1
|
Gekle M, Dubourg V, Schwerdt G, Benndorf RA, Schreier B. The role of EGFR in vascular AT1R signaling: From cellular mechanisms to systemic relevance. Biochem Pharmacol 2023; 217:115837. [PMID: 37777161 DOI: 10.1016/j.bcp.2023.115837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the ErbB-family of receptor tyrosine kinases that are of importance in oncology. During the last years, substantial evidence accumulated for a crucial role of EGFR concerning the action of the angiotensin II type 1 receptor (AT1R) in blood vessels, resulting form AT1R-induced EGFR transactivation. This transactivation occurs through the release of membrane-anchored EGFR-ligands, cytosolic tyrosine kinases, heterocomplex formation or enhanced ligand expression. AT1R-EGFR crosstalk amplifies the signaling response and enhances the biological effects of angiotensin II. Downstream signaling cascades include ERK1/2 and p38 MAPK, PLCγ and STAT. AT1R-induced EGFR activation contributes to vascular remodeling and hypertrophy via e.g. smooth muscle cell proliferation, migration and extracellular matrix production. EGFR transactivation results in increased vessel wall thickness and reduced vascular compliance. AT1R and EGFR signaling pathways are also implicated the induction of vascular inflammation. Again, EGFR transactivation exacerbates the effects, leading to endothelial dysfunction that contributes to vascular inflammation, dysfunction and remodeling. Dysregulation of the AT1R-EGFR axis has been implicated in the pathogenesis of various cardiovascular diseases and inhibition or prevention of EGFR signaling can attenuate part of the detrimental impact of enhanced renin-angiotensin-system (RAAS) activity, highlighting the importance of EGFR for the adverse consequences of AT1R activation. In summary, EGFR plays a critical role in vascular AT1R action, enhancing signaling, promoting remodeling, contributing to inflammation, and participating in the pathogenesis of cardiovascular diseases. Understanding the interplay between AT1R and EGFR will foster the development of effective therapeutic strategies of RAAS-induced disorders.
Collapse
Affiliation(s)
- Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany.
| | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| |
Collapse
|
2
|
Barvitenko N, Aslam M, Lawen A, Saldanha C, Skverchinskaya E, Uras G, Manca A, Pantaleo A. Two Motors and One Spring: Hypothetic Roles of Non-Muscle Myosin II and Submembrane Actin-Based Cytoskeleton in Cell Volume Sensing. Int J Mol Sci 2021; 22:7967. [PMID: 34360739 PMCID: PMC8347689 DOI: 10.3390/ijms22157967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Changes in plasma membrane curvature and intracellular ionic strength are two key features of cell volume perturbations. In this hypothesis we present a model of the responsible molecular apparatus which is assembled of two molecular motors [non-muscle myosin II (NMMII) and protrusive actin polymerization], a spring [a complex between the plasma membrane (PM) and the submembrane actin-based cytoskeleton (smACSK) which behaves like a viscoelastic solid] and the associated signaling proteins. We hypothesize that this apparatus senses changes in both the plasma membrane curvature and the ionic strength and in turn activates signaling pathways responsible for regulatory volume increase (RVI) and regulatory volume decrease (RVD). During cell volume changes hydrostatic pressure (HP) changes drive alterations in the cell membrane curvature. HP difference has opposite directions in swelling versus shrinkage, thus allowing distinction between them. By analogy with actomyosin contractility that appears to sense stiffness of the extracellular matrix we propose that NMMII and actin polymerization can actively probe the transmembrane gradient in HP. Furthermore, NMMII and protein-protein interactions in the actin cortex are sensitive to ionic strength. Emerging data on direct binding to and regulating activities of transmembrane mechanosensors by NMMII and actin cortex provide routes for signal transduction from transmembrane mechanosensors to cell volume regulatory mechanisms.
Collapse
Affiliation(s)
| | - Muhammad Aslam
- Department of Internal Medicine I, Experimental Cardiology, Justus Liebig University, 35392 Giessen, Germany;
| | - Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia;
| | - Carlota Saldanha
- Institute of Biochemistry, Institute of Molecular Medicine, Faculty of Medicine University of Lisbon, 1649-028 Lisboa, Portugal;
| | | | - Giuseppe Uras
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London NW3 2PF, UK;
| | - Alessia Manca
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| | - Antonella Pantaleo
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| |
Collapse
|
3
|
Mitsuishi Y, Shibata H, Kurihara I, Kobayashi S, Yokota K, Murai-Takeda A, Hayashi T, Jo R, Nakamura T, Morisaki M, Itoh H. Epidermal growth factor receptor/extracellular signal-regulated kinase pathway enhances mineralocorticoid receptor transcriptional activity through protein stabilization. Mol Cell Endocrinol 2018; 473:89-99. [PMID: 29391190 DOI: 10.1016/j.mce.2018.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022]
Abstract
Activation of mineralocorticoid receptor (MR) is evoked by aldosterone, and it induces hypertension and cardiovascular disease when it's concomitant with excessive salt loading. We have proposed the notion of "MR-associated hypertension", in which add-on therapy of MR blockers is effective even though serum aldosterone level is within normal range. To elucidate its underlying molecular mechanism, we focused on the effect of epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinase (ERK) activation on MR activity. Epidermal growth factor (EGF) administration increased MR transcriptional activity through EGFR/ERK pathway and increased protein level by counteracting MR ubiquitylation in vitro. EGF administration in vivo also increased MR protein level and target gene expression in kidney, which were decreased by EGFR inhibitor. In addition, the administration of EGFR inhibitor lowered systolic blood pressure and MR activity in DOCA/salt-treated mice. In conclusion, EGFR/ERK pathway activation is considered as one of the underlying mechanisms of aberrant MR activation and EGFR/ERK pathway blockade could be an alternative approach for the prevention of MR-related cardiovascular events.
Collapse
Affiliation(s)
- Yuko Mitsuishi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hirotaka Shibata
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasamamachi, Yufu 879-5593, Oita, Japan.
| | - Isao Kurihara
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sakiko Kobayashi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenichi Yokota
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ayano Murai-Takeda
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Hayashi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Division of Diabetes Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishimbashi, Minato-ku, Tokyo 105-8471, Japan
| | - Rie Jo
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshifumi Nakamura
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitsuha Morisaki
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
4
|
Sforna L, Cenciarini M, Belia S, Michelucci A, Pessia M, Franciolini F, Catacuzzeno L. Hypoxia Modulates the Swelling-Activated Cl Current in Human Glioblastoma Cells: Role in Volume Regulation and Cell Survival. J Cell Physiol 2016; 232:91-100. [PMID: 27028592 DOI: 10.1002/jcp.25393] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/25/2016] [Indexed: 12/18/2022]
Abstract
The malignancy of glioblastoma multiforme (GBM), the most common human brain tumor, correlates with the presence of hypoxic areas, but the underlying mechanisms are unclear. GBM cells express abundant Cl channels whose activity supports cell volume and membrane potential changes, ultimately leading to cell proliferation, migration, and escaping death. In non-tumor tissues Cl channels are modulated by hypoxia, which prompted us to verify whether hypoxia would also modulate Cl channels in GBM cells. Our results show that in GBM cell lines, acute application of a hypoxic solution activates a Cl current displaying the biophysical and pharmacological features of the swelling-activated Cl current (ICl,swell ). We also found that acute hypoxia increased the cell volume by about 20%, and a 30% hypertonic solution partially inhibited the hypoxia-activated Cl current, suggesting that cell swelling and the activation of the Cl current are sequential events. Notably, the hypoxia-induced cell swelling was followed by a regulatory volume decrease (RVD) mediated mainly by ICl,swell . Since, a hypoxia-induced prolonged cell swelling is usually regarded as a death insult, we hypothesized that the hypoxia-activated Cl current could limit cell swelling and prevent necrotic death of GBM cells under hypoxic conditions. In accordance, we found that the ICl,swell inhibitor DCPIB hampered the RVD process, and more importantly it sensibly increased the hypoxia-induced necrotic death in these cells. Taken together, these results suggest that Cl channels are strongly involved in the survival of GBM cells in a hypoxic environment, and may thus represent a new therapeutic target for this malignant tumor. J. Cell. Physiol. 232: 91-100, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.,Department of Experimental Medicine, University of Perugia, Italy
| | - Marta Cenciarini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Silvia Belia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Antonio Michelucci
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti 'G. d'Annunzio', Italy
| | - Mauro Pessia
- Department of Experimental Medicine, University of Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.
| |
Collapse
|
5
|
Gui L, Zhang P, Liang X, Su M, Wu D, Zhang J. Adaptive responses to osmotic stress in kidney-derived cell lines from Scatophagus argus , a euryhaline fish. Gene 2016; 583:134-140. [DOI: 10.1016/j.gene.2016.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/06/2015] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
|
6
|
Hatzold J, Beleggia F, Herzig H, Altmüller J, Nürnberg P, Bloch W, Wollnik B, Hammerschmidt M. Tumor suppression in basal keratinocytes via dual non-cell-autonomous functions of a Na,K-ATPase beta subunit. eLife 2016; 5. [PMID: 27240166 PMCID: PMC4973367 DOI: 10.7554/elife.14277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/28/2016] [Indexed: 01/11/2023] Open
Abstract
The molecular pathways underlying tumor suppression are incompletely understood. Here, we identify cooperative non-cell-autonomous functions of a single gene that together provide a novel mechanism of tumor suppression in basal keratinocytes of zebrafish embryos. A loss-of-function mutation in atp1b1a, encoding the beta subunit of a Na,K-ATPase pump, causes edema and epidermal malignancy. Strikingly, basal cell carcinogenesis only occurs when Atp1b1a function is compromised in both the overlying periderm (resulting in compromised epithelial polarity and adhesiveness) and in kidney and heart (resulting in hypotonic stress). Blockade of the ensuing PI3K-AKT-mTORC1-NFκB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, prevents malignant transformation. Our results identify hypotonic stress as a (previously unrecognized) contributor to tumor development and establish a novel paradigm of tumor suppression.
Collapse
Affiliation(s)
- Julia Hatzold
- Institute for Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Filippo Beleggia
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute of Human Genetics, University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Hannah Herzig
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Janine Altmüller
- Institute of Human Genetics, University Hospital Cologne, Cologne, Germany.,Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Bernd Wollnik
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute of Human Genetics, University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Hammerschmidt
- Institute for Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Lanciotti A, Brignone MS, Visentin S, De Nuccio C, Catacuzzeno L, Mallozzi C, Petrini S, Caramia M, Veroni C, Minnone G, Bernardo A, Franciolini F, Pessia M, Bertini E, Petrucci TC, Ambrosini E. Megalencephalic leukoencephalopathy with subcortical cysts protein-1 regulates epidermal growth factor receptor signaling in astrocytes. Hum Mol Genet 2016; 25:1543-58. [DOI: 10.1093/hmg/ddw032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/03/2016] [Indexed: 01/13/2023] Open
|
8
|
Abi Saab WF, Brown MS, Chadee DN. MLK4β functions as a negative regulator of MAPK signaling and cell invasion. Oncogenesis 2012; 1:e6. [PMID: 23552557 PMCID: PMC3412637 DOI: 10.1038/oncsis.2012.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mixed lineage kinase (MLK) 4, or MLK4, is a member of the MLK family of mitogen-activated protein kinase kinase kinases (MAP3Ks). Typically, MAP3Ks function to activate the mitogen-activated protein kinase (MAPK)-signaling pathways and regulate different cellular responses. However, here we report that MLK4β, unlike the other MLKs, negatively regulates the activities of the MAPKs, p38, c-Jun N-terminal kinase and extracellular signal-regulated kinase, and the MAP2Ks, MEK3 and 6. Our results show that MLK4β inhibits sorbitol- and tumor necrosis factor-induced activation of p38. Furthermore, MLK4β interacts with another MLK family member, MLK3, in HCT116 cells. Exogenous expression of MLK4β inhibits activation of MLK3 and also blocks matrix metalloproteinase-9 gelatinase activity and invasion in SKOV3 ovarian cancer cells. Collectively, our data establish MLK4β as a novel suppressor of MLK3 activation, MAPK signaling and cell invasion.
Collapse
Affiliation(s)
- W F Abi Saab
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | | | | |
Collapse
|
9
|
Cesetti T, Fila T, Obernier K, Bengtson CP, Li Y, Mandl C, Hölzl-Wenig G, Ciccolini F. GABAA receptor signaling induces osmotic swelling and cell cycle activation of neonatal prominin+ precursors. Stem Cells 2011; 29:307-19. [PMID: 21732488 DOI: 10.1002/stem.573] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Signal-regulated changes in cell size affect cell division and survival and therefore are central to tissue morphogenesis and homeostasis. In this respect, GABA receptors (GABA(A)Rs) are of particular interest because allowing anions flow across the cell membrane modulates the osmolyte flux and the cell volume. Therefore, we have here investigated the hypothesis that GABA may regulate neural stem cell proliferation by inducing cell size changes. We found that, besides neuroblasts, also neural precursors in the neonatal murine subependymal zone sense GABA via GABA(A) Rs. However, unlike in neuroblasts, where it induced depolarization-mediated [Ca(2+)](i) increase, GABA(A) Rs activation in precursors caused hyperpolarization. This resulted in osmotic swelling and increased surface expression of epidermal growth factor receptors (EGFRs). Furthermore, activation of GABA(A) Rs signaling in vitro in the presence of EGF modified the expression of the cell cycle regulators, phosphatase and tensin homolog and cyclin D1, increasing the pool of cycling precursors without modifying cell cycle length. A similar effect was observed on treatment with diazepam. We also demonstrate that GABA and diazepam responsive precursors represent prominin(+) stem cells. Finally, we show that as in in vitro also in in vivo a short administration of diazepam promotes EGFR expression in prominin(+) stem cells causing activation and cell cycle entry. Thus, our data indicate that endogenous GABA is a part of a regulatory mechanism of size and cell cycle entry of neonatal stem cells. Our results also have potential implications for the therapeutic practices that involve exposure to GABA(A) Rs modulators during neurodevelopment.
Collapse
Affiliation(s)
- Tiziana Cesetti
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Permissive effect of EGFR-activated pathways on RVI and their anti-apoptotic effect in hypertonicity-exposed mIMCD3 cells. Biosci Rep 2011; 31:489-97. [DOI: 10.1042/bsr20110024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hypertonicity is a stressful stimulus leading to cell shrinkage and apoptotic cell death. Apoptosis can be prevented if cells are able to activate the mechanism of RVI (regulatory volume increase). This study in mIMCD3 cells presents evidence of a permissive role of the EGFR (epidermal growth factor receptor) on RVI, achieved for the most part through the two main EGFR-triggered signalling chains, the MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) and the PI3K (phosphoinositide 3-kinase)/Akt (also known as protein kinase B) pathways. Hyperosmotic solutions (450 mosM) made by addition of NaCl, increased EGFR phosphorylation, which is prevented by GM6001 and AG1478, blockers respectively, of MMPs (matrix metalloproteinases) and EGFR. Inhibition of EGFR, ERK (PD98059) or PI3K/Akt (wortmannin) phosphorylation reduced RVI by 60, 48 and 58% respectively. The NHE (Na+/H+ exchanger) seems to be the essential mediator of this effect since (i) NHE is the main contributor to RVI, (ii) EGFR, ERK and PI3K/Akt blockers added together with the NHE blocker zoniporide reduce RVI by non-additive effects and (iii) All the blockers significantly lowered the NHE rate in cells challenged by an NH4Cl pulse. Besides reducing RVI, the inhibition of MMP, EGFR and PI3K/Akt had a strong pro-apoptotic effect increasing cell death by 2–3.7-fold. This effect was significantly lower when RVI inhibition did not involve the EGFR-PI3K/Akt pathway. These results provide evidence that Akt and its permissive effect on RVI have a predominant influence on cell survival under hypertonic conditions in IMCD3 cells. This role of Akt operates under the influence of EGFR activation, promoted by MMP.
Collapse
|
11
|
Pedersen SF, Kapus A, Hoffmann EK. Osmosensory mechanisms in cellular and systemic volume regulation. J Am Soc Nephrol 2011; 22:1587-97. [PMID: 21852585 DOI: 10.1681/asn.2010121284] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Perturbations of cellular and systemic osmolarity severely challenge the function of all organisms and are consequently regulated very tightly. Here we outline current evidence on how cells sense volume perturbations, with particular focus on mechanisms relevant to the kidneys and to extracellular osmolarity and whole body volume homeostasis. There are a variety of molecular signals that respond to perturbations in cell volume and osmosensors or volume sensors responding to these signals. The early signals of volume perturbation include integrins, the cytoskeleton, receptor tyrosine kinases, and transient receptor potential channels. We also present current evidence on the localization and function of central and peripheral systemic osmosensors and conclude with a brief look at the still limited evidence on pathophysiological conditions associated with deranged sensing of cell volume.
Collapse
Affiliation(s)
- Stine Falsig Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| | | | | |
Collapse
|
12
|
Ling S, Chang X, Schultz L, Lee TK, Chaux A, Marchionni L, Netto GJ, Sidransky D, Berman DM. An EGFR-ERK-SOX9 signaling cascade links urothelial development and regeneration to cancer. Cancer Res 2011; 71:3812-21. [PMID: 21512138 DOI: 10.1158/0008-5472.can-10-3072] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Like many carcinomas, urothelial carcinoma (UroCa) is associated with chronic injury. A better understanding of this association could inform improved strategies for preventing and treating this disease. We investigated the expression, regulation, and function of the transcriptional regulator SRY-related high-mobility group box 9 (Sox9) in urothelial development, injury repair, and cancer. In mouse bladders, Sox9 levels were high during periods of prenatal urothelial development and diminished with maturation after birth. In adult urothelial cells, Sox9 was quiescent but was rapidly induced by a variety of injuries, including exposure to the carcinogen cyclophosphamide, culture with hydrogen peroxide, and osmotic stress. Activation of extracellular signal-regulated kinases 1/2 (ERK1/2) was required for Sox9 induction in urothelial injury and resulted from activation of the epidermal growth factor receptor (Egfr) by several Egfr ligands that were dramatically induced by injury. In UroCa cell lines, SOX9 expression was constitutively upregulated and could be suppressed by EGFR or ERK1/2 blockade. Gene knockdown showed a role for SOX9 in cell migration and invasion. Accordingly, SOX9 protein levels were preferentially induced in invasive human UroCa tissue samples (n = 84) compared with noninvasive cancers (n = 56) or benign adjacent urothelium (n = 49). These results identify a novel, potentially oncogenic signaling axis linking urothelial injury to UroCa. Inhibiting this axis is feasible through a variety of pharmacologic approaches and may have clinical utility.
Collapse
Affiliation(s)
- Shizhang Ling
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Monitoring healthy metabolic trajectories with nutritional metabonomics. Nutrients 2009; 1:101-10. [PMID: 22253970 PMCID: PMC3257591 DOI: 10.3390/nu1010101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 08/31/2009] [Indexed: 12/12/2022] Open
Abstract
Metabonomics is a well established analytical approach for the analysis of physiological regulatory processes via the metabolic profiling of biofluids and tissues in living organisms. Its potential is fully exploited in the field of “nutrimetabonomics” that aims at assessing the metabolic effects of active ingredients and foods in individuals. Yet, one of the greatest challenges in nutrition research is to decipher the critical interactions between mammalian organisms and environmental factors, including the gut microbiota. “Nutrimetabonomics” is today foreseen as a powerful approach for future nutritional programs tailored at health maintenance and disease prevention.
Collapse
|
14
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1054] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
15
|
Franco R, Panayiotidis MI, de la Paz LDO. Autocrine signaling involved in cell volume regulation: the role of released transmitters and plasma membrane receptors. J Cell Physiol 2008; 216:14-28. [PMID: 18300263 DOI: 10.1002/jcp.21406] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell volume regulation is a basic homeostatic mechanism transcendental for the normal physiology and function of cells. It is mediated principally by the activation of osmolyte transport pathways that result in net changes in solute concentration that counteract cell volume challenges in its constancy. This process has been described to be regulated by a complex assortment of intracellular signal transduction cascades. Recently, several studies have demonstrated that alterations in cell volume induce the release of a wide variety of transmitters including hormones, ATP and neurotransmitters, which have been proposed to act as extracellular signals that regulate the activation of cell volume regulatory mechanisms. In addition, changes in cell volume have also been reported to activate plasma membrane receptors (including tyrosine kinase receptors, G-protein coupled receptors and integrins) that have been demonstrated to participate in the regulatory process of cell volume. In this review, we summarize recent studies about the role of changes in cell volume in the regulation of transmitter release as well as in the activation of plasma membrane receptors and their further implications in the regulation of the signaling machinery that regulates the activation of osmolyte flux pathways. We propose that the autocrine regulation of Ca2+-dependent and tyrosine phosphorylation-dependent signaling pathways by the activation of plasma membrane receptors and swelling-induced transmitter release is necessary for the activation/regulation of osmolyte efflux pathways and cell volume recovery. Furthermore, we emphasize the importance of studying these extrinsic signals because of their significance in the understanding of the physiology of cell volume regulation and its role in cell biology in vivo, where the constraint of the extracellular space might enhance the autocrine or even paracrine signaling induced by these released transmitters.
Collapse
Affiliation(s)
- Rodrigo Franco
- Laboratory of Cell Biology and Signal Transduction, Biomedical Research Unit, FES-Iztacala, UNAM, Mexico.
| | | | | |
Collapse
|
16
|
Nielsen MB, Christensen ST, Hoffmann EK. Effects of osmotic stress on the activity of MAPKs and PDGFR-β-mediated signal transduction in NIH-3T3 fibroblasts. Am J Physiol Cell Physiol 2008; 294:C1046-55. [DOI: 10.1152/ajpcell.00134.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Signaling in cell proliferation, cell migration, and apoptosis is highly affected by osmotic stress and changes in cell volume, although the mechanisms underlying the significance of cell volume as a signal in cell growth and death are poorly understood. In this study, we used NIH-3T3 fibroblasts in a serum- and nutrient-free inorganic medium (300 mosM) to analyze the effects of osmotic stress on MAPK activity and PDGF receptor (PDGFR)-β-mediated signal transduction. We found that hypoosmolarity (cell swelling at 211 mosM) induced the phosphorylation and nuclear translocation of ERK1/2, most likely via a pathway independent of PDGFR-β and MEK1/2. Conversely, hyperosmolarity (cell shrinkage at 582 mosM) moved nuclear and phosphorylated ERK1/2 to the cytoplasm and induced the phosphorylation and nuclear translocation of p38 and phosphorylation of JNK1/2. In a series of parallel experiments, hypoosmolarity did not affect PDGF-BB-induced activation of PDGFR-β, whereas hyperosmolarity strongly inhibited ligand-dependent PDGFR-β activation as well as downstream mitogenic signal components of the receptor, including Akt and the MEK1/2-ERK1/2 pathway. Based on these results, we conclude that ligand-dependent activation of PDGFR-β and its downstream effectors Akt, MEK1/2, and ERK1/2 is strongly modulated (inhibited) by hyperosmotic cell shrinkage, whereas cell swelling does not seem to affect the activation of the receptor but rather to activate ERK1/2 via a different mechanism. It is thus likely that cell swelling via activation of ERK1/2 and cell shrinkage via activation of the p38 and JNK pathway and inhibition of the PDGFR signaling pathway may act as key players in the regulation of tissue homeostasis.
Collapse
|
17
|
Lozano JS, Chay EY, Healey J, Sullenberger R, Klarlund JK. Activation of the epidermal growth factor receptor by hydrogels in artificial tears. Exp Eye Res 2007; 86:500-5. [PMID: 18242602 DOI: 10.1016/j.exer.2007.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/23/2007] [Accepted: 12/10/2007] [Indexed: 01/12/2023]
Abstract
Most formulations of artificial tears include high-molecular weight hydrophilic polymers (hydrogels) that are usually thought to serve to enhance viscosity and to act as demulcents. A few reports have indicated that application of some of the polymers accelerates healing of wounds in epithelia. Since activation of the epidermal growth factor (EGF) receptor is critical for spontaneous corneal epithelial wound healing, we tested commonly used hydrogels for their ability to activate the EGF receptor and enhance closure of wounds. Five structurally unrelated hydrogels used in artificial tears were found to activate the EGF receptor. Importantly, two of the hydrogels enhanced wound healing in an organ culture model. We propose that the efficacy of hydrogels in treating dry eye may be related to their ability to activate the EGF receptor, and that hydrogels are inexpensive, safe agents to promote healing of wounds in the cornea and possibly in other tissues.
Collapse
Affiliation(s)
- Jennifer S Lozano
- Ophthalmology and Visual Sciences Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
18
|
Missan S, Linsdell P, McDonald TF. Involvement of tyrosine kinase in the hyposmotic stimulation of I Ks in guinea-pig ventricular myocytes. Pflugers Arch 2007; 456:489-500. [DOI: 10.1007/s00424-007-0424-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/24/2007] [Accepted: 12/06/2007] [Indexed: 11/30/2022]
|
19
|
Spix JK, Chay EY, Block ER, Klarlund JK. Hepatocyte growth factor induces epithelial cell motility through transactivation of the epidermal growth factor receptor. Exp Cell Res 2007; 313:3319-25. [PMID: 17643426 PMCID: PMC2128736 DOI: 10.1016/j.yexcr.2007.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Revised: 06/20/2007] [Accepted: 06/20/2007] [Indexed: 10/23/2022]
Abstract
Hepatocyte growth factor (HGF) is a potent inducer of motility in epithelial cells. Since we have previously found that activation of the epidermal growth factor receptor (EGFR) is an absolute prerequisite for induction of motility of corneal epithelial cells after wounding, we investigated whether induction of motility in response to HGF is also dependent on activation of the EGFR. We now report that HGF induces transactivation of the EGFR in an immortalized line of corneal epithelial cells, in human skin keratinocytes, and in Madin-Darby canine kidney cells. EGFR activation is unconditionally required for induction of motility in corneal epithelial cells, and for induction of a fully motile phenotype in Madin-Darby canine kidney cells. Activation of the EGFR occurs through amphiregulin and heparin-binding epidermal growth factor-like growth factor. Early after HGF stimulation, blocking EGFR activation does not inhibit extracellular-signal regulated kinase 1/2 (ERK1/2) activation by HGF, but the converse is seen after approximately 1 h, indicating the existence of EGFR-dependent and -independent routes of ERK1/2 activation. In summary, HGF induces transactivation of the EGFR in epithelial cells, and this is a prerequisite for induction of full motility.
Collapse
Affiliation(s)
- Julie K Spix
- Ophthalmology and Visual Sciences Research Center, University of Pittsburgh School of Medicine, 203 Lothrop Street, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
20
|
Taruno A, Niisato N, Marunaka Y. Hypotonicity stimulates renal epithelial sodium transport by activating JNK via receptor tyrosine kinases. Am J Physiol Renal Physiol 2007; 293:F128-38. [PMID: 17344192 DOI: 10.1152/ajprenal.00011.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We previously reported that hypotonic stress stimulated transepithelial Na(+) transport via a pathway dependent on protein tyrosine kinase (PTK; Niisato N, Van Driessche W, Liu M, Marunaka Y. J Membr Biol 175: 63-77, 2000). However, it is still unknown what type of PTK mediates this stimulation. In the present study, we investigated the role of receptor tyrosine kinase (RTK) in the hypotonic stimulation of Na(+) transport. In renal epithelial A6 cells, we observed inhibitory effects of AG1478 [an inhibitor of the EGF receptor (EGFR)] and AG1296 [an inhibitor of the PDGF receptor (PDGFR)] on both the hypotonic stress-induced stimulation of Na(+) transport and the hypotonic stress-induced ligand-independent activation of EGFR. We further studied whether hypotonic stress activates members of the MAP kinase family, ERK1/2, p38 MAPK, and JNK/SAPK, via an RTK-dependent pathway. The present study indicates that hypotonic stress induced phosphorylation of ERK1/2 and JNK/SAPK, but not p38 MAPK, that the hypotonic stress-induced phosphorylation of ERK1/2 and JNK/SAPK was diminished by coapplication of AG1478 and AG1296, and that only JNK/SAPK was involved in the hypotonic stimulation of Na(+) transport. A further study using cyclohexamide (a protein synthesis inhibitor) suggests that both RTK and JNK/SAPK contributed to the protein synthesis-independent early phase in hypotonic stress-induced Na(+) transport, but not to the protein synthesis-dependent late phase. The present study also suggests involvement of phosphatidylinositol 3-kinase (PI3-kinase) in RTK-JNK/SAPK cascade-mediated Na(+) transport. These observations indicate that 1) hypotonic stress activates JNK/SAPK via RTKs in a ligand-independent pathway, 2) the RTK-JNK/SAPK cascade acts as a mediator of hypotonic stress for stimulation of Na(+) transport, and 3) PI3-kinase is involved in the RTK-JNK/SAPK cascade for the hypotonic stress-induced stimulation of Na(+) transport.
Collapse
Affiliation(s)
- Akiyuki Taruno
- Dept. of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | |
Collapse
|
21
|
|
22
|
Heo YS, Cabrera LM, Song JW, Futai N, Tung YC, Smith GD, Takayama S. Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices. Anal Chem 2007; 79:1126-34. [PMID: 17263345 PMCID: PMC2605290 DOI: 10.1021/ac061990v] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Evaporation is a critical problem when handling submicroliter volumes of fluids. This paper characterizes this problem as it applies to microfluidic cell culture in poly(dimethylsiloxane) (PDMS) devices and provides a practical solution. Evaporation-mediated osmolality shifts through PDMS membranes with varying thicknesses (10, 1, 0.2, or 0.1 mm) were measured over 96 h. Even in humidified cell culture incubators, evaporation through PDMS and associated shifts in the osmolality of culture media was significant and prevented mouse embryo and human endothelial cell growth and development. A simple diffusion model, where the measured diffusion coefficient for PDMS matches reported values of approximately 10-9 m2/s, accounts for these evaporation and osmolality shifts. To overcome this problem, a PDMS-parylene-PDMS hybrid membrane was developed that greatly suppresses evaporation and osmolality shifts, yet possesses thinness and the flexibility necessary to interface with deformation-based microfluidic actuation systems, maintains the clarity for optical microscopy, and enables the successful development of single-cell mouse embryos into blastocysts under static conditions and culture of human endothelial cells under dynamic recirculation of submicroliter volumes of media. These insights and methods demonstrated specifically for embryo and endothelial cell studies will be generally useful for understanding and overcoming evaporation-associated effects in microfluidic cell cultures.
Collapse
|
23
|
Alfieri RR, Petronini PG. Hyperosmotic stress response: comparison with other cellular stresses. Pflugers Arch 2007; 454:173-85. [PMID: 17206446 DOI: 10.1007/s00424-006-0195-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 11/24/2006] [Indexed: 10/23/2022]
Abstract
Cellular responses induced by stress are essential for the survival of cells under adverse conditions. These responses, resulting in cell adaptation to the stress, are accomplished by a variety of processes at the molecular level. After an alteration in homeostatic conditions, intracellular signalling processes link the sensing mechanism to adaptive or compensatory changes in gene expression. The ability of cells to adapt to hyperosmotic stress involves early responses in which ions move across cell membranes and late responses characterized by increased synthesis of either membrane transporters essential for uptake of organic osmolytes or of enzymes involved in their synthesis. The goal of these responses is to return the cell to its normal size and maintain cellular homeostasis. The enhanced synthesis of molecular chaperones, such as heat shock proteins, is another important component of the adaptive process that contributes to cell survival. Some responses are common to different stresses, whereas others are specific. In the first part of the review, we illustrate the characteristic and specific features of adaptive response to hypertonicity; we then describe similarities to and differences from other cellular stresses, such as genotoxic agents, nutrient starvation and heat shock.
Collapse
Affiliation(s)
- Roberta R Alfieri
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Molecolare e Immunologia, Università degli Studi di Parma, 43100 Parma, Italy.
| | | |
Collapse
|
24
|
Abstract
The study tested the hypothesis that estrogen controls epithelial paracellular resistance through modulation of myosin. The objective was to understand how estrogen modulates nonmuscle myosin-II-B (NMM-II-B), the main component of the cortical actomyosin in human epithelial cervical cells. Experiments used human cervical epithelial cells CaSki as a model, and end points were NMM-II-B phosphorylation, filamentation, and MgATPase activity. The results were as follows: 1) treatment with estrogen increased phosphorylation and MgATPase activity and decreased NMM-II-B filamentation; 2) estrogen effects could be blocked by antisense nucleotides for the estrogen receptor-alpha and by ICI-182,780, tamoxifen, and the casein kinase-II (CK2) inhibitor, 5,6-dichloro-1-beta-(D)-ribofuranosylbenzimidazole and attenuated by AG1478 and PD98059 (inhibitors of epithelial growth factor receptor and ERK/MAPK) but not staurosporine [blocker of protein kinase C (PKC)]; 3) treatments with the PKC activator sn-1,2-dioctanoyl diglyceride induced biphasic effect on NMM-II-B MgATPase activity: an increase at 1 nm to 1 microM and a decrease in activity at more than 1 microM; 4) sn-1,2-dioctanoyl diglyceride also decreased NMM-II-B filamentation in a monophasic and saturable dose dependence (EC(50) 1-10 microM); 5) when coincubated directly with purified NMM-II-B filaments, both CK2 and PKC decreased filamentation and increased MgATPase activity; 6) assays done on disassembled NMM-II-B filaments showed MgATPase activity in filaments obtained from estrogen-treated cells but not estrogen-depleted cells; and 7) incubations in vitro with CK2, but not PKC, facilitated MgATPase activity, even in disassembled NMM-II-B filaments. The results suggest that estrogen, in an effect mediated by estrogen receptor-alpha and CK2 and involving the epithelial growth factor receptor and ERK/MAPK cascades, increases NMM-II-B MgATPase activity independent of NMM-II-B filamentation status.
Collapse
Affiliation(s)
- George I Gorodeski
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
25
|
Li X, Zhou L, Gorodeski GI. Estrogen regulates epithelial cell deformability by modulation of cortical actomyosin through phosphorylation of nonmuscle myosin heavy-chain II-B filaments. Endocrinology 2006; 147:5236-48. [PMID: 16901965 PMCID: PMC2398684 DOI: 10.1210/en.2006-0779] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of the study was to understand how estrogen modulates the rigidity of the cytoskeleton in epithelial cells. Estrogen depletion decreased, and treatment with 17beta-estradiol increased deformability of cervical-vaginal epithelial cells. Estrogen also induced redistribution of nonmuscle myosin II-B (NMM-II-B); lesser interaction of NMM-II-B with actin; increased phosphorylation of NMM-II-B-heavy chains at threonine and serine residues; and decreased filamentation of NMM-II-B in vitro. The effects of 17beta-estradiol were time and dose related and could be mimicked by diethylstilbestrol. The effects of estrogen were blocked by cotreatment with antisense oligonucleotide for the estrogen receptor-alpha and inhibited by ICI-182,780 and tamoxifen; omission of epithelial growth factor (EGF) from the culture medium; and cotreatments with the EGF receptor inhibitor AG1478, the ERK-MAPK inhibitor PD98059, the casein kinase-II (CK2) inhibitor 5,6-dichloro-1-beta-(D)-ribofuranosylbenzimidazole, the Rho-associated kinase inhibitor Y-27632, and the nonspecific phosphatase inhibitor okadaic acid. Coadministration of 5,6-dichloro-1-beta-(D)-ribofuranosylbenzimidazole plus okadaic acid blocked the 17beta-estradiol effect. H-89 or LY294002 did not significantly affect estrogen effects. Treatment with estrogen increased activation of ERK1/2 and CK2 activity. These data suggest a novel pathway of estrogen regulation of the cytoskeleton in epithelial cells. The effect is mediated by estrogen receptor-alpha and involves in part the EGF-EGF receptor and ERK-MAPK cascades as proximal signaling networks and the CK2 and Rho-associated kinase-regulated myosin heavy chain phosphatase as terminal effectors. Augmented phosphorylation of NMM-II-B can block filamentation and induce disassociation of the myosin from the cortical actin, and disruption of the actomyosin ring can increase cell deformability. This mechanism can explain estrogen regulation of paracellular permeability in cervical-vaginal epithelia in vivo.
Collapse
Affiliation(s)
- Xin Li
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|