1
|
Ahn SJ. Exploring neuropharmacokinetics: mechanisms, models, and clinical implications. ENCEPHALITIS 2025; 5:36-52. [PMID: 40194559 PMCID: PMC12042691 DOI: 10.47936/encephalitis.2024.00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
Neuropharmacokinetics is an emerging field dedicated to understanding the pharmacokinetics of drugs within the central nervous system (CNS), with a particular emphasis on overcoming the challenges posed by the blood-brain barrier. This paper reviews the latest advancements in drug delivery strategies, including nanoparticle-based systems, receptor-mediated transcytosis, and efflux transporter inhibition, which have been designed to enhance drug penetration into the brain. Additionally, the use of advanced imaging techniques such as positron emission tomography, functional magnetic resonance imaging, and magnetic resonance imaging with contrast agents has provided critical insights into drug distribution, receptor occupancy, and the functional impact of therapeutic agents within the CNS. These innovations not only enhance our understanding of CNS drug action but also pave the way for more effective treatments for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Seon-Jae Ahn
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Center for Hospital Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
2
|
Lillethorup IA, Hemmingsen AV, Qvortrup K. Prodrugs and their activation mechanisms for brain drug delivery. RSC Med Chem 2025; 16:1037-1048. [PMID: 39829971 PMCID: PMC11740913 DOI: 10.1039/d4md00788c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/15/2024] [Indexed: 01/22/2025] Open
Abstract
Prodrugs are masked drugs that first become pharmacologically active after undergoing a structural change in vivo. They are designed to improve physicochemical/biopharmaceutical drug properties and increase site specificity. The prodrug approach is important when developing brain-targeting drugs due to the presence of the brain barriers that seriously limit the brain entry of highly polar, multifunctional drug entities. While several excellent reviews summarize the structural modifications facilitating transport across the brain barriers, a summary of mechanisms used for the activation of the prodrug in the brain is missing. Given the high need for innovative discoveries in brain drug development, we here review the most important tools being developed since 2000 for CNS prodrug activation.
Collapse
Affiliation(s)
| | | | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark 2800 Kongens Lyngby Denmark
| |
Collapse
|
3
|
Ahmed HS. The Multifaceted Role of L-Type Amino Acid Transporter 1 at the Blood-Brain Barrier: Structural Implications and Therapeutic Potential. Mol Neurobiol 2025; 62:3813-3832. [PMID: 39325101 DOI: 10.1007/s12035-024-04506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
L-type amino acid transporter 1 (LAT1) is integral to the transport of large neutral amino acids across the blood-brain barrier (BBB), playing a crucial role in brain homeostasis and the delivery of therapeutic agents. This review explores the multifaceted role of LAT1 in neurological disorders, including its structural and functional aspects at the BBB. Studies using advanced BBB models, such as induced pluripotent stem cell (iPSC)-derived systems and quantitative proteomic analyses, have demonstrated LAT1's significant impact on drug permeability and transport efficiency. In Alzheimer's disease, LAT1-mediated delivery of anti-inflammatory and neuroprotective agents shows promise in overcoming BBB limitations. In Parkinson's disease, LAT1's role in transporting L-DOPA and other therapeutic agents highlights its potential in enhancing treatment efficacy. In phenylketonuria, studies have revealed polymorphisms and genetic variations of LAT1, which could be correlated to disease severity. Prodrugs of valproic acid, pregabalin, and gabapentin help use LAT1-mediated transport to increase the therapeutic activity and bioavailability of the prodrug in the brain. LAT1 has also been studied in neurodevelopment disorders like autism spectrum disorders and Rett syndrome, along with neuropsychiatric implications in depression. Its implications in neuro-oncology, especially in transporting therapeutic agents into cancer cells, show immense future potential. Phenotypes of LAT1 have also shown variations in the general population affecting their ability to respond to painkillers and anti-inflammatory drugs. Furthermore, LAT1-targeted approaches, such as functionalized nanoparticles and prodrugs, show promise in overcoming chemoresistance and enhancing drug delivery to the brain. The ongoing exploration of LAT1's structural characteristics and therapeutic applications reiterates its critical role in advancing treatments for neurological disorders.
Collapse
Affiliation(s)
- H Shafeeq Ahmed
- Bangalore Medical College and Research Institute, Bangalore, 560002, Karnataka, India.
| |
Collapse
|
4
|
Lee Y, Jin C, Ohgaki R, Xu M, Ogasawara S, Warshamanage R, Yamashita K, Murshudov G, Nureki O, Murata T, Kanai Y. Structural basis of anticancer drug recognition and amino acid transport by LAT1. Nat Commun 2025; 16:1635. [PMID: 39952931 PMCID: PMC11828871 DOI: 10.1038/s41467-025-56903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025] Open
Abstract
LAT1 (SLC7A5) transports large neutral amino acids and plays pivotal roles in cancer proliferation, immune response and drug delivery. Despite recent advances in structural understanding of LAT1, how it discriminates substrates and inhibitors including the clinically relevant drugs remains elusive. Here we report six structures of LAT1 across three conformations with bound ligands, elucidating its substrate transport and inhibitory mechanisms. JPH203 (also known as nanvuranlat or KYT-0353), an anticancer drug in clinical trials, traps LAT1 in an outward-facing state with a U-shaped conformer, with its amino-phenylbenzoxazol moiety pushing against transmembrane helix 3 (TM3) and bending TM10. Physiological substrates like ʟ-Phe lack such effects, whereas melphalan poses steric hindrance, explaining its inhibitory activity. The "classical" system L inhibitor BCH induces an occluded state critical for transport, confirming its substrate-like behavior. These findings provide a structural basis for substrate recognition and inhibition of LAT1, guiding future drug design.
Collapse
Affiliation(s)
- Yongchan Lee
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438, Frankfurt, Germany.
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan.
| | - Chunhuan Jin
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, 565-0871, Japan
| | - Minhui Xu
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Satoshi Ogasawara
- Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Rangana Warshamanage
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0FA, UK
| | - Keitaro Yamashita
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Garib Murshudov
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takeshi Murata
- Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, 565-0871, Japan.
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Teerawonganan P, Hasriadi, Dasuni Wasana PW, Angsuwattana P, Suksamrarn A, Nalinratana N, Vajragupta O, Towiwat P, Thitikornpong W, Rojsitthisak P. Synthesis, Cytotoxicity, and Mechanistic Evaluation of Tetrahydrocurcumin-Amino Acid Conjugates as LAT1-Targeting Anticancer Agents in C6 Glioma Cells. Int J Mol Sci 2024; 25:11266. [PMID: 39457050 PMCID: PMC11509005 DOI: 10.3390/ijms252011266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Glioblastoma, a fatal brain cancer with limited treatments and poor prognosis, could benefit from targeting the L-type amino acid transporter I (LAT1). LAT1 is essential for cancer cells to acquire necessary amino acids. Tetrahydrocurcumin (THC), a key curcumin derivative, shows potential for glioblastoma treatment. However, its effectiveness is hindered by poor physicochemical and pharmacokinetic properties. Therefore, this study aims to improve the therapeutic efficacy of THC against glioblastoma by chemically modifying it to target LAT1. A novel series of THC-amino acid conjugates were synthesized by conjugating five amino acids: glycine, leucine, isoleucine, and phenylalanine to THC via carbamate bonds. The therapeutic efficacy of THC-amino acid conjugates was further examined in C6 glioma cells, including the role of LAT1 in their therapeutic effects. Among the conjugates tested, THC conjugated with two phenylalanines (THC-di-Phe) showed remarkably higher cytotoxicity against C6 glioma cells (35.8 μM) compared to THC alone (110.7 μM). THC-di-Phe induced cellular death via necrosis and apoptosis, outperforming THC. Additionally, THC-di-Phe inhibited C6 cell proliferation and migration more effectively than THC. Co-incubation of THC-di-Phe with the LAT1 inhibitor 2-Aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) further increased cellular death. THC-di-Phe also significantly inhibited the P70SK/S6 pathway, regulated by LAT1 inhibitors, more effectively than THC and displayed a similar binding mode with both JX-075 and BCH to the active site of LAT1. Findings suggest the potential role of THC-di-Phe as a LAT1 inhibitor and provide novel insight into its use as a potent antitumor agent in glioma with increased therapeutic efficacy.
Collapse
Affiliation(s)
- Polsak Teerawonganan
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (H.); (N.N.); (O.V.); (P.T.); (W.T.)
- Biomedicinal Chemistry Program, Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hasriadi
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (H.); (N.N.); (O.V.); (P.T.); (W.T.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peththa Wadu Dasuni Wasana
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Ruhuna, Galle 80000, Sri Lanka;
| | - Pornpoom Angsuwattana
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand;
| | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (H.); (N.N.); (O.V.); (P.T.); (W.T.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (H.); (N.N.); (O.V.); (P.T.); (W.T.)
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pasarapa Towiwat
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (H.); (N.N.); (O.V.); (P.T.); (W.T.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Worathat Thitikornpong
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (H.); (N.N.); (O.V.); (P.T.); (W.T.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (H.); (N.N.); (O.V.); (P.T.); (W.T.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
6
|
Adla SK, Virtanen H, Thongsodsaeng T, Huttunen KM. Amino acid transporters in neurological disorders and neuroprotective effects of cysteine derivatives. Neurochem Int 2024; 177:105771. [PMID: 38761853 DOI: 10.1016/j.neuint.2024.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
For most diseases and disorders occurring in the brain, the full causes behind them are yet unknown, but many show signs of dysfunction of amino acid transporters or abnormalities in amino acid metabolism. The blood-brain barrier (BBB) plays a key role in supporting the function of the central nervous system (CNS). Because of its unique structure, the BBB can maintain the optimal environment for CNS by controlling the passage of hydrophilic molecules from blood to the brain. Nutrients, such as amino acids, can cross the BBB via specific transporters. Many amino acids are essential for CNS function, and dysfunction of these amino acid transporters can lead to abnormalities in amino acid levels. This has been linked to causes behind certain genetic brain diseases, such as schizophrenia, autism spectrum disorder, and Huntington's disease (HD). One example of crucial amino acids is L-Cys, the rate-limiting factor in the biosynthesis of an important antioxidant, glutathione (GSH). Deficiency of L-Cys and GSH has been linked to oxidative stress and has been shown as a plausible cause behind certain CNS diseases, like schizophrenia and HD. This review presents the current status of potential L-Cys therapies and gives future directions that can be taken to improve amino acid transportation related to distinct CNS diseases.
Collapse
Affiliation(s)
- Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Heinileena Virtanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Thanavit Thongsodsaeng
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
7
|
Huttunen KM. Improving drug delivery to the brain: the prodrug approach. Expert Opin Drug Deliv 2024; 21:683-693. [PMID: 38738934 DOI: 10.1080/17425247.2024.2355180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
INTRODUCTION The prodrug approach has been thought to be a simple solution to improve brain drug delivery for decades. Nevertheless, it still comes as a surprise that there is relatively little success in the field. The best example anti-parkinsonian drug levodopa has been serendipitously discovered to be a transporter-utilizing brain-delivered prodrug rather than a rationally developed one. AREAS COVERED The lack of success can mainly be explained by the insufficient understanding of the role of membrane proteins that can facilitate drug delivery at dynamic barriers, such as the blood-brain barrier (BBB), but also by the sparse knowledge of prodrug bioconverting enzymes in the brain. This review summarizes the current status of the prodrug attempts that have been developed in the past to improve brain drug delivery. EXPERT OPINION With the expandingly improved analytical and computational technologies, it is anticipated that enhanced brain drug delivery will be eventually achieved for most of the central nervous system (CNS) acting drugs. However, this requires that carrier-mediated (pro)drug delivery methods are implemented in the very early phases of the drug development processes and not as a last step to survive a problematic investigational drug candidate.
Collapse
Affiliation(s)
- Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
8
|
Huttunen J, Tampio J, Järvinen J, Montaser AB, Markowicz-Piasecka M, Huttunen KM. Amino acid derivative of probenecid potentiates apoptosis-inducing effects of vinblastine by increasing oxidative stress in a cancer cell-specific manner. Chem Biol Interact 2024; 388:110833. [PMID: 38101600 DOI: 10.1016/j.cbi.2023.110833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Many chemotherapeutic drugs suffer from multidrug resistance (MDR). Efflux transporters, namely ATP-binding cassettes (ABCs), that pump the drugs out of the cancer cells comprise one major reason behind MDR. Therefore, ABC inhibitors have been under development for ages, but unfortunately, without clinical success. In the present study, an l-type amino acid transporter 1 (LAT1)-utilizing derivative of probenecid (PRB) was developed as a cancer cell-targeted efflux inhibitor for P-glycoprotein (P-gp), breast cancer resistant protein (BCRP) and/or several multidrug resistant proteins (MRPs), and its ability to increase vinblastine (VBL) cellular accumulation and apoptosis-inducing effects were explored. The novel amino acid derivative of PRB (2) increased the VBL exposure in triple-negative human breast cancer cells (MDA-MB-231) and human glioma cells (U-87MG) by 10-68 -times and 2-5-times, respectively, but not in estrogen receptor-positive human breast cancer cells (MCF-7). However, the combination therapy had greater cytotoxic effects in MCF-7 compared to MDA-MB-231 cells due to the increased oxidative stress recorded in MCF-7 cells. The metabolomic study also revealed that compound 2, together with VBL, decreased the transport of those amino acids essential for the biosynthesis of endogenous anti-oxidant glutathione (GSH). Moreover, the metabolic differences between the outcomes of the studied breast cancer cell lines were explained by the distinct expression profiles of solute carriers (SLCs) that can be concomitantly inhibited. Therefore, attacking several SLCs simultaneously to change the nutrient environment of cancer cells can serve as an adjuvant therapy to other chemotherapeutics, offering an alternative to ABC inhibitors.
Collapse
Affiliation(s)
- Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Janne Tampio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Juulia Järvinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ahmed B Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | | | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
9
|
Järvinen J, Montaser AB, Adla SK, Leppänen J, Lehtonen M, Vellonen KS, Laitinen T, Jalkanen A, Elmquist WF, Timonen J, Huttunen KM, Rautio J. Altering distribution profile of palbociclib by its prodrugs. Eur J Pharm Sci 2024; 192:106637. [PMID: 37967656 DOI: 10.1016/j.ejps.2023.106637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
Palbociclib, a cyclin-dependent kinase (CDK) 4/6 inhibitor, is currently used clinically for treating hormone receptor-positive and human epidermal growth factor receptor 2 negative breast cancer. Additionally, it has the potential to be utilized in the treatment of various tumors, including malignant glioblastoma. Previous research has indicated that palbociclib is a substrate for two efflux transporters, P-glycoprotein (P-gp; MDR1) and breast cancer-resistant protein (BCRP), which restrict the brain exposure of palbociclib. In the present study, our objective was to alter the brain distribution pattern of palbociclib by creating and assessing two novel prodrugs through in vitro, in situ, and in vivo evaluations. To this end, we synthesized two prodrugs of palbociclib by attaching it to the tyrosine promoiety at the para- (PD1) and meta-(PD2) position via a carbamate bond. We hypothesized that the prodrugs could bypass efflux transporter-mediated drug resistance by leveraging the l-type amino acid transporter (LAT1) to facilitate their transport across the blood-brain barrier (BBB) and into cancer cells, such as glioma cells that express LAT1. The compounds PD1 and PD2 did not show selective binding and had limited inhibitory effects on LAT1 in three cell lines (MCF-7, U87-MG, HEK-hLAT1). However, PD1 and PD2 demonstrated the ability to evade efflux mechanisms, and their in vitro uptake profiles were comparable to that of palbociclib, indicating their potential for effective cellular transport. In in situ and in vivo studies, brain uptake was not significantly improved compared to palbociclib, but the pharmacokinetic profiles showed encouraging enhancements. PD1 exhibited a higher AUCbrain/plasma ratio, suggesting safer dosing, while PD2 showed favorable long-acting pharmacokinetics. Although our prodrug design did not significantly improve palbociclib brain delivery due to the potential size limitation of the prodrugs, the study provides valuable insights for future prodrug development and drug delivery strategies targeting specific transporters.
Collapse
Affiliation(s)
- Juulia Järvinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Ahmed B Montaser
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Santosh Kumar Adla
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jukka Leppänen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kati-Sisko Vellonen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Tuomo Laitinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Aaro Jalkanen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - William F Elmquist
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Juri Timonen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014 Helsinki, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
10
|
Tonduru AK, Maljaei SH, Adla SK, Anamea L, Tampio J, Králová A, Jalkanen AJ, Espada C, Santos IF, Montaser AB, Rautio J, Kronenberger T, Poso A, Huttunen KM. Targeting Glial Cells by Organic Anion-Transporting Polypeptide 1C1 (OATP1C1)-Utilizing l-Thyroxine-Derived Prodrugs. J Med Chem 2023; 66:15094-15114. [PMID: 37930268 PMCID: PMC10683023 DOI: 10.1021/acs.jmedchem.3c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
OATP1C1 (organic anion-transporting polypeptide 1C1) transports thyroid hormones, particularly thyroxine (T4), into human astrocytes. In this study, we investigated the potential of utilizing OATP1C1 to improve the delivery of anti-inflammatory drugs into glial cells. We designed and synthesized eight novel prodrugs by incorporating T4 and 3,5-diiodo-l-tyrosine (DIT) as promoieties to selected anti-inflammatory drugs. The prodrug uptake in OATP1C1-expressing human U-87MG glioma cells demonstrated higher accumulation with T4 promoiety compared to those with DIT promoiety or the parent drugs themselves. In silico models of OATP1C1 suggested dynamic binding for the prodrugs, wherein the pose changed from vertical to horizontal. The predicted binding energies correlated with the transport profiles, with T4 derivatives exhibiting higher binding energies when compared to prodrugs with a DIT promoiety. Interestingly, the prodrugs also showed utilization of oatp1a4/1a5/1a6 in mouse primary astrocytes, which was further supported by docking studies and a great potential for improved brain drug delivery.
Collapse
Affiliation(s)
- Arun Kumar Tonduru
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Seyed Hamed Maljaei
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Santosh Kumar Adla
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Landry Anamea
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Janne Tampio
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Adéla Králová
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Aaro J. Jalkanen
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Catarina Espada
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Inês Falcato Santos
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ahmed B. Montaser
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Jarkko Rautio
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Thales Kronenberger
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard-Karls-Universität, Tuebingen, Auf der Morgenstelle
8, 72076 Tuebingen, Germany
- Tuebingen
Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tuebingen, Germany
| | - Antti Poso
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard-Karls-Universität, Tuebingen, Auf der Morgenstelle
8, 72076 Tuebingen, Germany
- Tuebingen
Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tuebingen, Germany
- Department
of Internal Medicine VIII, University Hospital
Tübingen, DE 72076 Tübingen, Germany
- Cluster
of Excellence iFIT (EXC 2180) “Image-Guided and Functionally
Instructed Tumor Therapies”, University
of Tübingen, 72076 Tübingen, Germany
| | - Kristiina M. Huttunen
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
11
|
Huttunen J, Kronenberger T, Montaser AB, Králová A, Terasaki T, Poso A, Huttunen KM. Sodium-Dependent Neutral Amino Acid Transporter 2 Can Serve as a Tertiary Carrier for l-Type Amino Acid Transporter 1-Utilizing Prodrugs. Mol Pharm 2023; 20:1331-1346. [PMID: 36688491 PMCID: PMC9906736 DOI: 10.1021/acs.molpharmaceut.2c00948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Membrane transporters are the key determinants of the homeostasis of endogenous compounds in the cells and their exposure to drugs. However, the substrate specificities of distinct transporters can overlap. In the present study, the interactions of l-type amino acid transporter 1 (LAT1)-utilizing prodrugs with sodium-coupled neutral amino acid transporter 2 (SNAT2) were explored. The results showed that the cellular uptake of LAT1-utilizing prodrugs into a human breast cancer cell line, MCF-7 cells, was mediated via SNATs as the uptake was increased at higher pH (8.5), decreased in the absence of sodium, and inhibited in the presence of unselective SNAT-inhibitor, (α-(methylamino)isobutyric acid, MeAIB). Moreover, docking the compounds to a SNAT2 homology model (inward-open conformation) and further molecular dynamics simulations and the subsequent trajectory and principal component analyses confirmed the chemical features supporting the interactions of the studied compounds with SNAT2, which was found to be the main SNAT expressed in MCF-7 cells.
Collapse
Affiliation(s)
- Johanna Huttunen
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Thales Kronenberger
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland,Department
of Internal Medicine VIII, University Hospital
Tübingen, Otfried-Müller-Strasse
14, DE 72076 Tübingen, Germany,Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard-Karls-Universität,
Tübingen, Auf
der Morgenstelle 8, 72076 Tübingen, Germany,Cluster
of Excellence iFIT (EXC 2180) “Image-Guided and Functionally
Instructed Tumor Therapies”, University
of Tübingen, 72076 Tübingen, Germany,Tübingen
Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Ahmed B. Montaser
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Adéla Králová
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Tetsuya Terasaki
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Antti Poso
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland,Department
of Internal Medicine VIII, University Hospital
Tübingen, Otfried-Müller-Strasse
14, DE 72076 Tübingen, Germany,Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard-Karls-Universität,
Tübingen, Auf
der Morgenstelle 8, 72076 Tübingen, Germany,Cluster
of Excellence iFIT (EXC 2180) “Image-Guided and Functionally
Instructed Tumor Therapies”, University
of Tübingen, 72076 Tübingen, Germany,Tübingen
Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Kristiina M. Huttunen
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland,
| |
Collapse
|
12
|
Bahrami K, Järvinen J, Laitinen T, Reinisalo M, Honkakoski P, Poso A, Huttunen KM, Rautio J. Structural Features Affecting the Interactions and Transportability of LAT1-Targeted Phenylalanine Drug Conjugates. Mol Pharm 2023; 20:206-218. [PMID: 36394563 PMCID: PMC9811466 DOI: 10.1021/acs.molpharmaceut.2c00594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
L-type amino acid transporter 1 (LAT1) transfers essential amino acids across cell membranes. Owing to its predominant expression in the blood-brain barrier and tumor cells, LAT1 has been exploited for drug delivery and targeting to the central nervous system (CNS) and various cancers. Although the interactions of amino acids and their mimicking compounds with LAT1 have been extensively investigated, the specific structural features for an optimal drug scaffold have not yet been determined. Here, we evaluated a series of LAT1-targeted drug-phenylalanine conjugates (ligands) by determining their uptake rates by in vitro studies and investigating their interaction with LAT1 via induced-fit docking. Combining the experimental and computational data, we concluded that although LAT1 can accommodate various types of structures, smaller compounds are preferred. As the ligand size increased, its flexibility became more crucial in determining the compound's transportability and interactions. Compounds with linear or planar structures exhibited reduced uptake; those with rigid lipophilic structures lacked interactions and likely utilized other transport mechanisms for cellular entry. Introducing polar groups between aromatic structures enhanced interactions. Interestingly, compounds with a carbamate bond in the aromatic ring's para-position displayed very good transport efficiencies for the larger compounds. Compared to the ester bond, the corresponding amide bond had superior hydrogen bond acceptor properties and increased interactions. A reverse amide bond was less favorable than a direct amide bond for interactions with LAT1. The present information can be applied broadly to design appropriate CNS or antineoplastic drug candidates with a prodrug strategy and to discover novel LAT1 inhibitors used either as direct or adjuvant cancer therapy.
Collapse
|
13
|
Montaser AB, Kuiri J, Natunen T, Hruška P, Potěšil D, Auriola S, Hiltunen M, Terasaki T, Lehtonen M, Jalkanen A, Huttunen KM. Enhanced drug delivery by a prodrug approach effectively relieves neuroinflammation in mice. Life Sci 2022; 310:121088. [PMID: 36257461 DOI: 10.1016/j.lfs.2022.121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
AIMS Neuroinflammation is a prominent hallmark in several neurodegenerative diseases (NDs). Halting neuroinflammation can slow down the progression of NDs. Improving the efficacy of clinically available non-steroidal anti-inflammatory drugs (NSAIDs) is a promising approach that may lead to fast-track and effective disease-modifying therapies for NDs. Here, we aimed to utilize the L-type amino acid transporter 1 (LAT1) to improve the efficacy of salicylic acid as an example of an NSAID prodrug, for which brain uptake and intracellular localization have been reported earlier. MAIN METHODS Firstly, we confirmed the improved LAT1 utilization of the salicylic acid prodrug (SA-AA) in freshly isolated primary mouse microglial cells. Secondly, we performed behavioural rotarod, open field, and four-limb hanging tests in mice, and a whole-brain proteome analysis. KEY FINDINGS The SA-AA prodrug alleviated the lipopolysaccharide (LPS)-induced inflammation in the rotarod and hanging tests. The proteome analysis indicated decreased neuroinflammation at the molecular level. We identified 399 proteins linked to neuroinflammation out of 7416 proteins detected in the mouse brain. Among them, Gps2, Vamp8, Slc6a3, Slc18a2, Slc5a7, Rgs9, Lrrc1, Ppp1r1b, Gnal, and Adcy5/6 were associated with the drug's effects. The SA-AA prodrug attenuated the LPS-induced neuroinflammation through the regulation of critical pathways of neuroinflammation such as the cellular response to stress and transmission across chemical synapses. SIGNIFICANCE The efficacy of NSAIDs can be improved via the utilization of LAT1 and repurposed for the treatment of neuroinflammation. This improved brain delivery and microglia localisation can be applied to other inflammatory modulators to achieve effective and targeted CNS therapies.
Collapse
Affiliation(s)
- Ahmed B Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Janita Kuiri
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Teemu Natunen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Pavel Hruška
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Tetsuya Terasaki
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Aaro Jalkanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
14
|
Hugele A, Löffler S, Molina BH, Guillon M, Montaser AB, Auriola S, Huttunen KM. Aminopeptidase B can bioconvert L-type amino acid transporter 1 (LAT1)-utilizing amide prodrugs in the brain. Front Pharmacol 2022; 13:1034964. [PMID: 36339537 PMCID: PMC9631218 DOI: 10.3389/fphar.2022.1034964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
A prodrug approach is a powerful method to temporarily change the physicochemical and thus, pharmacokinetic properties of drugs. However, in site-selective targeted prodrug delivery, tissue or cell-specific bioconverting enzyme is needed to be utilized to release the active parent drug at a particular location. Unfortunately, ubiquitously expressed enzymes, such as phosphatases and carboxylesterases are well used in phosphate and ester prodrug applications, but less is known about enzymes selectively expressed, e.g., in the brain and enzymes that can hydrolyze more stable prodrug bonds, such as amides and carbamates. In the present study, L-type amino acid transporter 1 (LAT1)-utilizing amide prodrugs bioconverting enzyme was identified by gradually exploring the environment and possible determinants, such as pH and metal ions, that affect amide prodrug hydrolysis. Based on inducement by cobalt ions and slightly elevated pH (8.5) as well as localization in plasma, liver, and particularly in the brain, aminopeptidase B was proposed to be responsible for the bioconversion of the majority of the studied amino acid amide prodrugs. However, this enzyme hydrolyzed only those prodrugs that contained an aromatic promoiety (L-Phe), while leaving the aliphatic promoeities (L-Lys) and the smallest prodrug (with L-Phe promoiety) intact. Moreover, the parent drugs’ structure (flexibility and the number of aromatic rings) largely affected the bioconversion rate. It was also noticed in this study, that there were species differences in the bioconversion rate by aminopeptidase B (rodents > human), although the in vitro–in vivo correlation of the studied prodrugs was relatively accurate.
Collapse
|
15
|
Huttunen J, Adla SK, Markowicz-Piasecka M, Huttunen KM. Increased/Targeted Brain (Pro)Drug Delivery via Utilization of Solute Carriers (SLCs). Pharmaceutics 2022; 14:pharmaceutics14061234. [PMID: 35745806 PMCID: PMC9228667 DOI: 10.3390/pharmaceutics14061234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane transporters have a crucial role in compounds’ brain drug delivery. They allow not only the penetration of a wide variety of different compounds to cross the endothelial cells of the blood–brain barrier (BBB), but also the accumulation of them into the brain parenchymal cells. Solute carriers (SLCs), with nearly 500 family members, are the largest group of membrane transporters. Unfortunately, not all SLCs are fully characterized and used in rational drug design. However, if the structural features for transporter interactions (binding and translocation) are known, a prodrug approach can be utilized to temporarily change the pharmacokinetics and brain delivery properties of almost any compound. In this review, main transporter subtypes that are participating in brain drug disposition or have been used to improve brain drug delivery across the BBB via the prodrug approach, are introduced. Moreover, the ability of selected transporters to be utilized in intrabrain drug delivery is discussed. Thus, this comprehensive review will give insights into the methods, such as computational drug design, that should be utilized more effectively to understand the detailed transport mechanisms. Moreover, factors, such as transporter expression modulation pathways in diseases that should be taken into account in rational (pro)drug development, are considered to achieve successful clinical applications in the future.
Collapse
Affiliation(s)
- Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
| | - Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic
| | - Magdalena Markowicz-Piasecka
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Correspondence:
| |
Collapse
|
16
|
Targeting Transporters for Drug Delivery to the Brain: Can We Do Better? Pharm Res 2022; 39:1415-1455. [PMID: 35359241 PMCID: PMC9246765 DOI: 10.1007/s11095-022-03241-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Limited drug delivery to the brain is one of the major reasons for high failure rates of central nervous system (CNS) drug candidates. The blood–brain barrier (BBB) with its tight junctions, membrane transporters, receptors and metabolizing enzymes is a main player in drug delivery to the brain, restricting the entrance of the drugs and other xenobiotics. Current knowledge about the uptake transporters expressed at the BBB and brain parenchymal cells has been used for delivery of CNS drugs to the brain via targeting transporters. Although many transporter-utilizing (pro)drugs and nanocarriers have been developed to improve the uptake of drugs to the brain, their success rate of translation from preclinical development to humans is negligible. In the present review, we provide a systematic summary of the current progress in development of transporter-utilizing (pro)drugs and nanocarriers for delivery of drugs to the brain. In addition, we applied CNS pharmacokinetic concepts for evaluation of the limitations and gaps in investigation of the developed transporter-utilizing (pro)drugs and nanocarriers. Finally, we give recommendations for a rational development of transporter-utilizing drug delivery systems targeting the brain based on CNS pharmacokinetic principles.
Collapse
|
17
|
Huttunen KM, Terasaki T, Urtti A, Montaser AB, Uchida Y. Pharmacoproteomics of Brain Barrier Transporters and Substrate Design for the Brain Targeted Drug Delivery. Pharm Res 2022; 39:1363-1392. [PMID: 35257288 PMCID: PMC9246989 DOI: 10.1007/s11095-022-03193-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
One of the major reasons why central nervous system (CNS)-drug development has been challenging in the past, is the barriers that prevent substances entering from the blood circulation into the brain. These barriers include the blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), blood-cerebrospinal fluid barrier (BCSFB), and blood-arachnoid barrier (BAB), and they differ from each other in their transporter protein expression and function as well as among the species. The quantitative expression profiles of the transporters in the CNS-barriers have been recently revealed, and in this review, it is described how they affect the pharmacokinetics of compounds and how these expression differences can be taken into account in the prediction of brain drug disposition in humans, an approach called pharmacoproteomics. In recent years, also structural biology and computational resources have progressed remarkably, enabling a detailed understanding of the dynamic processes of transporters. Molecular dynamics simulations (MDS) are currently used commonly to reveal the conformational changes of the transporters and to find the interactions between the substrates and the protein during the binding, translocation in the transporter cavity, and release of the substrate on the other side of the membrane. The computational advancements have also aided in the rational design of transporter-utilizing compounds, including prodrugs that can be actively transported without losing potency towards the pharmacological target. In this review, the state-of-art of these approaches will be also discussed to give insights into the transporter-mediated drug delivery to the CNS.
Collapse
Affiliation(s)
- Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Tetsuya Terasaki
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ahmed B Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
18
|
Bhilare NV, Marulkar VS, Kumar D, Chatap VK, Patil KS, Shirote PJ. An insight into prodrug strategy for the treatment of Alzheimer’s disease. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02859-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Zorina V, Bespalov A, Krasnov K, Melekhova A, Reinuk V. Prospects for the development of new prolonged forms of valproic acid derivatives for the relief of convulsive syndrome. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:14-19. [DOI: 10.17116/jnevro202212207114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Yang L, Lin IH, Ting CT, Tsai TH. Modulation of the transport of valproic acid through the blood-brain barrier in rats by the Gastrodia elata extracts. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114276. [PMID: 34082013 DOI: 10.1016/j.jep.2021.114276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/29/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE Valproic acid (VPA) is primarily used as a medicine for the treatment of seizures. Gastrodia elata (G. elata) extract has been used as an alternative medicine for epilepsy patients. Cotreatment with VPA and G. elata extract is commonly prescribed in Taiwan and mainland China. Nevertheless, the mechanism of the blood-brain barrier (BBB) transportation effect of G. elata extract on VPA has not been characterized. AIM OF STUDY Our hypothesis is that G. elata extract modulates the BBB penetration of VPA through specific transporter transfer. MATERIALS AND METHODS A validated liquid chromatography-tandem mass spectrometry and multiple microdialysis method was developed to simultaneously monitor VPA in the blood and brain of rats. To investigate the mechanism of BBB modulation by the G. elata extract on VPA in the brain, cyclosporin A, a P-glycoprotein (P-gp) inhibitor and organic anion transporting polypeptide (OATP) inhibitor, was coadministered with the G. elata extract and VPA. RESULTS The pharmacokinetic results demonstrated that the VPA penetration ratio of the BBB, determined by the area under the concentration curve (AUC) ratio of VPA (AUCbrain/AUCblood), was approximately 0.36. After treatment with the G. elata extract (1 and 3 g/kg, p.o. for 5 consecutive days), the VPA penetration ratios were significantly enhanced to 1.47 and 1.02, respectively. However, in the experimental group coadministered cyclosporin A, the G. elata extract was unable to enhance the BBB transportation of VPA. Instead, the VPA penetration ratio in the brain was suppressed back to 0.38. CONCLUSIONS The present study reveals that the enhancement effect of the transporter mechanism of G. elata extract on VPA transport into the brain occurs through the OATP transporter but not the P-gp transporter.
Collapse
Affiliation(s)
- Ling Yang
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - I-Hsin Lin
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chin-Tsung Ting
- Division of Gastrointestinal Surgery, Department of Surgery, Ren-Ai Branch, Taipei City Hospital, Taipei, 106, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
21
|
Kanai Y. Amino acid transporter LAT1 (SLC7A5) as a molecular target for cancer diagnosis and therapeutics. Pharmacol Ther 2021; 230:107964. [PMID: 34390745 DOI: 10.1016/j.pharmthera.2021.107964] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2021] [Indexed: 01/13/2023]
Abstract
Cancer cells require a massive supply of nutrients, including sugars and amino acids-the upregulation of transporters for each nutrient contributes to meet the demand. Distinct from glucose transporters, amino acid transporters include ones whose expression is specific to cancer cells. For example, LAT1 (SLC7A5) displays protein expression mostly limited to the plasma membrane of cancer cells. The exceptions are the placental barrier and the blood-brain barrier, where immunohistochemical and mass spectrometric studies have shown LAT1 expression, although their levels are supposed to be lower than those in cancers. The expression of LAT1 has been reported in cancers from various tissue origins, where high LAT1 expression is related to the poor prognosis of patients. LAT1 is essential for cancer cell growth because the pharmacologic inhibition and knockdown/knockout of LAT1 suppress the proliferation of cancer cells and the growth of xenograft tumors. The inhibition of LAT1 suppresses protein synthesis by downregulating the mTORC1 signaling pathway and mobilizing the general amino acid control (GAAC) pathway in cancer cells. LAT1 is, thus, a candidate molecular target for the diagnosis and therapeutics of cancers. 18F-labeled 3-fluoro-l-α-methyl-tyrosine (FAMT) is used as a LAT1-specific PET probe for cancer detection due to the LAT1 specificity of α-methyl aromatic amino acids. FAMT accumulation is cancer-specific and avoids non-cancer lesions, including inflammation, confirming the cancer-specific expression of LAT1 in humans. Due to the cancer-specific nature, LAT1 can also be used for cancer-specific delivery of anti-tumor agents such as l-para-boronophenylalanine used for boron neutron capture therapy and α-emitting nuclide-labeled LAT1 substrates developed for nuclear medicine treatment. Based on the importance of LAT1 in cancer progression, high-affinity LAT1-specific inhibitors have been developed for anti-tumor drugs. JPH203 (KYT0353) is such a compound designed based on the structure-activity relationship of LAT1 ligands. It is one of the highest-affinity inhibitors with less affecting other transporters. It suppresses tumor growth in vivo without significant toxicity in preclinical studies at doses enough to suppress tumor growth. In the phase-I clinical trial, JPH203 appeared to provide promising activity. Because the mechanisms of action of LAT1 inhibitors are novel, with or without combination with other anti-tumor drugs, they could contribute to the treatment of cancers that do not respond to current therapy. The LAT1-specific PET probe could also be used as companion diagnostics of the LAT1-targeting therapies to select patients to whom therapeutic benefits could be expected. Recently, the cryo-EM structure of LAT1 has been solved, which would facilitate the understanding of the mechanisms of the dynamic interaction of ligands and the binding site, and further designing new compounds with higher activity.
Collapse
Affiliation(s)
- Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
22
|
Kärkkäinen J, Laitinen T, Markowicz-Piasecka M, Montaser A, Lehtonen M, Rautio J, Gynther M, Poso A, Huttunen KM. Molecular characteristics supporting l-Type amino acid transporter 1 (LAT1)-mediated translocation. Bioorg Chem 2021; 112:104921. [PMID: 33933805 DOI: 10.1016/j.bioorg.2021.104921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 01/02/2023]
Abstract
l-Type amino acid transporter 1 (LAT1) is an interesting protein due to its peculiar expression profile. It can be utilized not only as a carrier for improved or targeted drug delivery, e.g., into the brain but also as a target protein by which amino acid supply can be restricted, e.g., from the cancer cells. The recognition and binding processes of LAT1-ligands, such as amino acids and clinically used small molecules, including l-dopa, gabapentin, and melphalan, are today well-known. Binding to LAT1 is crucial, particularly when designing the LAT1-inhibitors. However, it will not guarantee effective translocation across the cell membrane via LAT1, which is a definite requirement for LAT1-substrates, such as drugs that elicit their pharmacological effects inside the cells. Therefore, in the present study, the accumulation of known LAT1-utilizing compounds into the selected LAT1-expressing cancer cells (MCF-7) was explored experimentally over a time period. The differences found among the transport efficiency and affinity of the studied compounds for LAT1 were subsequently explained by docking the ligands into the human LAT1 model (based on the recent cryo-electron microscopy structure). Thus, the findings of this study clarify the favorable structural requirements of the size, shape, and polarity of the ligands that support the translocation and effective transport across the cell membrane via LAT1. This knowledge can be applied in future drug design to attain improved or targeted drug delivery and hence, successful LAT1-utilizing drugs with increased therapeutic effects.
Collapse
Affiliation(s)
- Jussi Kärkkäinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Pharmacy, Kuopio University Hospital, Finland, P.O. Box 100, FI-70029, KYS, Kuopio, Finland
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry Drug Analysis and Radiopharmacy, Medical University of Lodz, Lodz, Poland
| | - Ahmed Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mikko Gynther
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
23
|
Tampio J, Löffler S, Guillon M, Hugele A, Huttunen J, Huttunen KM. Improved l-Type amino acid transporter 1 (LAT1)-mediated delivery of anti-inflammatory drugs into astrocytes and microglia with reduced prostaglandin production. Int J Pharm 2021; 601:120565. [PMID: 33812973 DOI: 10.1016/j.ijpharm.2021.120565] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) can have protective effects in the brain by inhibition of cyclooxygenases (COX). However, the delivery into the brain across the blood-brain barrier (BBB) and particularly into the brain parenchymal cells is hindered. Therefore, in the present study, we developed four l-type amino acid transporter 1 (LAT1)-utilizing prodrugs of flurbiprofen, ibuprofen, naproxen, and ketoprofen, since LAT1 is expressed on both, the BBB endothelial cells as well as parenchymal cells. The cellular uptake and utilization of LAT1 by novel prodrugs were studied in mouse cortical primary astrocytes and immortalized microglia (BV2), and the release of the parent NSAID in several tissue and cell homogenates. Finally, the effects of the studied prodrugs on prostaglandin E2 (PGE2) production and cell viability were explored. The gained results showed that all four prodrugs were carried into their target cells via LAT1. They also released their parent NSAIDs via carboxylesterases (CES) and most likely also other un-identified enzymes, which need to be carefully considered when administrating these compounds orally or intravenously. Most importantly, all the studied prodrugs reduced the PGE2 production in astrocytes and microglia after lipopolysaccharide (LPS)-induced inflammation by 29-94% and without affecting the cell viability with the studied concentration (20 µM).
Collapse
Affiliation(s)
- Janne Tampio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Susanne Löffler
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Melina Guillon
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Agathe Hugele
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
24
|
Preclinical Evaluation of the Copper-64 Labeled GRPR-Antagonist RM26 in Comparison with the Cobalt-55 Labeled Counterpart for PET-Imaging of Prostate Cancer. Molecules 2020; 25:molecules25245993. [PMID: 33352838 PMCID: PMC7766840 DOI: 10.3390/molecules25245993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 01/21/2023] Open
Abstract
Gastrin-releasing peptide receptor (GRPR) is overexpressed in the majority of prostate cancers. This study aimed to investigate the potential of 64Cu (radionuclide for late time-point PET-imaging) for imaging of GRPR expression using NOTA-PEG2-RM26 and NODAGA-PEG2-RM26. Methods: NOTA/NODAGA-PEG2-RM26 were labeled with 64Cu and evaluated in GRPR-expressing PC-3 cells. Biodistribution of [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 was studied in PC-3 xenografted mice and compared to the biodistribution of [57Co]Co-NOTA/NODAGA-PEG2-RM26 at 3 and 24 h p.i. Preclinical PET/CT imaging was performed in tumor-bearing mice. NOTA/NODAGA-PEG2-RM26 were stably labeled with 64Cu with quantitative yields. In vitro, binding of [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 was rapid and GRPR-specific with slow internalization. In vivo, [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 bound specifically to GRPR-expressing tumors with fast clearance from blood and normal organs and displayed generally comparable biodistribution profiles to [57Co]Co-NOTA/NODAGA-PEG2-RM26; tumor uptake exceeded normal tissue uptake 3 h p.i.. Tumor-to-organ ratios did not increase significantly with time. [64Cu]Cu-NOTA-PEG2-RM26 had a significantly higher liver and pancreas uptake compared to other agents. 57Co-labeled radioconjugates showed overall higher tumor-to-non-tumor ratios, compared to the 64Cu-labeled counterparts. [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 was able to visualize GRPR-expression in a murine PC model using PET. However, [55/57Co]Co-NOTA/NODAGA-PEG2-RM26 provided better in vivo stability and overall higher tumor-to-non-tumor ratios compared with the 64Cu-labeled conjugates.
Collapse
|
25
|
Montaser AB, Järvinen J, Löffler S, Huttunen J, Auriola S, Lehtonen M, Jalkanen A, Huttunen KM. L-Type Amino Acid Transporter 1 Enables the Efficient Brain Delivery of Small-Sized Prodrug across the Blood-Brain Barrier and into Human and Mouse Brain Parenchymal Cells. ACS Chem Neurosci 2020; 11:4301-4315. [PMID: 33228353 DOI: 10.1021/acschemneuro.0c00564] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Membrane transporters have long been utilized to improve the oral, hepatic, and renal (re)absorption. In the brain, however, the transporter-mediated drug delivery has not yet been fully achieved due to the complexity of the blood-brain barrier (BBB). Because L-type amino acid transporter 1 (LAT1) is a good candidate to improve the brain delivery, we developed here four novel LAT1-utilizing prodrugs of four nonsteroidal anti-inflammatory drugs. As a result, all the prodrugs were able to cross the BBB and localize into the brain cells. The brain uptake of salicylic acid (SA) was improved five times, not only across the mouse BBB but also into the cultured mouse and human brain cells. The naproxen prodrug was also transported efficiently into the mouse brain achieving less peripheral exposure, but the brain release of naproxen from the prodrug was not improved. Contrarily, the high plasma protein binding of the flurbiprofen prodrug and the premature bioconversion of the ibuprofen prodrug in the mouse blood hindered the efficient brain delivery. Thus, the structure of the parent drug affects the successful brain delivery of the LAT1-utilizing prodrugs, and the small-sized LAT1-utilizing prodrug of SA constituted a successful model to specifically deliver its parent drug across the mouse BBB and into the cultured mouse and human brain cells.
Collapse
Affiliation(s)
- Ahmed B. Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Juulia Järvinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Susanne Löffler
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Aaro Jalkanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
26
|
Tampio J, Huttunen J, Montaser A, Huttunen KM. Targeting of Perforin Inhibitor into the Brain Parenchyma Via a Prodrug Approach Can Decrease Oxidative Stress and Neuroinflammation and Improve Cell Survival. Mol Neurobiol 2020; 57:4563-4577. [PMID: 32754897 PMCID: PMC7515946 DOI: 10.1007/s12035-020-02045-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022]
Abstract
The cytolytic protein perforin has a crucial role in infections and tumor surveillance. Recently, it has also been associated with many brain diseases, such as neurodegenerative diseases and stroke. Therefore, inhibitors of perforin have attracted interest as novel drug candidates. We have previously reported that converting a perforin inhibitor into an L-type amino acid transporter 1 (LAT1)-utilizing prodrug can improve the compound's brain drug delivery not only across the blood-brain barrier (BBB) but also into the brain parenchymal cells: neurons, astrocytes, and microglia. The present study evaluated whether the increased uptake into mouse primary cortical astrocytes and subsequently improvements in the cellular bioavailability of this brain-targeted perforin inhibitor prodrug could enhance its pharmacological effects, such as inhibition of production of caspase-3/-7, lipid peroxidation products and prostaglandin E2 (PGE2) in the lipopolysaccharide (LPS)-induced neuroinflammation mouse model. It was demonstrated that increased brain and cellular drug delivery could improve the ability of perforin inhibitors to elicit their pharmacological effects in the brain at nano- to picomolar levels. Furthermore, the prodrug displayed multifunctional properties since it also inhibited the activity of several key enzymes related to Alzheimer's disease (AD), such as the β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), acetylcholinesterase (AChE), and most probably also cyclooxygenases (COX) at micromolar concentrations. Therefore, this prodrug is a potential drug candidate for preventing Aβ-accumulation and ACh-depletion in addition to combatting neuroinflammation, oxidative stress, and neural apoptosis within the brain. Graphical abstract.
Collapse
Affiliation(s)
- Janne Tampio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ahmed Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
27
|
Zhang J, Xu Y, Li D, Fu L, Zhang X, Bao Y, Zheng L. Review of the Correlation of LAT1 With Diseases: Mechanism and Treatment. Front Chem 2020; 8:564809. [PMID: 33195053 PMCID: PMC7606929 DOI: 10.3389/fchem.2020.564809] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
LAT1 is a member of the system L transporter family. The main role of the LAT1 is to transport specific amino acids through cell membranes to provide nutrients to cells and participate in several metabolic pathways. It also contributes to the transport of hormones and some drugs, which are essential for the development and treatment of some diseases. In recent years, many studies have shown that LAT1 is related to cancer, obesity, diabetes, and other diseases. However, the specific mechanism underlying the influence of LAT1 on such conditions remains unclear. Through the increasing number of studies on LAT1, we have obtained a preliminary understanding on the function of LAT1 in diseases. These studies also provide a theoretical basis for finding treatments for LAT1-related diseases, such as cancer. This review summarizes the function and mechanism of LAT1 in different diseases and the treatment of LAT1-related diseases. It also provides support for the development of novel and reliable disease treatments.
Collapse
Affiliation(s)
- Jingshun Zhang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Ying Xu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Dandan Li
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lulu Fu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Xueying Zhang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Yigang Bao
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Puris E, Gynther M, Auriola S, Huttunen KM. L-Type amino acid transporter 1 as a target for drug delivery. Pharm Res 2020; 37:88. [PMID: 32377929 PMCID: PMC7203094 DOI: 10.1007/s11095-020-02826-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Our growing understanding of membrane transporters and their substrate specificity has opened a new avenue in the field of targeted drug delivery. The L-type amino acid transporter 1 (LAT1) has been one of the most extensively investigated transporters for delivering drugs across biological barriers. The transporter is predominantly expressed in cerebral cortex, blood-brain barrier, blood-retina barrier, testis, placenta, bone marrow and several types of cancer. Its physiological function is to mediate Na+ and pH independent exchange of essential amino acids: leucine, phenylalanine, etc. Several drugs and prodrugs designed as LAT1 substrates have been developed to improve targeted delivery into the brain and cancer cells. Thus, the anti-parkinsonian drug, L-Dopa, the anti-cancer drug, melphalan and the anti-epileptic drug gabapentin, all used in clinical practice, utilize LAT1 to reach their target site. These examples provide supporting evidence for the utility of the LAT1-mediated targeted delivery of the (pro)drug. This review comprehensively summarizes recent advances in LAT1-mediated targeted drug delivery. In addition, the use of LAT1 is critically evaluated and limitations of the approach are discussed.
Collapse
Affiliation(s)
- Elena Puris
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, 69120, Heidelberg, Germany.
| | - Mikko Gynther
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
29
|
Li S, Su W, Wu H, Yuan T, Yuan C, Liu J, Deng G, Gao X, Chen Z, Bao Y, Yuan F, Zhou S, Tan H, Li Y, Li X, Fan L, Zhu J, Chen AT, Liu F, Zhou Y, Li M, Zhai X, Zhou J. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nat Biomed Eng 2020; 4:704-716. [PMID: 32231314 PMCID: PMC7197249 DOI: 10.1038/s41551-020-0540-y] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/20/2020] [Indexed: 12/28/2022]
Abstract
Strategies for selectively imaging and delivering drugs to tumours typically leverage differentially upregulated surface molecules on cancer cells. Here, we show that intravenously injected carbon quantum dots, functionalized with multiple paired α-carboxyl and amino groups that bind to the large neutral amino acid transporter 1 (which is expressed in most tumours), selectively accumulate in human tumour xenografts in mice and in an orthotopic mouse model of human glioma. The functionalized quantum dots, which structurally mimic large amino acids and can be loaded with aromatic drugs through π–π stacking interactions, enabled—in the absence of detectable toxicity—near-infrared fluorescence and photoacoustic imaging of the tumours and a reduction in tumour burden after the targeted delivery of chemotherapeutics to the tumours. The versatility of functionalization and high tumour selectivity of the quantum dots make them broadly suitable for tumour-specific imaging and drug delivery. Intravenously injected functionalized carbon quantum dots that bind to the large neutral amino acid transporter 1 and that structurally mimic large amino acids selectively accumulate in human tumours in mice, facilitating targeted theranostics.
Collapse
Affiliation(s)
- Shuhua Li
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Wen Su
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Hao Wu
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Ting Yuan
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Chang Yuan
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Gang Deng
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Xingchun Gao
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Zeming Chen
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Youmei Bao
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Fanglong Yuan
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Shixin Zhou
- Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hongwei Tan
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Yunchao Li
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Xiaohong Li
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Louzhen Fan
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China.
| | - Jia Zhu
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China.
| | - Ann T Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fuyao Liu
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Yu Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Miao Li
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Xingchen Zhai
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, USA. .,Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
30
|
Pocasap P, Weerapreeyakul N, Timonen J, Järvinen J, Leppänen J, Kärkkäinen J, Rautio J. Tyrosine-Chlorambucil Conjugates Facilitate Cellular Uptake through L-Type Amino Acid Transporter 1 (LAT1) in Human Breast Cancer Cell Line MCF-7. Int J Mol Sci 2020; 21:ijms21062132. [PMID: 32244913 PMCID: PMC7139360 DOI: 10.3390/ijms21062132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022] Open
Abstract
l-type amino acid transporter 1 (LAT1) is an amino acid transporter that is overexpressed in several types of cancer and, thus, it can be a potential target for chemotherapy. The objectives of this study were to (a) synthesize LAT1-targeted chlorambucil derivatives and (b) evaluate their LAT1-mediated cellular uptake as well as antiproliferative activity in vitro in the human breast cancer MCF-7 cell line. Chlorambucil was conjugated to l-tyrosine—an endogenous LAT1 substrate—via either ester or amide linkage (compounds 1 and 2, respectively). While chlorambucil itself did not bind to LAT1, its derivatives 1 and 2 bound to LAT1 with a similar affinity as with l-tyrosine and their respective cellular uptake was significantly higher than that of chlorambucil in MCF-7. The results of our cellular uptake study are indicative of antiproliferative activity, as a higher intracellular uptake of chlorambucil derivatives resulted in greater cytotoxicity than chlorambucil by itself. LAT1 thus contributes to intracellular uptake of chlorambucil derivatives and, therefore, increases antiproliferative activity. The understanding gained from our research can be used in the development of LAT1-targeted anticancer drugs and prodrugs for site-selective and enhanced chemotherapeutic activity.
Collapse
Affiliation(s)
- Piman Pocasap
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: (N.W.); (J.R.)
| | - Juri Timonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.T.); (J.J.); (J.L.); (J.K.)
| | - Juulia Järvinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.T.); (J.J.); (J.L.); (J.K.)
| | - Jukka Leppänen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.T.); (J.J.); (J.L.); (J.K.)
| | - Jussi Kärkkäinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.T.); (J.J.); (J.L.); (J.K.)
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.T.); (J.J.); (J.L.); (J.K.)
- Correspondence: (N.W.); (J.R.)
| |
Collapse
|
31
|
Huttunen J, Gynther M, Vellonen KS, Huttunen KM. L-Type amino acid transporter 1 (LAT1)-utilizing prodrugs are carrier-selective despite having low affinity for organic anion transporting polypeptides (OATPs). Int J Pharm 2019; 571:118714. [DOI: 10.1016/j.ijpharm.2019.118714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022]
|
32
|
Huttunen J, Peltokangas S, Gynther M, Natunen T, Hiltunen M, Auriola S, Ruponen M, Vellonen KS, Huttunen KM. L-Type Amino Acid Transporter 1 (LAT1/Lat1)-Utilizing Prodrugs Can Improve the Delivery of Drugs into Neurons, Astrocytes and Microglia. Sci Rep 2019; 9:12860. [PMID: 31492955 PMCID: PMC6731241 DOI: 10.1038/s41598-019-49009-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/18/2019] [Indexed: 12/27/2022] Open
Abstract
l-Type Amino Acid Transporter 1 (LAT1/Lat1) is responsible for carrying large, neutral l-amino acids as well as several drugs and prodrugs across the blood-brain barrier (BBB). However, the BBB is not the only barrier that hinders drugs acting effectively within the brain; the brain parenchymal cell membranes represent a secondary barrier for the drugs with intracellular target sites. In this study, expression and function of Lat1 was quantified in mouse primary neuron, astrocyte and immortalized microglia (BV2) cultures. Moreover, ability of Lat1 to carry prodrugs inside these brain cells was evaluated. The results showed that Lat1 was localized at the similar level in all studied cells (3.07 ± 0.92–3.77 ± 0.91 fmol/µg protein). The transporter was also functional in all three cell types, astrocytes having the highest transport capacity and affinity for the LAT1/Lat1-substrate, [14C]-l-leucine, followed by neurons and microglia. The designed prodrugs (1-6) were able to utilize Lat1 for their cellular uptake and it was mainly much higher than the one of their parent drugs. Interestingly, improved cellular uptake was also achieved in cells representing Alzheimer’s Disease phenotype. Therefore, improved delivery and intra-brain targeting of drugs can be attained by utilizing LAT1/Lat1 and prodrug approach.
Collapse
Affiliation(s)
- Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Soile Peltokangas
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mikko Gynther
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Teemu Natunen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Marika Ruponen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kati-Sisko Vellonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
33
|
Wang H, Mu X, Yang J, Liang Y, Zhang XD, Ming D. Brain imaging with near-infrared fluorophores. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Huttunen K. Identification of human, rat and mouse hydrolyzing enzymes bioconverting amino acid ester prodrug of ketoprofen. Bioorg Chem 2018; 81:494-503. [DOI: 10.1016/j.bioorg.2018.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 12/25/2022]
|
35
|
Gynther M, Puris E, Peltokangas S, Auriola S, Kanninen KM, Koistinaho J, Huttunen KM, Ruponen M, Vellonen KS. Alzheimer's Disease Phenotype or Inflammatory Insult Does Not Alter Function of L-Type Amino Acid Transporter 1 in Mouse Blood-Brain Barrier and Primary Astrocytes. Pharm Res 2018; 36:17. [PMID: 30488131 PMCID: PMC6267245 DOI: 10.1007/s11095-018-2546-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Abstract
Purpose The study aim was to evaluate the effect of Alzheimer’s disease (AD) and inflammatory insult on the function of L-type amino acid transporter 1 (Lat1) at the mouse blood-brain barrier (BBB) as well as Lat1 function and expression in mouse primary astrocytes. Methods The Lat1 function and expression was determined in wildtype astrocytes with and without lipopolysaccharide (LPS)-induced inflammation and in LPS treated AD APP/PS1 transgenic astrocytes. The function of Lat1 at the BBB was evaluated in wildtype mice with and without LPS-induced neuroinflammation and APP/PS1 transgenic mice by in situ brain perfusion. Results There were 2.1 and 1.6 -fold decreases in Lat1 mRNA and protein expression in LPS-treated wildtype astrocytes compared to vehicle-treated astrocytes. In contrast, Lat1 mRNA and protein expression were increased by 1.7 and 1.2 -fold (not statistically significant) in the transgenic cells. A similar trend was observed in the cell uptake of [14C]-L-leucine. There were no statistically significant differences in [14C]-L-leucine BBB permeation between the groups. Conclusions The results showed that neither LPS-induced inflammation or the presence of APP/PS1 mutations alters Lat1 function at the mouse BBB as well as Lat1 protein expression and function in mouse primary astrocytes.
Collapse
Affiliation(s)
- Mikko Gynther
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Elena Puris
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Soile Peltokangas
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Marika Ruponen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kati-Sisko Vellonen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
36
|
Vale N, Ferreira A, Matos J, Fresco P, Gouveia MJ. Amino Acids in the Development of Prodrugs. Molecules 2018; 23:E2318. [PMID: 30208629 PMCID: PMC6225300 DOI: 10.3390/molecules23092318] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 01/03/2023] Open
Abstract
Although drugs currently used for the various types of diseases (e.g., antiparasitic, antiviral, antibacterial, etc.) are effective, they present several undesirable pharmacological and pharmaceutical properties. Most of the drugs have low bioavailability, lack of sensitivity, and do not target only the damaged cells, thus also affecting normal cells. Moreover, there is the risk of developing resistance against drugs upon chronic treatment. Consequently, their potential clinical applications might be limited and therefore, it is mandatory to find strategies that improve those properties of therapeutic agents. The development of prodrugs using amino acids as moieties has resulted in improvements in several properties, namely increased bioavailability, decreased toxicity of the parent drug, accurate delivery to target tissues or organs, and prevention of fast metabolism. Herein, we provide an overview of models currently in use of prodrug design with amino acids. Furthermore, we review the challenges related to the permeability of poorly absorbed drugs and transport and deliver on target organs.
Collapse
Affiliation(s)
- Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Abigail Ferreira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- LAQV&REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Joana Matos
- SpiroChem AG, Rosental Area, WRO-1074-3, Mattenstrasse 24, 4058 Basel, Switzerland.
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Maria João Gouveia
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
37
|
Secondary carbamate linker can facilitate the sustained release of dopamine from brain-targeted prodrug. Bioorg Med Chem Lett 2018; 28:2856-2860. [DOI: 10.1016/j.bmcl.2018.07.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 11/21/2022]
|
38
|
Huttunen J, Gynther M, Huttunen KM. Targeted efflux transporter inhibitors - A solution to improve poor cellular accumulation of anti-cancer agents. Int J Pharm 2018; 550:278-289. [PMID: 30149128 DOI: 10.1016/j.ijpharm.2018.08.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/20/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022]
Abstract
Efflux transporters function as vacuum cleaners of xenobiotics and therefore they hinder drugs to reach their targets at effective enough concentrations. Efflux pump inhibitors can be used to improve the cell accumulation of drugs, however all the current inhibitors lack selectivity towards cancer cells. l-Type amino acid transporter 1 (LAT1), which is expressed in many types of cancer cells can be utilized to target inhibitors of efflux transporters to these cells by converting the inhibitors into LAT1-utilizing prodrugs. In this study, we prepared 5 LAT1-utilizing prodrugs of an efflux pump inhibitor, probenecid (PRB). All novel compounds were transported into human breast cancer cells (MCF-7) mainly via LAT1. The compounds also interacted with either multiresistant proteins (MRPs), P-glycoprotein (P-gp) or breast cancer resistant protein (BCRP) and increased significantly (3-4-fold) the cellular accumulation of anti-cancer agent vinblastine (VBL). Consequently, this improved the anti-proliferative efficacy of VBL by decreasing the cell growth after 72 h from 100% (VBL treatment alone) to 48-75% (combination treatment). However, the same phenomenon was not seen with other chemotherapeutic, methotrexate (MTX). Therefore, the chemotherapeutics need to be selected carefully based on their uptake mechanism to the combinations with LAT1-utilizing prodrugs of efflux pump inhibitors to defeat effectively the multidrug resistance (MDR) of chemotherapy.
Collapse
Affiliation(s)
- Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mikko Gynther
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
39
|
Kärkkäinen J, Gynther M, Kokkola T, Petsalo A, Auriola S, Lahtela-Kakkonen M, Laine K, Rautio J, Huttunen KM. Structural properties for selective and efficient l-type amino acid transporter 1 (LAT1) mediated cellular uptake. Int J Pharm 2018; 544:91-99. [DOI: 10.1016/j.ijpharm.2018.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/24/2022]
|
40
|
Singh N, Ecker GF. Insights into the Structure, Function, and Ligand Discovery of the Large Neutral Amino Acid Transporter 1, LAT1. Int J Mol Sci 2018; 19:E1278. [PMID: 29695141 PMCID: PMC5983779 DOI: 10.3390/ijms19051278] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022] Open
Abstract
The large neutral amino acid transporter 1 (LAT1, or SLC7A5) is a sodium- and pH-independent transporter, which supplies essential amino acids (e.g., leucine, phenylalanine) to cells. It plays an important role at the Blood⁻Brain Barrier (BBB) where it facilitates the transport of thyroid hormones, pharmaceuticals (e.g., l-DOPA, gabapentin), and metabolites into the brain. Moreover, its expression is highly upregulated in various types of human cancer that are characterized by an intense demand for amino acids for growth and proliferation. Therefore, LAT1 is believed to be an important drug target for cancer treatment. With the crystallization of the arginine/agmatine antiporter (AdiC) from Escherichia Coli, numerous homology models of LAT1 have been built to elucidate the substrate binding site, ligand⁻transporter interaction, and structure⁻function relationship. The use of these models in combination with molecular docking and experimental testing has identified novel chemotypes of ligands of LAT1. Here, we highlight the structure, function, transport mechanism, and homology modeling of LAT1. Additionally, results from structure⁻function studies performed on LAT1 are addressed, which have enhanced our knowledge of the mechanism of substrate binding and translocation. This is followed by a discussion on ligand- and structure-based approaches, with an emphasis on elucidating the molecular basis of LAT1 inhibition. Finally, we provide an exhaustive summary of different LAT1 inhibitors that have been identified so far, including the recently discovered irreversible covalent inhibitors.
Collapse
Affiliation(s)
- Natesh Singh
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| |
Collapse
|
41
|
Puris E, Gynther M, Huttunen J, Petsalo A, Huttunen KM. L-type amino acid transporter 1 utilizing prodrugs: How to achieve effective brain delivery and low systemic exposure of drugs. J Control Release 2017; 261:93-104. [DOI: 10.1016/j.jconrel.2017.06.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/18/2017] [Accepted: 06/24/2017] [Indexed: 10/19/2022]
|
42
|
Esneault E, Peyon G, Castagné V. Efficacy of anticonvulsant substances in the 6Hz seizure test: Comparison of two rodent species. Epilepsy Res 2017; 134:9-15. [PMID: 28521116 DOI: 10.1016/j.eplepsyres.2017.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/31/2017] [Accepted: 05/03/2017] [Indexed: 12/20/2022]
Abstract
Usually performed in the mouse, the 6Hz seizure test is used for screening potential new anticonvulsant substances against complex partial seizures. Nevertheless, advanced models of temporal lobe epilepsy (TLE) are more often performed in rats, so that possible species-related differences may complicate the development of anticonvulsant substances. The aim of the present study was to evaluate the feasibility of adapting the 6Hz test in the rat. We first compared the effects of increasing current intensities for inducing seizures in the mouse and in the rat. This step was followed by the evaluation of the activity of anticonvulsant substances. Animals received an electrical stimulation with a constant current via corneal electrodes. The seizure was characterized by the presence of forelimb clonus immediately after stimulation. Spontaneous locomotion was evaluated following the 6Hz test. In the rat, the forelimb seizure score was intensity-dependently increased and seizures were observed in all animals tested at 44mA. In the mouse, the seizures were of lower magnitude and they were not observed in all mice stimulated at 44mA. In both species, levetiracetam (LEV) clearly decreased the forelimb seizure score over the dose-range 100-300mg/kg without affecting locomotion. Valproate (VPA) displayed anticonvulsant activity at 200mg/kg and fully protected both species at 300mg/kg, a dose producing sedative effects in the mouse. Phenytoin (PHT) showed slight to moderate anticonvulsant activity at 100mg/kg in the mouse and at 60 and 100mg/kg in the rat without modifying locomotor activity. Lamotrigine (LTG) partially antagonized forelimb seizure at 60mg/kg in the mouse and at 30-60mg/kg in the rat, but it induced clear motor impairments at high dose in both species. Our data suggest that in the 6Hz test, the magnitude and the nature of seizures differed between the mouse and the rat for a given current intensity. Nevertheless, the pharmacological profile of anticonvulsant substances was similar in both species for the 4 substances tested. Dose-dependent efficacy of LEV and VPA was observed and LTG and PHT also showed anticonvulsant activity, even though the magnitude of the effects remained moderate for these two last substances. The 6Hz test in the rat therefore appears as a useful model which may be performed prior to follow-up models of partial seizures performed in the same species.
Collapse
Affiliation(s)
- Elise Esneault
- Porsolt S.A.S., Z.A. de Glatigné, 53940 Le Genest Saint Isle, France.
| | - Guillaume Peyon
- Porsolt S.A.S., Z.A. de Glatigné, 53940 Le Genest Saint Isle, France
| | - Vincent Castagné
- Porsolt S.A.S., Z.A. de Glatigné, 53940 Le Genest Saint Isle, France
| |
Collapse
|