulation of data on the possible roles of these hormones on development of the central and peripheral nervous system. The most recent findings on the effects of Gc on neuroblast development, with particular attention to neuronal migration, will be presented.
Collapse
Affiliation(s)
- R Maggi
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Università degli Studi di Milan, Via G. Balzaretti, 9 - 20133 Milan, Italy.
| | | | | | | | | |
Collapse
|
17
|
Shtukmaster S, Schier MC, Huber K, Krispin S, Kalcheim C, Unsicker K. Sympathetic neurons and chromaffin cells share a common progenitor in the neural crest in vivo. Neural Dev 2013; 8:12. [PMID: 23777568 PMCID: PMC3693940 DOI: 10.1186/1749-8104-8-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/17/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The neural crest (NC) is a transient embryonic structure unique to vertebrates, which generates peripheral sensory and autonomic neurons, glia, neuroendocrine chromaffin and thyroid C-cells, melanocytes, and mesenchymal derivatives such as parts of the skull, heart, and meninges. The sympathoadrenal (SA) cell lineage is one major sub-lineage of the NC that gives rise to sympathetic neurons, chromaffin cells, and the intermediate small intensely fluorescent (SIF) cells. A key question is when during NC ontogeny do multipotent progenitors segregate into the different NC-derived lineages. Recent evidence suggested that sympathetic, sensory, and melanocyte progenitors delaminate from the thoracic neural tube (NT) in successive, largely non-overlapping waves and that at least certain NC progenitors are already fate-restricted within the NT. Whether sympathetic neurons and chromaffin cells, suggested by cell culture studies to share a common progenitor, are also fate segregated in ovo prior to emigration, is not known. RESULTS We have conducted single cell electroporations of a GFP-encoding plasmid into the dorsal midline of E2 chick NTs at the adrenomedullary level of the NC. Analysis of their derivatives, performed at E6, revealed that in most cases, labelled progeny was detected in both sympathetic ganglia and adrenal glands, where cells co-expressed characteristic marker combinations. CONCLUSIONS Our results show that sympathetic neurons and adrenal chromaffin cells share a common progenitor in the NT. Together with previous findings we suggest that phenotypic diversification of these sublineages is likely to occur after delamination from the NT and prior to target encounter.
Collapse
Affiliation(s)
- Stella Shtukmaster
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology University of Freiburg, Albertstr, 17, Freiburg D-79104, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Hu CP, Wu XR, Li QG, Sun ZW, Wang AP, Feng JT, Wang J. Proteomic analysis of NGF-induced transdifferentiation of adrenal medullary cells. Int J Mol Med 2013; 32:347-54. [PMID: 23695304 DOI: 10.3892/ijmm.2013.1387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/25/2013] [Indexed: 11/06/2022] Open
Abstract
Nerve growth factor (NGF) is a polypeptide growth factor with specific trophic function in nerve cells and was initially investigated for its role as a key player in the regulation of peripheral innervations. The aim of this study was to examine the NGF-induced transdifferentiation of adrenal medullary cells, and to screen the major candidate differentially expressed proteins involved in the transdifferentiation. NGF was used to treat primary cultures of neonatal calf adrenal medullary cells and the effects of transdifferentiation were determined in association with cellular morphology, ultrastructure and changes in endocrine function. Differentially expressed proteins were screened and identified through two-dimensional gel electrophoresis and mass spectrometry. The protein spots showing differential expression were verified by western blot analysis. We observed neurite outgrowth in the adrenal medullary cells treated with NGF under a phase contrast microscope. Ultrastructure analysis revealed that there were rich drumstick-like and villiform processes on the cell membranes and vesicles were formed near the cell membranes. The cytoplasm was rich in mitochondria and the secretion of epinephrine was decreased. Two-dimensional gel electrophoresis revealed that among the differentially expressed proteins, 48 protein spots showed an upregulated expression and 37 protein spots showed a downregulated expression, and no 'all-or-none' spots with significant differences in expression were found. Fourteen protein spots with an upregulated expression and 6 with a downregulated expression were randomly selected for identification by mass spectrometry. Western blot analysis revealed that ras homologus oncogene (Rho) GDP dissociation inhibitor α (RhoGDIα) protein expression was significantly downregulated and peripherin protein expression was significantly upregulated. In brief, our data demonstrate that NGF can induce the differentiation of adrenal medullary cells into neurons, and that RhoGDIα and peripherin may play important roles in this process.
Collapse
Affiliation(s)
- Cheng-Ping Hu
- Department of Respiratory Medicine, Central South University, Xiangya Hospital, Changsha, Hunan, P.R. China
| | | | | | | | | | | | | |
Collapse
|
19
|
He R, Feng J, Xun Q, Qin Q, Hu C. High-intensity training induces EIB in rats through neuron transdifferentiation of adrenal medulla chromaffin cells. Am J Physiol Lung Cell Mol Physiol 2013; 304:L602-12. [PMID: 23418092 DOI: 10.1152/ajplung.00406.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A high prevalence of exercise-induced bronchoconstriction (EIB) can be found in elite athletes, but the underlying mechanisms remain elusive. Airway responsiveness, NGF and epinephrine (EPI) levels, and chromaffin cell structure in high- (HiTr) and moderate-intensity training (MoTr) rats with or without ovalbumin (OVA) sensitization were measured in a total of 120 male Sprague-Dawley rats. The expression of NGF-associated genes in rat adrenal medulla was tested. Both HiTr and OVA intervention significantly increased airway resistance to aerosolized methacholine measured by whole body plethysmography. HiTr significantly increased inflammatory reaction in the lung with a major increase in peribronchial lymphocyte infiltration, whereas OVA significantly increased the infiltration of various inflammatory cells with an over 10-fold increase in eosinophil level in bronchoalveolar lavage. Both HiTr and OVA intervention upregulated circulating NGF level and peripherin level in adrenal medulla, but downregulated phenylethanolamine N-methyl transferase level in adrenal medulla and circulating EPI level. HiTr + OVA and HiTr + ExhEx (exhaustive exercise) interventions significantly enhanced most of the HiTr effects. The elevated NGF level was significantly associated with neuronal conversion of adrenal medulla chromaffin cells (AMCC). The levels of p-Erk1/2, JMJD3, and Mash1 were significantly increased, but the levels of p-p38 and p-JNK were significantly decreased in adrenal medulla in HiTr and OVA rats. Injection of NGF antiserum and moderate-intensity training reversed these changes observed in HiTr and/or OVA rats. Our study suggests that NGF may play a vital role in the pathogenesis of EIB by inducing neuron transdifferentiation of AMCC via MAPK pathways and subsequently decreasing circulating EPI.
Collapse
Affiliation(s)
- Ruoxi He
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | |
Collapse
|
20
|
Schober A, Parlato R, Huber K, Kinscherf R, Hartleben B, Huber TB, Schütz G, Unsicker K. Cell loss and autophagy in the extra-adrenal chromaffin organ of Zuckerkandl are regulated by glucocorticoid signalling. J Neuroendocrinol 2013; 25:34-47. [PMID: 23078542 PMCID: PMC3564403 DOI: 10.1111/j.1365-2826.2012.02367.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/27/2012] [Indexed: 12/20/2022]
Abstract
Neuroendocrine chromaffin cells exist in both intra- and extra-adrenal locations; the organ of Zuckerkandl (OZ) constitutes the largest accumulation of extra-adrenal chromaffin tissue in mammals. The OZ disappears postnatally by modes that are still enigmatic but can be maintained by treatment with glucocorticoids (GC). Whether the response to GC reflects a pharmacological or a physiological role of GC has not been clarified. Using mice with a conditional deletion of the GC-receptor (GR) gene restricted to cells expressing the dopamine β-hydroxylase (DBH) gene [GR(fl/fl) ; DBHCre abbreviated (GR(DBHCre) )], we now present the first evidence for a physiological role of GC signalling in the postnatal maintenance of the OZ: postnatal losses of OZ chromaffin cells in GR(DBHCre) mice are doubled compared to wild-type littermates. We find that postnatal cell loss in the OZ starts at birth and is accompanied by autophagy. Electron microscopy reveals autophagic vacuoles and autophagolysosomes in chromaffin cells. Autophagy in OZ extra-adrenal chromaffin cells is confirmed by showing accumulation of p62 protein, which occurs, when autophagy is blocked by deleting the Atg5 gene (Atg5(DBHCre) mice). Cathepsin-D, a lysosomal marker, is expressed in cells that surround chromaffin cells and are positive for the macrophage marker BM8. Macrophages are relatively more abundant in mice lacking the GR, indicating more robust elimination of degenerating chromaffin cells in GR(DBHCre) mice than in wild-type littermates. In summary, our results indicate that extra-adrenal chromaffin cells in the OZ show signs of autophagy, which accompany their postnatal numerical decline, a process that is controlled by GR signalling.
Collapse
Affiliation(s)
- Andreas Schober
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology II, Albert-Ludwigs-University Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Unsicker K, Huber K, Schober A, Kalcheim C. Resolved and open issues in chromaffin cell development. Mech Dev 2012; 130:324-9. [PMID: 23220335 DOI: 10.1016/j.mod.2012.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/14/2012] [Accepted: 11/16/2012] [Indexed: 11/19/2022]
Abstract
Ten years of research within the DFG-funded Collaborative Research Grant SFB 488 at the University of Heidelberg have added many new facets to our understanding of chromaffin cell development. Glucocorticoid signaling is no longer the key for understanding the determination of the chromaffin phenotype, yet a novel role has been attributed to glucocorticoids: they are essential for the postnatal maintenance of adrenal and extra-adrenal chromaffin cells. Transcription factors, as, e.g. MASH1 and Phox2B, have similar, but also distinct functions in chromaffin and sympathetic neuronal development, and BMP-4 not only induces sympathoadrenal (SA) cells at the dorsal aorta and within the adrenal gland, but also promotes chromaffin cell maturation. Chromaffin cells and sympathetic neurons share a common progenitor in the dorsal neural tube (NT) in vivo, as revealed by single cell electroporations into the dorsal NT. Thus, specification of chromaffin cells is likely to occur after cell emigration either during migration or close to colonization of the target regions. Mechanisms underlying the specification of chromaffin cells vs. sympathetic neurons are currently being explored.
Collapse
Affiliation(s)
- Klaus Unsicker
- Dept. of Molecular Embryology, University of Freiburg, Albertstr. 17, D-79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
22
|
Feng JT, Wu XM, Li XZ, Zou YQ, Qin L, Hu CP. Transformation of adrenal medullary chromaffin cells increases asthmatic susceptibility in pups from allergen-sensitized rats. Respir Res 2012; 13:99. [PMID: 23137120 PMCID: PMC3503619 DOI: 10.1186/1465-9921-13-99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/29/2012] [Indexed: 02/04/2023] Open
Abstract
Background Studies have shown that epinephrine release is impaired in patients with asthma. The pregnancy of female rats (dams) with asthma promotes in their pups the differentiation of adrenal medulla chromaffin cells (AMCCs) into sympathetic neurons, mediated by nerve growth factor, which leads to a reduction in epinephrine secretion. However, the relatedness between the alteration of AMCCs and increased asthma susceptibility in such offspring has not been established. Methods In this study, we observed the effects of allergization via ovalbumin on rat pups born of asthmatic dams. Results Compared to the offspring of untreated controls, bronchial hyperreactivity and airway inflammation were more severe in the pups from sensitized (asthmatic) dams. In pups exposed to nerve growth factor (NGF) in utero these effects were aggravated further, but the effects were blocked in pups whose dams had been treated with anti-NGF. Furthermore, alterations in AMCC phenotype corresponded to the degree of bronchial hyperreactivity and lung lesions of the different treatment groups. Such AMCC alterations included degranulation of chromaffin granules, reduction of epinephrine and phenylethanolamine-n-methyl transferase, and elevation of NGF and peripherin levels. Conclusions Our results present evidence that asthma during the pregnancy of rat dams promotes asthma susceptibility in their offspring, and that the transformation of AMCCs to neurons induced by NGF plays an important role in this process.
Collapse
Affiliation(s)
- Jun-Tao Feng
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
In recent years, many genes that participate in the specification, differentiation and steroidogenesis of the interrenal organ, the teleostean homologue of the adrenal cortex, have been identified and characterized in zebrafish. In-depth studies of these genes have helped to delineate the morphogenetic steps of interrenal organ formation, as well as some of the molecular and cellular mechanisms that govern these processes. The co-development of interrenal tissue with the embryonic kidney (pronephros), surrounding endothelium and invading chromaffin cells has been analyzed, by virtue of the amenability of zebrafish embryos to a variety of genetic, developmental and histological approaches. Moreover, zebrafish embryos can be subject to molecular as well as biochemical assays for the unraveling of the transcriptional regulation program underlying interrenal development. To this end, the key mechanisms that control organogenesis and steroidogenesis of the zebrafish interrenal gland have been shown to resemble those in mammals, justifying the future utilization of zebrafish model for discovering novel genes associated with adrenal development and disease.
Collapse
|
24
|
The effect of unilateral adrenalectomy on transformation of adrenal medullary chromaffin cells in vivo: a potential mechanism of asthma pathogenesis. PLoS One 2012; 7:e44586. [PMID: 22957086 PMCID: PMC3434170 DOI: 10.1371/journal.pone.0044586] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/09/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Decreased epinephrine (EPI) is an important underlying factor of bronchoconstriction in asthma. Exogenous β(2)-adrenergic receptor agonist is one of the preferred options to treat asthma. We previously showed that this phenomenon involved adrenal medullary chromaffin cell (AMCC) transformation to a neuron phenotype. However, the underlying molecular mechanism is not fully understood. To further explore this, an asthmatic model with unilateral adrenalectomy was established in this study. METHODOLOGY/PRINCIPAL FINDINGS Thirty-two rats were randomly into four groups (n = 8 each) control rats (controls), unilateral adrenalectomy rats (surgery-control, s-control), asthmatic rats (asthma), unilateral adrenalectomy asthmatic rats (surgery-induced asthma, s-asthma). Asthmatic rats and s-asthmatic rats were sensitized and challenged with ovalbumin (OVA). The pathological changes in adrenal medulla tissues were observed under microscopy. EPI and its rate-limiting enzyme, phenylethanolamine N-methyl transferase (PNMT), were measured. Peripherin, a type III intermediate filament protein, was also detected in each group. The asthmatic rats presented with decreased chromaffin granules and swollen mitochondria in AMCCs, and the s-asthmatic rats presented more serious pathological changes than those in asthmatic rats and s-control rats. The expressions of EPI and PNMT in asthmatic rats were significantly decreased, as compared with levels in controls (P<0.05), and a further decline was observed in s-asthmatic rats (P<0.05). The expression of peripherin was higher in the asthmatic rats than in the controls, and the highest level was found in the s-asthmatic rats (P<0.05). CONCLUSION/SIGNIFICANCE Compared with asthmatic rats and s-control rats, the transformation tendency of AMCCs to neurons is more obvious in the s-asthmatic rats. Moreover, this phenotype alteration in the asthmatic rats is accompanied by reduced EPI and PNMT, and increased peripherin expression. This result provides further evidence to support the notion that phenotype alteration of AMCCs contributes to asthma pathogenesis.
Collapse
|
25
|
Li QG, Wu XR, Li XZ, Yu J, Xia Y, Wang AP, Wang J. Neural-endocrine mechanisms of respiratory syncytial virus-associated asthma in a rat model. GENETICS AND MOLECULAR RESEARCH 2012; 11:2780-9. [PMID: 23007973 DOI: 10.4238/2012.august.24.3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We examined the underlying neural-endocrine mechanisms of asthma associated with respiratory syncytial virus infection. Thirty Sprague-Dawley rats were randomly divided into control group, respiratory syncytial virus (RSV) group, and anti-nerve growth factor (NGF) IgG group. An RSV infection model was established by nasal drip once a week. In the anti-NGF antibody intervention group, each rat was given an intraperitoneal injection of anti-NGF IgG 3 h before RSV infection. Optical microscopy and transmission electron microscopy were used to observe the structural changes in adrenal medulla cells. Changes in adrenaline and norepinephrine in serum were detected by ELISA. NGF expression was assayed by immunohistochemistry. Expression differences in synaptophysin mRNA were detected by RT-PCR. Transmission electron microscopy displayed widened adrenal medulla intercellular spaces, reduced chromaffin particle concentration, and increased mitochondria in the RSV infection group. At the same time, NGF expression was increased in the RSV infection group significantly. In addition, the adrenaline concentration was significantly decreased compared with the control and anti-NGF antibody groups. Synaptophysin mRNA expression was significantly increased in the RSV infection and anti-NGF antibody groups. However, compared with the RSV infection group, synaptophysin mRNA expression was significantly decreased in the anti-NGF antibody group. We conclude that RSV infection could induce adrenal medulla cell differentiation to nerve cells by over-expression of NGF, resulting in the decreased endocrine function found in asthma progression.
Collapse
Affiliation(s)
- Q G Li
- Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital, Nanchang, P.R. China
| | | | | | | | | | | | | |
Collapse
|
26
|
Vukicevic V, Schmid J, Hermann A, Lange S, Qin N, Gebauer L, Chunk KF, Ravens U, Eisenhofer G, Storch A, Ader M, Bornstein SR, Ehrhart-Bornstein M. Differentiation of chromaffin progenitor cells to dopaminergic neurons. Cell Transplant 2012; 21:2471-86. [PMID: 22507143 DOI: 10.3727/096368912x638874] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The differentiation of dopamine-producing neurons from chromaffin progenitors might represent a new valuable source for replacement therapies in Parkinson's disease. However, characterization of their differentiation potential is an important prerequisite for efficient engraftment. Based on our previous studies on isolation and characterization of chromaffin progenitors from adult adrenals, this study investigates their potential to produce dopaminergic neurons and means to enhance their dopaminergic differentiation. Chromaffin progenitors grown in sphere culture showed an increased expression of nestin and Mash1, indicating an increase of the progenitor subset. Proneurogenic culture conditions induced the differentiation into neurons positive for neural markers β-III-tubulin, MAP2, and TH accompanied by a decrease of Mash1 and nestin. Furthermore, Notch2 expression decreased concomitantly with a downregulation of downstream effectors Hes1 and Hes5 responsible for self-renewal and proliferation maintenance of progenitor cells. Chromaffin progenitor-derived neurons secreted dopamine upon stimulation by potassium. Strikingly, treatment of differentiating cells with retinoic and ascorbic acid resulted in a twofold increase of dopamine secretion while norepinephrine and epinephrine were decreased. Initiation of dopamine synthesis and neural maturation is controlled by Pitx3 and Nurr1. Both Pitx3 and Nurr1 were identified in differentiating chromaffin progenitors. Along with the gained dopaminergic function, electrophysiology revealed features of mature neurons, such as sodium channels and the capability to fire multiple action potentials. In summary, this study elucidates the capacity of chromaffin progenitor cells to generate functional dopaminergic neurons, indicating their potential use in cell replacement therapies.
Collapse
Affiliation(s)
- Vladimir Vukicevic
- Molecular Endocrinology, Medical Clinic III, University Clinic Dresden, Dresden University of Technology, Fetscherstrasse 74, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Modulation of Dopaminergic Neuronal Differentiation from Sympathoadrenal Progenitors. J Mol Neurosci 2012; 48:420-6. [DOI: 10.1007/s12031-012-9746-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/05/2012] [Indexed: 12/25/2022]
|
28
|
Kidney-tonifying recipe can repair alterations in adrenal medullary chromaffin cells in asthmatic rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:542621. [PMID: 22474509 PMCID: PMC3310395 DOI: 10.1155/2012/542621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/18/2011] [Accepted: 12/26/2011] [Indexed: 01/05/2023]
Abstract
Traditional Chinese medicine suggests that renal deficiency is a causative factor of asthma, and tonifying kidney drugs are believed to be an appropriate and beneficial treatment. The adrenal medullary chromaffin cells (AMCC) transition to the neuronal phenotype is known to occur in asthma, as evidenced by degranulation of chromaffin granules, decline of epinephrine (EPI) and phenylethanolamine-n-methyl transferase (PNMT), and obvious alterations in cellular architecture. In this study, rats were sensitized and challenged with ovalbumin, then treated with Kidney-Tonifying Recipe (KTR) to evaluate the therapeutic effect. Tissues were evaluated for changes in pathology and EPI, PNMT, and peripherin expression. Degranulation of chromaffin granules and appearance of neurite-like process were found in AMCC from asthmatic rats, and these changes were corrected by KTR treatment. EPI and PNMT expressions were decreased in asthmatic rats and increased by KTR treatment. Peripherin expression was increased in asthmatic rats and decreased in the KTR-treated group. Morphological changes and decreases in EPI were observed when cultured AMCC were exposed to sera from asthmatic rats in vitro, and these changes were attenuated with the addition of sera from KRT-treated rats. These results suggest that the Kidney-Tonifying Recipe is capable of repairing asthma-associated alterations in endocrine function and the ultrastructure of AMCC.
Collapse
|
29
|
Toescu EC, Dayanithi G. Neuroendocrine signalling: natural variations on a Ca2+ theme. Cell Calcium 2012; 51:207-11. [PMID: 22385835 DOI: 10.1016/j.ceca.2012.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 01/30/2012] [Indexed: 11/16/2022]
Abstract
This special issue on Ca(2+) signalling in neuroendocrine cells is an opportunity to assess, through a range of first-class review articles, the complex world of endocrine signalling, a complexity that is probably best captured by calling it "diversity in unity". The unity comes from the fact that all the endocrine cells are excitable cells, able to generate action potentials and are using Ca(2+) as an essential informational molecule, coupling cell stimulation with the activation of secretion, through the exocytotic process. The 'diversity' element, illustrated by almost all the reviews, stems from the modalities employed to achieve the increase in cytosolic Ca(2+) signal, the balance between the participation of Ca(2+) entry through the plasma membrane voltage-operated Ca(2+) channels and the release of Ca(2+) from intracellular Ca(2+) stores, and the cross-talk between the Ca(2+) and cyclic AMP signalling pathways.
Collapse
|
30
|
Ishimoto H, Jaffe RB. Development and function of the human fetal adrenal cortex: a key component in the feto-placental unit. Endocr Rev 2011; 32:317-55. [PMID: 21051591 PMCID: PMC3365797 DOI: 10.1210/er.2010-0001] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Continuous efforts have been devoted to unraveling the biophysiology and development of the human fetal adrenal cortex, which is structurally and functionally unique from other species. It plays a pivotal role, mainly through steroidogenesis, in the regulation of intrauterine homeostasis and in fetal development and maturation. The steroidogenic activity is characterized by early transient cortisol biosynthesis, followed by its suppressed synthesis until late gestation, and extensive production of dehydroepiandrosterone and its sulfate, precursors of placental estrogen, during most of gestation. The gland rapidly grows through processes including cell proliferation and angiogenesis at the gland periphery, cellular migration, hypertrophy, and apoptosis. Recent studies employing modern technologies such as gene expression profiling and laser capture microdissection have revealed that development and/or function of the fetal adrenal cortex may be regulated by a panoply of molecules, including transcription factors, extracellular matrix components, locally produced growth factors, and placenta-derived CRH, in addition to the primary regulator, fetal pituitary ACTH. The role of the fetal adrenal cortex in human pregnancy and parturition appears highly complex, probably due to redundant and compensatory mechanisms regulating these events. Mounting evidence indicates that actions of hormones operating in the human feto-placental unit are likely mediated by mechanisms including target tissue responsiveness, local metabolism, and bioavailability, rather than changes only in circulating levels. Comprehensive study of such molecular mechanisms and the newly identified factors implicated in adrenal development should help crystallize our understanding of the development and physiology of the human fetal adrenal cortex.
Collapse
Affiliation(s)
- Hitoshi Ishimoto
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | | |
Collapse
|
31
|
Chung KF, Qin N, Androutsellis-Theotokis A, Bornstein SR, Ehrhart-Bornstein M. Effects of dehydroepiandrosterone on proliferation and differentiation of chromaffin progenitor cells. Mol Cell Endocrinol 2011; 336:141-8. [PMID: 21130143 DOI: 10.1016/j.mce.2010.11.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
Abstract
Dehydroepiandrosterone producing adrenocortical zona reticularis and the adrenal medulla are in direct contact and are highly intermingled in many species. This results in potentially strong paracrine influences of high local dehydroepiandrosterone concentrations on the adrenal medulla. Dehydroepiandrosterone has neuroprotective properties and increases neural stem cell proliferation and neurogenesis. Therefore, we aimed to establish its effects on chromaffin progenitor cell proliferation and differentiation. Previously, we successfully isolated chromaffin progenitors from bovine adrenal medulla in spherical cultures, so-called chromospheres. Seven days treatment of chromospheres with dehydroepiandrosterone at high concentrations (100 μM) hampered proliferation of chromaffin progenitors. Under differentiation conditions, dehydroepiandrosterone in the presence of retinoic acid, increased tyrosine hydroxylase and decreased dopamine-β-hydroxylase mRNA expression. In addition, there was a tendency to increase dopamine contents. Dehydroepiandrosterone/retinoic acid is therefore suggested to induce dopaminergic differentiation from chromaffin progenitor cells. Furthermore, the high dehydroepiandrosterone concentrations present in the fetal and adult adrenal may play an important role in adrenomedullary cell proliferation and differentiation.
Collapse
Affiliation(s)
- Kuei-Fang Chung
- Medical Clinic III, Carl Gustav Carus University Medical School, Dresden University of Technology, Dresden, Germany
| | | | | | | | | |
Collapse
|
32
|
Hong SJ, Huh YH, Leung A, Choi HJ, Ding Y, Kang UJ, Yoo SH, Buettner R, Kim KS. Transcription factor AP-2β regulates the neurotransmitter phenotype and maturation of chromaffin cells. Mol Cell Neurosci 2011; 46:245-51. [PMID: 20875861 PMCID: PMC3139976 DOI: 10.1016/j.mcn.2010.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 08/16/2010] [Accepted: 09/14/2010] [Indexed: 12/24/2022] Open
Abstract
During development, sympathetic neurons and chromaffin cells originate from bipotential sympathoadrenal (SA) progenitors arising from neural crests (NC) in the trunk regions. Recently, we showed that AP-2β, a member of the AP2 family, plays a critical role in the development of sympathetic neurons and locus coeruleus and their norepinephrine (NE) neurotransmitter phenotype. In the present study, we investigated the potential role of AP-2β in the development of NC-derived neuroendocrine chromaffin cells of the adrenal medulla and the epinephrine (EPI) phenotype determination. In support of its role in chromaffin cell development, AP-2β is prominently expressed in both embryonic and adult adrenal medulla. In adrenal chromaffin cells of the AP-2β(-/-) mouse, the expression levels of catecholamine biosynthesizing enzymes, dopamine β-hydroxylase (DBH) and phenylethanolamine-N-methyl-transferase (PNMT), as well as the SA-specific transcription factor, Phox2b, are significantly reduced compared to wild type. In addition, ultrastructural analysis demonstrated that the formation of large secretory vesicles, a hallmark of differentiated chromaffin cells, is defective in AP-2β(-/-) mice. Furthermore, the level of EPI content is largely diminished (>80%) in the adrenal gland of AP-2β(-/-) mice. Chromatin immunoprecipitation (ChIP) assays of rat adrenal gland showed that AP-2β binds to the upstream promoter of the PNMT gene in vivo; strongly suggesting that it is a direct target gene. Overall, our data suggest that AP-2β plays critical roles in the epinephrine phenotype and maturation of adrenal chromaffin cells.
Collapse
Affiliation(s)
- Seok Jong Hong
- Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478
- Department of Surgery, Northwestern University Feinberg School of Medicine, 300 E Superior Street, Chicago, IL 60611
| | - Yang Hoon Huh
- Boston Biomedical Research Institute, 64 Grove Street, Watertown MA 02472
| | - Amanda Leung
- Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Hyun Jin Choi
- Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Yunmin Ding
- Department of Neurology and Neurobiology, Pharmacology & Physiology, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637
| | - Un Jung Kang
- Department of Neurology and Neurobiology, Pharmacology & Physiology, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637
| | - Seung Hyun Yoo
- Department of Biochemistry, Inha University College of Medicine, Jung Gu, Incheon 400-712, Republic of Korea
| | - Reinhard Buettner
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| |
Collapse
|
33
|
El-Nahla SM, Imam HM, Moussa EA, Elsayed AK, Abbott LC. Prenatal Development of the Adrenal Gland in the One-Humped Camel (Camelus dromedarius). Anat Histol Embryol 2010; 40:169-86. [DOI: 10.1111/j.1439-0264.2010.01056.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Ehrhart-Bornstein M, Vukicevic V, Chung KF, Ahmad M, Bornstein SR. Chromaffin progenitor cells from the adrenal medulla. Cell Mol Neurobiol 2010; 30:1417-23. [PMID: 21080061 PMCID: PMC11498770 DOI: 10.1007/s10571-010-9571-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/02/2010] [Indexed: 11/26/2022]
Abstract
Chromaffin cells of the adrenal medulla are neural crest-derived cells of the sympathoadrenal lineage. Different lines of evidence suggest the existence of a subpopulation of proliferation-competent progenitor cells even in the adult state. The identification of sympathoadrenal progenitors in the adrenal would greatly enhance the understanding of adrenal physiology and their potential role in adrenal pathogenesis. Isolation and differentiation of these progenitor cells in culture would provide a tool to understand their development in vitro. Furthermore, due to the close relation to sympathetic neurons, these cells might provide an expandable source of cells for cell therapy in the treatment of neurodegenerative diseases. We therefore aim to establish protocols for the efficient isolation, enrichment and differentiation of chromaffin progenitor cells to dopaminergic neurons in culture.
Collapse
|
35
|
Pérez-Alvarez A, Hernández-Vivanco A, Albillos A. Past, present and future of human chromaffin cells: role in physiology and therapeutics. Cell Mol Neurobiol 2010; 30:1407-15. [PMID: 21107679 PMCID: PMC11498861 DOI: 10.1007/s10571-010-9582-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/02/2010] [Indexed: 12/26/2022]
Abstract
Chromaffin cells are neuroendocrine cells mainly found in the medulla of the adrenal gland. Most existing knowledge of these cells has been the outcome of extensive research performed in animals, mainly in the cow, cat, mouse and rat. However, some insight into the physiology of this neuroendocrine cell in humans has been gained. This review summarizes the main findings reported in human chromaffin cells under physiological or disease conditions and discusses the clinical implications of these results.
Collapse
Affiliation(s)
- Alberto Pérez-Alvarez
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, c/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Alicia Hernández-Vivanco
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, c/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Almudena Albillos
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, c/Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
36
|
Billon N, Kolde R, Reimand J, Monteiro MC, Kull M, Peterson H, Tretyakov K, Adler P, Wdziekonski B, Vilo J, Dani C. Comprehensive transcriptome analysis of mouse embryonic stem cell adipogenesis unravels new processes of adipocyte development. Genome Biol 2010; 11:R80. [PMID: 20678241 PMCID: PMC2945782 DOI: 10.1186/gb-2010-11-8-r80] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/02/2010] [Accepted: 08/03/2010] [Indexed: 12/11/2022] Open
Abstract
Background The current epidemic of obesity has caused a surge of interest in the study of adipose tissue formation. While major progress has been made in defining the molecular networks that control adipocyte terminal differentiation, the early steps of adipocyte development and the embryonic origin of this lineage remain largely unknown. Results Here we performed genome-wide analysis of gene expression during adipogenesis of mouse embryonic stem cells (ESCs). We then pursued comprehensive bioinformatic analyses, including de novo functional annotation and curation of the generated data within the context of biological pathways, to uncover novel biological functions associated with the early steps of adipocyte development. By combining in-depth gene regulation studies and in silico analysis of transcription factor binding site enrichment, we also provide insights into the transcriptional networks that might govern these early steps. Conclusions This study supports several biological findings: firstly, adipocyte development in mouse ESCs is coupled to blood vessel morphogenesis and neural development, just as it is during mouse development. Secondly, the early steps of adipocyte formation involve major changes in signaling and transcriptional networks. A large proportion of the transcription factors that we uncovered in mouse ESCs are also expressed in the mouse embryonic mesenchyme and in adipose tissues, demonstrating the power of our approach to probe for genes associated with early developmental processes on a genome-wide scale. Finally, we reveal a plethora of novel candidate genes for adipocyte development and present a unique resource that can be further explored in functional assays.
Collapse
Affiliation(s)
- Nathalie Billon
- Université de Nice Sophia-Antipolis, Institut Biologie du Développement et Cancer, CNRS UMR 6543, Faculté de Médecine Pasteur, 28 avenue de Valombrose, 06108 Nice Cedex 2, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Inoue S, Cho BH, Song CH, Fujimiya M, Murakami G, Matsubara A. Migration and distribution of neural crest-derived cells in the human adrenal cortex at 9-16 weeks of gestation: an immunohistochemical study. Okajimas Folia Anat Jpn 2010; 87:11-16. [PMID: 20715567 DOI: 10.2535/ofaj.87.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Neural crest-derived cells are believed to migrate into the fetal adrenal cortex from the medially-located hilus. However, there appears to be a paucity of observations of the migration and distribution of medullary cells in humans. In sagittal as well as horizontal sections of human fetuses between 9 and 16 weeks of gestation, we identified chromaffin, ganglion and Schwann-like cells in the developing adrenal gland using immunohistochemistry. Cells showing tyrosine hydroxylase (TH) immunoreactivity (i.e., candidate ganglion cells) entered the fetal cortex mainly from the medial half of the adrenal, but the path of entry also included the ventral, dorsal and caudal aspects. These cells displayed linear arrangements, forming a connection between the peripheral and central areas of the gland. S100 protein-immunoreactive cells (i.e., Schwann-like cells) accompanied most (but not all) of the TH-positive cells. The distribution of chromogranin A-immunoreactive cells (i.e., chromaffin cells) was similar to and overlapped with that of TH-positive cells. Chromogranin A-positive cells were observed around the aorta as well as in the adrenal. The entry of neural crest-derived cells does not appear to be restricted to a hypothetical medial hilus, but occurs widely around the cortex, with or without the accompaniment of Schwann-like cells. These cells advance in lines through the fetal cortex in a cord-like arrangement without destruction of the cortical architecture. Some of the TH-positive cells very likely express chromogranin A before entry into the adrenal.
Collapse
Affiliation(s)
- Shogo Inoue
- Department of Urology, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Chung KF, Sicard F, Vukicevic V, Hermann A, Storch A, Huttner WB, Bornstein SR, Ehrhart-Bornstein M. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla. Stem Cells 2010; 27:2602-13. [PMID: 19609938 DOI: 10.1002/stem.180] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromaffin cells of the adrenal medulla are neural crest-derived cells of the sympathoadrenal lineage. Unlike the closely-related sympathetic neurons, a subpopulation of proliferation-competent cells exists even in the adult. Here, we describe the isolation, expansion, and in vitro characterization of proliferation-competent progenitor cells from the bovine adrenal medulla. Similar to neurospheres, these cells, when prevented from adherence to the culture dish, grew in spheres, which we named chromospheres. These chromospheres were devoid of mRNA specific for smooth muscle cells (MYH11) or endothelial cells (PECAM1). During sphere formation, markers for differentiated chromaffin cells, such as phenylethanolamine-N-methyl transferase, were downregulated while neural progenitor markers nestin, vimentin, musashi 1, and nerve growth factor receptor, as well as markers of neural crest progenitor cells such as Sox1 and Sox9, were upregulated. Clonal analysis and bromo-2'-deoxyuridine-incorporation analysis demonstrated the self-renewing capacity of chromosphere cells. Differentiation protocols using NGF and BMP4 or dexamethasone induced neuronal or endocrine differentiation, respectively. Electrophysiological analyses of neural cells derived from chromospheres revealed functional properties of mature nerve cells, such as tetrodotoxin-sensitive sodium channels and action potentials. Our study provides evidence that proliferation and differentiation competent chromaffin progenitor cells can be isolated from adult adrenal medulla and that these cells might harbor the potential for the treatment of neurodegenerative diseases, such as Parkinson's disease.
Collapse
Affiliation(s)
- Kuei-Fang Chung
- Carl Gustav Carus University Medical School, Medical Clinic III, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Stewart RA, Lee JS, Lachnit M, Look AT, Kanki JP, Henion PD. Studying peripheral sympathetic nervous system development and neuroblastoma in zebrafish. Methods Cell Biol 2010; 100:127-52. [PMID: 21111216 DOI: 10.1016/b978-0-12-384892-5.00005-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The combined experimental attributes of the zebrafish model system, which accommodates cellular, molecular, and genetic approaches, make it particularly well-suited for determining the mechanisms underlying normal vertebrate development as well as disease states, such as cancer. In this chapter, we describe the advantages of the zebrafish system for identifying genes and their functions that participate in the regulation of the development of the peripheral sympathetic nervous system (PSNS). The zebrafish model is a powerful system for identifying new genes and pathways that regulate PSNS development, which can then be used to genetically dissect PSNS developmental processes, such as tissue size and cell numbers, which in the past haves proved difficult to study by mutational analysis in vivo. We provide a brief review of our current understanding of genetic pathways important in PSNS development, the rationale for developing a zebrafish model, and the current knowledge of zebrafish PSNS development. Finally, we postulate that knowledge of the genes responsible for normal PSNS development in the zebrafish will help in the identification of molecular pathways that are dysfunctional in neuroblastoma, a highly malignant cancer of the PSNS.
Collapse
Affiliation(s)
- Rodney A Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | |
Collapse
|
40
|
Revet I, Huizenga G, Koster J, Volckmann R, van Sluis P, Versteeg R, Geerts D. MSX1 induces the Wnt pathway antagonist genes DKK1, DKK2, DKK3, and SFRP1 in neuroblastoma cells, but does not block Wnt3 and Wnt5A signalling to DVL3. Cancer Lett 2009; 289:195-207. [PMID: 19815336 DOI: 10.1016/j.canlet.2009.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 08/07/2009] [Accepted: 08/12/2009] [Indexed: 11/15/2022]
Abstract
Neuroblastoma is the most common extra-cranial solid childhood cancer; it arises from neural crest-derived cells of the sympathetic nervous system. The anomalous regulation of embryonic developmental pathways like Delta-Notch and Wnt has been implicated in aberrant cell growth and differentiation in many (childhood) tumours. We have previously found regulation of Delta-Notch pathway genes by the MSX1 neural crest development gene in a neuroblastoma cell line, and significant correlations between these genes in neuroblastic tumours. However, a clear role for the Wnt pathway in neuroblastic tumours has not yet been determined. We now analyze the complete spectrum of genes regulated by inducible expression of MSX1 in the SJNB8 neuroblastoma cell line using Affymetrix expression profiling. We show that MSX1 induces the expression of four different Wnt pathway inhibitor genes: Dickkopf 1-3 (DKK1-3) and secreted frizzled-related protein 1 (SFRP1), and provide evidence that high expression of two of these genes correlates with good prognosis. We were able to demonstrate that both the canonical Wnt3 and the alternative Wnt5A ligands are highly expressed in neuroblastic tumours and cell lines, and specifically activate the DVL3 Wnt co-receptor protein in SJNB8 neuroblastoma cells. These results suggest involvement of MSX1 in Wnt signalling and demonstrate activity of the more upstream Wnt pathway in neuroblastic cells.
Collapse
Affiliation(s)
- Ingrid Revet
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The neural crest is a pluripotent population of cells that arises at the junction of the neural tube and the dorsal ectoderm. These highly migratory cells form diverse derivatives including neurons and glia of the sensory, sympathetic, and enteric nervous systems, melanocytes, and the bones, cartilage, and connective tissues of the face. The neural crest has long been associated with the endocrine system, although not always correctly. According to current understanding, neural crest cells give rise to the chromaffin cells of the adrenal medulla, chief cells of the extra-adrenal paraganglia, and thyroid C cells. The endocrine tumors that correspond to these cell types are pheochromocytomas, extra-adrenal paragangliomas, and medullary thyroid carcinomas. Although controversies concerning embryological origin appear to have mostly been resolved, questions persist concerning the pathobiology of each tumor type and its basis in neural crest embryology. Here we present a brief history of the work on neural crest development, both in general and in application to the endocrine system. In particular, we present findings related to the plasticity and pluripotency of neural crest cells as well as a discussion of several different neural crest tumors in the endocrine system.
Collapse
|
42
|
Murata T, Tsuboi M, Koide N, Hikita K, Kohno S, Kaneda N. Neuronal differentiation elicited by glial cell line-derived neurotrophic factor and ciliary neurotrophic factor in adrenal chromaffin cell line tsAM5D immortalized with temperature-sensitive SV40 T-antigen. J Neurosci Res 2008; 86:1694-710. [PMID: 18293415 DOI: 10.1002/jnr.21632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To understand the characteristics of tsAM5D cells immortalized with the temperature-sensitive simian virus 40 large T-antigen, we first examined the responsiveness of the cells to ligands of the glial cell line-derived neurotrophic factor (GDNF) family. tsAM5D cells proliferated at the permissive temperature of 33 degrees C in response to either GDNF or neurturin, but not persephin or artemin. At the nonpermissive temperature of 39 degrees C, GDNF or neurturin caused tsAM5D cells to differentiate into neuron-like cells; however, the differentiated cells died in a time-dependent manner. Interestingly, ciliary neurotrophic factor (CNTF) did not affect the GDNF-mediated cell proliferation at 33 degrees C but promoted the survival and differentiation of GDNF-treated cells at 39 degrees C. In the presence of GDNF plus CNTF, the morphological change induced by the temperature shift was associated with up-regulated expression of various neuronal marker genes, indicating that the cells had undergone neuronal differentiation. In addition, tsAM5D cells caused to differentiate by GDNF plus CNTF at 39 degrees C became dependent solely on nerve growth factor (NGF) for their survival and neurite outgrowth. Moreover, upon treatment with GDNF plus CNTF, the dopaminergic phenotype was suppressed by the temperature shift. Thus, we demonstrated that tsAM5D cells had the capacity to differentiate terminally into neuron-like cells in response to GDNF plus CNTF when the oncogene was inactivated by the temperature shift. This cell line provides a useful model system for studying the role of a variety of signaling molecules for GDNF/CNTF-induced neuronal differentiation.
Collapse
Affiliation(s)
- Tomiyasu Murata
- Department of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Tempaku, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Huber K, Franke A, Brühl B, Krispin S, Ernsberger U, Schober A, von Bohlen und Halbach O, Rohrer H, Kalcheim C, Unsicker K. Persistent expression of BMP-4 in embryonic chick adrenal cortical cells and its role in chromaffin cell development. Neural Dev 2008; 3:28. [PMID: 18945349 PMCID: PMC2582231 DOI: 10.1186/1749-8104-3-28] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Accepted: 10/22/2008] [Indexed: 11/29/2022] Open
Abstract
Background Adrenal chromaffin cells and sympathetic neurons both originate from the neural crest, yet signals that trigger chromaffin development remain elusive. Bone morphogenetic proteins (BMPs) emanating from the dorsal aorta are important signals for the induction of a sympathoadrenal catecholaminergic cell fate. Results We report here that BMP-4 is also expressed by adrenal cortical cells throughout chick embryonic development, suggesting a putative role in chromaffin cell development. Moreover, bone morphogenetic protein receptor IA is expressed by both cortical and chromaffin cells. Inhibiting BMP-4 with noggin prevents the increase in the number of tyrosine hydroxylase positive cells in adrenal explants without affecting cell proliferation. Hence, adrenal BMP-4 is likely to induce tyrosine hydroxylase in sympathoadrenal progenitors. To investigate whether persistent BMP-4 exposure is able to induce chromaffin traits in sympathetic ganglia, we locally grafted BMP-4 overexpressing cells next to sympathetic ganglia. Embryonic day 8 chick sympathetic ganglia, in addition to principal neurons, contain about 25% chromaffin-like cells. Ectopic BMP-4 did not increase this proportion, yet numbers and sizes of 'chromaffin' granules were significantly increased. Conclusion BMP-4 may serve to promote specific chromaffin traits, but is not sufficient to convert sympathetic neurons into a chromaffin phenotype.
Collapse
Affiliation(s)
- Katrin Huber
- Neuroanatomy, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
van Weering JR, Wijntjes R, de Wit H, Wortel J, Cornelisse LN, Veldkamp WJ, Verhage M. Automated analysis of secretory vesicle distribution at the ultrastructural level. J Neurosci Methods 2008; 173:83-90. [DOI: 10.1016/j.jneumeth.2008.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 05/06/2008] [Accepted: 05/20/2008] [Indexed: 11/24/2022]
|
45
|
Autocrine TGF-β signaling is required for the GDNF/CNTF-induced neuronal differentiation of adrenal chromaffin tsAM5D cells expressing temperature-sensitive SV40 T-antigen. Neurosci Lett 2008; 438:42-7. [DOI: 10.1016/j.neulet.2008.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 03/19/2008] [Accepted: 04/01/2008] [Indexed: 11/21/2022]
|
46
|
Ghzili H, Grumolato L, Thouënnon E, Tanguy Y, Turquier V, Vaudry H, Anouar Y. Role of PACAP in the physiology and pathology of the sympathoadrenal system. Front Neuroendocrinol 2008; 29:128-41. [PMID: 18048093 DOI: 10.1016/j.yfrne.2007.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/24/2007] [Accepted: 10/01/2007] [Indexed: 01/09/2023]
Abstract
Sympathetic neurons and chromaffin cells derive from common sympathoadrenal precursors which arise from the neural crest. Cells from this lineage migrate to their final destination and differentiate by acquiring a catecholaminergic phenotype in response to different environmental factors. It has been shown that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its PAC1 receptor are expressed at early stages of sympathetic development, and participate to the control of neuroblast proliferation and differentiation. PACAP also acts as a neurotransmitter to stimulate catecholamine and neuropeptide biosynthesis and release from sympathetic neurons and chromaffin cells, during development and in adulthood. In addition, PACAP and its receptors have been described in neuroblastoma and pheochromocytoma, and the neuropeptide regulates the differentiation and activity of sympathoadrenal-derived tumoral cell lines, suggestive of an important role in the pathophysiology of the sympathoadrenal lineage. Transcriptome studies uncovered genes and pathways of known and unknown roles that underlie the effects of PACAP in the sympathoadrenal system.
Collapse
Affiliation(s)
- Hafida Ghzili
- INSERM, U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP23), University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Wildner H, Gierl MS, Strehle M, Pla P, Birchmeier C. Insm1 (IA-1) is a crucial component of the transcriptional network that controls differentiation of the sympatho-adrenal lineage. Development 2007; 135:473-81. [PMID: 18094025 DOI: 10.1242/dev.011783] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Insm1 (IA-1) encodes a Zn-finger factor that is expressed in the developing nervous system. We demonstrate here that the development of the sympatho-adrenal lineage is severely impaired in Insm1 mutant mice. Differentiation of sympatho-adrenal precursors, as assessed by the expression of neuronal subtype-specific genes such as Th and Dbh, is delayed in a pronounced manner, which is accompanied by a reduced proliferation. Sympathetic neurons eventually overcome the differentiation blockade and mature correctly, but sympathetic ganglia remain small. By contrast, terminal differentiation of adrenal chromaffin cells does not occur. The transcription factors Mash1 (Ascl1), Phox2a, Gata3 and Hand2 (previously dHand) control the differentiation of sympatho-adrenal precursor cells, and their deregulated expression in Insm1 mutant mice demonstrates that Insm1 acts in the transcriptional network that controls differentiation of this lineage. Pronounced similarities between Mash1 and Insm1 phenotypes are apparent, which suggests that Insm1 might mediate aspects of Mash1 function in the subtype-specific differentiation of sympatho-adrenal precursors. Noradrenaline is the major catecholamine produced by developing sympatho-adrenal cells and is required for fetal survival. We demonstrate that the fetal lethality of Insm1 mutant mice is caused by catecholamine deficiency, which highlights the importance of Insm1 in the development of the sympatho-adrenal lineage.
Collapse
Affiliation(s)
- Hendrik Wildner
- Max-Delbrück-Centrum for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | |
Collapse
|
48
|
Johnson MA, Villanueva M, Haynes CL, Seipel AT, Buhler LA, Wightman RM. Catecholamine exocytosis is diminished in R6/2 Huntington's disease model mice. J Neurochem 2007; 103:2102-10. [PMID: 17868298 DOI: 10.1111/j.1471-4159.2007.04908.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In this work, the mechanisms responsible for dopamine (DA) release impairments observed previously in Huntington's disease model R6/2 mice were evaluated. Voltammetrically measured DA release evoked in striatal brain slices from 12-week old R6/2 mice by a single electrical stimulus pulse was only 19% of wild-type (WT) control mice. Iontophoresis experiments suggest that the concentration of released DA is not diluted by a larger striatal extracellular volume arising from brain atrophy, but, rather, that striatal dopaminergic terminals have a decreased capacity for DA release. This decreased capacity was not due to an altered requirement for extracellular Ca(2+), and, as in WT mice, the release in R6/2 mice required functioning vesicular transporters. Catecholamine secretion from individual vesicles was measured during exocytosis from adrenal chromaffin cells harvested from R6/2 and WT mice. While the number of exocytotic events was unchanged, the amounts released per vesicle were significantly diminished in R6/2 mice, indicating that vesicular catecholamines are present in decreased amounts. Treatment of chromaffin cells with 3-nitropropionic acid decreased the vesicular release amount from WT cells by 50%, mimicking the release observed from untreated R6/2 cells. Thus, catecholamine release from tissues isolated from R6/2 mice is diminished because of impaired vesicle loading.
Collapse
Affiliation(s)
- Michael A Johnson
- Department of Chemistry The University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
49
|
Yang TT, Tsao CW, Li JS, Wu HT, Hsu CT, Cheng JT. Changes of dopamine content and cell proliferation by dexamethsone via pituitary adenylate cyclase-activating polypeptide in PC12 cell. Neurosci Lett 2007; 426:45-8. [PMID: 17884294 DOI: 10.1016/j.neulet.2007.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 08/04/2007] [Accepted: 08/13/2007] [Indexed: 11/22/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an endogenous neuropeptide observed in adrenal gland and sympathetic ganglia to regulate catecholamine synthesis and release. Both PACAP and glucocorticoid showed the activity to elevate catecholamine level through the stimulation of biosynthesis. However, the relationship of glucocorticoid and PACAP for this action is still unclear. Thus, alterations of gene expression, dopamine (DA) content, and cell proliferation in rat pheochromocytoma PC12 cells are employed as indicators to clarify this relationship in the present study. From the analysis of RT-PCR, the mRNA level of PACAP was observed to be raised by dexamethasone (DEX) and this action was blocked in cells treated with RU486 (mifepristone), a glucocorticoid receptor (GR) antagonist, or actinomycin D, a transcriptional inhibitor. An increase of DA content by HPLC analysis and/or cell proliferation identified by MTT assay by DEX was also observed which could be inhibited by PACAP (6-38) at concentration sufficient to block PACAP type 1 (PAC1) receptor. These results suggest that PACAP is involved in DEX-induced DA biosynthesis and cell proliferation in PC12 cells.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Department of Medicine, College of Medicine, China Medical University, Taichung City 40401, Taiwan
| | | | | | | | | | | |
Collapse
|
50
|
Powers JF, Evinger MJ, Zhi J, Picard KL, Tischler AS. Pheochromocytomas in Nf1 knockout mice express a neural progenitor gene expression profile. Neuroscience 2007; 147:928-37. [PMID: 17582688 DOI: 10.1016/j.neuroscience.2007.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 05/08/2007] [Accepted: 05/09/2007] [Indexed: 11/23/2022]
Abstract
Pheochromocytomas are adrenal medullary tumors that typically occur in adult patients, with increased frequency in multiple endocrine neoplasia type 2, von Hippel-Lindau disease, familial paraganglioma syndromes and neurofibromatosis type 1 (NF1). Pheochromocytomas arise in adult mice with a heterozygous knockout mutation of exon 31 of the murine Nf1 gene, providing a mouse model for pheochromocytoma development in NF1. We performed a microarray-based gene expression profiling study comparing mouse pheochromocytoma tissue to normal adult mouse adrenal medulla to develop a basis for studying the pathobiology of these tumors. The findings demonstrate that pheochromocytomas from adult neurofibromatosis knockout mice express multiple developmentally regulated genes involved in early development of both the CNS and peripheral nervous system. One of the most highly overexpressed genes is receptor tyrosine kinase Ret, which is known to be transiently expressed in the developing adrenal gland, down-regulated in adult adrenals and often overexpressed in human pheochromocytomas. Real-time polymerase chain reaction validated the microarray results and immunoblots confirmed the overexpression of Ret protein. Other highly expressed validated genes include Sox9, which is a neural crest determinant, and Hey 1, which helps to maintain the progenitor status of neural precursors. The findings are consistent with the recently proposed concept that persistent neural progenitors might give rise to pheochromocytomas in adult mouse adrenals and suggest that events predisposing to tumor development might occur before formation of the adrenal medulla or migration of cells from the neural crest. However, the competing possibility that developmentally regulated neural genes arise secondarily to neoplastic transformation cannot be ruled out. In either case, the unique profile of gene expression opens the mouse pheochromocytoma model to new applications pertinent to neural stem cells and suggests potential new targets for treatment of pheochromocytomas or eradication of their precursors.
Collapse
Affiliation(s)
- J F Powers
- Department of Pathology, Tufts New England Medical Center, 750 Washington Street, Boston, MA 02111, USA.
| | | | | | | | | |
Collapse
|