1
|
Proteomic investigations of acute ischemic stroke in animal models: a narrative review. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
2
|
Vicic N, Guo X, Chan D, Flanagan JG, Sigal IA, Sivak JM. Evidence of an Annexin A4 mediated plasma membrane repair response to biomechanical strain associated with glaucoma pathogenesis. J Cell Physiol 2022; 237:3687-3702. [PMID: 35862065 PMCID: PMC9891715 DOI: 10.1002/jcp.30834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/03/2023]
Abstract
Glaucoma is a common neurodegenerative blinding disease that is closely associated with chronic biomechanical strain at the optic nerve head (ONH). Yet, the cellular injury and mechanosensing mechanisms underlying the resulting damage have remained critically unclear. We previously identified Annexin A4 (ANXA4) from a proteomic analyses of human ONH astrocytes undergoing pathological biomechanical strain that mimics glaucomatous conditions. Annexins are a family of calcium-dependent phospholipid binding proteins with key functions in plasma membrane repair (PMR); an active mechanism to limit and mend cellular injury that involves membrane and cytoskeletal reorganizations. However, a role for direct membrane damage and PMR has not been well studied in the context of biomechanical strain, such as that associated with glaucoma. Here we report that this moderate strain surprisingly damages cell membranes to increase permeability in a calcium-dependent manner, and induces rapid aggregation of ANXA4 at injury sites. ANXA4 loss-of-function increases permeability, while exogenous ANXA4 reduces it. Furthermore, ANXA4 aggregation is associated with F-actin dynamics in vitro, and remarkably this interaction and aggregation signature is also observed in the glaucomatous ONH in patient samples. Together these studies link moderate biomechanical strain with direct membrane damage and actin dynamics, and identify an active PMR role for ANXA4 in new model of cell injury associated with glaucoma pathogenesis.
Collapse
Affiliation(s)
- Nevena Vicic
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada,Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Xiaoxin Guo
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada,Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Darren Chan
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada,Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - John G Flanagan
- The Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, USA
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeremy M. Sivak
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada,Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Shen H, Pei H, Zhai L, Guan Q, Wang G. Salvianolic acid C improves cerebral ischemia reperfusion injury through suppressing microglial cell M1 polarization and promoting cerebral angiogenesis. Int Immunopharmacol 2022; 110:109021. [PMID: 35810493 DOI: 10.1016/j.intimp.2022.109021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to investigate the mechanism of salvianolic acid C (SAC), the active ingredient in Salvia miltiorrhiza, in improving cerebral ischemia injury. The mouse microglial cells BV2 and mouse endothelial cells bEnd.3 were used as the objects of study. LPS/IFN-γ was applied to simulate the BV2 polarization, and bEnd.3 cells were treated under hypoxic condition. The BV2 cell polarization level was measured through flow cytometry (FCM), the TLR4 and MyD88 expression levels were detected by fluorescence staining, whereas the expression of inflammatory factors TNF-α, IL-6 and IL-1β was analyzed through ELISA. Tubule formation assay was also conducted to observe the tubule formation ability of bEnd.3 cells in vitro, and the level of VEGFR2 was detected by fluorescence staining. Cells were treated with the PKM2 inhibitor IN3, aiming to observe the influence of SAC on glycolysis of BV2 cells. In addition, the mouse model of cerebral ischemia was constructed through the middle cerebral artery occlusion (MCAO) method, and the pathological changes in brain tissues were detected after SAC intervention. Meanwhile, the levels of IBA-1, CD31 and ZO-1 were determined through histochemical staining. Nissl staining to detect nerve cell damage. In BV2 cell experiment, SAC suppressed the M1 polarization of BV2 cells, reduced the inflammatory factor levels, and inhibited the activation of TLR4 signal through suppressing glycolysis. When PKM2 was suppressed, the effects of SAC were antagonized. In the bEnd.3 model, SAC promoted tubule formation in bEnd.3 cells under hypoxic condition, and increased the expression of VEGFR2 and Notch1. In the mouse model, SAC improved the neurological function in MCAO mice, and inhibited the activation of microglial cells and the expression of inflammatory factors. At the same time, SAC up-regulated the expression of ZO-1 and CD31, and maintained the blood-brain barrier (BBB) function. As a major component of Salvia miltiorrhiza, SAC can suppress microglial cell polarization and promote tubule formation in endothelial cells to exert the neurological repair function in cerebral ischemia. SAC is a multi-functional neuroprotective small molecule.
Collapse
Affiliation(s)
- Heping Shen
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, China
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Liping Zhai
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, China
| | - Qiaobing Guan
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, China.
| | - Genghuan Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Jiaxing University, China.
| |
Collapse
|
4
|
Tetrandrine Ameliorates Traumatic Brain Injury by Regulating Autophagy to Reduce Ferroptosis. Neurochem Res 2022; 47:1574-1587. [PMID: 35266084 DOI: 10.1007/s11064-022-03553-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 02/08/2023]
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability in trauma patients. However, the effects and mechanism of autophagy after TBI remain unclear. This study aimed to investigate whether tetrandrine could ameliorate TBI through autophagy to reduce ferroptosis. A mice model for TBI was implemented. Behavioral and histomorphological experiments were performed to evaluate outcomes of the mice. The ferroptosis levels was detected by Perls staining. Enzyme-linked immunosorbent assay (ELISA) was applied to detect malondialdehyde (MDA), glutathione (GSH), and glutathione peroxidase 4 (GPX4) levels in the brain tissue. Western blot test was performed to detect Beclin 1, light chain 3 (LC3) II/I, p62, GPX4, SCL7A11, and ferritin heavy chain 1 (FTH1) levels, and the expression of LC3B, Beclin 1, GPX4, and FTH1 in the brain tissue was detected by immunofluorescence (IF). The behavioral and histomorphological results demonstrated that tetrandrine improved the neurological function and cerebral edema on days 1, 3, and 7 after TBI. The ELISA results suggested that tetrandrine reduced the MDA concentration and increased GSH concentration on days 1, 3, and 7 after TBI. IF staining and Perls staining reflected that tetrandrine promoted autophagy and inhibited ferroptosis on days 1, 3, and 7 after TBI, respectively. Tetrandrine further improved the neurological function, cerebral edema, autophagy, and ferroptosis on days 1, 3, and 7 after TBI after adding the autophagy inducer rapamycin. The effect of TET in alleviating TBI increased with the increase of time and dose. Tetrandrine ameliorated TBI by regulating autophagy to reduce ferroptosis, providing a new therapeutic strategy for TBI.
Collapse
|
5
|
Li C, Chai A, Gao Y, Qi X, Zheng X. Combination of tetrandrine and 3-n-butylphthalide protects against cerebral ischemia-reperfusion injury via ATF2/TLR4 pathway. Immunopharmacol Immunotoxicol 2021; 43:749-757. [PMID: 34591732 DOI: 10.1080/08923973.2021.1979036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Cerebral infarction (CI) is the mayor reason of death in China. Reperfusion is the only immediate treatment for acute cerebral infarction. However, blood reperfusion recovery may cause ischemia-reperfusion (I/R) injuries. The purpose of this study was to investigate the effects of Tetrandrine (TTD) and 3-n-Butylphthalide (NBP) on cerebral I/R injury. MATERIALS AND METHODS I/R was used to establish CI model in vivo. TTD was performed to analyze cerebral infarction volume. OGD was applied to establish CI model in vitro. Flow cytometry and TUNEL assays were utilized to determine the cell death. ELISA was conducted to determine the release of cytokines. mRNA and protein expressions were detected using qRT-PCR and western blot. RESULTS We found that NBP + TTD treatment significantly reduced cerebral infarction volume and inhibited the death of neurons in vivo. Moreover, NBP + TTD treatment suppressed the apoptosis and inflammatory response of neurons in vitro. Additionally, NBP + TTD suppressed the expression of activator transcription factor 2 (ATF2). However, overexpression of ATF2 contributed to the degeneration of neurons. Moreover, ATF2 transcriptionally activated Toll-like receptor 4 (TLR4). NBP + TTD inactivated ATF2/TLR4 signaling. CONCLUSIONS Taken together, TTD combined with NBP protected against cerebral infarction by inhibiting the inflammatory response and neuronal cell apoptosis via inactivating ATF2/TLR4 signaling pathways. This may provide an alternative for I/R injury.
Collapse
Affiliation(s)
- Cunfang Li
- Department of Pharmacy, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Aijun Chai
- Department of Pharmacy, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yongchao Gao
- Department of Pharmacy, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xuan Qi
- Department of Pharmacy, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xuguang Zheng
- Department of Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Xu H, Wang E, Chen F, Xiao J, Wang M. Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
7
|
Wang Y, Cai X, Wu Z, Tang L, Lu L, Xu Y, Bao X. Tetrandrine attenuates ischemia/reperfusion‑induced neuronal damage in the subacute phase. Mol Med Rep 2021; 23:297. [PMID: 33649825 PMCID: PMC7930946 DOI: 10.3892/mmr.2021.11936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/27/2020] [Indexed: 11/06/2022] Open
Abstract
Ischemic stroke, the third leading cause of disability globally, imposes a notable economic burden. Tetrandrine (Tet), which has been widely used clinically, exhibits potential protective effects against stroke. However, there has been little pre‑clinical research to evaluate the therapeutic effects of Tet on stroke. The present study investigated the beneficial effect of Tet on ischemia‑reperfusion (I/R) injury and its underlying mechanism in rats. Rats were subjected to occlusion of the middle cerebral artery, then treated with Tet (30 mg/kg/day, intraperitoneal) in the subacute phase for 7 days. In order to detect the effects of Tet on the behavior of rats, modified neurological severity score and longa behavior, grasping capability and inclined plane tests were conducted on days 1, 3 and 7 following cerebral ischemia. In addition, neuronal apoptosis in the cortex and hippocampus following ischemia was assessed by Nissl staining and TUNEL assay. Finally, oxidative stress was evaluated by measurement of free radicals and immunofluorescence staining of LC3 was used to assess autophagy. Tet improved neurological function and decreased infarct volume in I/R injury rats. Tet also prevented neuronal apoptosis in the cortex and hippocampus region. In addition, Tet protected against oxidative damage following ischemia, which was reflected by decreased levels of nitric oxide and malondialdehyde and increased levels of glutathione (GSH) and GSH peroxidase. In addition, the expression levels of the autophagy marker LC3 decreased in the Tet treatment group. In conclusion, Tet attenuated I/R‑induced neuronal damage in the subacute phase by decreasing oxidative stress, apoptosis and autophagy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Xinjun Cai
- Department of Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhiheng Wu
- School of Clinical Medicine, Wannan Medicial College, Wuhu, Anhui 241002, P.R. China
| | - Leilei Tang
- Department of Pharmacy, Xiaoshan Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Lingqun Lu
- Laboratory Animal Center, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Yinyin Xu
- Department of Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaogang Bao
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
8
|
De Lazzari F, Prag HA, Gruszczyk AV, Whitworth AJ, Bisaglia M. DJ-1: A promising therapeutic candidate for ischemia-reperfusion injury. Redox Biol 2021; 41:101884. [PMID: 33561740 PMCID: PMC7872972 DOI: 10.1016/j.redox.2021.101884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 12/31/2022] Open
Abstract
DJ-1 is a multifaceted protein with pleiotropic functions that has been implicated in multiple diseases, ranging from neurodegeneration to cancer and ischemia-reperfusion injury. Ischemia is a complex pathological state arising when tissues and organs do not receive adequate levels of oxygen and nutrients. When the blood flow is restored, significant damage occurs over and above that of ischemia alone and is termed ischemia-reperfusion injury. Despite great efforts in the scientific community to ameliorate this pathology, its complex nature has rendered it challenging to obtain satisfactory treatments that translate to the clinic. In this review, we will describe the recent findings on the participation of the protein DJ-1 in the pathophysiology of ischemia-reperfusion injury, firstly introducing the features and functions of DJ-1 and, successively highlighting the therapeutic potential of the protein. DJ-1 has been shown to confer protection in ischemia-reperfusion injury models. DJ-1 protection relies on the activation of antioxidant signaling pathways. DJ-1 regulates mitochondrial homeostasis during ischemia and reperfusion. DJ-1 seems to modulate ion homeostasis during ischemia and reperfusion. DJ-1 may represent a promising therapeutic target for ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Federica De Lazzari
- Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131, Padova, Italy
| | - Hiran A Prag
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Anja V Gruszczyk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Alexander J Whitworth
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Marco Bisaglia
- Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131, Padova, Italy.
| |
Collapse
|
9
|
Shi F, Ni L, Gao YM. Tetrandrine Attenuates Cartilage Degeneration, Osteoclast Proliferation, and Macrophage Transformation through Inhibiting P65 Phosphorylation in Ovariectomy-induced Osteoporosis. Immunol Invest 2020; 51:465-479. [PMID: 33140671 DOI: 10.1080/08820139.2020.1837864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Osteoporosis is a common metabolic bone disease with high prevalence. Tetrandrine (TET) suppressed osteoclastogenesis, while the roles of TET in osteoporosis regulation remained unclear. Thus, the study aimed to investigate the effect of TET on osteoporosis and the underlying mechanism. METHODS The osteoporosis rabbit model was established through anterior cruciate ligament transection (ACLT) and bilateral ovariectomy (OVX). The degeneration of articular cartilage was assessed using HE staining and Alcian blue staining. The liver and kidney tissue injury was determined using HE staining. The activity of osteoclasts was evaluated using Tartrate-resistant acid phosphatase (TRAP) staining. The changes in bone structural parameters were determined through measuring the BMD, BV/TV, Tb.Th, Tb.N, and Tb.Sp, and the serum levels of calcium and phosphorus. Macrophage polarization was determined using Flow cytometry. RESULTS The bone structural parameters including BMD, BV/TV, Tb.N, Tb.Th and Tb.Sp were changed in osteoporosis rabbit, which was reversed by TET. Besides, TET suppressed the increased serum levels of calcium and phosphorus in osteoporosis rabbit. Furthermore, TET inhibited the degeneration of articular cartilage and the activity of osteoclasts induced by osteoporosis. Moreover, TET inhibited the levels of MMP-9, PPAR-γ, RANKL, β-CTX and TRACP-5b, and increased the levels of OPG, ALP and osteocalcin (OC) in osteoporosis. Additionally, TET promoted macrophage transformation from M1 to M2 in osteoporotic and inhibited the production of IL-1β, TNF-α, and IL-6. TET also inhibited the p65 phosphorylation in osteoporosis. Besides, TET reversed RANKL-induced osteoclasts proliferation, p65 phosphorylation, and the expression changes of RANKL, Ki67, PPAR-γ, ALP, OPG. CONCLUSION TET attenuated bone structural parameters including BMD, BV/TV, Tb.N, Tb.Th and Tb.Sp, inhibited articular cartilage degeneration, promoted bone formation, inhibited the inflammatory response, and promoted macrophage transformation from M1 to M2 via NF-κB inactivation in osteoporosis. TET may be a promising drug for osteoporosis therapy. ABBREVIATION TET: Tetrandrine; ACLT: anterior cruciate ligament transection; OVX: ovariectomy; TRAP: Tartrate-resistant acid phosphatase; BMD: bone mineral density; BV/TV: Bone volume/total volume; Tb.Th: trabecular thickness; Tb.N: trabecular number; Tb.Sp: trabecular separation; MMP-9: Matrix metallopeptidase 9; PPAR-γ: Peroxisome proliferator-activated receptor gamma; RANKL: Receptor activator of nuclear factor kappa-B ligand; OPG: Osteoprotegerin; ALP: alkaline phosphatase; OC: osteocalcin; β-CTX: β isomer of C-terminal telopeptide of type Ⅰ collagen; TRACP-5b: Tartrate-resistant acid phosphatase 5b; TNF-α: tumor necrosis factor-α; IL-1β: interleukin-1β; IL-6: interleukin 6; NF-κB: Nuclear factor kappa B; PKC-α: Protein kinase C alpha; qRT-PCR: Quantitative real-time polymerase chain reaction.
Collapse
Affiliation(s)
- Fang Shi
- Department of Traditional Chinese Medicine, Beijing JiShuitan Hospital, Beijing, China
| | - Lei Ni
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ye-Mei Gao
- Department of Traditional Chinese Medicine, Beijing JiShuitan Hospital, Beijing, China
| |
Collapse
|
10
|
Zhang Y, Qi D, Gao Y, Liang C, Zhang Y, Ma Z, Liu Y, Peng H, Zhang Y, Qin H, Song X, Sun X, Li Y, Liu Z. History of uses, phytochemistry, pharmacological activities, quality control and toxicity of the root of Stephania tetrandra S. Moore: A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112995. [PMID: 32497674 DOI: 10.1016/j.jep.2020.112995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE the root of Stephania tetrandra S. Moore, known as Fangji in China (Chinese: ), is a traditional Chinese medicine (TCM) with a long history of use. Fangji is a type of medicine used to treat various diseases, including rheumatism, arthralgia, edema and beriberi, unfavorable urination, and eczema. AIM OF THIS REVIEW There are many newly published reports on the history of uses, phytochemistry, pharmacological activity, quality control and toxicity of Fangji; however, no comprehensive systematic review exists. Therefore, the purpose of this review is to compile the latest and most comprehensive information on Fangji and provide a scientific basis for future research. MATERIALS AND METHODS A systematic literature search was conducted using multiple electronic databases, including SciFinder, Web of Science, PubMed, Science Direct, ACS Publications, J-stage, SpringerLink, Thieme, Wiley, and CNKI. Information was also collected from journals and Chinese Pharmacopoeia. RESULT Thus far, there were uses of Fangji against 20 different diseases/disorders, such as relieving edema and rheumatism pain, treating cough and asthma, treating enuresis, astringent urine and beriberi edema, purging blood and damp heat, and dispelling wind evil and dampness, etc. 48 compounds have been isolated from Fangji, belonging to alkaloids, flavonoids, and steroids, other compounds. The crude extracts and isolated compound of Fangji have shown a wide range of pharmacological activities, such as anti-tumor, anti-inflammatory, and neuroprotective activities, as well as role in reoxygenation, and antimicrobial effect, etc. Moreover, qualitative and quantitative analyses of quality control are reviewed, including qualitative analyses for the identification of compounds, as well as fingerprint and quantitative analyses by high performance liquid chromatography (HPLC) and capillary electrochromatography (CE). In the toxicity study, the hepatotoxicity, hepatorenal toxicity, nephrotoxicity, subacute and acute toxicities of the alcohol extract and water extract of Fangji, and tetrandrine were studied in-vitro and in-vivo experiments. CONCLUSION In the history of uses, Fangji can be used to treat a variety of diseases, most of which are manifested in removing wind and dampness. In recent years, the phytochemistry of Fangji has rarely been reported. The pharmacological activities of Fangji mainly focus on the compounds, tetrandrine and fangchinoline, and there are a few reports on the pharmacological studies of other compounds in Fangji. Moreover, the quality control of Fangji lacks a standard fingerprint to distinguish Fangji from other easily-confused medicinal materials. In the toxicity study, there is no report on the mechanism of toxicity research. Therefore, further studies on such mechanisms are needed.
Collapse
Affiliation(s)
- Yuelin Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Dongli Qi
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanquan Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chunxia Liang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yukun Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhe Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yiting Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hui Peng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ying Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huan Qin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xunan Song
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinru Sun
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingpeng Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
11
|
Laing RW, Stubblefield S, Wallace L, Roobrouck VD, Bhogal RH, Schlegel A, Boteon YL, Reynolds GM, Ting AE, Mirza DF, Newsome PN, Mergental H, Afford SC. The Delivery of Multipotent Adult Progenitor Cells to Extended Criteria Human Donor Livers Using Normothermic Machine Perfusion. Front Immunol 2020; 11:1226. [PMID: 32714318 PMCID: PMC7344318 DOI: 10.3389/fimmu.2020.01226] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/15/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Pre-clinical research with multi-potent adult progenitor cells (MAPC® cells, Multistem, Athersys Inc., Cleveland, Ohio) suggests their potential as an anti-inflammatory and immunomodulatory therapy in organ transplantation. Normothermic machine perfusion of the liver (NMP-L) has been proposed as a way of introducing therapeutic agents into the donor organ. Delivery of cellular therapy to human donor livers using this technique has not yet been described in the literature. The primary objectives of this study were to develop a technique for delivering cellular therapy to human donor livers using NMP-L and demonstrate engraftment. Methods: Six discarded human livers were perfused for 6 h at 37°C using the Liver Assist (Organ Assist, Groningen). 50 × 106 CMPTX-labeled MAPC cells were infused directly into the right lobe via the hepatic artery (HA, n = 3) or portal vein (PV, n = 3) over 20 min at different time points during the perfusion. Perfusion parameters were recorded and central and peripheral biopsies were taken at multiple time-points from both lobes and subjected to standard histological stains and confocal microscopy. Perfusate was analyzed using a 35-plex multiplex assay and proteomic analysis. Results: There was no detrimental effect on perfusion flow parameters on infusion of MAPC cells by either route. Three out of six livers met established criteria for organ viability. Confocal microscopy demonstrated engraftment of MAPC cells across vascular endothelium when perfused via the artery. 35-plex multiplex analysis of perfusate yielded 13 positive targets, 9 of which appeared to be related to the infusion of MAPC cells (including Interleukin's 1b, 4, 5, 6, 8, 10, MCP-1, GM-CSF, SDF-1a). Proteomic analysis revealed 295 unique proteins in the perfusate from time-points following the infusion of cellular therapy, many of which have strong links to MAPC cells and mesenchymal stem cells in the literature. Functional enrichment analysis demonstrated their immunomodulatory potential. Conclusion: We have demonstrated that cells can be delivered directly to the target organ, prior to host immune cell population exposure and without compromising the perfusion. Transendothelial migration occurs following arterial infusion. MAPC cells appear to secrete a host of soluble factors that would have anti-inflammatory and immunomodulatory benefits in a human model of liver transplantation.
Collapse
Affiliation(s)
- Richard W. Laing
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | | | - Lorraine Wallace
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Ricky H. Bhogal
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Andrea Schlegel
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Yuri L. Boteon
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Gary M. Reynolds
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Darius F. Mirza
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N. Newsome
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Hynek Mergental
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Simon C. Afford
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
12
|
Wang J, Guo M, Ma R, Wu M, Zhang Y. Tetrandrine alleviates cerebral ischemia/reperfusion injury by suppressing NLRP3 inflammasome activation via Sirt-1. PeerJ 2020; 8:e9042. [PMID: 32419986 PMCID: PMC7211409 DOI: 10.7717/peerj.9042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Background & Aims Tetrandrine (Tet) has been reported to have anti-inflammatory effects and protect from the ischemic strokes. The NLRP3 inflammasome plays a key role in cerebral ischemia/reperfusion (I/R)-induced inflammatory lesions. However, the molecular mechanisms of Tet related to the progression of cerebral ischemia are still unclear. Therefore, the aim of this study was to investigate the possible effects of Tet on cerebral ischemia and the related mechanisms involved in NLRP3 inflammasome. Methods C57BL/6J mice used as a cerebral I/R injury model underwent middle cerebral artery occlusion (MCAO) for 2 h following reperfusion for 24 h. Tet (30 mg/kg/day, i.p.) was administered for seven days and 30 min before and after MCAO. Their brain tissues were evaluated for NLRP3 inflammasome and Sirtuin-1 (Sirt-1) expression. An intracerebroventricular injection of Sirt-1 siRNA was administered to assess the activation of the NLRP3 inflammasome. Results Tet significantly reduced the neurological deficits, infarction volume, and cerebral water content in MCAO mice. Moreover, it inhibited I/R-induced over expression of NLRP3, cleaved caspase-1, interleukin (IL)-1β, IL-18, and Sirt-1. Sirt-1 knockdown with siRNA greatly blocked the Tet-induced reduction of neurological severity score and infarct volume, and reversed the inhibition of NLRP3 inflammasome activation. Conclusion Our results demonstrate that Tet has benefits for cerebral I/R injury, which are partially related to the suppression of NLRP3 inflammasome activation via upregulating Sirt-1.
Collapse
Affiliation(s)
- Jun Wang
- Department of Cardiology, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang Province, China.,Department of Acupuncture, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, Zhejiang Province, China
| | - Ming Guo
- Department of Cardiology, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang Province, China
| | - Ruojia Ma
- Department of Cardiology, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang Province, China
| | - Maolin Wu
- Department of Cardiology, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang Province, China
| | - Yamei Zhang
- Department of Cardiology, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
13
|
Chen X, Cheng C, Zuo X, Huang W. Astragalin alleviates cerebral ischemia-reperfusion injury by improving anti-oxidant and anti-inflammatory activities and inhibiting apoptosis pathway in rats. BMC Complement Med Ther 2020; 20:120. [PMID: 32316944 PMCID: PMC7171805 DOI: 10.1186/s12906-020-02902-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/23/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Astragalin (AG), a flavonoid from many traditional herbs and medicinal plants, has been described to exhibit in vitro anti-inflammatory activity. The paper aimed to study the effects of astragalin on anti-inflammatory, anti-oxidative ability and apoptosis signaling pathway in brain tissue of rats with cerebral ischemia-reperfusion injury, and to explore its possible mechanism. METHODS The rat model of focal cerebral ischemia-reperfusion injury was established by suture method. It was randomly divided into 5 groups, sham operation group, ischemia-reperfusion (I/R) treatment group, and astragalin treatment I / R group (12.5, 25, 50 mg / kg). After 24 h of reperfusion, the neurological deficits of the rats were analyzed and HE staining was performed. The volume of cerebral infarction was calculated by triphenyltetrazolium chloride (TTC) staining, and the apoptosis of nerve cells was detected by TUNEL staining. In addition, the content of malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), glutathione (GSH) assay and glutathione peroxidase (GSH-Px) were measured in rat brain tissue. Western blot analysis was used to determine the expression of related proteins. RESULTS Compared with I/R group, the neurological deficit score and infarct volume of I/R rats were reduced in the astragalin treatment group. In the astragalin treatment group, MDA and NO levels in I/R rats were reduced, antioxidant enzymes and superoxide dismutase (SOD) activity were increased. In the astragalin treatment group, NF-κB (p65) and cyclooxygenase-2 (COX-2) expression levels were down-regulated, NF-E2-related factor 2 (Nrf2) nucleus and heme oxygenase-1 (HO-1) protein expression levels were up-regulated. In addition, the astragalin treatment can inhibit apoptosis, down-regulate Bax and cleaved caspase-3 expression, up-regulate Bcl-Xl expression. CONCLUSION The antioxidant properties of astragalin may play an important role in improving cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xiuying Chen
- Department of Neurology, Second Affiliated Hospital of Army Medical University, No.83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Chang Cheng
- Department of Neurology, Second Affiliated Hospital of Army Medical University, No.83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Xuzheng Zuo
- Department of Neurology, General Hospital of southern Theatre Command, Liuhua Road, Guangzhou, 510010, China
| | - Wen Huang
- Department of Neurology, Second Affiliated Hospital of Army Medical University, No.83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|
14
|
Xue X, Wang H, Su J. Inhibition of MiR-122 Decreases Cerebral Ischemia-reperfusion Injury by Upregulating DJ-1-Phosphatase and Tensin Homologue Deleted on Chromosome 10 (PTEN)/Phosphonosinol-3 Kinase (PI3K)/AKT. Med Sci Monit 2020; 26:e915825. [PMID: 32061171 PMCID: PMC7043345 DOI: 10.12659/msm.915825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion injury is caused by a blood reperfusion injury in ischemic brain tissue, and usually occurs in the treatment stage of ischemic disease, which can aggravate brain tissue injury. MiR-122 is closely related to ischemia-reperfusion injury in the myocardium, kidney, and liver; however, the role in cerebral ischemia-reperfusion injury has not been established. MATERIAL AND METHODS In this study, cerebral ischemia-reperfusion injury was established in a rat model, and the control group was a sham-operated group. After ischemia-reperfusion injury for 6, 12, and 24 hours, brain tissue specimens were collected and the expression of miR-122 and DJ-1 were determined using quantitative real-time polymerase chain reaction. Flow cytometry was used to determine the reactive oxygen species (ROS) content. The modified Neurological Severity Score (mNSS) scale was used to evaluate the sensory and motor function defects of the rats. The malondialdehyde (MDA), superoxide dismutase (SOD), and enzyme activity were determined. The rats in the cerebral ischemia-reperfusion injury model were divided into 2 groups (antagomir-NC group and antagomir miR-122 group). Brain neuron RN-c cells were divided into the following 4 groups: antagomir-NC, antagomir miR-122, pIRES2-blank, and pIRES2-DJ-1. Seventy-two hours after transfection, ischemia-reperfusion treatment was carried out and conventional cultured RN-c cells were used as the control group. Flow cytometry was used to detect apoptosis and western blot was used to detect the expression of DJ-1, PTEN, AKT, and p-AKT. RESULTS The expression of miR-122 increased significantly in the process of ischemia-reperfusion damage after cerebral infarction, while the expression of DJ-1 decreased significantly. Downregulation of miR-122 significantly increased the expression of DJ-1, enhanced the activity of the PTEN/PI3K/AKT pathway, reduced cell apoptosis, and alleviated cerebral ischemia-reperfusion injury. CONCLUSIONS Inhibition of miR-122 can decrease cerebral ischemia-reperfusion injury by upregulating DJ-1-PTEN/PI3K/AKT pathway.
Collapse
Affiliation(s)
- XinHong Xue
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - HongRu Wang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - JiangLi Su
- Department of Neurology, Liaocheng People's Hospital, Liaocheng City, China (mainland)
| |
Collapse
|
15
|
Jiang Y, Liu M, Liu H, Liu S. A critical review: traditional uses, phytochemistry, pharmacology and toxicology of Stephania tetrandra S. Moore (Fen Fang Ji). PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2020; 19:449-489. [PMID: 32336965 PMCID: PMC7180683 DOI: 10.1007/s11101-020-09673-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/15/2020] [Indexed: 05/05/2023]
Abstract
ABSTRACT Stephania tetrandra S. Moore (S. tetrandra) is distributed widely in tropical and subtropical regions of Asia and Africa. The root of this plant is known in Chinese as "Fen Fang Ji". It is commonly used in traditional Chinese medicine to treat arthralgia caused by rheumatism, wet beriberi, dysuria, eczema and inflamed sores. Although promising reports have been published on the various chemical constituents and activities of S. tetrandra, no review comprehensively summarizes its traditional uses, phytochemistry, pharmacology and toxicology. Therefore, the review aims to provide a critical and comprehensive evaluation of the traditional use, phytochemistry, pharmacological properties, pharmacokinetics and toxicology of S. tetrandra in China, and meaningful guidelines for future investigations.
Collapse
Affiliation(s)
- Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Haitao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| |
Collapse
|
16
|
Yan S, Fang C, Cao L, Wang L, Du J, Sun Y, Tong X, Lu Y, Wu X. Protective effect of glycyrrhizic acid on cerebral ischemia/reperfusion injury via inhibiting HMGB1-mediated TLR4/NF-κB pathway. Biotechnol Appl Biochem 2019; 66:1024-1030. [PMID: 31545873 DOI: 10.1002/bab.1825] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/10/2019] [Indexed: 12/20/2022]
Abstract
Cerebral ischemia is caused by various disorders, such as stroke, myocardial infarction, or peripheral vascular disease. The purpose of this paper was to investigate the effects of glycyrrhizic acid (GA) on cerebral ischemia/reperfusion (I/R) injury. Middle cerebral artery occlusion was established to evaluate the effects of GA on cerebral ischemia. In this study, our results showed that GA could dramatically decrease cerebral edema, reduce the neurological deficits, and smaller brain infarct volume was found in the GA treatment group. In serum and brain tissue, GA also increased superoxide dismutase activity. In addition, in serum and brain tissue, GA also dramatically inhibited the secretion of inflammatory cytokines, including interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α. Moreover, GA inhibited the expressions of high-mobility group protein box-1 (HMGB1)-mediated TLR4/NF-κB pathway. Our data determined that GA may provide protective effect on the I/R-induced cerebral ischemia disease.
Collapse
Affiliation(s)
- Sunhong Yan
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Chuanqin Fang
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Lei Cao
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Long Wang
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Jing Du
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yue Sun
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Xuanxia Tong
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Ying Lu
- Department of Laboratory Medicine, The First Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaosan Wu
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
17
|
TRPP2 associates with STIM1 to regulate cerebral vasoconstriction and enhance high salt intake-induced hypertensive cerebrovascular spasm. Hypertens Res 2019; 42:1894-1904. [PMID: 31541223 DOI: 10.1038/s41440-019-0324-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 11/08/2022]
Abstract
Cerebrovascular spasm is a life-threatening event in salt-sensitive hypertension. The relationship between store-operated calcium entry (SOCE) and vasoconstriction in hypertension has not been fully clarified. This study investigated the changes in cerebrovascular contractile responses in high salt intake-induced hypertension and the functional roles of the main components of SOCE, namely, polycystin-2 (TRPP2), stromal interaction molecule 1 (STIM1), and Orai3. Polycystic kidney disease 2 (which encodes TRPP2) knockout mice displayed decreased cerebrovascular SOCE-induced contraction. The blood pressure of age-matched rats fed a normal or high-salt diet for 4 weeks was monitored weekly using noninvasive tail-cuff plethysmography. The systolic blood pressure of the rats fed a high-salt diet was significantly higher than that of controls. Western blotting and immunohistochemical results showed that these hypertensive rats expressed higher levels of cerebrovascular TRPP2, STIM1, and Orai3 than controls. Cerebrovascular tension measurements of the basilar artery indicated that SOCE-mediated contraction was significantly increased in hypertensive rats compared with control rats. In addition, SOCE-mediated contraction was decreased in the basilar arteries of rats pretreated with the SOCE inhibitor BTP-2 (10 μM) or transfected with TRPP2-specific or STIM1-specific small interfering RNA. Staining with 2,3,5-triphenyltetrazolium chloride (TTC) was used to quantify the infarcted brain area 24 h after middle cerebral artery occlusion, a model of ischemic stroke, in rodents. The infarcted brain area was significantly greater in hypertensive rats and significantly lower in BTP-2-treated rats than in controls. Taken together, these findings indicate that SOCE-induced contraction may be overactive in the basilar arteries of salt-sensitive hypertensive rats, suggesting the dysregulation of TRPP2 and SOCE and its other components.
Collapse
|
18
|
Luo X, Chen X, Shen X, Yang Z, Du G. Rapid identification and analysis of the active components of traditional Chinese medicine Xiaoxuming decoction for ischemic stroke treatment by integrating UPLC-Q-TOF/MS and RRLC-QTRAP MSn method. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:313-322. [DOI: 10.1016/j.jchromb.2019.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/05/2023]
|
19
|
Li H, You W, Li X, Shen H, Chen G. Proteomic-Based Approaches for the Study of Ischemic Stroke. Transl Stroke Res 2019; 10:601-606. [PMID: 31278685 DOI: 10.1007/s12975-019-00716-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Wanchun You
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
20
|
Xu H, Liu T, Wang W, Su N, Yang L, Yang Z, Dou F, Cui J, Fei F, Ma J, Wen A, Ding Y. Proteomic Analysis of Hydroxysafflor Yellow A Against Cerebral Ischemia/Reperfusion Injury in Rats. Rejuvenation Res 2019; 22:503-512. [PMID: 30712471 DOI: 10.1089/rej.2018.2145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hydroxysafflor yellow A (HSYA), an active component from Chinese medicinal herb, has been applied to the prevention and treatment of cerebral ischemia/reperfusion injury (CIRI). To clarify the comprehensive mechanisms HSYA for stroke, we used label-free quantitative proteomic analysis to investigate the modulated proteins of rats subjected to CIRI and their alteration by HSYA. Neurological examination, infarct assessment, and biochemical assay were performed to validate the effects of HSYA, and the results indicated that HSYA played a significant role in brain protection. A total of 13 proteins were identified as overlapped proteins by label-free quantitative proteomic analysis. Gene Ontology and pathway analysis showed that these differentially expressed proteins were mainly enriched in the hypoxia-inducible factor 1 (HIF-1) signaling pathway. Furthermore, networks were constructed with respect to protein function interactions. The results suggested that seven proteins were identified as hub proteins between model and sham groups, while 25 proteins were identified as hub proteins between HSYA and model groups. In addition, the expressions of three overlapping proteins were validated by Western blot, and their levels were consistent with the results of label-free analysis. In conclusion, Eftud2, mTOR, Rab11, Ppp2r5e, and HIF-1 signaling pathways have been detected as key hub proteins and pathways in HSYA against CIRI through proteomic analysis. Our research has provided convincing explanations for the mechanism of HSYA against CIRI and the identified key proteins and pathways might provide novel therapeutics for CIRI.
Collapse
Affiliation(s)
- Hang Xu
- Department of Pharmacy, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Tianlong Liu
- Department of Pharmacy, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Wenjun Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Ning Su
- Department of Radiation Oncology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Liudi Yang
- Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Fang Dou
- Department of Pharmacy, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Jia Cui
- Department of Pharmacy, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Jing Ma
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Yang YY, Yang FQ, Gao JL. Differential proteomics for studying action mechanisms of traditional Chinese medicines. Chin Med 2019; 14:1. [PMID: 30636970 PMCID: PMC6325846 DOI: 10.1186/s13020-018-0223-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
Differential proteomics, which has been widely used in studying of traditional Chinese medicines (TCMs) during the past 10 years, is a powerful tool to visualize differentially expressed proteins and analyzes their functions. In this paper, the applications of differential proteomics in exploring the action mechanisms of TCMs on various diseases including cancers, cardiovascular diseases, diabetes, liver diseases, kidney disorders and obesity, etc. were reviewed. Furthermore, differential proteomics in studying of TCMs identification, toxicity, processing and compatibility mechanisms were also included. This review will provide information for the further applications of differential proteomics in TCMs studies.
Collapse
Affiliation(s)
- Yi-Yao Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People’s Republic of China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People’s Republic of China
| | - Jian-Li Gao
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang People’s Republic of China
| |
Collapse
|
22
|
Wang FJ, Sun ZY, Li RL, Hu LM, Chai LJ, Wang SX, Guo H, Zhang Y. Protection of Salvianolate Lyophilized Injection combined with Xueshuantong Injection (Lyophilized) against focal cerebral ischemia/reperfusion injury in rats through suppression of inflammatory response. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2017.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
23
|
Neuroprotective Effect of 3-(Naphthalen-2-Yl(Propoxy)Methyl)Azetidine Hydrochloride on Brain Ischaemia/Reperfusion Injury. J Neuroimmune Pharmacol 2017; 12:447-461. [PMID: 28247179 DOI: 10.1007/s11481-017-9733-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/21/2017] [Indexed: 01/27/2023]
|
24
|
Zhuang P, Wan Y, Geng S, He Y, Feng B, Ye Z, Zhou D, Li D, Wei H, Li H, Zhang Y, Ju A. Salvianolic Acids for Injection (SAFI) suppresses inflammatory responses in activated microglia to attenuate brain damage in focal cerebral ischemia. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:194-204. [PMID: 28087473 DOI: 10.1016/j.jep.2016.11.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 11/18/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Inflammatory reactions induced by microglia in the brain play crucial roles in ischemia/reperfusion (I/R) cerebral injuries. Microglia activation has been shown to be closely related to TLR4/NF-κB signal pathways. Salvianolic acids for injection (SAFI) have been used in clinical practice to treat ischemic stroke with reported neuroprotective effects; however, the underlying mechanisms are still uncertain. OBJECTIVE AND METHODS First, we studied the effect of SAFI on inflammatory responses in LPS-stimulated BV-2 microglia. Then, to discover whether the beneficial in vitro effects of SAFI lead to in vivo therapeutic effects, an MCAO (Middle cerebral artery occlusion) rat model was further employed to elucidate the probable mechanism of SAFI in treating ischemic stroke. Rats in the SAFI group were given SAFI (23 or 46mg/kg) before I/R injury. RESULTS The results showed that SAFI treatment significantly decreased neuroinflammation and the infarction volume compared with the vehicle group. Activation of microglia cells was reduced, and TLR4/NF-κB signals, which were markedly inhibited by SAFI treatment in ischemic hemisphere, were accompanied by reduced expression and release of cytokines IL-1β and IL-6. CONCLUSION This study provides evidence that SAFI effectively protects the brain after cerebral ischemia, which may be caused by attenuating inflammation in microglia.
Collapse
Affiliation(s)
- Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin JF-Pharmaland Technology Development Co., Ltd., Tianjin, China
| | - Yanjun Wan
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shihan Geng
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Ying He
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin Key Laboratory of Safety Evaluation Enterprise of TCM Injections, Tianjin 300410, China; Tianjin Tasliy Pride Pharmaceutical Co., Ltd., Tianjin 300400, China
| | - Bo Feng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhengliang Ye
- Tianjin Key Laboratory of Safety Evaluation Enterprise of TCM Injections, Tianjin 300410, China; Tianjin Tasliy Pride Pharmaceutical Co., Ltd., Tianjin 300400, China
| | - Dazheng Zhou
- Tianjin Key Laboratory of Safety Evaluation Enterprise of TCM Injections, Tianjin 300410, China; Tianjin Tasliy Pride Pharmaceutical Co., Ltd., Tianjin 300400, China
| | - Dekun Li
- Tianjin Key Laboratory of Safety Evaluation Enterprise of TCM Injections, Tianjin 300410, China; Tianjin Tasliy Pride Pharmaceutical Co., Ltd., Tianjin 300400, China
| | - Hongjun Wei
- Tianjin JF-Pharmaland Technology Development Co., Ltd., Tianjin, China
| | - Hongyan Li
- Tianjin JF-Pharmaland Technology Development Co., Ltd., Tianjin, China
| | - Yanjun Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Aichun Ju
- Tianjin Key Laboratory of Safety Evaluation Enterprise of TCM Injections, Tianjin 300410, China; Tianjin Tasliy Pride Pharmaceutical Co., Ltd., Tianjin 300400, China.
| |
Collapse
|
25
|
Han J, Luk B, Lee FJ. Neuroprotective effects of extracellular DJ-1 on reperfusion injury in SH-SY5Y cells. Synapse 2017; 71. [DOI: 10.1002/syn.21963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Jay Han
- Faculty of Health Sciences; Simon Fraser University; Burnaby BC V5A 1S6 Canada
| | - Beryl Luk
- Faculty of Health Sciences; Simon Fraser University; Burnaby BC V5A 1S6 Canada
| | - Frank J.S. Lee
- Faculty of Health Sciences; Simon Fraser University; Burnaby BC V5A 1S6 Canada
| |
Collapse
|
26
|
Tetrandrine protects against oxygen-glucose-serum deprivation/reoxygenation-induced injury via PI3K/AKT/NF-κB signaling pathway in rat spinal cord astrocytes. Biomed Pharmacother 2016; 84:925-930. [DOI: 10.1016/j.biopha.2016.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/20/2016] [Accepted: 10/01/2016] [Indexed: 12/25/2022] Open
|
27
|
Lv YL, Wu ZZ, Chen LX, Wu BX, Chen LL, Qin GC, Gui B, Zhou JY. Neuroprotective effects of tetrandrine against vascular dementia. Neural Regen Res 2016; 11:454-9. [PMID: 27127485 PMCID: PMC4829011 DOI: 10.4103/1673-5374.179058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Tetrandrine is one of the major active ingredients in Menispermaceae Stephania tetrandra S. Moore, and has specific therapeutic effects in ischemic cerebrovascular disease. Its use in vascular dementia has not been studied fully. Here, we investigated whether tetrandrine would improve behavioral and cellular impairments in a two-vessel occlusion rat model of chronic vascular dementia. Eight weeks after model establishment, rats were injected intraperitoneally with 10 or 30 mg/kg tetrandrine every other day for 4 weeks. Behavioral assessment in the Morris water maze showed that model rats had longer escape latencies in training trials, and spent less time swimming in the target quadrant in probe trials, than sham-operated rats. However, rats that had received tetrandrine showed shorter escape latencies and longer target quadrant swimming time than untreated model rats. Hematoxylin-eosin and Nissl staining revealed less neuronal necrosis and pathological damage, and more living cells, in the hippocampus of rats treated with tetrandrine than in untreated model rats. Western blot assay showed that interleukin-1β expression, and phosphorylation of the N-methyl-D-aspartate 2B receptor at tyrosine 1472, were lower in model rats that received tetrandrine than in those that did not. The present findings suggest that tetrandrine may be neuroprotective in chronic vascular dementia by reducing interleukin-1β expression, N-methyl-D-aspartate receptor 2B phosphorylation at tyrosine 1472, and neuronal necrosis.
Collapse
Affiliation(s)
- Yan-Ling Lv
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ze-Zhi Wu
- Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Li-Xue Chen
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bai-Xue Wu
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lian-Lian Chen
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guang-Cheng Qin
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bei Gui
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ji-Ying Zhou
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Wang Y, Zhen Y, Wu X, Jiang Q, Li X, Chen Z, Zhang G, Dong L. Vitexin protects brain against ischemia/reperfusion injury via modulating mitogen-activated protein kinase and apoptosis signaling in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:379-384. [PMID: 25837275 DOI: 10.1016/j.phymed.2015.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 06/04/2023]
Abstract
Vitexin is a major bioactive flavonoid compound derived from the dried leaf of hawthorn (Crataegus pinnatifida), a widely used conventional folk medicine in China. Recent studies have shown that vitexin presents neuroprotective effects in vitro. Whether this protective effect applies to the cerebral ischemia/reperfusion (I/R) injury remains elusive. In the present study, we examined the potential neuroprotective effect of vitexin against cerebral I/R injury and underlying mechanisms. A focal cerebral I/R model in male Kunming mice was induced by middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 22 h. The neurological function and infarct volume were assessed by using Long's five-point scale system and triphenyl-tetrazolium chloride (TTC) staining technique, respectively. Neuronal damage was evaluated by histological staining. Extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK) and p38 phosphorylation, and apoptosis were measured via Western blot at 24 h after reperfusion. As a result, systemic vitexin treatment significantly reduced neurological deficit, cerebral infarct volume and neuronal damage when compared with the I/R group. Western blot analyses revealed that vitexin markedly upregulated p-ERK1/2 and downregulated p-JNK and p-p38. Meanwhile, vitexin increased Bcl-2 expression and suppressed the overexpression of Bax in the I/R injury mice. In conclusion, the results indicate that vitexin protects brain against cerebral I/R injury, and this effect may be regulated by mitogen-activated protein kinase (MAPK) and apoptosis signaling pathways.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yilan Zhen
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xian Wu
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Qin Jiang
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xiaoliang Li
- Hefei Qi-xing Medicine and Technology Co. Ltd, Hefei, Anhui 230032, China
| | - Zhiwu Chen
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Gongliang Zhang
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Liuyi Dong
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|