1
|
Géczi D, Klekner Á, Balogh I, Penyige A, Szilágyi M, Virga J, Bakó A, Nagy B, Torner B, Birkó Z. Identification of Deregulated miRNAs and mRNAs Involved in Tumorigenesis and Detection of Glioblastoma Patients Applying Next-Generation RNA Sequencing. Pharmaceuticals (Basel) 2025; 18:431. [PMID: 40143207 PMCID: PMC11944724 DOI: 10.3390/ph18030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
(1) Background: Glioblastoma (GBM) is one of the most aggressive brain tumors with a poor prognosis. Therefore, new insights into GBM diagnosis and treatment are required. In addition to differentially expressed mRNAs, miRNAs may have the potential to be applied as diagnostic biomarkers. (2) Methods: In this study, profiling of human miRNAs in combination with mRNAs was performed on total RNA isolated from tissue samples of five control and five GBM patients, using a high-throughput RNA sequencing (RNA-Seq) approach. (3) Results: A total of 35 miRNAs and 365 mRNAs were upregulated, while 82 miRNAs and 1225 mRNAs showed significant downregulation between tissue samples of GBM patients compared to the control samples using the iDEP tool to analyze RNA-Seq data. To validate our results, the expression of five miRNAs (hsa-miR-196a-5p, hsa-miR-21-3p, hsa-miR-10b-3p, hsa-miR-383-5p, and hsa-miR-490-3p) and fourteen mRNAs (E2F2, HOXD13, VEGFA, CDC45, AURKB, HOXC10, MYBL2, FABP6, PRLHR, NEUROD6, CBLN1, HRH3, HCN1, and RELN) was determined by RT-qPCR assay. The miRNet tool was used to build miRNA-target interaction. Furthermore, a protein-protein interaction (PPI) network was created from the miRNA targets by applying the NetworkAnalyst 3.0 tool. Based on the PPI network, a functional enrichment analysis of the target proteins was also carried out. (4) Conclusions: We identified an miRNA panel and several deregulated mRNAs that could play an important role in tumor development and distinguish GBM patients from healthy controls with high sensitivity and specificity using total RNA isolated from tissue samples.
Collapse
Affiliation(s)
- Dóra Géczi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (D.G.); (I.B.); (A.P.); (M.S.); (B.N.); (B.T.)
| | - Álmos Klekner
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (D.G.); (I.B.); (A.P.); (M.S.); (B.N.); (B.T.)
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (D.G.); (I.B.); (A.P.); (M.S.); (B.N.); (B.T.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (D.G.); (I.B.); (A.P.); (M.S.); (B.N.); (B.T.)
| | - József Virga
- Department of Oncology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (J.V.); (A.B.)
| | - Andrea Bakó
- Department of Oncology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (J.V.); (A.B.)
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (D.G.); (I.B.); (A.P.); (M.S.); (B.N.); (B.T.)
| | - Bernadett Torner
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (D.G.); (I.B.); (A.P.); (M.S.); (B.N.); (B.T.)
| | - Zsuzsanna Birkó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (D.G.); (I.B.); (A.P.); (M.S.); (B.N.); (B.T.)
| |
Collapse
|
2
|
Zagkos L, Dib MJ, Cronjé HT, Elliott P, Dehghan A, Tzoulaki I, Gill D, Daghlas I. Cerebrospinal Fluid C1-Esterase Inhibitor and Tie-1 Levels Affect Cognitive Performance: Evidence from Proteome-Wide Mendelian Randomization. Genes (Basel) 2024; 15:71. [PMID: 38254961 PMCID: PMC10815381 DOI: 10.3390/genes15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
OBJECTIVE The association of cerebrospinal fluid (CSF) protein levels with cognitive function in the general population remains largely unexplored. We performed Mendelian randomization (MR) analyses to query which CSF proteins may have potential causal effects on cognitive performance. METHODS AND ANALYSIS Genetic associations with CSF proteins were obtained from a genome-wide association study conducted in up to 835 European-ancestry individuals and for cognitive performance from a meta-analysis of GWAS including 257,841 European-ancestry individuals. We performed Mendelian randomization (MR) analyses to test the effect of randomly allocated variation in 154 genetically predicted CSF protein levels on cognitive performance. Findings were validated by performing colocalization analyses and considering cognition-related phenotypes. RESULTS Genetically predicted C1-esterase inhibitor levels in the CSF were associated with a better cognitive performance (SD units of cognitive performance per 1 log-relative fluorescence unit (RFU): 0.23, 95% confidence interval: 0.12 to 0.35, p = 7.91 × 10-5), while tyrosine-protein kinase receptor Tie-1 (sTie-1) levels were associated with a worse cognitive performance (-0.43, -0.62 to -0.23, p = 2.08 × 10-5). These findings were supported by colocalization analyses and by concordant effects on distinct cognition-related and brain-volume measures. CONCLUSIONS Human genetics supports a role for the C1-esterase inhibitor and sTie-1 in cognitive performance.
Collapse
Affiliation(s)
- Loukas Zagkos
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2BX, UK; (P.E.); (A.D.); (I.T.); (D.G.)
| | - Marie-Joe Dib
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Héléne T. Cronjé
- Department of Public Health, Section of Epidemiology, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2BX, UK; (P.E.); (A.D.); (I.T.); (D.G.)
- UK Dementia Research Institute at Imperial College London, Hammersmith Hospital, London W1T 7NF, UK
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2BX, UK; (P.E.); (A.D.); (I.T.); (D.G.)
- UK Dementia Research Institute at Imperial College London, Hammersmith Hospital, London W1T 7NF, UK
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2BX, UK; (P.E.); (A.D.); (I.T.); (D.G.)
- UK Dementia Research Institute at Imperial College London, Hammersmith Hospital, London W1T 7NF, UK
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London SW7 2AZ, UK
- Centre for Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2BX, UK; (P.E.); (A.D.); (I.T.); (D.G.)
| | - Iyas Daghlas
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA;
| |
Collapse
|
3
|
Activation of Sonic Hedgehog Signaling Promotes Differentiation of Cortical Layer 4 Neurons via Regulation of Their Cell Positioning. J Dev Biol 2022; 10:jdb10040050. [PMID: 36547472 PMCID: PMC9787542 DOI: 10.3390/jdb10040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Neuronal subtypes in the mammalian cerebral cortex are determined by both intrinsic and extrinsic mechanisms during development. However, the extrinsic cues that are involved in this process remain largely unknown. Here, we investigated the role of sonic hedgehog (Shh) in glutamatergic cortical subtype specification. We found that E14.5-born, but not E15.5-born, neurons with elevated Shh expression frequently differentiated into layer 4 subtypes as judged by the cell positioning and molecular identity. We further found that this effect was achieved indirectly through the regulation of cell positioning rather than the direct activation of layer 4 differentiation programs. Together, we provided evidence that Shh, an extrinsic factor, plays an important role in the specification of cortical superficial layer subtypes.
Collapse
|
4
|
Laham BJ, Gould E. How Stress Influences the Dynamic Plasticity of the Brain’s Extracellular Matrix. Front Cell Neurosci 2022; 15:814287. [PMID: 35145379 PMCID: PMC8821883 DOI: 10.3389/fncel.2021.814287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Diffuse and structured extracellular matrix (ECM) comprise ∼20% of the brain’s volume and play important roles in development and adult plasticity. Perineuronal nets (PNNs), specialized ECM structures that surround certain types of neurons in the brain, emerge during the postnatal period, making their development and maintenance potentially sensitive to experience. Recent studies have shown that stress affects diffuse ECM as well as PNNs, and that such effects are dependent on life stage and brain region. Given that the ECM participates in synaptic plasticity, the generation of neuronal oscillations, and synchronous firing across brain regions, all of which have been linked to cognition and emotional regulation, ECM components may be candidate therapeutic targets for stress-induced neuropsychiatric disease. This review considers the influence of stress over diffuse and structured ECM during postnatal life with a focus on functional outcomes and the potential for translational relevance.
Collapse
|
5
|
Liu Y, Wang Y, Yuan W, Dong F, Zhen F, Liu J, Yang L, Qu X, Yao R. Reelin promotes oligodendrocyte precursors migration via the Wnt/β-catenin signaling pathway. Neurol Res 2021; 43:543-552. [PMID: 33616025 DOI: 10.1080/01616412.2021.1888604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
Objectives: The extracellular matrix glycoprotein Reelin plays an important role in the development of the central nervous system and is involved in neurogenesis, neuronal polarization and migration. Although it has been reported that Reelin and its receptor are expressed in oligodendrocyte precursors (OPCs), the main functions and possible mechanism of Reelin in OPCs remain unclear.Methods: In this study, immunofluorescence staining was used to detect the expressions of A2B5, PDGFRα, Reelin, VLDLR and Dab1 in OPCs. The expression of p-Dab1 in OPCs which was treated with Reelin at different concentrations was assayed by western blot. Effects of Reelin on the proliferation of OPCs was measured by EdU and CCK-8. Annexin V-FITC/PI assayed the effect of Reelin on the apoptosis of OPCs. Effects of Reelin on the migration ability of OPCs were detected by the scratch test and transwell experiments. Immunoblotting was used to measure the activation of Wnt/β-catenin signaling with Reelin, while transwell experiments were performed to verify the migration of OPCs under the activation of Wnt/β-catenin signaling.Results: Results showed that the receptor of Reelin, very-low-density lipoprotein receptor (VLDLR), and its adaptor protein, Dab1, are highly expressed in A2B5/PDGFRα double-positive OPCs. Recombinant Reelin protein promoted OPCs migration in vitro but had no obvious effects on proliferation or apoptosis. Reelin also promoted the phosphorylation of Dab1 and increased the expression of β-catenin in OPCs. WIKI4, an inhibitor of Wnt/β-catenin signaling, suppressed the migration of OPCs induced by Reelin.Conclusion: The present study indicated that Reelin promotes OPCs migration via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yaping Liu
- Laboratory of National Experimental Teaching and Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| | - Yuanyuan Wang
- Pediatrics, Nanjing Tongren Hospital, Nanjing, Jiangsu, PRC
| | - Wen Yuan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| | - Fuxing Dong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| | - Fei Zhen
- Department of Pathology, Hongze District People's Hospital, Huai 'an, Jiangsu, PRC
| | - Jing Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| | - Lihua Yang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| | - Xuebin Qu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| |
Collapse
|
6
|
Li Z, Jin Y, Zou Q, Shi X, Wu Q, Lin Z, He Q, Huang G, Qi S. Integrated genomic and transcriptomic analysis suggests KRT18 mutation and MTAP are key genetic alterations related to the prognosis between astrocytoma and glioblastoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:713. [PMID: 33987411 PMCID: PMC8106028 DOI: 10.21037/atm-21-1317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Astrocytoma and glioblastoma (GBM) are the two main subtypes of glioma, with the 2016 World Health Organization Classification of Tumors of the Central Nervous System (CNS WHO) classifying them into different grades. GBM is the most malignant among all CNS tumors with a 5-year survival rate of less than 5%. Although the prognosis of patients with astrocytoma is better than that of GBM in general, patients with anaplastic astrocytoma (AA) and isocitrate dehydrogenase (IDH) wild type have a similar prognosis as GBM and entail a high risk of progression. Exploring the molecular driving force behind the malignant phenotype of astrocytoma and GBM will help explain the diversity of glioma and discover new drug targets. Methods We enrolled 12 patients with astrocytoma and 12 patients with GBM and performed whole-exome sequencing (WES) and RNA sequencing analysis on tumor samples from the patients. Results We found that the somatic mutation of KRT18, which is associated with cell apoptosis and adhesion by interacting with receptor 1-associated protein (TRADD) and pinin, was significantly enriched in astrocytoma, but rare in GBM. Copy number loss of MTAP, which is closely related to a poor prognosis of glioma, was found to be significantly enriched in GBM. In addition, different somatic copy number alteration (SCNA), gene expression, and immune cell infiltration patterns between astrocytoma and GBM were found. Conclusions This study revealed the distinct characteristics of astrocytoma and GBM at the DNA and RNA level. Somatic mutation of KRT18 and copy number loss of MTAP, two key genetic alterative genes in astrocytoma and GBM, have the potential to become therapeutic targets in glioma.
Collapse
Affiliation(s)
- Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yinghui Jin
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingping Zou
- GenomiCare Biotechnology (Shanghai) Co., Ltd., Shanghai, China
| | - Xiaofeng Shi
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Qianchao Wu
- GenomiCare Biotechnology (Shanghai) Co., Ltd., Shanghai, China
| | - Zhiying Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qun He
- GenomiCare Biotechnology (Shanghai) Co., Ltd., Shanghai, China
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Abstract
Cerebellar hypoplasia (CH) refers to a cerebellum of reduced volume with preserved shape. CH is associated with a broad heterogeneity in neuroradiologic features, etiologies, clinical characteristics, and neurodevelopmental outcomes, challenging physicians evaluating children with CH. Traditionally, neuroimaging has been a key tool to categorize CH based on the pattern of cerebellar involvement (e.g., hypoplasia of cerebellar vermis only vs. hypoplasia of both the vermis and cerebellar hemispheres) and the presence of associated brainstem and cerebral anomalies. With the advances in genetic technologies of the recent decade, many novel CH genes have been identified, and consequently, a constant updating of the literature and revision of the classification of cerebellar malformations are needed. Here, we review the current literature on CH. We propose a systematic approach to recognize specific neuroimaging patterns associated with CH, based on whether the CH is isolated or associated with posterior cerebrospinal fluid anomalies, specific brainstem or cerebellar malformations, brainstem hypoplasia with or without cortical migration anomalies, or dysplasia. The CH radiologic pattern and clinical assessment will allow the clinician to guide his investigations and genetic testing, give a more precise diagnosis, screen for associated comorbidities, and improve prognostication of associated neurodevelopmental outcomes.
Collapse
|
8
|
Nakanishi K, Niida H, Tabata H, Ito T, Hori Y, Hattori M, Johmura Y, Yamada C, Ueda T, Takeuchi K, Yamada K, Nagata KI, Wakamatsu N, Kishi M, Pan YA, Ugawa S, Shimada S, Sanes JR, Higashi Y, Nakanishi M. Isozyme-Specific Role of SAD-A in Neuronal Migration During Development of Cerebral Cortex. Cereb Cortex 2020; 29:3738-3751. [PMID: 30307479 DOI: 10.1093/cercor/bhy253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/18/2018] [Indexed: 11/13/2022] Open
Abstract
SAD kinases regulate presynaptic vesicle clustering and neuronal polarization. A previous report demonstrated that Sada-/- and Sadb-/- double-mutant mice showed perinatal lethality with a severe defect in axon/dendrite differentiation, but their single mutants did not. These results indicated that they were functionally redundant. Surprisingly, we show that on a C57BL/6N background, SAD-A is essential for cortical development whereas SAD-B is dispensable. Sada-/- mice died within a few days after birth. Their cortical lamination pattern was disorganized and radial migration of cortical neurons was perturbed. Birth date analyses with BrdU and in utero electroporation using pCAG-EGFP vector showed a delayed migration of cortical neurons to the pial surface in Sada-/- mice. Time-lapse imaging of these mice confirmed slow migration velocity in the cortical plate. While the neurites of hippocampal neurons in Sada-/- mice could ultimately differentiate in culture to form axons and dendrites, the average length of their axons was shorter than that of the wild type. Thus, analysis on a different genetic background than that used initially revealed a nonredundant role for SAD-A in neuronal migration and differentiation.
Collapse
Affiliation(s)
- Keiko Nakanishi
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.,Department of Pediatrics, Central Hospital, Aichi Human Service Center, Kasugai, Japan
| | - Hiroyuki Niida
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Tsuyoshi Ito
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuki Hori
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Madoka Hattori
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshikazu Johmura
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Division of Cancer Cell Biology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chisato Yamada
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Takashi Ueda
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kosei Takeuchi
- Department of Medical Biology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kenichiro Yamada
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Nobuaki Wakamatsu
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Masashi Kishi
- Neuroscience Laboratory, Research Institute, Nozaki Tokushukai Hospital, Daito, Osaka, Japan
| | - Y Albert Pan
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.,Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - Shinya Ugawa
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shoichi Shimada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yujiro Higashi
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Makoto Nakanishi
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Division of Cancer Cell Biology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Hansen AH, Hippenmeyer S. Non-Cell-Autonomous Mechanisms in Radial Projection Neuron Migration in the Developing Cerebral Cortex. Front Cell Dev Biol 2020; 8:574382. [PMID: 33102480 PMCID: PMC7545535 DOI: 10.3389/fcell.2020.574382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 01/30/2023] Open
Abstract
Concerted radial migration of newly born cortical projection neurons, from their birthplace to their final target lamina, is a key step in the assembly of the cerebral cortex. The cellular and molecular mechanisms regulating the specific sequential steps of radial neuronal migration in vivo are however still unclear, let alone the effects and interactions with the extracellular environment. In any in vivo context, cells will always be exposed to a complex extracellular environment consisting of (1) secreted factors acting as potential signaling cues, (2) the extracellular matrix, and (3) other cells providing cell–cell interaction through receptors and/or direct physical stimuli. Most studies so far have described and focused mainly on intrinsic cell-autonomous gene functions in neuronal migration but there is accumulating evidence that non-cell-autonomous-, local-, systemic-, and/or whole tissue-wide effects substantially contribute to the regulation of radial neuronal migration. These non-cell-autonomous effects may differentially affect cortical neuron migration in distinct cellular environments. However, the cellular and molecular natures of such non-cell-autonomous mechanisms are mostly unknown. Furthermore, physical forces due to collective migration and/or community effects (i.e., interactions with surrounding cells) may play important roles in neocortical projection neuron migration. In this concise review, we first outline distinct models of non-cell-autonomous interactions of cortical projection neurons along their radial migration trajectory during development. We then summarize experimental assays and platforms that can be utilized to visualize and potentially probe non-cell-autonomous mechanisms. Lastly, we define key questions to address in the future.
Collapse
Affiliation(s)
- Andi H Hansen
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
10
|
Iwashita M, Nomura T, Suetsugu T, Matsuzaki F, Kojima S, Kosodo Y. Comparative Analysis of Brain Stiffness Among Amniotes Using Glyoxal Fixation and Atomic Force Microscopy. Front Cell Dev Biol 2020; 8:574619. [PMID: 33043008 PMCID: PMC7517470 DOI: 10.3389/fcell.2020.574619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Brain structures are diverse among species despite the essential molecular machinery of neurogenesis being common. Recent studies have indicated that differences in the mechanical properties of tissue may result in the dynamic deformation of brain structure, such as folding. However, little is known about the correlation between mechanical properties and species-specific brain structures. To address this point, a comparative analysis of mechanical properties using several animals is required. For a systematic measurement of the brain stiffness of remotely maintained animals, we developed a novel strategy of tissue-stiffness measurement using glyoxal as a fixative combined with atomic force microscopy. A comparison of embryonic and juvenile mouse and songbird brain tissue revealed that glyoxal fixation can maintain brain structure as well as paraformaldehyde (PFA) fixation. Notably, brain tissue fixed by glyoxal remained much softer than PFA-fixed brains, and it can maintain the relative stiffness profiles of various brain regions. Based on this method, we found that the homologous brain regions between mice and songbirds exhibited different stiffness patterns. We also measured brain stiffness in other amniotes (chick, turtle, and ferret) following glyoxal fixation. We found stage-dependent and species-specific stiffness in pallia among amniotes. The embryonic chick and matured turtle pallia showed gradually increasing stiffness along the apico-basal tissue axis, the lowest region at the most apical region, while the ferret pallium exhibited a catenary pattern, that is, higher in the ventricular zone, the inner subventricular zone, and the cortical plate and the lowest in the outer subventricular zone. These results indicate that species-specific microenvironments with distinct mechanical properties emerging during development might contribute to the formation of brain structures with unique morphology.
Collapse
Affiliation(s)
| | - Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taeko Suetsugu
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | | | | | | |
Collapse
|
11
|
Bame M, McInnis MG, O'Shea KS. MicroRNA Alterations in Induced Pluripotent Stem Cell-Derived Neurons from Bipolar Disorder Patients: Pathways Involved in Neuronal Differentiation, Axon Guidance, and Plasticity. Stem Cells Dev 2020; 29:1145-1159. [PMID: 32438891 PMCID: PMC7469698 DOI: 10.1089/scd.2020.0046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Bipolar disorder (BP) is a complex psychiatric condition characterized by severe fluctuations in mood for which underlying pathological mechanisms remain unclear. Family and twin studies have identified a hereditary component to the disorder, but a single causative gene (or set of genes) has not been identified. MicroRNAs (miRNAs) are small, noncoding RNAs ∼20 nucleotides in length, that are responsible for the posttranslational regulation of multiple genes. They have been shown to play important roles in neural development as well as in the adult brain, and several miRNAs have been reported to be dysregulated in postmortem brain tissue isolated from bipolar patients. Because there are no viable cellular models to study BP, we have taken advantage of the recent discovery that somatic cells can be reprogrammed to pluripotency then directed to form the full complement of neural cells. Analysis of RNAs extracted from Control and BP patient-derived neurons identified 58 miRNAs that were differentially expressed between the two groups. Using quantitative polymerase chain reaction we validated six miRNAs that were elevated and two miRNAs that were expressed at lower levels in BP-derived neurons. Analysis of the targets of the miRNAs indicate that they may regulate a number of cellular pathways, including axon guidance, Mapk, Ras, Hippo, Neurotrophin, and Wnt signaling. Many are involved in processes previously implicated in BP, such as cell migration, axon guidance, dendrite and synapse development, and function. We have validated targets of several different miRNAs, including AXIN2, BDNF, RELN, and ANK3 as direct targets of differentially expressed miRNAs using luciferase assays. Identification of pathways altered in patient-derived neurons suggests that disruption of these regulatory networks that may contribute to the complex phenotypes in BP.
Collapse
Affiliation(s)
- Monica Bame
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Melvin G. McInnis
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - K. Sue O'Shea
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Li X, Fan W, Yao A, Song H, Ge Y, Yan M, Shan Y, Zhang C, Li P, Jia L. Downregulation of reelin predicts poor prognosis for glioma. Biomark Med 2020; 14:651-663. [PMID: 32613843 DOI: 10.2217/bmm-2019-0609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: In the present study, we studied the relationship between RELN and prognosis in glioma. Materials & methods: Expression profiles and methylation data of RELN were obtained from bioinformatic datasets. Correlations between RELN and clinicopathological features and overall survival were respectively assessed using chi-square test and Kaplan-Meier analysis. Results: RELN was downregulated in glioma, and its downregulation correlated well with glioma malignancy and overall survival. Meanwhile, hypermethylation of RELN was significantly correlated with low RELN expression. Additionally, gene set enrichment analysis demonstrated that low expression of RELN correlated with many key cancer pathways, possibly highlighting the importance of RELN in carcinogenesis of brain. Conclusion: RELN may serve as a potential prognostic marker and promising target molecule for new therapy of glioma.
Collapse
Affiliation(s)
- Xueli Li
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wange Fan
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Anhui Yao
- Department of Neurosurgery, The General Hospital of PLA, Beijing, China.,Department of Neurosurgery, 988th Hospital of Chinese People's Liberation Army, Zhengzhou, Henan Province, PR China
| | - Huiling Song
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yunxiao Ge
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengyao Yan
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yubo Shan
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chujie Zhang
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Pu Li
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Liyun Jia
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
13
|
Hirota Y, Nakajima K. VLDLR is not essential for reelin-induced neuronal aggregation but suppresses neuronal invasion into the marginal zone. Development 2020; 147:147/12/dev189936. [PMID: 32540847 DOI: 10.1242/dev.189936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/26/2020] [Indexed: 11/20/2022]
Abstract
In the developing neocortex, radially migrating neurons stop migration and form layers beneath the marginal zone (MZ). Reelin plays essential roles in these processes via its receptors, apolipoprotein E receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR). Although we recently reported that reelin causes neuronal aggregation via ApoER2, which is thought to be important for the subsequent layer formation, it remains unknown what effect reelin exerts via the VLDLR. Here, we found that ectopic reelin overexpression in the Vldlr-mutant mouse cortex causes neuronal aggregation, but without an MZ-like cell-sparse central region that is formed when reelin is overexpressed in the normal cortex. We also found that both the early-born and late-born Vldlr-deficient neurons invade the MZ and exhibit impaired dendrite outgrowth from before birth. Rescue experiments indicate that VLDLR suppresses neuronal invasion into the MZ via a cell-autonomous mechanism, possibly mediated by Rap1, integrin and Akt. These results suggest that VLDLR is not a prerequisite for reelin-induced neuronal aggregation and that the major role of VLDLR is to suppress neuronal invasion into the MZ during neocortical development.
Collapse
Affiliation(s)
- Yuki Hirota
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
14
|
Subarachnoid cerebrospinal fluid is essential for normal development of the cerebral cortex. Semin Cell Dev Biol 2019; 102:28-39. [PMID: 31786096 DOI: 10.1016/j.semcdb.2019.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
The central nervous system develops around a fluid filled space which persists in the adult within the ventricles, spinal canal and around the outside of the brain and spinal cord. Ventricular fluid is known to act as a growth medium and stimulator of proliferation and differentiation to neural stem cells but the role of CSF in the subarachnoid space has not been fully investigated except for its role in the recently described "glymphatic" system. Fundamental changes occur in the control and coordination of CNS development upon completion of brain stem and spinal cord development and initiation of cortical development. These include changes in gene expression, changes in fluid and fluid source from neural tube fluid to cerebrospinal fluid (CSF), changes in fluid volume, composition and fluid flow pathway, with exit of high volume CSF into the subarachnoid space and the critical need for fluid drainage. We used a number of experimental approaches to test a predicted critical role for CSF in development of the cerebral cortex in rodents and humans. Data from fetuses affected by spina bifida and/or hydrocephalus are correlated with experimental evidence on proliferation and migration of cortical cells from the germinal epithelium in rodent neural tube defects, as well as embryonic brain slice experiments demonstrating a requirement for CSF to contact both ventricular and pial surfaces of the developing cortex for normal proliferation and migration. We discuss the possibility that complications with the fluid system are likely to underlie developmental disorders affecting the cerebral cortex as well as function and integrity of the cortex throughout life.
Collapse
|
15
|
Shin M, Kitazawa A, Yoshinaga S, Hayashi K, Hirata Y, Dehay C, Kubo K, Nakajima K. Both excitatory and inhibitory neurons transiently form clusters at the outermost region of the developing mammalian cerebral neocortex. J Comp Neurol 2019; 527:1577-1597. [PMID: 30636008 DOI: 10.1002/cne.24634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Minkyung Shin
- Department of AnatomyKeio University School of Medicine Tokyo Japan
| | - Ayako Kitazawa
- Department of AnatomyKeio University School of Medicine Tokyo Japan
| | | | - Kanehiro Hayashi
- Department of AnatomyKeio University School of Medicine Tokyo Japan
| | - Yukio Hirata
- Department of AnatomyKeio University School of Medicine Tokyo Japan
| | - Colette Dehay
- Inserm, Stem Cell and Brain Research Institute U1208Université de Lyon, Université Claude Bernard Lyon 1 Bron France
| | - Ken‐ichiro Kubo
- Department of AnatomyKeio University School of Medicine Tokyo Japan
| | | |
Collapse
|
16
|
Ardah MT, Parween S, Varghese DS, Emerald BS, Ansari SA. Saturated fatty acid alters embryonic cortical neurogenesis through modulation of gene expression in neural stem cells. J Nutr Biochem 2018; 62:230-246. [DOI: 10.1016/j.jnutbio.2018.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/30/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022]
|
17
|
Prume M, Rollenhagen A, Lübke JHR. Structural and Synaptic Organization of the Adult Reeler Mouse Somatosensory Neocortex: A Comparative Fine-Scale Electron Microscopic Study of Reeler With Wild Type Mice. Front Neuroanat 2018; 12:80. [PMID: 30344480 PMCID: PMC6182073 DOI: 10.3389/fnana.2018.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/13/2018] [Indexed: 11/17/2022] Open
Abstract
The reeler mouse has been widely used to study various aspects of cortico- and synaptogenesis, but also as a model for several neurological and neurodegenerative disorders. In contrast to development, comparably little is known about the neuronal composition and synaptic organization of the adult reeler mouse neocortex, in particular at the fine-scale electron microscopic level, which was investigated here and compared with wild type (WT) mice. In this study, the “barrel field” of the adult reeler and WT mouse somatosensory neocortex is used as a model system. In reeler the characteristic six-layered structure is no longer existent, but replaced by a conglomerate of neurons organized in homologous clusters with maintained morphological identity and heterologous clusters between neurons and/or oligodendrocytes. These clusters are loosely scattered throughout the neocortical mass between the pial surface and the white matter. In contrast to WT, layer 1 (L1), if existent, seems to be diluted into the volume of the neocortical mass with no clear boundary. L1 also contains clusters of migrated or persistent neurons, oligodendro- and astrocytes. As in WT, myelinated and unmyelinated axons were found throughout the neocortical mass, but in reeler they were organized in massive fiber bundles with a high fiber packing density. A prominent and massive thalamocortical projection traverses through the neocortical mass, always accompanied by numerous “active” oligodendrocytes whereas in WT no such projections were found and “silent” oligodendrocytes were restricted to the white matter. In the adult reeler mouse neocortex, synaptic boutons terminate on somata, dendritic shafts, spines of different types and axon initial segments with no signs of structural distortion and/or degeneration, indicating a “normal” postsynaptic innervation pattern of neurons. In addition, synaptic complexes between boutons and their postsynaptic targets are tightly ensheathed by fine astrocytic processes, as in WT. In conclusion, the neuronal clusters may represent a possible alternative organization principle in adult reeler mice “replacing” layer formation. If so, these homologous clusters may represent individual “functional units” where neurons are highly interconnected and may function as the equivalent of neurons integrated in a cortical layer. The structural composition and postsynaptic innervation pattern of neurons by synaptic boutons provide the structural basis for the establishment of a functional although altered cortical network in the adult reeler mouse.
Collapse
Affiliation(s)
- Miriam Prume
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany
| | - Astrid Rollenhagen
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany
| | - Joachim H R Lübke
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH University Hospital Aachen, Aachen, Germany.,JARA Translational Brain Medicine, Jülich, Germany
| |
Collapse
|
18
|
Hirota Y, Kubo KI, Fujino T, Yamamoto TT, Nakajima K. ApoER2 Controls Not Only Neuronal Migration in the Intermediate Zone But Also Termination of Migration in the Developing Cerebral Cortex. Cereb Cortex 2018; 28:223-235. [PMID: 27909010 DOI: 10.1093/cercor/bhw369] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/06/2016] [Indexed: 12/20/2022] Open
Abstract
Neuronal migration contributes to the establishment of mammalian brain. The extracellular protein Reelin sends signals to various downstream molecules by binding to its receptors, the apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor and exerts essential roles in the neuronal migration and formation of the layered neocortex. However, the cellular and molecular functions of Reelin signaling in the cortical development are not yet fully understood. Here, to gain insight into the role of Reelin signaling during cortical development, we examined the migratory behavior of Apoer2-deficient neurons in the developing brain. Stage-specific labeling of newborn neurons revealed that the neurons ectopically invaded the marginal zone (MZ) and that neuronal migration of both early- and late-born neurons was disrupted in the intermediate zone (IZ) in the Apoer2 KO mice. Rescue experiments showed that ApoER2 functions both in cell-autonomous and noncell-autonomous manners, that Rap1, integrin, and Akt are involved in the termination of migration beneath the MZ, and that Akt also controls neuronal migration in the IZ downstream of ApoER2. These data indicate that ApoER2 controls multiple processes in neuronal migration, including the early stage of radial migration and termination of migration beneath the MZ in the developing neocortex.
Collapse
Affiliation(s)
- Yuki Hirota
- Department of Anatomy, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Takahiro Fujino
- Department of Bioscience, Integrated Center for Sciences (INCS), Ehime University Graduate School of Medicine, Ehime791-0295, Japan
| | - Tokuo T Yamamoto
- Department of Metabolism, Institute of Development, Aging and Cancer, Tohoku University, Sendai980-8575, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo160-8582, Japan
| |
Collapse
|
19
|
Agarwal P, Cole LK, Chandrakumar A, Hauff KD, Ravandi A, Dolinsky VW, Hatch GM. Phosphokinome Analysis of Barth Syndrome Lymphoblasts Identify Novel Targets in the Pathophysiology of the Disease. Int J Mol Sci 2018; 19:ijms19072026. [PMID: 30002286 PMCID: PMC6073761 DOI: 10.3390/ijms19072026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/25/2022] Open
Abstract
Barth Syndrome (BTHS) is a rare X-linked genetic disease in which the specific biochemical deficit is a reduction in the mitochondrial phospholipid cardiolipin (CL) as a result of a mutation in the CL transacylase tafazzin. We compared the phosphokinome profile in Epstein-Barr-virus-transformed lymphoblasts prepared from a BTHS patient with that of an age-matched control individual. As expected, mass spectrometry analysis revealed a significant (>90%) reduction in CL in BTHS lymphoblasts compared to controls. In addition, increased oxidized phosphatidylcholine (oxPC) and phosphatidylethanolamine (PE) levels were observed in BTHS lymphoblasts compared to control. Given the broad shifts in metabolism associated with BTHS, we hypothesized that marked differences in posttranslational modifications such as phosphorylation would be present in the lymphoblast cells of a BTHS patient. Phosphokinome analysis revealed striking differences in the phosphorylation levels of phosphoproteins in BTHS lymphoblasts compared to control cells. Some phosphorylated proteins, for example, adenosine monophosphate kinase, have been previously validated as bonafide modified phosphorylation targets observed in tafazzin deficiency or under conditions of reduced cellular CL. Thus, we report multiple novel phosphokinome targets in BTHS lymphoblasts and hypothesize that alteration in the phosphokinome profile may provide insight into the pathophysiology of BTHS and potential therapeutic targets.
Collapse
Affiliation(s)
- Prasoon Agarwal
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Laura K Cole
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Abin Chandrakumar
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Clinical Research Unit, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Kristin D Hauff
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| | - Amir Ravandi
- Physiology and Pathophysiology, University of Manitoba, St. Boniface Hospital Research Center, Winnipeg, MB R2H 2A6, Canada.
| | - Vernon W Dolinsky
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Center for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
20
|
Lawrenson ID, Krebs DL, Linossi EM, Zhang JG, McLennan TJ, Collin C, McRae HM, Kolesnik TB, Koh K, Britto JM, Kueh AJ, Sheikh BN, El-Saafin F, Nicola NA, Tan SS, Babon JJ, Nicholson SE, Alexander WS, Thomas T, Voss AK. Cortical Layer Inversion and Deregulation of Reelin Signaling in the Absence of SOCS6 and SOCS7. Cereb Cortex 2018; 27:576-588. [PMID: 26503265 DOI: 10.1093/cercor/bhv253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutations of the reelin gene cause severe defects in cerebral cortex development and profound intellectual impairment. While many aspects of the reelin signaling pathway have been identified, the molecular and ultimate cellular consequences of reelin signaling remain unknown. Specifically, it is unclear if termination of reelin signaling is as important for normal cortical neuron migration as activation of reelin signaling. Using mice that are single or double deficient, we discovered that combined loss of the suppressors of cytokine signaling, SOCS6 and SOCS7, recapitulated the cortical layer inversion seen in mice lacking reelin and led to a dramatic increase in the reelin signaling molecule disabled (DAB1) in the cortex. The SRC homology domains of SOCS6 and SOCS7 bound DAB1 ex vivo. Mutation of DAB1 greatly diminished binding and protected from degradation by SOCS6. Phosphorylated DAB1 was elevated in cortical neurons in the absence of SOCS6 and SOCS7. Thus, constitutive activation of reelin signaling was observed to be equally detrimental as lack of activation. We hypothesize that, by terminating reelin signaling, SOCS6 and SOCS7 may allow new cycles of reelin signaling to occur and that these may be essential for cortical neuron migration.
Collapse
Affiliation(s)
- Isobel D Lawrenson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
| | - Danielle L Krebs
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia.,Current address: Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Edmond M Linossi
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Jian-Guo Zhang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Tamara J McLennan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
| | - Caitlin Collin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
| | - Helen M McRae
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Tatiana B Kolesnik
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
| | - Katrina Koh
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Joanne M Britto
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
| | - Andrew J Kueh
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Bilal N Sheikh
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Farrah El-Saafin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Nicos A Nicola
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Seong-Seng Tan
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sandra E Nicholson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Warren S Alexander
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Tim Thomas
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anne K Voss
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
21
|
Schulze M, Violonchi C, Swoboda S, Welz T, Kerkhoff E, Hoja S, Brüggemann S, Simbürger J, Reinders J, Riemenschneider MJ. RELN signaling modulates glioblastoma growth and substrate-dependent migration. Brain Pathol 2018; 28:695-709. [PMID: 29222813 DOI: 10.1111/bpa.12584] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) represents the most common and most malignant type of primary brain tumor and significantly contributes to cancer morbidity and mortality. Invasion into the healthy brain parenchyma is a major feature of glioblastoma aggressiveness. Reelin (RELN) is a large secreted extracellular matrix glycoprotein that regulates neuronal migration and positioning in the developing brain and sustains functionality in the adult brain. We here show that both RELN and its main downstream effector DAB1 are silenced in glioblastoma as compared to non-neoplastic tissue and mRNA expression is inversely correlated with malignancy grade. Furthermore, RELN expression is positively correlated with patient survival in two large, independent clinically annotated datasets. RELN silencing occurs via promoter hypermethylation as shown by both database mining and bisulfite sequencing of the RELN promoter. Consequently, treatment with 5'-Azacytidine and trichostatin A induced RELN expression in vitro. On the functional level, we found RELN to regulate glioblastoma cell migration both in a DAB1 (tyrosine phosphorylation)-dependent and -independent fashion, depending on the substrate provided. Moreover, stimulation of RELN signaling strongly reduced proliferation in glioblastoma cells. This phenotype depends on DAB1 stimulation by RELN, as a mutant that lacks all RELN induced tyrosine phosphorylation sites (DAB1-5F) failed to induce a growth arrest. Proteomic analyzes revealed that these effects are mediated by a reduction in E2F targets and dephosphorylation of ERK1/2. Taken together, our data establish a relevance of RELN signaling in glioblastoma pathology and thereby might unearth novel, yet unrecognized treatment options.
Collapse
Affiliation(s)
- Markus Schulze
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Christ Violonchi
- Department of Neuropathology, Heinrich-Heine University, Düsseldorf, Germany
| | - Stefan Swoboda
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Tobias Welz
- Molecular Cell Biology Laboratory, Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Eugen Kerkhoff
- Molecular Cell Biology Laboratory, Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Sabine Hoja
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Susanne Brüggemann
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Johann Simbürger
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Jörg Reinders
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Markus J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany.,Wilhelm Sander-NeuroOncology Unit, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
22
|
Oishi K, Nakajima K. Subtype Specification of Cerebral Cortical Neurons in Their Immature Stages. Neurochem Res 2017; 43:238-244. [PMID: 29185180 DOI: 10.1007/s11064-017-2441-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
The diversification of neuronal subtypes during corticogenesis is fundamental to the establishment of the complex cortical structure. Although subtype specification has been assumed to occur in neural progenitor cells, increasing evidence has begun to reveal the plasticity of subtype determination in immature neurons. Here, we summarize recent findings regarding the regulation of subtype specification during later periods of neuronal differentiation, such as the post-mitotic and post-migratory stages. We also discuss thalamocortical axons as an extra-cortical cue that provides information on the subtype determination of immature cortical neurons.
Collapse
Affiliation(s)
- Koji Oishi
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
23
|
Hansen AH, Duellberg C, Mieck C, Loose M, Hippenmeyer S. Cell Polarity in Cerebral Cortex Development-Cellular Architecture Shaped by Biochemical Networks. Front Cell Neurosci 2017; 11:176. [PMID: 28701923 PMCID: PMC5487411 DOI: 10.3389/fncel.2017.00176] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/12/2017] [Indexed: 11/15/2022] Open
Abstract
The human cerebral cortex is the seat of our cognitive abilities and composed of an extraordinary number of neurons, organized in six distinct layers. The establishment of specific morphological and physiological features in individual neurons needs to be regulated with high precision. Impairments in the sequential developmental programs instructing corticogenesis lead to alterations in the cortical cytoarchitecture which is thought to represent the major underlying cause for several neurological disorders including neurodevelopmental and psychiatric diseases. In this review article we discuss the role of cell polarity at sequential stages during cortex development. We first provide an overview of morphological cell polarity features in cortical neural stem cells and newly-born postmitotic neurons. We then synthesize a conceptual molecular and biochemical framework how cell polarity is established at the cellular level through a break in symmetry in nascent cortical projection neurons. Lastly we provide a perspective how the molecular mechanisms applying to single cells could be probed and integrated in an in vivo and tissue-wide context.
Collapse
Affiliation(s)
- Andi H Hansen
- Institute of Science and Technology AustriaKlosterneuburg, Austria
| | | | - Christine Mieck
- Institute of Science and Technology AustriaKlosterneuburg, Austria
| | - Martin Loose
- Institute of Science and Technology AustriaKlosterneuburg, Austria
| | | |
Collapse
|
24
|
Khialeeva E, Chou JW, Allen DE, Chiu AM, Bensinger SJ, Carpenter EM. Reelin Deficiency Delays Mammary Tumor Growth and Metastatic Progression. J Mammary Gland Biol Neoplasia 2017; 22:59-69. [PMID: 28124184 PMCID: PMC5319436 DOI: 10.1007/s10911-017-9373-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Reelin is a regulator of cell migration in the nervous system, and has other functions in the development of a number of non-neuronal tissues. In addition, alterations in reelin expression levels have been reported in breast, pancreatic, liver, gastric, and other cancers. Reelin is normally expressed in mammary gland stromal cells, but whether stromal reelin contributes to breast cancer progression is unknown. Herein, we used a syngeneic mouse mammary tumor transplantation model to examine the impact of host-derived reelin on breast cancer progression. We found that transplanted syngeneic tumors grew more slowly in reelin-deficient (rl Orl -/- ) mice and had delayed metastatic colonization of the lungs. Immunohistochemistry of primary tumors revealed that tumors grown in rl Orl -/- animals had fewer blood vessels and increased macrophage infiltration. Gene expression studies from tumor tissues indicate that loss of host-derived reelin alters the balance of M1- and M2-associated macrophage markers, suggesting that reelin may influence the polarization of these cells. Consistent with this, rl Orl -/- M1-polarized bone marrow-derived macrophages have heightened levels of the M1-associated cytokines iNOS and IL-6. Based on these observations, we propose a novel function for the reelin protein in breast cancer progression.
Collapse
Affiliation(s)
- Elvira Khialeeva
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States of America.
| | - Joan W. Chou
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States of America.
| | - Denise E. Allen
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, United States of America.
| | - Alec M. Chiu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, United States of America.
| | - Steven J. Bensinger
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, United States of America.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, United States of America
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, United States of America
| | - Ellen M. Carpenter
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States of America.
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, United States of America.
| |
Collapse
|
25
|
Yvone GM, Zhao-Fleming HH, Udeochu JC, Chavez-Martinez CL, Wang A, Hirose-Ikeda M, Phelps PE. Disabled-1 dorsal horn spinal cord neurons co-express Lmx1b and function in nociceptive circuits. Eur J Neurosci 2017; 45:733-747. [PMID: 28083884 DOI: 10.1111/ejn.13520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 12/30/2022]
Abstract
The Reelin-signaling pathway is essential for correct neuronal positioning within the central nervous system. Mutant mice with a deletion of Reelin, its lipoprotein receptors, or its intracellular adaptor protein Disabled-1 (Dab1), exhibit nociceptive abnormalities: thermal (heat) hyperalgesia and reduced mechanical sensitivity. To determine dorsal horn alterations associated with these nociceptive abnormalities, we first characterized the correctly positioned Dab1 neurons in wild-type and mispositioned neurons in Reelin-signaling pathway mutant lumbar spinal cord. Using immunofluorescence, we found that 70% of the numerous Dab1 neurons in Reln+/+ laminae I-II and 67% of those in the lateral reticulated area and lateral spinal nucleus (LSN) co-express the LIM-homeobox transcription factor 1 beta (Lmx1b), an excitatory glutamatergic neuron marker. Evidence of Dab1- and Dab1-Lmx1b neuronal positioning errors was found within the isolectin B4 terminal region of Reln-/- lamina IIinner and in the lateral reticulated area and LSN, where about 50% of the Dab1-Lmx1b neurons are missing. Importantly, Dab1-Lmx1b neurons in laminae I-II and the lateral reticulated area express Fos after noxious thermal or mechanical stimulation and thus participate in these circuits. In another pain relevant locus - the lateral cervical nucleus (LCN), we also found about a 50% loss of Dab1-Lmx1b neurons in Reln-/- mice. We suggest that extensively mispositioned Dab1 projection neurons in the lateral reticulated area, LSN, and LCN and the more subtle positioning errors of Dab1 interneurons in laminae I-II contribute to the abnormalities in pain responses found in Reelin-signaling pathway mutants.
Collapse
Affiliation(s)
- Griselda M Yvone
- Department of Integrative Biology and Physiology, UCLA, Terasaki Life Sciences Building, 610 Charles Young Dr. E, Los Angeles, CA, 90095-7239, USA
| | - Hannah H Zhao-Fleming
- Department of Integrative Biology and Physiology, UCLA, Terasaki Life Sciences Building, 610 Charles Young Dr. E, Los Angeles, CA, 90095-7239, USA
| | - Joe C Udeochu
- Department of Integrative Biology and Physiology, UCLA, Terasaki Life Sciences Building, 610 Charles Young Dr. E, Los Angeles, CA, 90095-7239, USA
| | - Carmine L Chavez-Martinez
- Department of Integrative Biology and Physiology, UCLA, Terasaki Life Sciences Building, 610 Charles Young Dr. E, Los Angeles, CA, 90095-7239, USA
| | - Austin Wang
- Department of Integrative Biology and Physiology, UCLA, Terasaki Life Sciences Building, 610 Charles Young Dr. E, Los Angeles, CA, 90095-7239, USA
| | - Megumi Hirose-Ikeda
- Department of Integrative Biology and Physiology, UCLA, Terasaki Life Sciences Building, 610 Charles Young Dr. E, Los Angeles, CA, 90095-7239, USA
| | - Patricia E Phelps
- Department of Integrative Biology and Physiology, UCLA, Terasaki Life Sciences Building, 610 Charles Young Dr. E, Los Angeles, CA, 90095-7239, USA
| |
Collapse
|
26
|
|
27
|
|
28
|
Ishii K, Kubo KI, Nakajima K. Reelin and Neuropsychiatric Disorders. Front Cell Neurosci 2016; 10:229. [PMID: 27803648 PMCID: PMC5067484 DOI: 10.3389/fncel.2016.00229] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022] Open
Abstract
Proper neuronal migration and laminar formation during corticogenesis is essential for normal brain function. Disruption of these developmental processes is thought to be involved in the pathogenesis of some neuropsychiatric conditions. Especially, Reelin, a glycoprotein mainly secreted by the Cajal-Retzius cells and a subpopulation of GABAergic interneurons, has been shown to play a critical role, both during embryonic and postnatal periods. Indeed, animal studies have clearly revealed that Reelin is an essential molecule for proper migration of cortical neurons and finally regulates the cell positioning in the cortex during embryonic and early postnatal stages; by contrast, Reelin signaling is closely involved in synaptic function in adulthood. In humans, genetic studies have shown that the reelin gene (RELN) is associated with a number of psychiatric diseases, including Schizophrenia (SZ), bipolar disorder (BP) and autistic spectrum disorder. Indeed, Reln haploinsufficiency has been shown to cause cognitive impairment in rodents, suggesting the expression level of the Reelin protein is closely related to the higher brain functions. However, the molecular abnormalities in the Reelin pathway involved in the pathogenesis of psychiatric disorders are not yet fully understood. In this article, we review the current progress in the understanding of the Reelin functions that could be related to the pathogenesis of psychiatric disorders. Furthermore, we discuss the basis for selecting Reelin and molecules in its downstream signaling pathway as potential therapeutic targets for psychiatric illnesses.
Collapse
Affiliation(s)
- Kazuhiro Ishii
- Department of Anatomy, Keio University School of Medicine Tokyo, Japan
| | - Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine Tokyo, Japan
| |
Collapse
|
29
|
Han KS, Raven PA, Frees S, Gust K, Fazli L, Ettinger S, Hong SJ, Kollmannsberger C, Gleave ME, So AI. Cellular Adaptation to VEGF-Targeted Antiangiogenic Therapy Induces Evasive Resistance by Overproduction of Alternative Endothelial Cell Growth Factors in Renal Cell Carcinoma. Neoplasia 2016; 17:805-16. [PMID: 26678908 PMCID: PMC4681895 DOI: 10.1016/j.neo.2015.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 11/29/2022] Open
Abstract
Vascular endothelial growth factor (VEGF)–targeted antiangiogenic therapy significantly inhibits the growth of clear cell renal cell carcinoma (RCC). Eventually, therapy resistance develops in even the most responsive cases, but the mechanisms of resistance remain unclear. Herein, we developed two tumor models derived from an RCC cell line by conditioning the parental cells to two different stresses caused by VEGF-targeted therapy (sunitinib exposure and hypoxia) to investigate the mechanism of resistance to such therapy in RCC. Sunitinib-conditioned Caki-1 cells in vitro did not show resistance to sunitinib compared with parental cells, but when tested in vivo, these cells appeared to be highly resistant to sunitinib treatment. Hypoxia-conditioned Caki-1 cells are more resistant to hypoxia and have increased vascularity due to the upregulation of VEGF production; however, they did not develop sunitinib resistance either in vitro or in vivo. Human endothelial cells were more proliferative and showed increased tube formation in conditioned media from sunitinib-conditioned Caki-1 cells compared with parental cells. Gene expression profiling using RNA microarrays revealed that several genes related to tissue development and remodeling, including the development and migration of endothelial cells, were upregulated in sunitinib-conditioned Caki-1 cells compared with parental and hypoxia-conditioned cells. These findings suggest that evasive resistance to VEGF-targeted therapy is acquired by activation of VEGF-independent angiogenesis pathways induced through interactions with VEGF-targeted drugs, but not by hypoxia. These results emphasize that increased inhibition of tumor angiogenesis is required to delay the development of resistance to antiangiogenic therapy and maintain the therapeutic response in RCC.
Collapse
Affiliation(s)
- Kyung Seok Han
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | - Kilian Gust
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | | | - Sung Joon Hong
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | - Alan I So
- Vancouver Prostate Centre, Vancouver, BC, Canada.
| |
Collapse
|
30
|
Li Y, Sun W, Han S, Li J, Ding S, Wang W, Yin Y. IGF-1-Involved Negative Feedback of NR2B NMDA Subunits Protects Cultured Hippocampal Neurons Against NMDA-Induced Excitotoxicity. Mol Neurobiol 2016; 54:684-696. [DOI: 10.1007/s12035-015-9647-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/16/2015] [Indexed: 11/28/2022]
|
31
|
Neuronal Heterotopias Affect the Activities of Distant Brain Areas and Lead to Behavioral Deficits. J Neurosci 2015; 35:12432-45. [PMID: 26354912 DOI: 10.1523/jneurosci.3648-14.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neuronal heterotopia refers to brain malformations resulting from deficits of neuronal migration. Individuals with heterotopias show a high incidence of neurological deficits, such as epilepsy. More recently, it has come to be recognized that focal heterotopias may also show a range of psychiatric problems, including cognitive and behavioral impairments. However, because focal heterotopias are not always located in the brain areas responsible for the symptoms, the causal relationship between the symptoms and heterotopias remains elusive. In this study, we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited spatial working memory deficit and low competitive dominance behavior, which have been shown to be closely associated with the activity of the medial prefrontal cortex (mPFC) in rodents. Analysis of the mPFC activity revealed that the immediate-early gene expression was decreased and the local field potentials of the mPFC were altered in the mice with heterotopias compared with the control mice. Moreover, activation of these ectopic and overlying sister neurons using the DREADD (designer receptor exclusively activated by designer drug) system improved the working memory deficits. These findings suggest that cortical regions containing focal heterotopias can affect distant brain regions and give rise to behavioral abnormalities. Significance statement: Recent studies reported that patients with heterotopias have a variety of clinical symptoms, such as cognitive disturbance, psychiatric symptoms, and autistic behavior. However, the causal relationship between the symptoms and heterotopias remains elusive. Here we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited behavioral deficits that have been shown to be associated with the mPFC activity in rodents. The existence of heterotopias indeed altered the neural activities of the mPFC, and direct manipulation of the neural activity of the ectopic neurons and their sister neurons in the overlying cortex improved the behavioral deficit. Thus, our results indicate that focal heterotopias could affect the activities of distant brain areas and cause behavioral abnormalities.
Collapse
|
32
|
Derivatives containing both coumarin and benzimidazole potently induce caspase-dependent apoptosis of cancer cells through inhibition of PI3K-AKT-mTOR signaling. Anticancer Drugs 2015; 26:667-77. [PMID: 25811964 DOI: 10.1097/cad.0000000000000232] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Coumarins are a large family of compounds derived from a wide range of plants, fungi, and bacteria, and coumarin derivatives can have extremely variable structures and consequently diverse biological properties including antitumor activity. Compounds that bear a benzimidazole moiety are known to possess antitumor activity and a variety of other biological activities. High-throughput screening of a compound library identified a coumarin-containing and a benzimidazole-containing compound [#32, 7-(diethylamino)-3-(1-methyl-1H-benzimidazol-2-yl)-2H-chromen-2-one] that has potent anticancer activity. Evaluation of 17 additional analogs further identified three compounds with anticancer activity in 14 different human cancer cell lines. Fluorescence-activated cell sorting and western blotting analyses suggested that these compounds can induce caspase-dependent apoptosis. Real-time reverse transcriptase PCR analyses of 26 cancer-related genes revealed that seven genes (NPPB, ATF3, DDIT4, CDH10, TSPAN14, TXNIP, and AXL) were significantly upregulated and nine genes (PAGE4, LRP8, SNCAIP, IGFBP5, SLCO2A1, CLDN2, ESRRG, D2HGDH, and PDGFRA) were significantly downregulated. The most upregulated gene is natriuretic peptide precursor B (NPPB) or brain natriuretic peptide, which is increased by 7-, 27-, and 197-fold at 12, 24, and 48 h, respectively. The second most upregulated gene is ATF3, which is increased by 23-fold at the 48 h timepoint. PAGE4 and IGFBP5 are the two most downregulated genes, with a 17-fold reduction in both genes. The expression of several genes (DDIT4, PDGFRA, LRP8, IGFBP5) and western blotting data on key signaling proteins indicate that compound #32 significantly inhibits the PI3K-AKT-mTOR pathway, an intracellular signaling pathway critical in cell proliferation and apoptosis.
Collapse
|
33
|
Berretta S, Pantazopoulos H, Markota M, Brown C, Batzianouli ET. Losing the sugar coating: potential impact of perineuronal net abnormalities on interneurons in schizophrenia. Schizophr Res 2015; 167:18-27. [PMID: 25601362 PMCID: PMC4504843 DOI: 10.1016/j.schres.2014.12.040] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 02/06/2023]
Abstract
Perineuronal nets (PNNs) were shown to be markedly altered in subjects with schizophrenia. In particular, decreases of PNNs have been detected in the amygdala, entorhinal cortex and prefrontal cortex. The formation of these specialized extracellular matrix (ECM) aggregates during postnatal development, their functions, and association with distinct populations of GABAergic interneurons, bear great relevance to the pathophysiology of schizophrenia. PNNs gradually mature in an experience-dependent manner during late stages of postnatal development, overlapping with the prodromal period/age of onset of schizophrenia. Throughout adulthood, PNNs regulate neuronal properties, including synaptic remodeling, cell membrane compartmentalization and subsequent regulation of glutamate receptors and calcium channels, and susceptibility to oxidative stress. With the present paper, we discuss evidence for PNN abnormalities in schizophrenia, the potential functional impact of such abnormalities on inhibitory circuits and, in turn, cognitive and emotion processing. We integrate these considerations with results from recent genetic studies showing genetic susceptibility for schizophrenia associated with genes encoding for PNN components, matrix-regulating molecules and immune system factors. Notably, the composition of PNNs is regulated dynamically in response to factors such as fear, reward, stress, and immune response. This regulation occurs through families of matrix metalloproteinases that cleave ECM components, altering their functions and affecting plasticity. Several metalloproteinases have been proposed as vulnerability factors for schizophrenia. We speculate that the physiological process of PNN remodeling may be disrupted in schizophrenia as a result of interactions between matrix remodeling processes and immune system dysregulation. In turn, these mechanisms may contribute to the dysfunction of GABAergic neurons.
Collapse
Affiliation(s)
- Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA.
| | - Harry Pantazopoulos
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Matej Markota
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Christopher Brown
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA
| | - Eleni T Batzianouli
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| |
Collapse
|
34
|
Moon UY, Park JY, Park R, Cho JY, Hughes LJ, McKenna J, Goetzl L, Cho SH, Crino PB, Gambello MJ, Kim S. Impaired Reelin-Dab1 Signaling Contributes to Neuronal Migration Deficits of Tuberous Sclerosis Complex. Cell Rep 2015; 12:965-78. [PMID: 26235615 PMCID: PMC4536164 DOI: 10.1016/j.celrep.2015.07.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 06/01/2015] [Accepted: 07/07/2015] [Indexed: 01/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is associated with neurodevelopmental abnormalities, including defects in neuronal migration. However, the alterations in cell signaling mechanisms critical for migration and final positioning of neurons in TSC remain unclear. Our detailed cellular analyses reveal that reduced Tsc2 in newborn neurons causes abnormalities in leading processes of migrating neurons, accompanied by significantly delayed migration. Importantly, we demonstrate that Reelin-Dab1 signaling is aberrantly regulated in TSC mouse models and in cortical tubers from TSC patients owing to enhanced expression of the E3 ubiquitin ligase Cul5, a known mediator of pDab1 ubiquitination. Likewise, mTORC1 activation by Rheb overexpression generates similar neuronal and Reelin-Dab1 signaling defects, and directly upregulates Cul5 expression. Inhibition of mTORC1 by rapamycin treatment or by reducing Cul5 largely restores normal leading processes and positioning of migrating neurons. Thus, disrupted Reelin-Dab1 signaling is critically involved in the neuronal migration defects of TSC.
Collapse
Affiliation(s)
- Uk Yeol Moon
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jun Young Park
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Raehee Park
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jennifer Y Cho
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Lucinda J Hughes
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Graduate Program of Biomedical Sciences, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - James McKenna
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Laura Goetzl
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Obstetrics Gynecology and Reproductive Sciences, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Seo-Hee Cho
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Peter B Crino
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Neurology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Michael J Gambello
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
35
|
Toma K, Hanashima C. Switching modes in corticogenesis: mechanisms of neuronal subtype transitions and integration in the cerebral cortex. Front Neurosci 2015; 9:274. [PMID: 26321900 PMCID: PMC4531338 DOI: 10.3389/fnins.2015.00274] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/21/2015] [Indexed: 12/16/2022] Open
Abstract
Information processing in the cerebral cortex requires the activation of diverse neurons across layers and columns, which are established through the coordinated production of distinct neuronal subtypes and their placement along the three-dimensional axis. Over recent years, our knowledge of the regulatory mechanisms of the specification and integration of neuronal subtypes in the cerebral cortex has progressed rapidly. In this review, we address how the unique cytoarchitecture of the neocortex is established from a limited number of progenitors featuring neuronal identity transitions during development. We further illuminate the molecular mechanisms of the subtype-specific integration of these neurons into the cerebral cortex along the radial and tangential axis, and we discuss these key features to exemplify how neocortical circuit formation accomplishes economical connectivity while maintaining plasticity and evolvability to adapt to environmental changes.
Collapse
Affiliation(s)
- Kenichi Toma
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology Kobe, Japan
| | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology Kobe, Japan ; Department of Biology, Graduate School of Science, Kobe University Kobe, Japan
| |
Collapse
|
36
|
Honda T, Nakajima K. Proper Level of Cytosolic Disabled-1, Which Is Regulated by Dual Nuclear Translocation Pathways, Is Important for Cortical Neuronal Migration. Cereb Cortex 2015. [PMID: 26209842 DOI: 10.1093/cercor/bhv162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Disabled-1 (Dab1) is an essential intracellular protein in the Reelin pathway. It has a nuclear localization signal (NLS; hereafter referred to as "NLS1") and 2 nuclear export signals, and shuttles between the nucleus and the cytoplasm. In this study, we found that Dab1 has an additional unidentified NLS, and that the Dab1 NLS1 mutant could translocate to the nucleus in an unconventional ATP/temperature-dependent and cytoplasmic factor/RanGTP gradient-independent manner. Additional mutations in the NLS1 mutant revealed that K(67) and K(69) are important for the nuclear transport. Furthermore, an excess of the intracellular domain of the Reelin receptors inhibited the nuclear translocation of Dab1. An in utero electroporation study showed that a large amount of Dab1 in the cytoplasm in migrating neurons inhibited the migration, and that forced transport of Dab1 into the nucleus attenuated this inhibitory effect. In addition, rescue experiments using yotari, an autosomal recessive mutant of dab1, revealed that cells expressing Dab1 NLS1 mutant tend to distribute at more superficial positions than those expressing wild-type Dab1. Taken together, these findings suggest that Dab1 has at least 2 NLSs, and that the regulation of the subcellular localization of Dab1 is important for the proper migration of excitatory neurons.
Collapse
Affiliation(s)
- Takao Honda
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
37
|
Hayashi K, Kubo KI, Kitazawa A, Nakajima K. Cellular dynamics of neuronal migration in the hippocampus. Front Neurosci 2015; 9:135. [PMID: 25964735 PMCID: PMC4408843 DOI: 10.3389/fnins.2015.00135] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/02/2015] [Indexed: 12/30/2022] Open
Abstract
A fine structure of the hippocampus is required for proper functions, and disruption of this formation by neuronal migration defects during development may play a role in some psychiatric illnesses. During hippocampal development in rodents, pyramidal neurons in the Ammon's horn are mostly generated in the ventricular zone (VZ), spent as multipolar cells just above the VZ, and then migrate radially toward the pial surface, ultimately settling into the hippocampal plate. Although this process is similar to that of neocortical projection neurons, these are not identical. In addition to numerous histological studies, the development of novel techniques gives a clear picture of the cellular dynamics of hippocampal neurons, as well as neocortical neurons. In this article, we provide an overview of the cellular mechanisms of rodent hippocampal neuronal migration including those of dentate granule cells, especially focusing on the differences of migration modes between hippocampal neurons and neocortical neurons. The unique migration mode of hippocampal pyramidal neurons might enable clonally related cells in the Ammon's horn to distribute in a horizontal fashion.
Collapse
Affiliation(s)
- Kanehiro Hayashi
- Department of Anatomy, Keio University School of Medicine Tokyo, Japan
| | - Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine Tokyo, Japan
| | - Ayako Kitazawa
- Department of Anatomy, Keio University School of Medicine Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine Tokyo, Japan
| |
Collapse
|
38
|
Knox R, Jiang X. Fyn in Neurodevelopment and Ischemic Brain Injury. Dev Neurosci 2015; 37:311-20. [PMID: 25720756 DOI: 10.1159/000369995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/18/2014] [Indexed: 12/11/2022] Open
Abstract
The Src family kinases (SFKs) are nonreceptor protein tyrosine kinases that are implicated in many normal and pathological processes in the nervous system. The SFKs Fyn, Src, Yes, Lyn, and Lck are expressed in the brain. This review will focus on Fyn, as Fyn mutant mice have striking phenotypes in the brain and Fyn has been shown to be involved in ischemic brain injury in adult rodents and, with our work, in neonatal animals. An understanding of Fyn's role in neurodevelopment and disease will allow researchers to target pathological pathways while preserving protective ones.
Collapse
Affiliation(s)
- Renatta Knox
- Department of Pediatrics, Weill Cornell Medical College, New York, N.Y., USA
| | | |
Collapse
|
39
|
Cooper JA. Molecules and mechanisms that regulate multipolar migration in the intermediate zone. Front Cell Neurosci 2014; 8:386. [PMID: 25452716 PMCID: PMC4231986 DOI: 10.3389/fncel.2014.00386] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/29/2014] [Indexed: 01/05/2023] Open
Abstract
Most neurons migrate with an elongated, “bipolar” morphology, extending a long leading process that explores the environment. However, when immature projection neurons enter the intermediate zone (IZ) of the neocortex they become “multipolar”. Multipolar cells extend and retract cytoplasmic processes in different directions and move erratically—sideways, up and down. Multipolar cells extend axons while they are in the lower half of the IZ. Remarkably, the cells then resume radial migration: they reorient their centrosome and Golgi apparatus towards the pia, transform back to bipolar morphology, and commence locomotion along radial glia (RG) fibers. This reorientation implies the existence of directional signals in the IZ that are ignored during the multipolar stage but sensed after axonogenesis. In vivo genetic manipulation has implicated a variety of candidate directional signals, cell surface receptors, and signaling pathways, that may be involved in polarizing multipolar cells and stabilizing a pia-directed leading process for radial migration. Other signals are implicated in starting multipolar migration and triggering axon outgrowth. Here we review the molecules and mechanisms that regulate multipolar migration, and also discuss how multipolar migration affects the orderly arrangement of neurons in layers and columns in the developing neocortex.
Collapse
Affiliation(s)
- Jonathan A Cooper
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences Seattle, Washington, USA
| |
Collapse
|
40
|
Kirischuk S, Luhmann HJ, Kilb W. Cajal-Retzius cells: update on structural and functional properties of these mystic neurons that bridged the 20th century. Neuroscience 2014; 275:33-46. [PMID: 24931764 DOI: 10.1016/j.neuroscience.2014.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 02/02/2023]
Abstract
Cajal-Retzius cells (CRc) represent a mostly transient neuronal cell type localized in the uppermost layer of the developing neocortex. The observation that CRc are a major source of the extracellular matrix protein reelin, which is essential for the laminar development of the cerebral cortex, attracted the interest in this unique cell type. In this review we will (i) describe the morphological and molecular properties of neocortical CRc, with a special emphasize on the question which markers can be used to identify CRc, (ii) summarize reports that identified the different developmental origins of CRc, (iii) discuss the fate of CRc, including recent evidence for apoptotic cell death and a possible persistence of some CRc, (iv) provide a detailed description of the electrical membrane properties and transmitter receptors of CRc, and (v) address the role of CRc in early neuronal circuits and cortical development. Finally, we speculate whether CRc may provide a link between early network activity and the structural maturation of neocortical circuits.
Collapse
Affiliation(s)
- S Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - H J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - W Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
41
|
Phosphorylation of drebrin by cyclin-dependent kinase 5 and its role in neuronal migration. PLoS One 2014; 9:e92291. [PMID: 24637538 PMCID: PMC3956921 DOI: 10.1371/journal.pone.0092291] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/20/2014] [Indexed: 01/30/2023] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5)-p35 is a proline-directed Ser/Thr kinase which plays a key role in neuronal migration, neurite outgrowth, and spine formation during brain development. Dynamic remodeling of cytoskeletons is required for all of these processes. Cdk5-p35 phosphorylates many cytoskeletal proteins, but it is not fully understood how Cdk5-p35 regulates cytoskeletal reorganization associated with neuronal migration. Since actin filaments are critical for the neuronal movement and process formation, we aimed to find Cdk5 substrates among actin-binding proteins. In this study, we isolated actin gels from mouse brain extracts, which contain many actin-binding proteins, and phosphorylated them by Cdk5-p35 in vitro. Drebrin, a side binding protein of actin filaments and well known for spine formation, was identified as a phosphorylated protein. Drebrin has two isoforms, an embryonic form drebrin E and an adult type long isoform drebrin A. Ser142 was identified as a common phosphorylation site to drebrin E and A and Ser342 as a drebrin A-specific site. Phosphorylated drebrin is localized at the distal area of total drebrin in the growth cone of cultured primary neurons. By expressing nonphosphorylatable or phosphorylation mimicking mutants in developing neurons in utero, the reversible phosphorylation/dephosphorylation reaction of drebrin was shown to be involved in radial migration of cortical neurons. These results suggest that Cdk5-p35 regulates neuronal migration through phosphorylation of drebrin in growth cone processes.
Collapse
|
42
|
Effects of electromagnetic fields on reelin and Dab1 expression in the developing cerebral cortex. Neurol Sci 2014; 35:1243-7. [PMID: 24584565 DOI: 10.1007/s10072-014-1690-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
Many studies describe the biological effects of electromagnetic fields (EMF) including brain damages, neuronal migration and neurogenesis within the central nervous system. Neuronal cell produced in the neuroepithelium migrates along radial glial fibers into the cortical plate. Reelin, which is produced by Cajal-Retzius cells directs neuronal migration. It was shown that Disabled 1 (Dab1) functions downstream of reelin signal transduction pathway that directs the correct cytoarchitecture of the developing cortex. In this study, the EMF effects on total protein concentration (TPC), reelin and Dab1 expression in the developing cortex was studied. 30 pregnant Balb/c mice were separated into three groups: control (n = 10), EMF (n = 10) and SHAM groups (n = 10). The 15-day pregnant mice were placed inside the solenoid for a daily EMF exposure of 5 h for 3 consecutive days (15-17). The SHAM group was also located in the same coil with no exposure. Mice were sacrificed 24 h after the final exposure session. TPC, reelin and Dab1 expression were studied by Bio-Rad protein assay and western blot. No significant change in the TPC was seen in the EMF-treated cerebral cortex samples compared with those from the SHAM and control groups. It was also shown that the reelin and Dab1 expression increases in the EMF-treated cerebral cortex extracts as compared to controls and SHAM group. It is concluded that EMF may play important role in the neural cell migration by increasing reelin and Dab1 expression in the developing cortex.
Collapse
|
43
|
Abadesco AD, Cilluffo M, Yvone GM, Carpenter EM, Howell BW, Phelps PE. Novel Disabled-1-expressing neurons identified in adult brain and spinal cord. Eur J Neurosci 2014; 39:579-92. [PMID: 24251407 DOI: 10.1111/ejn.12416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 09/19/2013] [Accepted: 10/08/2013] [Indexed: 12/12/2022]
Abstract
Components of the Reelin-signaling pathway are highly expressed in embryos and regulate neuronal positioning, whereas these molecules are expressed at low levels in adults and modulate synaptic plasticity. Reelin binds to Apolipoprotein E receptor 2 and Very-low-density lipoprotein receptors, triggers the phosphorylation of Disabled-1 (Dab1), and initiates downstream signaling. The expression of Dab1 marks neurons that potentially respond to Reelin, yet phosphorylated Dab1 is difficult to detect due to its rapid ubiquitination and degradation. Here we used adult mice with a lacZ gene inserted into the dab1 locus to first verify the coexpression of β-galactosidase (β-gal) in established Dab1-immunoreactive neurons and then identify novel Dab1-expressing neurons. Both cerebellar Purkinje cells and spinal sympathetic preganglionic neurons have coincident Dab1 protein and β-gal expression in dab1(lacZ/+) mice. Adult pyramidal neurons in cortical layers II-III and V are labeled with Dab1 and/or β-gal and are inverted in the dab1(lacZ/lacZ) neocortex, but not in the somatosensory barrel fields. Novel Dab1 expression was identified in GABAergic medial septum/diagonal band projection neurons, cerebellar Golgi interneurons, and small neurons in the deep cerebellar nuclei. Adult somatic motor neurons also express Dab1 and show ventromedial positioning errors in dab1-null mice. These findings suggest that: (i) Reelin regulates the somatosensory barrel cortex differently than other neocortical areas, (ii) most Dab1 medial septum/diagonal band neurons are probably GABAergic projection neurons, and (iii) positioning errors in adult mutant Dab1-labeled neurons vary from subtle to extensive.
Collapse
Affiliation(s)
- Autumn D Abadesco
- Department of Integrative Biology and Physiology, UCLA, Terasaki Life Science Building, 610 Charles Young Dr. E, Los Angeles, CA, 90095-7239, USA
| | | | | | | | | | | |
Collapse
|
44
|
Inaguma Y, Hamada N, Tabata H, Iwamoto I, Mizuno M, Nishimura YV, Ito H, Morishita R, Suzuki M, Ohno K, Kumagai T, Nagata KI. SIL1, a causative cochaperone gene of Marinesco-Söjgren syndrome, plays an essential role in establishing the architecture of the developing cerebral cortex. EMBO Mol Med 2014; 6:414-29. [PMID: 24473200 PMCID: PMC3958314 DOI: 10.1002/emmm.201303069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Marinesco-Sjögren syndrome (MSS) is a rare autosomal recessively inherited disorder with mental retardation (MR). Recently, mutations in the SIL1 gene, encoding a co-chaperone which regulates the chaperone HSPA5, were identified as a major cause of MSS. We here examined the pathophysiological significance of SIL1 mutations in abnormal corticogenesis of MSS. SIL1-silencing caused neuronal migration delay during corticogenesis ex vivo. While RNAi-resistant SIL1 rescued the defects, three MSS-causing SIL1 mutants tested did not. These mutants had lower affinities to HSPA5 in vitro, and SIL1-HSPA5 interaction as well as HSPA5 function was found to be crucial for neuronal migration ex vivo. Furthermore time-lapse imaging revealed morphological disorganization associated with abnormal migration of SIL1-deficient neurons. These results suggest that the mutations prevent SIL1 from interacting with and regulating HSPA5, leading to abnormal neuronal morphology and migration. Consistent with this, when SIL1 was silenced in cortical neurons in one hemisphere, axonal growth in the contralateral hemisphere was delayed. Taken together, abnormal neuronal migration and interhemispheric axon development may contribute to MR in MSS.
Collapse
Affiliation(s)
- Yutaka Inaguma
- Department of Molecular Neurobiology, Institute for Developmental Research, Kasugai Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sarnat HB, Flores-Sarnat L. Morphogenesis timing of genetically programmed brain malformations in relation to epilepsy. PROGRESS IN BRAIN RESEARCH 2014; 213:181-98. [DOI: 10.1016/b978-0-444-63326-2.00010-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Pocket proteins pRb and p107 are required for cortical lamination independent of apoptosis. Dev Biol 2013; 384:101-13. [DOI: 10.1016/j.ydbio.2013.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 01/24/2023]
|
47
|
Neurobehavioral performances and brain regional metabolism in Dab1scm (scrambler) mutant mice. Behav Brain Res 2013; 252:92-100. [DOI: 10.1016/j.bbr.2013.05.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 05/15/2013] [Indexed: 12/26/2022]
|
48
|
Gonda Y, Andrews WD, Tabata H, Namba T, Parnavelas JG, Nakajima K, Kohsaka S, Hanashima C, Uchino S. Robo1 regulates the migration and laminar distribution of upper-layer pyramidal neurons of the cerebral cortex. Cereb Cortex 2013; 23:1495-508. [PMID: 22661412 PMCID: PMC3643720 DOI: 10.1093/cercor/bhs141] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Laminar organization is a key feature of the mammalian cerebral cortex, but the mechanisms by which final positioning and "inside-out" distribution of neurons are determined remain largely unknown. Here, we demonstrate that Robo1, a member of the family of Roundabout receptors, regulates the correct positioning of layers II/III pyramidal neurons in the neocortex. Specifically, we used RNA interference in mice to suppress the expression of Robo1 in a subset of layers II/III neurons, and observed the positions of these cells at distinct developmental stages. In contrast to control neurons that migrated toward the pial surface by P1, Robo1-suppressed neurons exhibited a delay in entering the cortical plate at respective stages. Unexpectedly, after the first postnatal week, these neurons were predominantly located in the upper part of layers II/III, in contrast to control cells that were distributed throughout these layers. Sequential electroporation studies revealed that Robo1-suppressed cells failed to establish the characteristic inside-out neuronal distribution and, instead, they accumulated beneath the marginal zone regardless of their birthdate. These results demonstrate that Robo receptors play a crucial role in neocortical lamination and particularly in the positioning of layers II/III pyramidal neurons.
Collapse
Affiliation(s)
- Yuko Gonda
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rice HC, Young-Pearse TL, Selkoe DJ. Systematic evaluation of candidate ligands regulating ectodomain shedding of amyloid precursor protein. Biochemistry 2013; 52:3264-77. [PMID: 23597280 DOI: 10.1021/bi400165f] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Despite intense interest in the proteolysis of the β-Amyloid Precursor Protein (APP) in Alzheimer's disease, how the normal processing of this type I receptor-like glycoprotein is physiologically regulated remains ill-defined. In recent years, several candidate protein ligands for APP, including F-spondin, Reelin, β1 Integrin, Contactins, Lingo-1, and Pancortin, have been reported. However, a cognate ligand for APP that regulates its processing by α- or β-secretase has yet to be widely confirmed in multiple laboratories. Here, we developed new assays in an effort to confirm a role for one or more of these candidate ligands in regulating APP ectodomain shedding in a biologically relevant context. A comprehensive quantification of APPsα and APPsβ, the immediate products of secretase processing, in both non-neuronal cell lines and primary neuronal cultures expressing endogenous APP yielded no evidence that any of these published candidate ligands stimulate ectodomain shedding. Rather, Reelin, Lingo-1, and Pancortin-1 emerged as the most consistent ligands for significantly inhibiting ectodomain shedding. These findings led us to conduct further detailed analyses of the interactions of Reelin and Lingo-1 with APP.
Collapse
Affiliation(s)
- Heather C Rice
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | | |
Collapse
|
50
|
Folsom TD, Fatemi SH. The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology 2013; 68:122-35. [PMID: 22981949 PMCID: PMC3632377 DOI: 10.1016/j.neuropharm.2012.08.015] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 12/21/2022]
Abstract
Reelin is a glycoprotein that serves important roles both during development (regulation of neuronal migration and brain lamination) and in adulthood (maintenance of synaptic function). A number of neuropsychiatric disorders including autism, schizophrenia, bipolar disorder, major depression, Alzheimer's disease and lissencephaly share a common feature of abnormal Reelin expression in the brain. Altered Reelin expression has been hypothesized to impair neuronal connectivity and synaptic plasticity, leading ultimately to the cognitive deficits present in these disorders. The mechanisms for abnormal Reelin expression in some of these disorders are currently unknown although possible explanations include early developmental insults, mutations, hypermethylation of the promoter for the Reelin gene (RELN), miRNA silencing of Reelin mRNA, FMRP underexpression and Reelin processing abnormalities. Increasing Reelin expression through pharmacological therapies may help ameliorate symptoms resulting from Reelin deficits. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Timothy D. Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
| | - S. Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
- Department of Pharmacology, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
| |
Collapse
|