1
|
Gultekin SE, Arslan Bozdag L, Odenthal M, Dienes H. Epigenetic Regulation of Dental Follicle Stem Cells in Odontogenic Regeneration. J Cell Mol Med 2025; 29:e70541. [PMID: 40296331 PMCID: PMC12037698 DOI: 10.1111/jcmm.70541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/11/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs essential for biological functions that control the process of translation of mRNA into protein. The discovery of miRNAs in mesenchymal stem cells (MSCs), especially in odontogenic tissues and dental follicles, has not been fully characterised. This study focused on characterising dental follicle stem cells (DFSCs) in terms of their ability to proliferate and differentiate into osteoblasts using qRT-PCR (miR-203, miR-125 and miR-21) and immunohistochemistry (OCT4 and CD133). Dental follicles are essential for tooth eruption as they envelop the enamel organ and dental papilla and control the development and breakdown of the alveolar bone. Dental follicle progenitor cells (DFPCs) are stem cells located in dental follicles that differentiate into several cell types that are essential for tooth development and eruption. We observed that miR-125 was upregulated in fibromyxoid and myxoid tissues during odonto/osteogenic differentiation of hDFPCs (fold change values, respectively, 1.75 ± 0.98 and 2.17 ± 1.03). miR-203 and miR-21 significantly downregulated odonto/osteogenic differentiation in myxoid, fibromyxoid and fibroid tissues (fold change values, respectively: miR-203: 0.57 ± 0.25, 0.38 ± 0.11, 0.21 ± 0.18; miR-21: 0.21 ± 0.14, 0.21 ± 0.13, 0.082 ± 0.14). Ultimately, utilising miRNA signatures in humans as a predictive tool will help us understand the molecular processes involved in DFSCs.
Collapse
Affiliation(s)
| | - Leyla Arslan Bozdag
- Department of Oral Pathology, Dental FacultyGazi UniversityAnkaraTurkey
- Department of Biology, Faculty of ScienceGazi UniversityAnkaraTurkey
| | - Margarete Odenthal
- Institute for Pathology, Medical Faculty and University Hospital of CologneUniversity of CologneCologneGermany
| | | |
Collapse
|
2
|
Wang R, Wang Z, Tong L, Wang R, Yao S, Chen D, Hu H. Microfluidic Mechanoporation: Current Progress and Applications in Stem Cells. BIOSENSORS 2024; 14:256. [PMID: 38785730 PMCID: PMC11117831 DOI: 10.3390/bios14050256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Intracellular delivery, the process of transporting substances into cells, is crucial for various applications, such as drug delivery, gene therapy, cell imaging, and regenerative medicine. Among the different approaches of intracellular delivery, mechanoporation stands out by utilizing mechanical forces to create temporary pores on cell membranes, enabling the entry of substances into cells. This method is promising due to its minimal contamination and is especially vital for stem cells intended for clinical therapy. In this review, we explore various mechanoporation technologies, including microinjection, micro-nano needle arrays, cell squeezing through physical confinement, and cell squeezing using hydrodynamic forces. Additionally, we highlight recent research efforts utilizing mechanoporation for stem cell studies. Furthermore, we discuss the integration of mechanoporation techniques into microfluidic platforms for high-throughput intracellular delivery with enhanced transfection efficiency. This advancement holds potential in addressing the challenge of low transfection efficiency, benefiting both basic research and clinical applications of stem cells. Ultimately, the combination of microfluidics and mechanoporation presents new opportunities for creating comprehensive systems for stem cell processing.
Collapse
Affiliation(s)
- Rubing Wang
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Haining 314400, China;
| | - Ziqi Wang
- Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; (Z.W.); (L.T.)
| | - Lingling Tong
- Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; (Z.W.); (L.T.)
| | - Ruoming Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), International Campus, Zhejiang University, Haining 314400, China; (R.W.); (S.Y.)
| | - Shuo Yao
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), International Campus, Zhejiang University, Haining 314400, China; (R.W.); (S.Y.)
| | - Di Chen
- Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; (Z.W.); (L.T.)
- Center for Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310003, China
- National Key Laboratory of Biobased Transportation Fuel Technology, Haining 314400, China
| | - Huan Hu
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Haining 314400, China;
| |
Collapse
|
3
|
Biomimetic Aspects of Oral and Dentofacial Regeneration. Biomimetics (Basel) 2020; 5:biomimetics5040051. [PMID: 33053903 PMCID: PMC7709662 DOI: 10.3390/biomimetics5040051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Biomimetic materials for hard and soft tissues have advanced in the fields of tissue engineering and regenerative medicine in dentistry. To examine these recent advances, we searched Medline (OVID) with the key terms “biomimetics”, “biomaterials”, and “biomimicry” combined with MeSH terms for “dentistry” and limited the date of publication between 2010–2020. Over 500 articles were obtained under clinical trials, randomized clinical trials, metanalysis, and systematic reviews developed in the past 10 years in three major areas of dentistry: restorative, orofacial surgery, and periodontics. Clinical studies and systematic reviews along with hand-searched preclinical studies as potential therapies have been included. They support the proof-of-concept that novel treatments are in the pipeline towards ground-breaking clinical therapies for orofacial bone regeneration, tooth regeneration, repair of the oral mucosa, periodontal tissue engineering, and dental implants. Biomimicry enhances the clinical outcomes and calls for an interdisciplinary approach integrating medicine, bioengineering, biotechnology, and computational sciences to advance the current research to clinics. We conclude that dentistry has come a long way apropos of regenerative medicine; still, there are vast avenues to endeavour, seeking inspiration from other facets in biomedical research.
Collapse
|
4
|
Lungu-Mitea S, Lundqvist J. Potentials and pitfalls of transient in vitro reporter bioassays: interference by vector geometry and cytotoxicity in recombinant zebrafish cell lines. Arch Toxicol 2020; 94:2769-2784. [PMID: 32447522 PMCID: PMC7395025 DOI: 10.1007/s00204-020-02783-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/07/2020] [Indexed: 12/03/2022]
Abstract
The water framework directive re-evaluation proposes the integration of effect-based tools, increasing the need for alternative methods. Especially within aquatic toxicology, coverage of specific toxicity pathways is scarce, and most applications are based on mammalian or bacterial models, not reflecting realistic exposure scenarios. The use of transient reporter gene assays in cells from organisms of interest could be a quick and inexpensive solution. However, interference with cellular homeostasis may impact the system beyond the function of the manipulated gene and thus lead to non-specific results. We describe how varying vector geometry and different regulatory gene elements on plasmids used for transfection in zebrafish hepatocytes and embryonic fibroblasts may lead up to a tenfold difference in potency. Cells were transiently co-transfected with an Nrf2-responsive Firefly luciferase reporter plasmid and eight different Renilla luciferase normalization plasmids. Transfected cells were exposed to two different regimes (0.1–100 µM and 7.8–250 µM) of the oxidative stress-inducing compounds, sulforaphane, tertbutylhydroquinone, and metazachlor. Nrf2 activity was measured in dual-luciferase assays. In parallel, cytotoxicity was assessed for different endpoints (energy metabolism, protein amount, membrane stability, and cell proliferation) in non-transfected cells and cells co-transfected with constructs of increasing size, to be used for normalization. Transfected cells were more susceptible to cytotoxicity in a vector size-dependent manner. Conclusively, we report that vector geometries (size, backbones, gene-regulatory units), cell line (tissue origin), applied transfection methods, and signal normalization may alter the sensitivity of reporter bioassays in a synergistic manner. Further, we propose that thorough bioassay design is needed to ensure reliability and regulatory acceptance.
Collapse
Affiliation(s)
- Sebastian Lungu-Mitea
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden.
| | - Johan Lundqvist
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| |
Collapse
|
5
|
Yilmaz AB, Tapsin S, Elbasan EB, Kayhan HD, Sahin F, Turkel N. Suppressor Effects of Sodium Pentaborate Pentahydrate and Pluronic F68 on Adipogenic Differentiation and Fat Accumulation. Biol Trace Elem Res 2020; 193:390-399. [PMID: 31119640 DOI: 10.1007/s12011-019-01738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/17/2019] [Indexed: 10/26/2022]
Abstract
Obesity is a major public health problem worldwide and a risk factor for certain diseases, including cardiovascular disease, diabetes, cancer, and depression. Unfortunately, currently available anti-obesity drugs have failed in the long-term maintenance of weight control. It has been a challenge to design novel drugs that could potentially treat obesity or prevent uncontrolled weight-gain which lies underneath the pathology of obesity. Since obesity in a way is a consequence of the accumulating new mature adipocytes from undifferentiated precursors which is a process also termed as adipogenesis, drugs that might control adipogenesis could be beneficial for the treatment of obesity. In the current study, combined effect of sodium pentaborate pentahydrate (NaB) and pluronic F68 on adipogenic differentiation was examined by administering various combinations of the two agents to human adipose-derived stem cells (hADSCs) in in vitro. Immunocytochemistry and quantitative RT-PCR were performed to evaluate the levels of adipogenesis-promoting genes such as peroxisome proliferator-activated receptor-γ (PPARγ), fatty acid binding protein (FABP4), and adiponectin. Results indicated that expressions of all these three genes were restrained. Furthermore, Oil Red O staining revealed that lipid vesicle formation was reduced in hADSCs treated with differentiation medium containing NaB/F68 combination. Finally, expression levels of Hippo pathway kinases Lats2, MST1, and scaffold protein Sav1 were reduced in these cells, suggesting a possible link between Hippo pathway-dependent downregulation of PPARγ and the NaB/F68 treatment. Herein, we showed that combination of NaB and F68 curtails adipocyte differentiation by inhibiting the adipogenic transcriptional program leading to a decrease in lipid accumulation in adipocytes even at very low doses, thereby uncovered a striking opportunity to use this combination in obesity treatment.
Collapse
Affiliation(s)
- Aysu Bilge Yilmaz
- Faculty of Engineering, Department of Genetics and Bioengineering, Yeditepe University, Kayışdağı, 34755, Istanbul, Turkey
- Koc Universitesi Hastanesi, Davutpasa Cd No:4, Topkapi Zeytinburnu, 34090, Istanbul, Turkey
| | - Sidika Tapsin
- Faculty of Engineering, Department of Genetics and Bioengineering, Yeditepe University, Kayışdağı, 34755, Istanbul, Turkey
- Stem Cell and Development Biology, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Elif Burce Elbasan
- Faculty of Engineering, Department of Genetics and Bioengineering, Yeditepe University, Kayışdağı, 34755, Istanbul, Turkey
| | - Hatice Damla Kayhan
- Faculty of Engineering, Department of Genetics and Bioengineering, Yeditepe University, Kayışdağı, 34755, Istanbul, Turkey
- Yaşam Bilimleri ve Teknolojileri Uygulama ve Araştırma Merkezi, Boğaziçi Üniversitesi, Kuzey Kampüs ETA-B Blok. 4.Kat, 34342, Bebek/Istanbul, Turkey
| | - Fikrettin Sahin
- Faculty of Engineering, Department of Genetics and Bioengineering, Yeditepe University, Kayışdağı, 34755, Istanbul, Turkey
| | - Nezaket Turkel
- Faculty of Engineering, Department of Genetics and Bioengineering, Yeditepe University, Kayışdağı, 34755, Istanbul, Turkey.
| |
Collapse
|
6
|
Evans JP, Winiarski BK, Sutton PA, Ressel L, Duckworth CA, Pritchard DM, Palmer DH, Goldring CE, Kitteringham NR. Development of an orthotopic syngeneic murine model of colorectal cancer for use in translational research. Lab Anim 2019; 53:598-609. [PMID: 30760081 PMCID: PMC6900214 DOI: 10.1177/0023677219826165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Improving outcomes in colorectal cancer requires more accurate in vivo modelling of the disease in humans, allowing more reliable pre-clinical assessment of potential therapies. Novel imaging techniques are necessary to improve the longitudinal assessment of disease burden in these models, reducing the number of animals required for translational studies. This report describes the development of an immune-competent syngeneic orthotopic murine model of colorectal cancer, utilising caecal implantation of CT26 cells stably transfected with the luciferase gene into immune-competent BALB/c mice, allowing serial bioluminescent imaging of cancer progression. Luminescence in the stably transfected CT26 cell line, after pre-conditioning in the flank of a BALB/c mouse, accurately reflected cell viability and resulted in primary caecal tumours in five of eight (63%) mice in the initial pilot study following caecal injection. Luminescent signal continued to increase throughout the study period with one mouse (20%) developing a liver metastasis. Histopathological assessment confirmed tumours to be consistent with a poorly differentiated adenocarcinoma. We have now performed this technique in 68 immune-competent BALB/c mice. There have been no complications from the procedure or peri-operative deaths, with primary tumours developing in 44 (65%) mice and liver metastases in nine (20%) of these. This technique provides an accurate model of colorectal cancer with tumours developing in the correct microenvironment and metastasising to the liver with a similar frequency to that seen in patients presenting with colorectal cancer, with serial bioluminescent reducing the murine numbers required in studies by removing the need for cull for assessment of disease burden.
Collapse
Affiliation(s)
- Jonathan P Evans
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| | | | - Paul A Sutton
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| | - Lorenzo Ressel
- Department of Veterinary Pathology, University of Liverpool, UK
| | - Carrie A Duckworth
- Department of Cellular and Molecular Physiology, University of Liverpool, UK
| | - D Mark Pritchard
- Department of Cellular and Molecular Physiology, University of Liverpool, UK
| | - Daniel H Palmer
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK.,Clatterbridge Cancer Centre, Liverpool, UK
| | | | - Neil R Kitteringham
- Department of Molecular and Clinical Pharmacology, University of Liverpool, UK
| |
Collapse
|
7
|
Dos Santos RC, Ombredane AS, Souza JMT, Vasconcelos AG, Plácido A, Amorim ADGN, Barbosa EA, Lima FCDA, Ropke CD, Alves MMM, Arcanjo DDR, Carvalho FAA, Delerue-Matos C, Joanitti GA, Leite JRDSA. Lycopene-rich extract from red guava (Psidium guajava L.) displays cytotoxic effect against human breast adenocarcinoma cell line MCF-7 via an apoptotic-like pathway. Food Res Int 2018; 105:184-196. [PMID: 29433206 DOI: 10.1016/j.foodres.2017.10.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
This study investigated a lycopene-rich extract from red guava (LEG) for its chemical composition using spectrophotometry, mass spectrometry, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), and computational studies. The cytotoxic activity of LEG and the underlying mechanism was studied in human breast adenocarcinoma cells (MCF-7), murine fibroblast cells (NIH-3T3), BALB/c murine peritoneal macrophages, and sheep blood erythrocytes by evaluating the cell viability with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and flow cytometry. Spectrophotometry analysis showed that LEG contained 20% of lycopene per extract dry weight. Experimental and theoretical ATR-FTIR suggests the presence of lycopene, whereas MS/MS spectra obtained after fragmentation of the molecular ion [M]+• of 536.4364 show fragment ions at m/z 269.2259, 375.3034, 444.3788, and 467.3658, corroborating the presence of lycopene mostly related to all-trans configuration. Treatment with LEG (1600 to 6.25μg/mL) for 24 and 72h significantly affected the viability of MCF-7 cells (mean half maximal inhibitory concentration [IC50]=29.85 and 5.964μg/mL, respectively) but not NIH-3T3 cells (IC50=1579 and 911.5μg/mL, respectively). Furthermore LEG at concentrations from 800 to 6.25μg/mL presented low cytotoxicity against BALB/c peritoneal macrophages (IC50≥800μg/mL) and no hemolytic activity. LEG (400 and 800μg/mL) caused reduction in the cell proliferation and induced cell cycle arrest, DNA fragmentation, modifications in the mitochondrial membrane potential, and morphologic changes related to granularity and size in MCF-7 cells; however, it failed to cause any significant damage to the cell membrane or display necrosis or traditional apoptosis. In conclusion, LEG was able to induce cytostatic and cytotoxic effects on breast cancer cells probably via induction of an apoptotic-like pathway.
Collapse
Affiliation(s)
- Raimunda C Dos Santos
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Campus Ministro Reis Velloso, Universidade Federal do Piauí, Parnaíba, PI, Brazil
| | - Alicia S Ombredane
- Laboratório de Nanobiotecnologia, Instituto de Biologia, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brazil
| | - Jéssica Maria T Souza
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Campus Ministro Reis Velloso, Universidade Federal do Piauí, Parnaíba, PI, Brazil
| | - Andreanne G Vasconcelos
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Campus Ministro Reis Velloso, Universidade Federal do Piauí, Parnaíba, PI, Brazil
| | - Alexandra Plácido
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Adriany das G N Amorim
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Campus Ministro Reis Velloso, Universidade Federal do Piauí, Parnaíba, PI, Brazil
| | - Eder Alves Barbosa
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brazil; Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Filipe C D A Lima
- Instituto Federal de Educação Ciência e Tecnologia de São Paulo, Matão, SP, Brazil
| | | | - Michel M M Alves
- Núcleo de Pesquisa em Plantas Medicinais, Universidade Federal do Piauí, Teresina, PI, Brazil
| | - Daniel D R Arcanjo
- Núcleo de Pesquisa em Plantas Medicinais, Universidade Federal do Piauí, Teresina, PI, Brazil
| | - Fernando A A Carvalho
- Núcleo de Pesquisa em Plantas Medicinais, Universidade Federal do Piauí, Teresina, PI, Brazil
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Graziella A Joanitti
- Laboratório de Nanobiotecnologia, Instituto de Biologia, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brazil; Campus Ceilândia, Centro Metropolitano, Universidade de Brasília, Ceilândia, Brasília, DF, Brazil
| | - José Roberto de S A Leite
- Área de Morfologia, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
8
|
Oshima M, Tsuji T. Functional Tooth Regeneration. ORGAN REGENERATION BASED ON DEVELOPMENTAL BIOLOGY 2017:73-95. [DOI: 10.1007/978-981-10-3768-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
ATALAYIN C, TEZEL H, DAGCI T, Karabay YAVASOGLU NU, OKTEM G. Medium modification with bone morphogenetic protein 2 addition for odontogenic differentiation. Braz Oral Res 2016; 30:S1806-83242016000100223. [DOI: 10.1590/1807-3107bor-2016.vol30.0020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 11/09/2015] [Indexed: 01/09/2023] Open
|
10
|
AYDIN S, YALVAÇ ME, ÖZCAN F, ŞAHİN F. Pluronic PF68 increases transfection efficiency in electroporationof mesenchymal stem cells. Turk J Biol 2016. [DOI: 10.3906/biy-1503-55] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
11
|
Solovyeva VV, Kiyasov AP, Rizvanov AA. Genetically Engineered Dental Stem Cells for Regenerative Medicine. DENTAL STEM CELLS 2016. [DOI: 10.1007/978-3-319-28947-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Apdik H, Doğan A, Demirci S, Aydın S, Şahin F. Dose-dependent Effect of Boric Acid on Myogenic Differentiation of Human Adipose-derived Stem Cells (hADSCs). Biol Trace Elem Res 2015; 165:123-30. [PMID: 25637568 DOI: 10.1007/s12011-015-0253-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/22/2015] [Indexed: 01/19/2023]
Abstract
Boron, a vital micronutrient for plant metabolism, is not fully elucidated for embryonic and adult body development, and tissue regeneration. Although optimized amount of boron supplement has been shown to be essential for normal gestational development in zebrafish and frog and beneficial for bone regeneration in higher animals, effects of boron on myogenesis and myo-regeneration remains to be solved. In the current study, we investigated dose-dependent activity of boric acid on myogenic differentiation of human adipose-derived stem cells (hADSCs) using immunocytochemical, gene, and protein expression analysis. The results revealed that while low- (81.9 μM) and high-dose (819.6 μM) boron treatment increased myogenic gene expression levels such as myosin heavy chain (MYH), MyoD, myogenin, and desmin at day 4 of differentiation, high-dose treatment decreased myogenic-related gene and protein levels at day 21 of differentiation, confirmed by immunocytochemical analysis. The findings of the study present not only an understanding of boron's effect on myogenic differentiation but also an opportunity for the development of scaffolds to be used in skeletal tissue engineering and supplements for embryonic muscle growth. However, fine dose tuning and treatment period arranging are highly warranted as boron treatment over required concentrations and time might result in detrimental outcomes to myogenesis and myo-regeneration.
Collapse
Affiliation(s)
- Hüseyin Apdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 34755, Kayışdağı, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
13
|
Chen G, Sun Q, Xie L, Jiang Z, Feng L, Yu M, Guo W, Tian W. Comparison of the Odontogenic Differentiation Potential of Dental Follicle, Dental Papilla, and Cranial Neural Crest Cells. J Endod 2015; 41:1091-9. [PMID: 25882137 DOI: 10.1016/j.joen.2015.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/14/2015] [Accepted: 03/02/2015] [Indexed: 12/24/2022]
Abstract
INTRODUCTION During tooth development, cells originating from the neural crest serve as precursors to the cells in the dental follicle and dental papilla. Therefore, the current study aimed to understand the associations of cranial neural crest cells (CNCCs), dental follicle cells (DFCs), and dental papilla cells (DPCs) by performing a parallel comparison to evaluate their odontogenic differentiation capacities. METHODS In this study, we harvested the 3 cells from C57/green fluorescent protein-positive mice or embryos and compared the cell morphology, surface antigens, microstructures, and gene and protein expression. Under the odontogenic microenvironments provided by treated dentin matrix, the odontogenic differentiations of the 3 cells were further compared in vitro and in vivo. RESULTS The gene levels of DFCs in neurofilament, tubulin, and nestin were close to the DPCs, and in alkaline phosphatase, osteopontin, dentin matrix protein 1, and dentin sialophosphoprotein were the lowest in the 3 cells. However, Western blot results showed that DFCs possessed more similar protein profiles to CNCCs than DPCs, including collagen 1, transforming growth factor beta 1, osteopontin, neurofilament, and dentin matrix protein 1. Meanwhile, DFCs as 1 source of dental stem cells possessed high potency in odontogenic differentiation in vitro. Moreover, similar dentinlike tissues were observed in all 3 groups in vivo. CONCLUSIONS CNCCs, DFCs, and DPCs possessed different biological characteristics in odontogenic differentiation.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China; National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China; Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Qince Sun
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China; National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Li Xie
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China; National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Zongting Jiang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China; National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China; Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Lian Feng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China; National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China; Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China; National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China; National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China; Department of Pedodontics, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China; National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China; Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
14
|
Ahlemeyer B, Vogt JF, Michel V, Hahn-Kohlberger P, Baumgart-Vogt E. Microporation is an efficient method for siRNA-induced knockdown of PEX5 in HepG2 cells: evaluation of the transfection efficiency, the PEX5 mRNA and protein levels and induction of peroxisomal deficiency. Histochem Cell Biol 2014; 142:577-91. [PMID: 25224142 DOI: 10.1007/s00418-014-1254-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2014] [Indexed: 11/26/2022]
Abstract
The pathomechanism of peroxisomal biogenesis disorders (PBDs), a group of inherited autosomal recessive diseases with mutations of peroxin (PEX) genes, is not yet fully understood. Therefore, several knockout models, e.g., the PEX5 knockout mouse, have been generated exhibiting a complete loss of peroxisomal function. In this study, we wanted to knockdown PEX5 using the siRNA technology (1) to mimic milder forms of PBDs in which the mutated peroxin has some residual function and (2) to analyze the cellular consequences of a reduction of the PEX5 protein without adaption during the development as it is the case in a knockout animal. First, we tried to optimize the transfection of the hepatoma cell line HepG2 with PEX5 siRNA using different commercially available liposomal and non-liposomal transfection reagents (Lipofectamine(®) 2000, FuGENE 6, HiPerFect(®), INTERFERin™, RiboJuice™) as well as microporation using the Neon™ Transfection system. Microporation was found to be superior to the transfection reagents with respect to the transfection efficiency (100 vs. 0-70%), to the reduction of PEX5 mRNA (by 90 vs. 0-50%) and PEX5 protein levels (by 70 vs. 0-50%). Interestingly, we detected that a part of the cleaved PEX5 mRNA still existed as 3' fragment (15%) 24 h after microporation. Using microporation, we further analyzed whether the reduced PEX5 protein level impaired peroxisomal function. We indeed detected a reduced targeting of SKL-tagged proteins into peroxisomes as well as an increased oxidative stress as found in PBD patients and respective knockout mouse models. Knockdown of the PEX5 protein and functional consequences were at a maximum 48 h after microporation. Thereafter, the PEX5 protein was resynthesized, which may allow the temporal analysis of the loss as well as the reconstitution of peroxisomes in the future. In conclusion, we propose microporation as an efficient and reproducible method to transfect HepG2 cells with PEX5 siRNA. We succeeded to transiently knockdown PEX5 mRNA and its protein level leading to functional consequences similar as observed in peroxisome deficiencies.
Collapse
Affiliation(s)
- Barbara Ahlemeyer
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, 35385, Giessen, Germany,
| | | | | | | | | |
Collapse
|
15
|
Doğan A, Demirci S, Şahin F. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells. Cell Biol Int 2014; 39:94-103. [PMID: 25077982 DOI: 10.1002/cbin.10357] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/11/2014] [Indexed: 12/26/2022]
Abstract
Current clinical techniques in dental practice include stem cell and tissue engineering applications. Dental stem cells are promising primary cell source for mainly tooth tissue engineering. Interaction of mesenchymal stem cell with epithelial and endothelial cells is strictly required for an intact tooth morphogenesis. Therefore, it is important to investigate whether human tooth germ stem cells (hTGSCs) derived from wisdom tooth are suitable for endothelial and epithelial cell transformation in dental tissue regeneration approaches. Differentiation into endothelial and epithelial cell lineages were mimicked under defined conditions, confirmed by real time PCR, western blotting and immunocytochemical analysis by qualitative and quantitative methods. HUVECs and HaCaT cells were used as positive controls for the endothelial and epithelial differentiation assays, respectively. Immunocytochemical and western blotting analysis revealed that terminally differentiated cells expressed cell-lineage markers including CD31, VEGFR2, VE-Cadherin, vWF (endothelial cell markers), and cytokeratin (CK)-17, CK-19, EpCaM, vimentin (epithelial cell markers) in significant levels with respect to undifferentiated control cells. Moreover, high expression levels of VEGFR1, VEGFR2, VEGF, CK-18, and CK-19 genes were detected in differentiated endothelial and epithelial-like cells. Endothelial-like cells derived from hTGSCs were cultured on Matrigel, tube-like structure formations were followed as an indication for functional endothelial differentiation. hTGSCs successfully differentiate into various cell types with a broad range of functional abilities using an in vitro approach. These findings suggest that hTGSCs may serve a potential stem cell source for tissue engineering and cell therapy of epithelial and endothelial tissue.
Collapse
Affiliation(s)
- Ayşegül Doğan
- Department of Genetics and BioEngineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Kayisdagi, TR-34755, Istanbul, Turkey
| | | | | |
Collapse
|
16
|
Functional tooth restoration by next-generation bio-hybrid implant as a bio-hybrid artificial organ replacement therapy. Sci Rep 2014; 4:6044. [PMID: 25116435 PMCID: PMC4131220 DOI: 10.1038/srep06044] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/18/2014] [Indexed: 02/07/2023] Open
Abstract
Bio-hybrid artificial organs are an attractive concept to restore organ function through precise biological cooperation with surrounding tissues in vivo. However, in bio-hybrid artificial organs, an artificial organ with fibrous connective tissues, including muscles, tendons and ligaments, has not been developed. Here, we have enveloped with embryonic dental follicle tissue around a HA-coated dental implant, and transplanted into the lower first molar region of a murine tooth-loss model. We successfully developed a novel fibrous connected tooth implant using a HA-coated dental implant and dental follicle stem cells as a bio-hybrid organ. This bio-hybrid implant restored physiological functions, including bone remodelling, regeneration of severe bone-defect and responsiveness to noxious stimuli, through regeneration with periodontal tissues, such as periodontal ligament and cementum. Thus, this study represents the potential for a next-generation bio-hybrid implant for tooth loss as a future bio-hybrid artificial organ replacement therapy.
Collapse
|
17
|
Antczak C, Mahida JP, Singh C, Calder PA, Djaballah H. A high content assay to assess cellular fitness. Comb Chem High Throughput Screen 2014; 17:12-24. [PMID: 23957721 DOI: 10.2174/13862073113169990056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 12/12/2022]
Abstract
A universal process in experimental biology is the use of engineered cells; more often, stably or transiently transfected cells are generated for the purpose. Therefore, it is important that cell health assessment is conducted to check for stress mediated by induction of heat shock proteins (Hsps). For this purpose, we have developed an integrated platform that would enable a direct assessment of transfection efficiency (TE) combined with cellular toxicity and stress response. We make use of automated microscopy and high content analysis to extract from the same well a multiplexed readout to assess and determine optimal chemical transfection conditions. As a proof of concept, we investigated seven commercial reagents, in a matrix of dose and time, to study transfection of an EGFP DNA plasmid into HeLa cells and their consequences on health and fitness; where we scored for cellular proliferation, EGFP positive cells, and induction of Hsp10 and Hsp70 as makers of stress responses. FuGENE HD emerged as the most optimal reagent with no apparent side effects suitable for performing microtiter based miniaturized transfection for both chemical and RNAi screening. In summary, we report on a high content assay method to assess cellular overall fitness upon chemical transfection.
Collapse
Affiliation(s)
| | | | | | | | - Hakim Djaballah
- HTS Core Facility, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
18
|
Gebremedhin S, Singh A, Koons S, Bernt W, Konopka K, Duzgunes N. Gene delivery to carcinoma cells via novel non-viral vectors: nanoparticle tracking analysis and suicide gene therapy. Eur J Pharm Sci 2014; 60:72-9. [PMID: 24751674 DOI: 10.1016/j.ejps.2014.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/04/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
Suicide gene therapy of oral squamous cell carcinoma (OSCC) may be a viable approach to the treatment of this cancer. However, human OSCC cells are relatively resistant to efficient transfection by non-viral vectors. To identify an optimal vector for gene delivery, we compared the transfection activities and efficiencies of Glycofect, Metafectene, Metafectene Pro, Metafectene Easy and FuGENE HD, using the OSCC cell line, HSC-3, and the cervical carcinoma cell line, HeLa. The size distribution and ζ-potential of the complexes of these vectors with plasmid DNA were assessed by nanoparticle tracking analysis and electrophoretic mobility measurements, respectively. Metafectene Easy and FuGENE HD mediated the highest transfection activity (measured as luciferase expression) and efficiency (measured as the percentage of cells transfected with ß-galactosidase). These vectors were used to deliver a plasmid encoding herpes simplex virus thymidine kinase, followed by ganciclovir treatment. By day 9, HeLa cell viability was 22±3% of controls with FuGENE HD and 26±3% with Metafectene Easy. The viability of HSC-3 cells was 42±25% with FuGENE HD, and 58±28% with Metafectene Easy. The reduction in viability was statistically significant in both cases (p⩽0.005; average of 3 independent experiments), although there was considerable variability between experiments with the HSC-3 cells.
Collapse
Affiliation(s)
- Senait Gebremedhin
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94115, USA
| | - Aruna Singh
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94115, USA
| | - Stephen Koons
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94115, USA
| | - William Bernt
- Particle Characterization Laboratories, Novato, CA 94945, USA
| | - Krystyna Konopka
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94115, USA
| | - Nejat Duzgunes
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94115, USA.
| |
Collapse
|
19
|
Demirci S, Doğan A, Şişli B, Sahin F. Boron increases the cell viability of mesenchymal stem cells after long-term cryopreservation. Cryobiology 2014; 68:139-46. [DOI: 10.1016/j.cryobiol.2014.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 12/17/2022]
|
20
|
Torii D, Konishi K, Watanabe N, Goto S, Tsutsui T. Cementogenic potential of multipotential mesenchymal stem cells purified from the human periodontal ligament. Odontology 2014; 103:27-35. [DOI: 10.1007/s10266-013-0145-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/15/2013] [Indexed: 11/28/2022]
|
21
|
Carvalho LKHD, Araujo AVPD, Silva MGLD, Laiso RAN, Maria DA. Response Proliferative Capacity of Undifferentiated Stem Cells of Obtained Human Adult Dental Follicle. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/scd.2014.44013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Bhise NS, Wahlin KJ, Zack DJ, Green JJ. Evaluating the potential of poly(beta-amino ester) nanoparticles for reprogramming human fibroblasts to become induced pluripotent stem cells. Int J Nanomedicine 2013; 8:4641-58. [PMID: 24348039 PMCID: PMC3857166 DOI: 10.2147/ijn.s53830] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Gene delivery can potentially be used as a therapeutic for treating genetic diseases, including neurodegenerative diseases, as well as an enabling technology for regenerative medicine. A central challenge in many gene delivery applications is having a safe and effective delivery method. We evaluated the use of a biodegradable poly(beta-amino ester) nanoparticle-based nonviral protocol and compared this with an electroporation-based approach to deliver episomal plasmids encoding reprogramming factors for generation of human induced pluripotent stem cells (hiPSCs) from human fibroblasts. Methods A polymer library was screened to identify the polymers most promising for gene delivery to human fibroblasts. Feeder-independent culturing protocols were developed for nanoparticle-based and electroporation-based reprogramming. The cells reprogrammed by both polymeric nanoparticle-based and electroporation-based nonviral methods were characterized by analysis of pluripotency markers and karyotypic stability. The hiPSC-like cells were further differentiated toward the neural lineage to test their potential for neurodegenerative retinal disease modeling. Results 1-(3-aminopropyl)-4-methylpiperazine end-terminated poly(1,4-butanediol diacry-late-co-4-amino-1-butanol) polymer (B4S4E7) self-assembled with plasmid DNA to form nanoparticles that were more effective than leading commercially available reagents, including Lipofectamine® 2000, FuGENE® HD, and 25 kDa branched polyethylenimine, for nonviral gene transfer. B4S4E7 nanoparticles showed effective gene delivery to IMR-90 human primary fibroblasts and to dermal fibroblasts derived from a patient with retinitis pigmentosa, and enabled coexpression of exogenously delivered genes, as is needed for reprogramming. The karyotypically normal hiPSC-like cells generated by conventional electroporation, but not by poly(beta-amino ester) reprogramming, could be differentiated toward the neuronal lineage, specifically pseudostratified optic cups. Conclusion This study shows that certain nonviral reprogramming methods may not necessarily be safer than viral approaches and that maximizing exogenous gene expression of reprogramming factors is not sufficient to ensure successful reprogramming.
Collapse
Affiliation(s)
- Nupura S Bhise
- Department of Biomedical Engineering, Translational Tissue Engineering Center, and Institute for Nanobiotechnology, Baltimore, MD, USA
| | - Karl J Wahlin
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald J Zack
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Solomon H Snyder Department of Neuroscience, Department of Molecular Biology and Genetics, and Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Institut de la Vision, Paris, France
| | - Jordan J Green
- Department of Biomedical Engineering, Translational Tissue Engineering Center, and Institute for Nanobiotechnology, Baltimore, MD, USA ; Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Effect of F68 on Cryopreservation of Mesenchymal Stem Cells Derived from Human Tooth Germ. Appl Biochem Biotechnol 2013; 171:1819-31. [DOI: 10.1007/s12010-013-0472-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 08/22/2013] [Indexed: 11/26/2022]
|
24
|
|
25
|
Yalvaç ME, Yarat A, Mercan D, Rizvanov AA, Palotás A, Şahin F. Characterization of the secretome of human tooth germ stem cells (hTGSCs) reveals neuro-protection by fine-tuning micro-environment. Brain Behav Immun 2013; 32:122-30. [PMID: 23517709 DOI: 10.1016/j.bbi.2013.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/02/2013] [Accepted: 03/11/2013] [Indexed: 12/13/2022] Open
Abstract
Bone-marrow-derived mesenchymal stem cells (MSCs) demonstrate neuro-protective effects in several disease models. By producing growth-factors, cytokines and chemokines, they promote survival of neurons in damaged brain areas. Alternative MSC sources, such as human tooth germ stem cells (hTGSCs), have been investigated for their neuro-protective properties. They ameliorate effects of neuro-toxic agents by paracrine mechanisms, however these secreted bio-active molecules are not yet characterized. Therefore, the current study aimed to provide a detailed analysis of the secretome of hTGSCs. Brain cells were exposed to various toxic materials, including Alzheimer's β-amyloid peptide (β-AP) and 6-hydroxy-dopamine (6-OHDA). When co-cultured with hTGSCs, the activity of a number of anti-oxidant enzymes (catalase, glutathione-s-transferase, glutathione-peroxidase, superoxide-dismutase) was increased and neuronal death/apoptosis was subsequently reduced. The composition of the secreted bio-active materials is influenced by various pre-existing factors such as oxygen and glucose deprivation and the age of cells (passage number). This report reveals for the first time that the neuro-protective secretome of hTGSCs and the micro-environment of cells have a mutual and dynamic impact on one another.
Collapse
Affiliation(s)
- Mehmet Emir Yalvaç
- Center for Gene Therapy, Nationwide Children's Hospital, Ohio State University, 700 Children's Drive, Columbus, OH 43205, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Target gene delivery is needed to induce cellular differentiation or a specific therapeutic effect. Electroporation is a relatively safe and simple technique to deliver nucleic acids to the cell that acts by rendering cells transiently permeable using short periods of high voltage. In stem cell research, human dental pulp stem cells (hDPSCS) are highly accessible, and they exhibit broad differentiation potential. Until now, no studies have attempted to optimize electroporation parameters for DPSCs with respect to transfection efficiency and viability. In this study, we aimed to optimize transfection of DPSCs through varying different electroporation parameters, including voltage, mode of pulsation, and the number of pulses. As positive control, we used commonly utilized the chemical transfection reagents Lipofectamine 2000 and FuGene 6. In addition, we used our newly optimized transfection conditions to transfect hDPSCs with a functional chondrogenic transgene. We obtained higher transfection efficiency and cell viability with these electroporation conditions compared to controls. The highest transfection efficiency (63.81±4.72%) was achieved with 100 V, 20 msec, one-pulse square-wave condition. Among chemical transfection groups, FuGene 6 showed the highest cell viability at all tested transfection ratios, while Lipofectamine 2000 showed the highest transfection efficiency (19.23±3.19%) using 1:1 DNA (μg):Lipofectamine (μL). Transfected DPSCs functionally expressed the transforming growth factor β-3 chondrogenic transgene on the mRNA level as detected by real-time polymerase chain reaction and on the protein level as detected by Western blot analysis. An increase in various chondrogenic markers was also found when studying mRNA expression in transfected cells. In conclusion, the results of our study demonstrate optimal electroporation and chemical transfection reagent conditions for hDPSCs, and, subsequently, we provide proof of concept for expression of a functional gene using those conditions. These results demonstrate a widened scope for use of DPSCs in various tissue engineering applications.
Collapse
Affiliation(s)
- Ahmed Rizk
- Department of Orthodontics, Faculty of Dentistry, The University of Hong Kong , Hong Kong, China
| | | |
Collapse
|
27
|
Doğan A, Yalvaç ME, Şahin F, Kabanov AV, Palotás A, Rizvanov AA. Differentiation of human stem cells is promoted by amphiphilic pluronic block copolymers. Int J Nanomedicine 2012; 7:4849-60. [PMID: 23028214 PMCID: PMC3441230 DOI: 10.2147/ijn.s31949] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stem cell usage provides novel avenues of tissue regeneration and therapeutics across disciplines. Apart from ethical considerations, the selection and amplification of donor stem cells remain a challenge. Various biopolymers with a wide range of properties have been used extensively to deliver biomolecules such as drugs, growth factors and nucleic acids, as well as to provide biomimetic surface for cellular adhesion. Using human tooth germ stem cells with high proliferation and transformation capacity, we have investigated a range of biopolymers to assess their potential for tissue engineering. Tolerability, toxicity, and their ability to direct differentiation were evaluated. The majority of pluronics, consisting of both hydrophilic and hydrophobic poly(ethylene oxide) chains, either exerted cytotoxicity or had no significant effect on human tooth germ stem cells; whereas F68 increased the multi-potency of stem cells, and efficiently transformed them into osteogenic, chondrogenic, and adipogenic tissues. The data suggest that differentiation and maturation of stem cells can be promoted by selecting the appropriate mechanical and chemical properties of polymers. It has been shown for the first time that F68, with its unique molecular characteristics, has a great potential to increase the differentiation of cells, which may lead to the development of new tissue engineering strategies in regenerative medicine.
Collapse
Affiliation(s)
- Ayşegül Doğan
- Department of Genetics and BioEngineering, College of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
28
|
The transfection efficiency of photosensitizer-induced gene delivery to human MSCs and internalization rates of EGFP and Runx2 genes. Biomaterials 2012; 33:6485-94. [DOI: 10.1016/j.biomaterials.2012.05.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 05/17/2012] [Indexed: 12/11/2022]
|
29
|
Viale-Bouroncle S, Felthaus O, Schmalz G, Brockhoff G, Reichert TE, Morsczeck C. The transcription factor DLX3 regulates the osteogenic differentiation of human dental follicle precursor cells. Stem Cells Dev 2012; 21:1936-1947. [PMID: 22107079 PMCID: PMC3396153 DOI: 10.1089/scd.2011.0422] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/22/2011] [Indexed: 01/28/2023] Open
Abstract
The transcription factor DLX3 plays a decisive role in bone development of vertebrates. In neural-crest derived stem cells from the dental follicle (DFCs), DLX3 is differentially expressed during osteogenic differentiation, while other osteogenic transcription factors such as DLX5 or RUNX2 are not highly induced. DLX3 has therefore a decisive role in the differentiation of DFCs, but its actual biological effects and regulation are unknown. This study investigated the DLX3-regulated processes in DFCs. After DLX3 overexpression, DFCs acquired a spindle-like cell shape with reorganized actin filaments. Here, marker genes for cell morphology, proliferation, apoptosis, and osteogenic differentiation were significantly regulated as shown in a microarray analysis. Further experiments showed that DFCs viability is directly influenced by the expression of DLX3, for example, the amount of apoptotic cells was increased after DLX3 silencing. This transcription factor stimulates the osteogenic differentiation of DFCs and regulates the BMP/SMAD1-pathway. Interestingly, BMP2 did highly induce DLX3 and reverse the inhibitory effect of DLX3 silencing in osteogenic differentiation. However, after DLX3 overexpression in DFCs, a BMP2 supplementation did not improve the expression of DLX3 and the osteogenic differentiation. In conclusion, DLX3 influences cell viability and regulates osteogenic differentiation of DFCs via a BMP2-dependent pathway and a feedback control.
Collapse
Affiliation(s)
- Sandra Viale-Bouroncle
- Department of Oral and Maxillofacial Surgery, University of Regensburg, Regensburg, Germany
- Department of Operative Dentistry and Periodontology, University of Regensburg, Regensburg, Germany
| | - Oliver Felthaus
- Department of Oral and Maxillofacial Surgery, University of Regensburg, Regensburg, Germany
- Department of Operative Dentistry and Periodontology, University of Regensburg, Regensburg, Germany
| | - Gottfried Schmalz
- Department of Operative Dentistry and Periodontology, University of Regensburg, Regensburg, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University of Regensburg, Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University of Regensburg, Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University of Regensburg, Regensburg, Germany
- Department of Operative Dentistry and Periodontology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
30
|
Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K. Stem cells in dentistry--part I: stem cell sources. J Prosthodont Res 2012; 56:151-65. [PMID: 22796367 DOI: 10.1016/j.jpor.2012.06.001] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/14/2012] [Indexed: 12/21/2022]
Abstract
Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties.
Collapse
Affiliation(s)
- Hiroshi Egusa
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
31
|
Vargas AE, Markoski MM, Cañedo AD, da Silva FH, Nardi NB. Genetic modification of mesenchymal stem cells. Methods Mol Biol 2012; 879:479-90. [PMID: 22610578 DOI: 10.1007/978-1-61779-815-3_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mesenchymal stem cells (MSC) are currently considered the most promising type of adult stem cells for therapeutic applications, because they can be easily isolated from the bone marrow and other tissues, and manipulated for different applications. The genetic transformation of MSC using genes that enhance their homing ability, as well as their proliferation and survival capacities when transplanted to sites of injury, is an important alternative to improve MSC function, especially for tissue regeneration. This chapter describes protocols for the transformation of MSC using plasmid vectors by lipofection and electroporation, as well as retroviral vectors representing viral transformations.
Collapse
Affiliation(s)
- Andréia Escosteguy Vargas
- Laboratório de Cardiologia Molecular e Celular, Instituto de Cardiologia do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
32
|
Felthaus O, Viale-Bouroncle S, Driemel O, Reichert TE, Schmalz G, Morsczeck C. Transcription factors TP53 and SP1 and the osteogenic differentiation of dental stem cells. Differentiation 2012; 83:10-16. [PMID: 22099172 DOI: 10.1016/j.diff.2011.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 12/16/2022]
Abstract
Dental follicle is a loose connective tissue that surrounds the developing tooth. Dental follicle cells (DFCs) have a promising potential for tissue engineering applications including periodontal and bone regeneration. However, little is known about the molecular mechanisms underlying osteogenic differentiation. In a previous study we detected that more than 35% of genes that are regulated during osteogenic differentiation of DFCs have promoter binding sites for the transcription factors TP53 and SP1. However, the role of these transcription factors in dental stem cells is still unknown. We hypothesize that both factors influence the processes of cell proliferation and differentiation in dental stem cells. Therefore, we transiently transfected DFCs and dental pulp stem cells (SHED; Stem cells from human exfoliated decidiuous teeth) with expression vectors for these transcription factors. After overexpression of SP1 and TP53, SP1 influenced cell proliferation and TP53 osteogenic differentiation in both dental cell types. The effects on cell proliferation and differentiation were less pronounced after siRNA mediated silencing of TP53 and SP1. This indicates that the effects we observed after TP53 and SP1 overexpression are indirect and subject of complex regulation. Interestingly, upregulated biological processes in DFCs after TP53-overexpression resemble the downregulated biological processes in SHED after SP1-overexpression. Here, regulated processes are involved in cell motility, wound healing and programmed cell death. In conclusion, our study demonstrates that SP1 and TP53 influence cell proliferation and differentiation and similar biological processes in both SHED and DFCs.
Collapse
Affiliation(s)
- Oliver Felthaus
- Department of Operative Dentistry and Periodontology, Department of oral and maxillofacial surgery, University Hospital Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Guo W, Gong K, Shi H, Zhu G, He Y, Ding B, Wen L, Jin Y. Dental follicle cells and treated dentin matrix scaffold for tissue engineering the tooth root. Biomaterials 2011; 33:1291-302. [PMID: 22088889 DOI: 10.1016/j.biomaterials.2011.09.068] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/25/2011] [Indexed: 01/01/2023]
Abstract
Tissue engineering strategies to reconstruct tooth roots are an effective therapy for the treatment of tooth loss. However, strategies to successfully regenerate tooth roots have not been developed and optimized. In the present study, rat dental follicle stem cells (DFCs) were characterized, followed by a thorough investigation of tooth roots regeneration for a combination of DFCs seeding cells, treated dentin matrix (TDM) scaffolds, and an inductive alveolar fossa microenvironment. Eighteen clones derived from single DFCs were harvested; however, only three clones were amplified successfully more than five passages and 90-95 days in culture. Following 270 days or 30 passages, the heterogeneous DFCs showed suitable characteristics for seeding cells to regenerate tooth roots. However, various features, such as variable proliferation rates, differentiation characteristics, apoptosis rates, and total lifespan were observed in DFCs and the three clones. Importantly, upon transplantation of DFCs combined with TDM for four weeks, root-like tissues stained positive for markers of dental pulp and periodontal tissues were regenerated in the alveolar fossa, but not in the skull and omental pockets. These results indicate that tooth roots were successfully regenerated and suggest that the combination of DFCs with TDM in the alveolar fossa is a feasible strategy for tooth roots regeneration. This strategy could be a promising approach for the treatment of clinical tooth loss and provides a perspective with potential applications to regeneration of other tissues and organs.
Collapse
Affiliation(s)
- Weihua Guo
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yalvaç ME, Yilmaz A, Mercan D, Aydin S, Dogan A, Arslan A, Demir Z, Salafutdinov II, Shafigullina AK, Sahin F, Rizvanov AA, Palotás A. Differentiation and Neuro-Protective Properties of Immortalized Human Tooth Germ Stem Cells. Neurochem Res 2011; 36:2227-35. [DOI: 10.1007/s11064-011-0546-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2011] [Indexed: 01/10/2023]
|
35
|
Human treated dentin matrix as a natural scaffold for complete human dentin tissue regeneration. Biomaterials 2011; 32:4525-38. [DOI: 10.1016/j.biomaterials.2011.03.008] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/04/2011] [Indexed: 12/19/2022]
|
36
|
Bhise NS, Gray RS, Sunshine JC, Htet S, Ewald AJ, Green JJ. The relationship between terminal functionalization and molecular weight of a gene delivery polymer and transfection efficacy in mammary epithelial 2-D cultures and 3-D organotypic cultures. Biomaterials 2010; 31:8088-96. [PMID: 20674001 PMCID: PMC3175420 DOI: 10.1016/j.biomaterials.2010.07.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 07/04/2010] [Indexed: 10/19/2022]
Abstract
Non-viral gene delivery vectors were developed for efficient gene transfer to hard-to-transfect mouse mammary epithelial cells. Ten modified versions of the same base poly(beta-amino ester), poly(1,4-butanediol diacrylate-co-5-amino-1-pentanol), were tested in both traditional 2-D monolayer and in 3-D organotypic cultures. The polymers self-assembled with plasmid DNA encoding enhanced green fluorescent protein to form nanoparticles (approximately 100 nm) used to transfect the cells. Nanoparticle transfection efficacy was tuned by changes in synthesis and fabrication conditions and the transfection efficacy was analyzed using confocal microscopy and flow cytometry. The best performing polymeric nanoparticles transfected 57 +/- 6% of the cells in 2-D culture and 6 +/- 1% of the cells in 3-D culture. Small modifications to the polymer end-capping molecules and tuning of polymer molecular weight could either significantly enhance the transfection efficacy up to 6-fold or instead abolish efficacy completely. The efficacy of leading polymers was higher than that of the commercial transfection agent FuGENE HD by a factor of 13 in 2-D and 2 in 3-D. These non-viral nanoparticles may be useful as delivery reagents or targeted therapeutics for breast cancer. This gene delivery strategy is also a promising approach for studying the normal development of the mammary gland.
Collapse
Affiliation(s)
- Nupura S Bhise
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Mesenchymal stem cells (MSCs) are considered as the adult stem cells with the greatest therapeutic potential, due to characteristics such as plasticity, intrinsic tropism towards lesions, paracrine activity, and immunosuppressive activity. This potential may be optimised by transforming them with genes which will improve their therapeutic ability or are therapeutic by themselves. This review presents a summary of the main types of viral or plasmid vectors used to transform therapeutic MSCs and their use in different pathologies. Although this strategy holds great promise, results are still heterogeneous, showing that more studies are needed to optimise gene transfer methods and models.
Collapse
Affiliation(s)
| | - Nance Beyer Nardi
- Universidade Federal do Rio Grande do Sul, Brazil, University of London
| | - Melissa Camassola
- Universidade Federal do Rio Grande do Sul, Brazil, University of London
| |
Collapse
|
38
|
Guo W, He Y, Zhang X, Lu W, Wang C, Yu H, Liu Y, Li Y, Zhou Y, Zhou J, Zhang M, Deng Z, Jin Y. The use of dentin matrix scaffold and dental follicle cells for dentin regeneration. Biomaterials 2009; 30:6708-23. [DOI: 10.1016/j.biomaterials.2009.08.034] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 08/27/2009] [Indexed: 01/09/2023]
|
39
|
Yao S, Rana S, Liu D, Wise GE. Electroporation optimization to deliver plasmid DNA into dental follicle cells. Biotechnol J 2009; 4:1488-96. [PMID: 19830717 PMCID: PMC2824253 DOI: 10.1002/biot.200900039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electroporation is a simple and versatile approach for DNA transfer but needs to be optimized for specific cells. We conducted square wave electroporation experiments for rat dental follicle cells under various conditions. These experiments indicated that the optimal electroporation electric field strength was 375 V/cm, and that plasmid concentrations greater than 0.18 microg/microL were required to achieve high transfection efficiency. BSA or fetal bovine serum in the pulsing buffer significantly improved cell survival and increased the number of transfected cells. The optimal pulsing duration was in the range of 45-120 ms at 375 V/cm. This electroporation protocol can be used to deliver DNA into dental follicle cells to study the roles of candidate genes in regulating tooth eruption. This is the first report showing the transfection of dental follicle cells using electroporation. The parameters determined in this study are likely to be applied to transfection of other fibroblast cells.
Collapse
Affiliation(s)
- Shaomian Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Samir Rana
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Dawen Liu
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Gary E. Wise
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
40
|
Yalvac ME, Ramazanoglu M, Rizvanov AA, Sahin F, Bayrak OF, Salli U, Palotás A, Kose GT. Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: implications in neo-vascularization, osteo-, adipo- and neurogenesis. THE PHARMACOGENOMICS JOURNAL 2009; 10:105-13. [DOI: 10.1038/tpj.2009.40] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|