1
|
Maslivetc VA, Nabiul Hasan M, Boari A, Zejnelovski A, Evidente A, Sun D, Kornienko A. Ophiobolin A derivatives with enhanced activities under tumor-relevant acidic conditions. Bioorg Med Chem Lett 2024; 110:129863. [PMID: 38942129 PMCID: PMC11646455 DOI: 10.1016/j.bmcl.2024.129863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Glioblastoma (GBM) is the most common form of malignant primary brain tumor and is one of the most lethal cancers. The difficulty in treating GBM stems from its highly developed mechanisms of drug resistance. Our research team has recently identified the fungal secondary metabolite ophiobolin A (OpA) as an agent with significant activity against drug-resistant GBM cells. However, the OpA's mode of action is likely based on covalent modification of its intracellular target(s) and thus possible off-target reactivity needs to be addressed. This work involves the investigation of an acid-sensitive OpA analogue approach that exploits the elevated acidity of the GBM microenvironment to enhance the selectivity for tumor targeting. This project identified analogues that showed selectivity at killing GBM cells grown in cultures at reduced pH compared to those maintained under normal neutral conditions. These studies are expected to facilitate the development of OpA as an anti-GBM agent by investigating its potential use in an acid-sensitive analogue form with enhanced selectivity for tumor targeting.
Collapse
Affiliation(s)
- Vladimir A Maslivetc
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| | - Md Nabiul Hasan
- Department of Neurology, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15260, USA
| | - Angela Boari
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70125 Bari, Italy
| | - Arben Zejnelovski
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| | - Antonio Evidente
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15260, USA; Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA.
| |
Collapse
|
2
|
Mahendran R, Selvaraj SP, Dhanapal AR, Sarasa SB, Mathias BM, Thankappan B, Femil Selta DR, Naveen P, Poorani R, Sundhar N, Pillai MM, Selvakumar R, Huang CY, Eswaran R, Angayarkanni J. Tetrahydrobiopterin from cyanide-degrading bacterium Bacillus pumilus strain SVD06 induces apoptosis in human lung adenocarcinoma cell (A549). Biotechnol Appl Biochem 2023; 70:2052-2068. [PMID: 37731306 DOI: 10.1002/bab.2509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Tetrahydrobiopterin (BH4) is an essential biological cofactor and a derivative of pterin which is considered potent anticancer agents. In continuation of our previous study on the identification of BH4 from cyanide-degrading Bacillus pumilus, the present study focuses on evaluating the anticancer properties of BH4 on A549, a human lung adenocarcinoma. Anticancer activity analysis shows that BH4 inhibited A549 cell growth after 24 h of incubation with 0.02 mg/mL. In acridine orange/ethidium bromide staining, BH4-treated A549 cells showed apoptotic morphology. BH4 treatment caused cell cycle arrest at G0/G1 phase compared to control cells. BH4 augmented p53 expression in alveolar cancer cells by downregulating MDM2 levels. There was downregulation of casp-3 and upregulation of iNOS gene in BH4-treated A549 cells. Further, docking studies indicated that BH4 had significant interactions with the above proteins affirming the apoptosis mechanism. Thus, BH4 could be considered a potential anticancer drug.
Collapse
Affiliation(s)
- Ramasamy Mahendran
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Anand Raj Dhanapal
- Institute of Forest Genetics and Tree Breeding (IFGTB), Forest Campus, Coimbatore, Tamil Nadu, India
| | - Sabna Bhaskaran Sarasa
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Beutline Malgija Mathias
- Computational Science Laboratory, MCC-MRF Innovation Park, Madras Christian College, Chennai, Tamil Nadu, India
| | - Bency Thankappan
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Daniel Raja Femil Selta
- Department of Biochemistry and Cancer Research Center, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Palanivel Naveen
- Department of Chemistry, Sona College of Arts and Science, Salem, Tamil Nadu, India
| | - Rhenghachar Poorani
- Gayatri Vidya parishad Institute of Health Care and Medical Technology, Visakhapatnam, India
| | - Navaneethan Sundhar
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan
| | - Mamatha M Pillai
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Rajendran Selvakumar
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- PhD Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Raju Eswaran
- Department of Zoology, The Madura College, Madurai, Tamil Nadu, India
| | - Jayaraman Angayarkanni
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Khan A, Ikram M, Rehman S, Khan R, Puduvalli VK, Jadoon A, Khan M, Alasmari F, AlAsmari AF. Triethylammonium salt of a synthesized dicoumarol: Structural insight and human anti-glioblastoma activities. Heliyon 2023; 9:e17601. [PMID: 37456028 PMCID: PMC10338367 DOI: 10.1016/j.heliyon.2023.e17601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and primary brain tumor with poor prognosis. They are removed by following tedious and life threatening surgeries. GBM stem cells (GSCs) are the main source of tumor recurrence after surgery. Hence, drugs are designed to overcome the recurrent glioblastoma malignant cells. Currently used chemotherapies are not cost effective as well as bear resistance. New and effective chemotherapeutic compounds are developed to overcome the intrinsic and acquired resistance. Dicoumarol derivative 3,3'-[(4-methoxyphenyl)methanediyl]bis(4-hydroxy-2Hchromen-2-one) (HL) and its triethylammonium salt triethylammonium3-[(4-methoxyphenyl)(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl]-2-oxo-2H-chromen-4-olate (L) were synthesized and characterized using spectral and analytical techniques. The deprotonated compound L was further studied structurally using single crystal analysis. Cytotoxic studies against human glioblastoma cells A172 and LN229 were investigated both dose and time dependently and compared with the cytotoxicity of normal human astrocytes (NHA). The IC50 value of HL against A172 was found to be lying within the range 2.68-0.95 μM whereas against LN229 the range was found to be 9.55-0.85 μM. Similarly, the compound L revealed range of 1.9-0.271 μM against A172 and 1.2-0.27 μM against LN229. Cell cycle arrest was observed in GBM cells treated with L compared to the control group, which suggested that L may trigger apoptosis in GBM cells according to cytotoxicity and flow cytometry results. The antioxidant activity of synthesized compounds was also investigated using DPPH free radicals.
Collapse
Affiliation(s)
- Afzal Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
- Department of Microbiology, Abbotabad University of Science and Technology, Abbotabad, Pakistan
- Department of Neuro-Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muhammad Ikram
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Sadia Rehman
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Rizwan Khan
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
| | | | - Ayub Jadoon
- Department of Microbiology, Abbotabad University of Science and Technology, Abbotabad, Pakistan
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Natural and synthetic compounds for glioma treatment based on ROS-mediated strategy. Eur J Pharmacol 2023:175537. [PMID: 36871663 DOI: 10.1016/j.ejphar.2023.175537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 03/06/2023]
Abstract
Glioma is the most frequent and most malignant tumor of the central nervous system (CNS),accounting for about 50% of all CNS tumor and approximately 80% of the malignant primary tumors in the CNS. Patients with glioma benefit from surgical resection, chemo- and radio-therapy. However these therapeutical strategies do not significantly improve the prognosis, nor increase survival rates owing to restricted drug contribution in the CNS and to the malignant characteristics of glioma. Reactive oxygen species (ROS) are important oxygen-containing molecules that regulate tumorigenesis and tumor progression. When ROS accumulates to cytotoxic levels, this can lead to anti-tumor effects. Multiple chemicals used as therapeutic strategies are based on this mechanism. They regulate intracellular ROS levels directly or indirectly, resulting in the inability of glioma cells to adapt to the damage induced by these substances. In the current review, we summarize the natural products, synthetic compounds and interdisciplinary techniques used for the treatment of glioma. Their possible molecular mechanisms are also presented. Some of them are also used as sensitizers: they modulate ROS levels to improve the outcomes of chemo- and radio-therapy. In addition, we summarize some new targets upstream or downstream of ROS to provide ideas for developing new anti-glioma therapies.
Collapse
|
5
|
Dual-drug loaded nanomedicine hydrogel as a therapeutic platform to target both residual glioblastoma and glioma stem cells. Int J Pharm 2022; 628:122341. [DOI: 10.1016/j.ijpharm.2022.122341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
6
|
Qi D, Liu Y, Li J, Huang JH, Hu X, Wu E. Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Med Res Rev 2021; 42:1037-1063. [PMID: 34786735 PMCID: PMC9298915 DOI: 10.1002/med.21870] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells within a tumor that can both self‐renew and differentiate into other cell types forming the heterogeneous tumor bulk. Since CSCs are involved in all aspects of cancer development, including tumor initiation, cell proliferation, metastatic dissemination, therapy resistance, and recurrence, they have emerged as attractive targets for cancer treatment and management. Salinomycin, a widely used antibiotic in poultry farming, was identified by the Weinberg group as a potent anti‐CSC agent in 2009. As a polyether ionophore, salinomycin exerts broad‐spectrum activities, including the important anti‐CSC function. Studies on the mechanism of action of salinomycin against cancer have been continuously and rapidly published since then. Thus, it is imperative for us to update its literature of recent research findings in this area. We here summarize the notable work reported on salinomycin's anticancer activities, intracellular binding target(s), effects on tumor microenvironment, safety, derivatives, and tumor‐specific drug delivery; after that we also discuss the translational potential of salinomycin toward clinical application based on current multifaceted understandings.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA
| | - Yunyi Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Juan Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Xiaoxiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China.,Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA.,LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA.,Department of Pharmaceutical Sciences, Texas A&M University College of Pharmacy, College Station, Texas, USA
| |
Collapse
|
7
|
Meng Q, Zhou J, You F, Wu Y, Yang L, Wang Y, Zhang X, Gao S, Yu R, Yin X. A novel biphenyl diester derivative, AB38b, inhibits glioblastoma cell growth via the ROS-AKT/mTOR pathway. Biochem Pharmacol 2021; 194:114795. [PMID: 34687671 DOI: 10.1016/j.bcp.2021.114795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 10/01/2021] [Indexed: 02/08/2023]
Abstract
AB38b is a novel biphenyl diester derivative synthesized in our laboratory, and it has been shown to improve the pathology of nephropathy and encephalopathy in diabetic mice. Glioblastoma (GBM) is the most lethal brain tumor, without effective drugs to date. The present study aims at investigating the role of AB38b in GBM growth and revealing the underlying molecular mechanisms. We found that AB38b administration showed a dose- and time-dependent inhibition on cell proliferation in multiple immortalized and primary GBM cell lines, but it had no significant effects on human astrocyte cell line. More importantly, AB38b blocked cell cycle progression, induced early apoptosis, decreased the activity of AKT/mTOR pathway, and increased the generation of reactive oxygen species (ROS) in GBM cells. Interestingly, antioxidant treatments could reverse the AB38b-mediated abovementioned effects; overexpression of constitutively active AKT could partially rescue the suppressive effects of Ab38b on GBM cell proliferation. In addition, AB38b administration inhibited the tumor growth, decreased the activity of AKT/mTOR pathway, and prolonged the survival time in GBM animal models, without any adverse influences on the important organs. These findings suggest that AB38b exerts anti-glioma activity via elevating the ROS generation followed by inhibiting the activity of AKT/mTOR pathway.
Collapse
Affiliation(s)
- Qingming Meng
- Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Junbo Zhou
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Fangting You
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yue Wu
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Liquan Yang
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yan Wang
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Xu Zhang
- Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Shangfeng Gao
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| | - Rutong Yu
- Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| | - Xiaoxing Yin
- Nanjing Medical University, Nanjing 211166, Jiangsu, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
8
|
Cannabinoid WIN 55,212-2 Inhibits Human Glioma Cell Growth by Triggering ROS-Mediated Signal Pathways. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6612592. [PMID: 33977107 PMCID: PMC8087470 DOI: 10.1155/2021/6612592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022]
Abstract
Glioblastoma is a highly invasive primary malignant tumor of the central nervous system. Cannabinoid analogue WIN 55,212-2 (WIN) exhibited a novel anticancer effect against human tumors. However, the anticancer potential and underlying mechanism of WIN against human glioma remain unclear. Herein, the anticancer efficiency and mechanism of WIN in U251 human glioma cells were investigated. The results showed that WIN dose-dependently inhibited U251 cell proliferation, migration, and invasion in vitro. WIN treatment also effectively suppressed U251 tumor spheroids growth ex vivo. Further studies found that WIN induced significant apoptosis as convinced by the caspase-3 activation and release of cytochrome C. Mechanism investigation revealed that WIN triggered ROS-mediated DNA damage and caused dysfunction of VEGF-AKT/FAK signal axis. However, ROS inhibition effectively attenuated WIN-induced DNA damage and dysfunction of VEGF-AKT/FAK signal axis and eventually improved U251 cell proliferation, migration, and invasion. Taken together, our findings validated that WIN had the potential to inhibit U251 cell proliferation, migration, and invasion and induce apoptosis by triggering ROS-dependent DNA damage and dysfunction of VEGF-AKT/FAK signal axis.
Collapse
|
9
|
Sun D, Wang Z, Zhang P, Yin C, Wang J, Sun Y, Chen Y, Wang W, Sun B, Fan C. Ruthenium-loaded mesoporous silica as tumor microenvironment-response nano-fenton reactors for precise cancer therapy. J Nanobiotechnology 2021; 19:98. [PMID: 33827604 PMCID: PMC8028739 DOI: 10.1186/s12951-021-00848-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/31/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Nano-Fenton reactors as novel strategy to selectively convert hydrogen peroxide (H2O2) into active hydroxyl radicals in tumor microenvironment for cancer therapy had attracted much attention. However, side effects and low efficiency remain the main drawbacks for cancer precise therapy. RESULTS Here, ruthenium-loaded palmitoyl ascorbate (PA)-modified mesoporous silica (Ru@SiO2-PA) was successfully fabricated and characterized. The results indicated that Ru@SiO2-PA under pH6.0 environment displayed enhanced growth inhibition against human cancer cells than that of pH7.4, which indicated the super selectivity between cancer cells and normal cells. Ru@SiO2-PA also induced enhanced cancer cells apoptosis, followed by caspase-3 activation and cytochrome-c release. Mechanism investigation revealed that Ru@SiO2-PA caused enhanced generation of superoxide anion, which subsequently triggered DNA damage and dysfunction of MAPKs and PI3K/AKT pathways. Moreover, Ru@SiO2-PA effectively inhibited tumor spheroids and tumor xenografts growth in vivo by induction of apoptosis. The real-time imaging by monitoring Ru fluorescence in vitro and in vivo revealed that Ru@SiO2-PA mainly accumulated in cell nucleus and tumor xenografts. Importantly, Ru@SiO2-PA showed no side effects in vivo, predicting the safety and potential application in clinic. CONCLUSIONS Our findings validated the rational design that Ru@SiO2-PA can act as novel tumor microenvironment-response nano-Fenton reactors for cancer precise therapy.
Collapse
Affiliation(s)
- Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zekun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Pu Zhang
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Chenyang Yin
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jingyuan Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yu Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ying Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Weiyun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Baoliang Sun
- Department of Neurology, Second Affiliated Hospital; Key Lab of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Cundong Fan
- Department of Neurology, Second Affiliated Hospital; Key Lab of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| |
Collapse
|
10
|
Salinomycin-loaded injectable thermosensitive hydrogels for glioblastoma therapy. Int J Pharm 2021; 598:120316. [PMID: 33540001 DOI: 10.1016/j.ijpharm.2021.120316] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 12/20/2022]
Abstract
Local drug delivery approaches for treating brain tumors not only diminish the toxicity of systemic chemotherapy, but also circumvent the blood-brain barrier (BBB) which restricts the passage of most chemotherapeutics to the brain. Recently, salinomycin has attracted much attention as a potential chemotherapeutic agent in a variety of cancers. In this study, poly (ethylene oxide)/poly (propylene oxide)/poly (ethylene oxide) (PEO-PPO-PEO, Pluronic F127) and poly (dl-lactide-co-glycolide-b-ethylene glycol-b-dl-lactide-co-glycolide) (PLGA-PEG-PLGA), the two most common thermosensitive copolymers, were utilized as local delivery systems for salinomycin in the treatment of glioblastoma. The Pluronic and PLGA-PEG-PLGA hydrogels released 100% and 36% of the encapsulated salinomycin over a one-week period, respectively. While both hydrogels were found to be effective at inhibiting glioblastoma cell proliferation, inducing apoptosis and generating intracellular reactive oxygen species, the Pluronic formulation showed better biocompatibility, a superior drug release profile and an ability to further enhance the cytotoxicity of salinomycin, compared to the PLGA-PEG-PLGA hydrogel formulation. Animal studies in subcutaneous U251 xenograftednudemice also revealed that Pluronic + salinomycin hydrogel reduced tumor growth compared to free salinomycin- and PBS-treated mice by 4-fold and 6-fold, respectively within 12 days. Therefore, it is envisaged that salinomycin-loaded Pluronic can be utilized as an injectable thermosensitive hydrogel platform for local treatment of glioblastoma, providing a sustained release of salinomycin at the tumor site and potentially bypassing the BBB for drug delivery to the brain.
Collapse
|
11
|
Kiełbasiński K, Peszek W, Grabarek BO, Boroń D, Wierzbik-Strońska M, Oplawski M. Effect of Salinomycin on Expression Pattern of Genes Associated with Apoptosis in Endometrial Cancer Cell Line. Curr Pharm Biotechnol 2020; 21:1269-1277. [PMID: 32400328 PMCID: PMC7604770 DOI: 10.2174/1389201021666200513074022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/08/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022]
Abstract
Background Salinomycin is part of a group of ionophore antibiotics characterized by an activity towards tumor cells. To this day, the mechanism through which salinomycin induces their apoptosis is not fully known yet. The goal of this study was to assess the expression pattern of genes and the proteins coded by them connected with the process of programmed cell death in an endometrial cancer cell Ishikawa culture exposed to salinomycin and compared to the control. Materials and Methods Analysis of the effect of salinomycin on Ishikawa endometrial cancer cells (ECACC 99040201) included a cytotoxicity MTT test (with a concentration range of 0.1-100 µM), assessment of the induction of apoptosis and necrosis by salinomycin at a concentration of 1 µM as well the assessment of the expression of the genes chosen in the microarray experiment (microarray HG-U 133A_2) and the proteins coded by them connected with apoptosis (RTqPCR, ELISA assay). The statistical significance level for all analyses carried out as part of this study was p<0.05. Results It was observed that salinomycin causes the death of about 50% of cells treated by it (50.74±0.80% of all cells) at a concentration of 1µM. The decrease in the number of living cells was determined directly after treatment of the cells with the drug (time 0). The average percent of late apoptotic cells was 1.65±0.24% and 0.57±0.01% for necrotic cells throughout the entire observation period. Discussion Microarray analysis indicated the following number of mRNA differentiating the culture depending on the time of incubation with the drug: H_12 vs C = 114 mRNA, H_8 vs C = 84 mRNA, H_48 vs. C = 27 mRNA, whereas 5 mRNAs were expressed differently at all times. During the whole incubation period of the cells with the drug, the following dependence of the expression profile of the analyzed transcripts was observed: Bax>p53>FASL>BIRC5>BCL2L. Conclusion The analysis carried out indicated that salinomycin, at a concentration of 1 µM, stopped the proliferation of 50% of endometrial cancer cells, mainly by inducing the apoptotic process of the cells. The molecular exponent of the induction of programmed cell death was an observed increase in the transcriptional activity of pro-apoptotic genes: Bax;p53;FASL and a decrease in the expression of anti-apoptotic genes: BCL2L2; BIRC5.
Collapse
Affiliation(s)
- Kamil Kiełbasiński
- Department of Obsterics and Gynaecology in Ruda Slaska, Medical University of Silesia, Ruda Slaska, Poland
| | - Wojciech Peszek
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| | - Beniamin O Grabarek
- Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology Krakow Branch, Kraków, Poland,Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Zabrze, Poland
| | - Dariusz Boroń
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland,Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology Krakow Branch, Kraków, Poland,Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Zabrze, Poland
| | | | - Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| |
Collapse
|
12
|
Xiaobing L, Chunling N, Wenyu C, Yan C, Zhenzhen L. Effect of Danggui-Shaoyao-San-Containing Serum on the Renal Tubular Epithelial-Mesenchymal Transition of Diabetic Nephropathy. Curr Pharm Biotechnol 2020; 21:1204-1212. [PMID: 32297575 DOI: 10.2174/1389201021666200416094318] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To investigate the effect of Danggui-Shaoyao-San (DSS)-containing serum on the renal tubular Epithelial-Mesenchymal Transition (EMT) of Diabetic Nephropathy (DN) in high glucose- induced HK-2 cells and its mechanism. METHODS 20 rats were randomly divided into four groups: blank control group, DSS low dose group (DSS-L), DSS middle dose group (DSS-M), and DSS high dose group (DSS-H). DSS was administrated to the corresponding group (7g/kg/d, 14g/kg/d and 21g/kg/d) for 7 consecutive days, and the same volume of saline was given to the blank control group by gavage. The rat drug-containing serum was successfully prepared. HK-2 cells were divided into five groups: blank control group, model group, DSS-L, DSS-M, DSS-H, according to the corresponding drug and dose of each treatment group. Protein and mRNA levels of Jagged1, Notch1, Hes5, Notch Intracellular Domain (NICD), E-cadherin, alpha- Smooth Muscle Actin (α-SMA) and vimentin at 24h, 48h and 72h were detected by Western Blot and RT-qPCR. RESULTS The protein and mRNA levels of Jagged1, Notch1, Hes5, NICD, α-SMA and vimentin in the treatment groups were remarkably decreased compared with the model group (P<0.05), and the protein and mRNA levels of E-cadherin were notably increased (P<0.05) by Western Blot and RT-qPCR. CONCLUSION Our results demonstrated that DSS could prevent DN by ameliorating renal tubular EMT through inhibition of the Notch signaling pathway.
Collapse
Affiliation(s)
- Li Xiaobing
- College of Basic Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Niu Chunling
- College of Basic Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Chen Wenyu
- The Second School of Clinical Medicine of Henan University of Traditional Chinese Medicine, Zhengzhou 450011, China
| | - Chen Yan
- The Second School of Clinical Medicine of Henan University of Traditional Chinese Medicine, Zhengzhou 450011, China
| | - Li Zhenzhen
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
13
|
CCT128930 induces G1-phase arrest and apoptosis and synergistically enhances the anticancer efficiency of VS5584 in human osteosarcoma cells. Biomed Pharmacother 2020; 130:110544. [PMID: 32721630 DOI: 10.1016/j.biopha.2020.110544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 11/24/2022] Open
Abstract
Osteosarcoma is a highly invasive primary malignant bone tumor. PI3K/mTOR pathway plays a key role in tumor progression, and inhibition of PI3K/mTOR pathway represents a novel strategy in therapy of osteosarcoma. CCT128930 and VS5584 are both inhibitors of PI3K/mTOR, but the anticancer mechanism of CCT128930 or/and VS5584 against human osteosarcoma cells remains unclear. Herein, U2OS and MG63 human osteosarcoma cells were cultured, and the anticancer effects of CCT128930 alone and the combined effect of CCT128930 and VS5584 against human osteosarcoma cells were explored. The results showed that CCT128930 as PI3K/mTOR inhibitor effectively inhibited p-p70 and p-AKT expression and dose-dependently inhibited U2OS cells and MG63 human osteosarcoma cells growth. Further studies found that CCT128930 triggered significant G-1 phase arrest and apoptosis, as convinced by the dysfunction of p27, Cyclin B1, Cyclin D1 and Cdc2, and PARP cleavage and caspase-3 activation. Moreover, CCT128930 treatment obviously enhanced VS5584-induced growth inhibition and apoptosis in human osteosarcoma cells, followed by enhanced PARP cleavage and caspase-3 activation. Taken together, CCT128930 alone or combined treatment with CCT128930 and VS5584 both effectively inhibited human osteosarcoma cells growth by induction of G1-phase arrest and apoptosis through regulating PI3K/mTOR and MAPKs pathways.
Collapse
|
14
|
Bellat V, Verchère A, Ashe SA, Law B. Transcriptomic insight into salinomycin mechanisms in breast cancer cell lines: synergistic effects with dasatinib and induction of estrogen receptor β. BMC Cancer 2020; 20:661. [PMID: 32678032 PMCID: PMC7364656 DOI: 10.1186/s12885-020-07134-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumors are heterogeneous in nature, composed of different cell populations with various mutations and/or phenotypes. Using a single drug to encounter cancer progression is generally ineffective. To improve the treatment outcome, multiple drugs of distinctive mechanisms but complementary anticancer activities (combination therapy) are often used to enhance antitumor efficacy and minimize the risk of acquiring drug resistance. We report here the synergistic effects of salinomycin (a polyether antibiotic) and dasatinib (a Src kinase inhibitor). METHODS Functionally, both drugs induce cell cycle arrest, intracellular reactive oxygen species (iROS) production, and apoptosis. We rationalized that an overlapping of the drug activities should offer an enhanced anticancer effect, either through vertical inhibition of the Src-STAT3 axis or horizontal suppression of multiple pathways. We determined the toxicity induced by the drug combination and studied the kinetics of iROS production by fluorescence imaging and flow cytometry. Using genomic and proteomic techniques, including RNA-sequencing (RNA-seq), reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and Western Blot, we subsequently identified the responsible pathways that contributed to the synergistic effects of the drug combination. RESULTS Compared to either drug alone, the drug combination showed enhanced potency against MDA-MB-468, MDA-MB-231, and MCF-7 human breast cancer (BC) cell lines and tumor spheroids. The drug combination induces both iROS generation and apoptosis in a time-dependent manner, following a 2-step kinetic profile. RNA-seq data revealed that the drug combination exhibited synergism through horizontal suppression of multiple pathways, possibly through a promotion of cell cycle arrest at the G1/S phase via the estrogen-mediated S-phase entry pathway, and partially via the BRCA1 and DNA damage response pathway. CONCLUSION Transcriptomic analyses revealed for the first time, that the estrogen-mediated S-phase entry pathway partially contributed to the synergistic effect of the drug combination. More importantly, our studies led to the discoveries of new potential therapeutic targets, such as E2F2, as well as a novel drug-induced targeting of estrogen receptor β (ESR2) approach for triple-negative breast cancer treatment, currently lacking of targeted therapies.
Collapse
Affiliation(s)
- Vanessa Bellat
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Alice Verchère
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Sally A Ashe
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Benedict Law
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA. .,Lead contact, New York, USA.
| |
Collapse
|
15
|
Ren Y, Geng R, Lu Q, Tan X, Rao R, Zhou H, Yang X, Liu W. Involvement of TGF-β and ROS in G1 Cell Cycle Arrest Induced by Titanium Dioxide Nanoparticles Under UVA Irradiation in a 3D Spheroid Model. Int J Nanomedicine 2020; 15:1997-2010. [PMID: 32273698 PMCID: PMC7102912 DOI: 10.2147/ijn.s238145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/21/2020] [Indexed: 01/07/2023] Open
Abstract
Background As one of the most widely produced engineered nanomaterials, titanium dioxide nanoparticles (nano-TiO2) are used in biomedicine and healthcare products, and as implant scaffolds; therefore, the toxic mechanism of nano-TiO2 has been extensively investigated with a view to guiding application. Three-dimensional (3D) spheroid models can simplify the complex physiological environment and mimic the in vivo architecture of tissues, which is optimal for the assessment of nano-TiO2 toxicity under ultraviolet A (UVA) irradiation. Methods and Results In the present study, the toxicity of nano-TiO2 under UVA irradiation was investigated in 3D H22 spheroids cultured in fibrin gels. A significant reduction of approximately 25% in spheroid diameter was observed following treatment with 100 μg/mL nano-TiO2 under UVA irradiation after seven days of culture. Nano-TiO2 under UVA irradiation triggered the initiation of the TGF-β/Smad signaling pathway, increasing the expression levels of TGF-β1, Smad3, Cdkn1a, and Cdkn2b at both the mRNA and protein level, which resulted in cell cycle arrest in the G1 phase. In addition, nano-TiO2 under UVA irradiation also triggered the production of reactive oxygen species (ROS), which were shown to be involved in cell cycle regulation and the induction of TGF-β1 expression. Conclusion Nano-TiO2 under UVA irradiation induced cell cycle arrest in the G1 phase and the formation of smaller spheroids, which were associated with TGF-β/Smad signaling pathway activation and ROS generation. These results reveal the toxic mechanism of nano-TiO2 under UVA irradiation, providing the possibility for 3D spheroid models to be used in nanotoxicology studies.
Collapse
Affiliation(s)
- Yuanyuan Ren
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Runqing Geng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Qunwei Lu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xi Tan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Rong Rao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Hong Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.,National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.,National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
16
|
Salinomycin-Loaded Iron Oxide Nanoparticles for Glioblastoma Therapy. NANOMATERIALS 2020; 10:nano10030477. [PMID: 32155938 PMCID: PMC7153627 DOI: 10.3390/nano10030477] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Salinomycin is an antibiotic introduced recently as a new and effective anticancer drug. In this study, magnetic iron oxide nanoparticles (IONPs) were utilized as a drug carrier for salinomycin for potential use in glioblastoma (GBM) chemotherapy. The biocompatible polyethylenimine (PEI)-polyethylene glycol (PEG)-IONPs (PEI-PEG-IONPs) exhibited an efficient uptake in both mouse brain-derived microvessel endothelial (bEnd.3) and human U251 GBM cell lines. The salinomycin (Sali)-loaded PEI-PEG-IONPs (Sali-PEI-PEG-IONPs) released salinomycin over 4 days, with an initial release of 44% ± 3% that increased to 66% ± 5% in acidic pH. The Sali-IONPs inhibited U251 cell proliferation and decreased their viability (by approximately 70% within 48 h), and the nanoparticles were found to be effective in reactive oxygen species-mediated GBM cell death. Gene studies revealed significant activation of caspases in U251 cells upon treatment with Sali-IONPs. Furthermore, the upregulation of tumor suppressors (i.e., p53, Rbl2, Gas5) was observed, while TopII, Ku70, CyclinD1, and Wnt1 were concomitantly downregulated. When examined in an in vitro blood–brain barrier (BBB)-GBM co-culture model, Sali-IONPs had limited penetration (1.0% ± 0.08%) through the bEnd.3 monolayer and resulted in 60% viability of U251 cells. However, hyperosmotic disruption coupled with an applied external magnetic field significantly enhanced the permeability of Sali-IONPs across bEnd.3 monolayers (3.2% ± 0.1%) and reduced the viability of U251 cells to 38%. These findings suggest that Sali-IONPs combined with penetration enhancers, such as hyperosmotic mannitol and external magnetic fields, can potentially provide effective and site-specific magnetic targeting for GBM chemotherapy.
Collapse
|
17
|
Antoszczak M, Huczyński A. Salinomycin and its derivatives - A new class of multiple-targeted "magic bullets". Eur J Med Chem 2019; 176:208-227. [PMID: 31103901 DOI: 10.1016/j.ejmech.2019.05.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/23/2022]
Abstract
The history of drug development clearly shows the scale of painstaking effort leading to a finished product - a highly biologically active agent that would be at the same time no or little toxic to human organism. Moreover, the aim of modern drug discovery can move from "one-molecule one-target" concept to more promising "one-molecule multiple-targets" one, particularly in the context of effective fight against cancer and other complex diseases. Gratifyingly, natural compounds are excellent source of potential drug leads. One of such promising naturally-occurring drug candidates is a polyether ionophore - salinomycin (SAL). This compound should be identified as multi-target agent for two reasons. Firstly, SAL combines a broad spectrum of bioactivity, including antibacterial, antifungal, antiviral, antiparasitic and anticancer activity, with high selectivity of action, proving its significant therapeutic potential. Secondly, the multimodal mechanism of action of SAL has been shown to be related to its interactions with multiple molecular targets and signalling pathways that are synergistic for achieving a therapeutic anticancer effect. On the other hand, according to the Paul Ehrlich's "magic bullet" concept, invariably inspiring the scientists working on design of novel target-selective molecules, a very interesting direction of research is rational chemical modification of SAL. Importantly, many of SAL derivatives have been found to be more promising as chemotherapeutics than the native structure. This concise review article is focused both on the possible role of SAL and its selected analogues in future antimicrobial and/or cancer therapy, and on the potential use of SAL as a new class of multiple-targeted "magic bullet" because of its multimodal mechanism of action.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61‒614, Poznań, Poland
| | - Adam Huczyński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61‒614, Poznań, Poland.
| |
Collapse
|
18
|
A comprehensive review of salinomycin derivatives as potent anticancer and anti-CSCs agents. Eur J Med Chem 2019; 166:48-64. [DOI: 10.1016/j.ejmech.2019.01.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/02/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
|
19
|
Antoszczak M. A medicinal chemistry perspective on salinomycin as a potent anticancer and anti-CSCs agent. Eur J Med Chem 2019; 164:366-377. [DOI: 10.1016/j.ejmech.2018.12.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 01/30/2023]
|
20
|
Borlle L, Dergham A, Wund Z, Zumbo B, Southard T, Hume KR. Salinomycin decreases feline sarcoma and carcinoma cell viability when combined with doxorubicin. BMC Vet Res 2019; 15:36. [PMID: 30678671 PMCID: PMC6346515 DOI: 10.1186/s12917-019-1780-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 01/14/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Cancer is a significant health threat in cats. Chemoresistance is prevalent in solid tumors. The ionophore salinomycin has anti-cancer properties and may work synergistically with chemotherapeutics. The purpose of our study was to determine if salinomycin could decrease cancer cell viability when combined with doxorubicin in feline sarcoma and carcinoma cells. RESULTS We established two new feline injection-site sarcoma cell lines, B4 and C10, and confirmed their tumorigenic potential in athymic nude mice. B4 was more resistant to doxorubicin than C10. Dose-dependent effects were not observed until 92 μM in B4 cells (p = 0.0006) vs. 9.2 μM (p = 0.0004) in C10 cells. Dose-dependent effects of salinomycin were observed at 15 μM in B4 cells (p = 0.025) and at 10 μM in C10 cells (p = 0.020). Doxorubicin plus 5 μM salinomycin decreased viability of B4 cells compared to either agent alone, but only at supra-pharmacological doxorubicin concentrations. However, doxorubicin plus 5 μM salinomycin decreased viability of C10 cells compared to either agent alone at doxorubicin concentrations that can be achieved in vivo (1.84 and 4.6 μM, p < 0.004). In SCCF1 cells, dose-dependent effects of doxorubicin and salinomycin were observed at 9.2 (p = 0.036) and 2.5 (p = 0.0049) μM, respectively. When doxorubicin was combined with either 1, 2.5, or 5 μM of salinomycin in SCCF1 cells, dose-dependent effects of doxorubicin were observed at 9.2 (p = 0.0021), 4.6 (p = 0.0042), and 1.84 (p = 0.0021) μM, respectively. Combination index calculations for doxorubicin plus 2.5 and 5 μM salinomycin in SCCF1 cells were 0.4 and 0.6, respectively. CONCLUSIONS We have developed two new feline sarcoma cell lines that can be used to study chemoresistance. We observed that salinomycin may potentiate (C10 cells) or work synergistically (SCCF1 cells) with doxorubicin in certain feline cancer cells. Further research is indicated to understand the mechanism of action of salinomycin in feline cancer cells as well as potential tolerability and toxicity in normal feline tissues.
Collapse
Affiliation(s)
- Lucia Borlle
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853 USA
- Department of Animal Sciences, Cornell University College of Agricultural and Life Sciences, Ithaca, NY 14853 USA
| | - Abdo Dergham
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853 USA
| | - Zacharie Wund
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853 USA
| | - Brittany Zumbo
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853 USA
| | - Teresa Southard
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853 USA
| | - Kelly R. Hume
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853 USA
| |
Collapse
|
21
|
Versini A, Saier L, Sindikubwabo F, Müller S, Cañeque T, Rodriguez R. Chemical biology of salinomycin. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Norouzi M, Abdali Z, Liu S, Miller DW. Salinomycin-loaded Nanofibers for Glioblastoma Therapy. Sci Rep 2018; 8:9377. [PMID: 29925966 PMCID: PMC6010406 DOI: 10.1038/s41598-018-27733-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/30/2018] [Indexed: 01/28/2023] Open
Abstract
Salinomycin is an antibiotic that has recently been introduced as a novel and effective anti-cancer drug. In this study, PLGA nanofibers (NFs) containing salinomycin (Sali) were fabricated by electrospinning for the first time. The biodegradable PLGA NFs had stability for approximately 30 days and exhibited a sustained release of the drug for at least a 2-week period. Cytotoxicity of the NFs + Sali was evaluated on human glioblastoma U-251 cells and more than 50% of the treated cells showed apoptosis in 48 h. Moreover, NFs + Sali was effective to induce intracellular reactive oxygen species (ROS) leading to cell apoptosis. Gene expression studies also revealed the capability of the NFs + Sali to upregulate tumor suppressor Rbl1 and Rbl2 as well as Caspase 3 while decreasing Wnt signaling pathway. In general, the results indicated anti-tumor activity of the Sali-loaded NFs suggesting their potential applications as implantable drug delivery systems in the brain upon surgical resection of the tumor.
Collapse
Affiliation(s)
- Mohammad Norouzi
- Graduate Program of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Zahra Abdali
- Graduate Program of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Song Liu
- Graduate Program of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Donald W Miller
- Graduate Program of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada.
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
23
|
Liu C, Wang L, Qiu H, Dong Q, Feng Y, Li D, Li C, Fan C. Combined Strategy of Radioactive 125I Seeds and Salinomycin for Enhanced Glioma Chemo-radiotherapy: Evidences for ROS-Mediated Apoptosis and Signaling Crosstalk. Neurochem Res 2018; 43:1317-1327. [DOI: 10.1007/s11064-018-2547-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/05/2018] [Accepted: 05/11/2018] [Indexed: 01/29/2023]
|
24
|
Wu YC, Cao L, Mei WJ, Wu HQ, Luo SH, Zhan HY, Wang ZY. Bis-2(5H)-furanone derivatives as new anticancer agents: Design, synthesis, biological evaluation, and mechanism studies. Chem Biol Drug Des 2018; 92:1232-1240. [DOI: 10.1111/cbdd.13183] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/03/2018] [Accepted: 02/10/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Yan-Cheng Wu
- School of Chemistry and Environment; South China Normal University; Key Laboratory of Theoretical Chemistry of Environment; Ministry of Education; Guangzhou China
- School of Chemistry and Chemical Engineering; Guangdong Pharmaceutical University; Zhongshan China
| | - Liang Cao
- School of Chemistry and Environment; South China Normal University; Key Laboratory of Theoretical Chemistry of Environment; Ministry of Education; Guangzhou China
| | - Wen-Jie Mei
- School of Pharmacy; Guangdong Pharmaceutical University; Guangzhou China
| | - Han-Qing Wu
- School of Chemistry and Environment; South China Normal University; Key Laboratory of Theoretical Chemistry of Environment; Ministry of Education; Guangzhou China
| | - Shi-He Luo
- School of Chemistry and Environment; South China Normal University; Key Laboratory of Theoretical Chemistry of Environment; Ministry of Education; Guangzhou China
| | - Hai-Ying Zhan
- School of Chemistry and Chemical Engineering; Guangdong Pharmaceutical University; Zhongshan China
| | - Zhao-Yang Wang
- School of Chemistry and Environment; South China Normal University; Key Laboratory of Theoretical Chemistry of Environment; Ministry of Education; Guangzhou China
| |
Collapse
|
25
|
Wang XJ, Wang MH, Fu XT, Hou YJ, Chen W, Tian DC, Bai SY, Fu XY. Selenocysteine antagonizes oxygen glucose deprivation-induced damage to hippocampal neurons. Neural Regen Res 2018; 13:1433-1439. [PMID: 30106056 PMCID: PMC6108205 DOI: 10.4103/1673-5374.235300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Designing and/or searching for novel antioxidants against oxygen glucose deprivation (OGD)-induced oxidative damage represents an effective strategy for the treatment of human ischemic stroke. Selenium is an essential trace element, which is beneficial in the chemoprevention and chemotherapy of cerebral ischemic stroke. The underlying mechanisms for its therapeutic effects, however, are not well documented. Selenocysteine (SeC) is a selenium-containing amino acid with neuroprotective potential. Studies have shown that SeC can reduce irradiation-induced DNA apoptosis by reducing DNA damage. In this study, the in vitro protective potential and mechanism of action of SeC against OGD-induced apoptosis and neurotoxicity were evaluated in HT22 mouse hippocampal neurons. We cultured HT22 cells in a glucose-free medium containing 2 mM Na2S4O2, which formed an OGD environment, for 90 minutes. Findings from MTT, flow cytometry and TUNEL staining showed obvious cytotoxicity and apoptosis in HT22 cells in the OGD condition. The activation of Caspase-7 and Caspase-9 further revealed that OGD-induced apoptosis of HT22 cells was mainly achieved by triggering a mitochondrial-mediated pathway. Moreover, the OGD condition also induced serious DNA damage through the accumulation of reactive oxygen species and superoxide anions. However, SeC pre-treatment for 6 hours effectively inhibited OGD-induced cytotoxicity and apoptosis in HT22 cells by inhibiting reactive oxygen species-mediated oxidative damage. Our findings provide evidence that SeC has the potential to suppress OGD-induced oxidative damage and apoptosis in hippocampal neurons.
Collapse
Affiliation(s)
- Xian-Jun Wang
- Department of Neurology, People's Hospital of Linyi, Linyi, Shandong Province, China
| | - Mei-Hong Wang
- Department of Neurology, People's Hospital of Yishui, Linyi, Shandong Province, China
| | - Xiao-Ting Fu
- School of Basic Medicine, Taishan Medical University, Taian, Shandong Province, China
| | - Ya-Jun Hou
- School of Basic Medicine, Taishan Medical University, Taian, Shandong Province, China
| | - Wang Chen
- Department of Neurology, People's Hospital of Linyi, Linyi, Shandong Province, China
| | - Da-Chen Tian
- Department of Neurology, People's Hospital of Linyi, Linyi, Shandong Province, China
| | - Su-Yun Bai
- School of Basic Medicine, Taishan Medical University, Taian, Shandong Province, China
| | - Xiao-Yan Fu
- School of Basic Medicine, Taishan Medical University, Taian, Shandong Province, China
| |
Collapse
|
26
|
Low dose arsenite confers resistance to UV induced apoptosis via p53-MDM2 pathway in ketatinocytes. Oncogenesis 2017; 6:e370. [PMID: 28785074 PMCID: PMC5608918 DOI: 10.1038/oncsis.2017.67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/17/2017] [Accepted: 06/26/2017] [Indexed: 12/17/2022] Open
Abstract
Chronic arsenite and ultraviolet (UV) exposure are associated with skin tumor. To investigate the details by low concentrations of arsenite and UV induced carcinogenesis in skin, hTERT-immortalized human keratinocytes were used as a cellular model with exposure to low concentrations of sodium arsenite and UV. The effect of NaAsO2 on UV treatment-induced apoptosis was measured by flow cytometry and Hoechst staining. We found that the cell apoptosis induced by UV exposure was significantly attenuated after exposure to low-dose arsenite, and knockdown of p53 could block UV-induced apoptosis indicating that this phenomenon depended on p53. Interestingly, the expression of murine double minute 2 (MDM2), including its protein and transcriptional levels, was remarkably high after exposure to low-dose arsenite. Moreover, low-dose arsenite treatment dramatically decreased the MDM2 gene promoter activity, suggesting that this effect has been mediated through transcription. In addition, treatment of PD98059 reversed low-dose arsenite-induced MDM2 expression, and the inhibition of ERK2 expression could significantly block MDM2 expression as a consequence, and p53 expression automatically was increased. To validate the role of p53 in exposure to low-dose arsenite, the expression of p53 was examined by immunohistochemistry in the skin of Sprague−Dawley rats model by chronic arsenite exposure for 6 months and in patients with arsenic keratosis, and the results showed that the expression of p53 was decreased in those samples. Taken together, our results demonstrated that low-dose arsenite-induced resistance to apoptosis through p53 mediated by MDM2 in keratinocytes.
Collapse
|