1
|
Hu Y, Li J, Chen H, Shi Y, Ma X, Wang Y, Li X, Zhong Q, Wang Y, Jiang D, Zhuang S, Liu N. Autophagy Related 5 Promotes Mitochondrial Fission and Inflammation via HSP90-HIF-1α-Mediated Glycolysis in Kidney Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414673. [PMID: 40047327 PMCID: PMC12061336 DOI: 10.1002/advs.202414673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/14/2025] [Indexed: 05/10/2025]
Abstract
Although significant progress in identifying molecular mediators of fibrosis is made, there is still controversy regarding the role and mechanism of autophagy in kidney fibrosis. Here, this study finds that autophagy related 5 (ATG5) is obviously increased in uric acid (UA), aristolochic acid (AA) and transforming growth factor-β1 (TGF-β1)-induced HK-2 cells, as well as in kidneys from patients with chronic kidney disease (CKD) and mice with hyperuricemic nephropathy (HN), aristolochic acid nephropathy (AAN) and unilateral renal ischemia-reperfusion injury (uIRI). Conditional deletion of ATG5 in HN, AAN and uIRI murine models significantly alleviated aberrant glycolysis, attenuated pathological lesions, and improved kidney function. Mechanistically, ATG5 mediates the binding between heat shock protein 90 (HSP90) and hypoxia-inducible factor 1alpha (HIF-1α), thereby enhancing the stability of HIF-1α and further promoting the overactivation of glycolysis. Subsequently, the aberrant glycolysis facilitated the occurrence of mitochondrial fission and inflammatory response, thus leading to kidney fibrosis. Taken together, the study provides solid evidence supporting that persistent activation of ATG5 in kidney tubules promotes kidney fibrosis. The profibrotic function of ATG5 is related to the regulation on HSP90-HIF-1α-mediated glycolysis, resulting in mitochondrial fission and renal inflammation. Thus, ATG5 may be a novel therapeutic target for kidney fibrosis.
Collapse
Affiliation(s)
- Yan Hu
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Jinqing Li
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Hui Chen
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yingfeng Shi
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Xiaoyan Ma
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yi Wang
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Xialin Li
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Qin Zhong
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yishu Wang
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Daofang Jiang
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Shougang Zhuang
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
- Department of MedicineRhode Island Hospital and Alpert Medical SchoolBrown UniversityProvidenceRI02902USA
| | - Na Liu
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| |
Collapse
|
2
|
Lu M, Wang Y, Ren H, Yin X, Li H. Research progress on the mechanism of action and clinical application of remote ischemic post-conditioning for acute ischemic stroke. Clin Neurol Neurosurg 2024; 244:108397. [PMID: 38968813 DOI: 10.1016/j.clineuro.2024.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024]
Abstract
Remote ischemic post-conditioning (RIPostC) can reduce cerebral ischemia reperfusion injury (IRI) by inducing endogenous protective effects, the distal limb ischemia post-treatment and in situ ischemia post-treatment were classified according to the site of intervention. And in the process of clinical application distal limb ischemia post-treatment is more widely used and more conducive to clinical translation. Therefore, in this paper, we review the mechanism of action and clinical application of RIPostC in cerebral ischemia, hoping to provide reference help for future experimental directions and clinical translation.
Collapse
Affiliation(s)
- Meng Lu
- Department of Nursing, The First Hospital of Jilin University, Changchun, China
| | - Yujiao Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hui Ren
- Department of Nursing, The First Hospital of Jilin University, Changchun, China
| | - Xin Yin
- Department of Nursing, The First Hospital of Jilin University, Changchun, China.
| | - Hongyan Li
- Department of Nursing, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Liu R, Zhang X, Yan J, Liu S, Li Y, Wu G, Gao J. Penehyclidine hydrochloride alleviates lung ischemia-reperfusion injury by inhibiting pyroptosis. BMC Pulm Med 2024; 24:207. [PMID: 38671448 PMCID: PMC11046774 DOI: 10.1186/s12890-024-03018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE The aim of this research was to examine how penehyclidine hydrochloride (PHC) impacts the occurrence of pyroptosis in lung tissue cells within a rat model of lung ischemia-reperfusion injury. METHODS Twenty-four Sprague Dawley (SD) rats, weighing 250 g to 270 g, were randomly distributed into three distinct groups as outlined below: a sham operation group (S group), a control group (C group), and a test group (PHC group). Rats in the PHC group received a preliminary intravenous injection of PHC at a dose of 3 mg/kg. At the conclusion of the experiment, lung tissue and blood samples were collected and properly stored for subsequent analysis. The levels of malondialdehyde, superoxide dismutase, and myeloperoxidase in the lung tissue, as well as IL-18 and IL-1β in the blood serum, were assessed using an Elisa kit. Pyroptosis-related proteins, including Caspase1 p20, GSDMD-N, and NLRP3, were detected through the western blot method. Additionally, the dry-to-wet ratio (D/W) of the lung tissue and the findings from the blood gas analysis were also documented. RESULTS In contrast to the control group, the PHC group showed enhancements in oxygenation metrics, reductions in oxidative stress and inflammatory reactions, and a decrease in lung injury. Additionally, the PHC group exhibited lowered levels of pyroptosis-associated proteins, including the N-terminal segment of gasdermin D (GSDMD-N), caspase-1p20, and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3). CONCLUSION Pre-administration of PHC has the potential to mitigate lung ischemia-reperfusion injuries by suppressing the pyroptosis of lung tissue cells, diminishing inflammatory reactions, and enhancing lung function. The primary mechanism behind anti-pyroptotic effect of PHC appears to involve the inhibition of oxidative stress.
Collapse
Affiliation(s)
- Rongfang Liu
- Department of Anesthesiology, the Second Hospital of Hebei Medical University, NO. 215 of HePing West Road, Xinhua District Shijiazhuang, 050000, Shijiazhuang, China
- Department of Anesthesiology, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Xuguang Zhang
- Department of Thoracic surgery, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Jing Yan
- Electron microscope room, Hebei Medical University, 050000, Shijiazhuang, China
| | - Shan Liu
- Department of Pathology, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Yongle Li
- Department of Anesthesiology, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Guangyi Wu
- Department of Anesthesiology, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Jingui Gao
- Department of Anesthesiology, the Second Hospital of Hebei Medical University, NO. 215 of HePing West Road, Xinhua District Shijiazhuang, 050000, Shijiazhuang, China.
| |
Collapse
|
4
|
Ghasemi Pour Afshar N, Arab HA, Vatannejad A, Ashabi G, Golabchifar AA. The Role of the JAK-STAT Signaling Pathway in the Protective Effects of Hepatic Ischemia Post-conditioning Against the Injury Induced by Ischemia/Reperfusion in the Rat Liver. Adv Pharm Bull 2024; 14:224-230. [PMID: 38585457 PMCID: PMC10997924 DOI: 10.34172/apb.2024.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/02/2023] [Accepted: 07/14/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Hepatic ischemic post-conditioning (IPOC) is shown to protect the liver from injury induced by ischemia/reperfusion (IR). However, the mechanism underlying this protection has remained elusive. The present study aimed to investigate the role of the interleukin 6-Janus kinase-signal transducers and activators of transcription (IL-6-JAK-STAT) pathway in the protective effect of hepatic IPOC against the IR-induced injury in the liver. Methods Twenty-five rats were randomly divided into 5 groups of (1) sham-operated, (2) IR, (3) IR+hepatic IPOC, (4) IR+tofacitinib (TOFA), and (5) IR+TOFA+hepatic IPOC. The changes induced by IR and the effects of different treatments were assessed by enzyme release, histopathological observations, the serum level of IL-6, and the occurrence of apoptosis detected via the expression of the Bax/Bcl-2 ratio. Results The hepatic IPOC improved the liver injury induced by IR as shown by histological changes, reduction of IL-6 level, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) compared to the IR group (P<0.001, P<0.05, P<0.05, respectively). There was also downregulation of the Bax/Bcl2 ratio in the rats exposed to IR+hepatic IPOC compared with those in the IR group (P<0.05). However, TOFA, an inhibitor of JAK-STAT activity, inhibited the protective effect of hepatic IPOC. Conclusion It suggests that the protective effect of hepatic IPOC against IR-induced injury may be mediated by activating the IL-6-JAK-STAT pathway.
Collapse
Affiliation(s)
- Neda Ghasemi Pour Afshar
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hossein Ali Arab
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Akram Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali akbar Golabchifar
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Xu YH, Xu JB, Chen LL, Su W, Zhu Q, Tong GL. Protective mechanisms of quercetin in neonatal rat brain injury induced by hypoxic-ischemic brain damage (HIBD). Food Sci Nutr 2023; 11:7649-7663. [PMID: 38107093 PMCID: PMC10724619 DOI: 10.1002/fsn3.3684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 12/19/2023] Open
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) is a leading cause of infant mortality worldwide. This study explored whether quercetin (Que) exerts neuroprotective effects in a rat model of HIBD. A total of 36 seven-day-old Sprague-Dawley rats were divided into control, Que, HI, and HI + Que groups. The Rice method was used to establish HIBD in HI and HI + Que rats, which were treated with hypoxia (oxygen concentration of 8%) for 2 h after ligation of the left common carotid artery. The rats in the HI + Que group were intraperitoneally injected with Que (30 mg/kg) 1 h before hypoxia, and the rats in the Que group were only injected with the same amount of Que. Brain tissues were harvested 24 h postoperation and assessed by hematoxylin and eosin staining, 2,3,5-triphenyltetrazolium chloride staining, and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay; relative gene and protein levels were evaluated by RT-qPCR, IHC, or western blot (WB) assay. Brain tissue morphologies were characterized by transmission electron microscopy (TEM); LC3B protein levels were assessed by immunofluorescence staining. Escape latencies and platform crossing times were significantly improved (p < .05) in HI + Que groups; infarct volume significantly decreased (p < .001), whereas the numbers of autophagic bodies and apoptotic cells increased and decreased, respectively. Meanwhile, NLRX1, ATG7, and Beclin1 expressions were significantly upregulated, and mTOR and TIM23 expressions, LC3B protein level, and LC 3II/LC 3I ratio were significantly downregulated. Que exerted neuroprotective effects in a rat model of HIBD by regulating NLRX1 and autophagy.
Collapse
Affiliation(s)
- Yan-Hong Xu
- Anhui Provincial Children's Hospital Hefei China
| | - Jin-Bo Xu
- Anhui Provincial Children's Hospital Hefei China
| | - Lu-Lu Chen
- Anhui Provincial Children's Hospital Hefei China
| | - Wei Su
- Anhui Provincial Children's Hospital Hefei China
| | - Qing Zhu
- Anhui Provincial Children's Hospital Hefei China
| | | |
Collapse
|
6
|
Yang B, Wen HY, Liang RS, Lu TM, Zhu ZY, Wang CH. Hippocampus protection from apoptosis by Baicalin in a LiCl-pilocarpine-induced rat status epilepticus model through autophagy activation. World J Psychiatry 2023; 13:620-629. [PMID: 37771639 PMCID: PMC10523199 DOI: 10.5498/wjp.v13.i9.620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/04/2023] [Accepted: 07/28/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Autophagy is associated with hippocampal injury following status epilepticus (SE) and is considered a potential therapeutic mechanism. Baicalin, an emerging multitherapeutic drug, has shown neuroprotective effects in patients with nervous system diseases due to its antioxidant properties. AIM To investigate the potential role of autophagy in LiCl-pilocarpine-induced SE. METHODS The drugs were administered 30 min before SE. Nissl staining showed that Baicalin attenuated hippocampal injury and reduced neuronal death in the hippocampus. Western blotting and terminal deoxynucleotidyl transferase dUTP nick end labeling assay confirmed that Baicalin reversed the expression intensity of cleaved caspase-3 and apoptosis in hippocampal CA1 following SE. Fur-thermore, western blotting and immunofluorescence staining were used to measure the expression of autophagy markers (p62/SQSTM1, Beclin 1, and LC3) and apoptotic pathway markers (cleaved caspase-3 and Bcl-2). RESULTS Baicalin significantly upregulated autophagic activity and downregulated mitochondrial apoptotic pathway markers. Conversely, 3-methyladenine, a commonly used autophagy inhibitor, was simultaneously administered to inhibit the Baicalin-induced autophagy, abrogating the protective effect of Baicalin on the mitochondrial apoptotic level. CONCLUSION We illustrated that Baicalin-induced activation of autophagy alleviates apoptotic death and protects the hippocampus of SE rats.
Collapse
Affiliation(s)
- Bin Yang
- Department of Neurosurgery, Affiliated Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Han-Yu Wen
- Department of Neurosurgery, Affiliated Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Ri-Sheng Liang
- Department of Neurosurgery, Affiliated Union Hospital of Fujian Medical University, Neurosurgery Research Institute of Fujian Province, Fuzhou 350001, Fujian Province, China
| | - Ting-Ming Lu
- Department of Neurosurgery, Affiliated Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Zheng-Yan Zhu
- Department of Neurosurgery, Affiliated Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Chun-Hua Wang
- Department of Neurosurgery, Affiliated Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
7
|
Zang R, Ling F, Wu Z, Sun J, Yang L, Lv Z, Ji N. Ginkgo biloba extract (EGb-761) confers neuroprotection against ischemic stroke by augmenting autophagic/lysosomal signaling pathway. J Neuroimmunol 2023; 382:578101. [PMID: 37536050 DOI: 10.1016/j.jneuroim.2023.578101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 08/05/2023]
Abstract
Ginkgo biloba extract (EGb-761) is well-recognized to have neuroprotective properties. Meanwhile, autophagy machinery is extensively involved in the pathophysiological processes of ischemic stroke. The EGb-761 is widely used in the clinical treatment of stroke patients. However, its neuroprotective mechanisms against ischemic stroke are still not fully understood. The present study was conducted to uncover whether the pharmacological effects of EGb-761 can be executed by modulation of the autophagic/lysosomal signaling axis. A Sprague-Dawley rat model of ischemic stroke was established by middle cerebral artery occlusion (MCAO) for 90 min, followed by reperfusion. The EGb-761 was then administered to the MCAO rats once daily for a total of 7 days. Thereafter, the penumbral tissues were acquired to detect proteins involved in the autophagic/lysosomal pathway including Beclin1, LC-3, SQSTM1/p62, ubiquitin, cathepsin B, and cathepsin D by western blot and immunofluorescence, respectively. Subsequently, the therapeutic outcomes were evaluated by measuring the infarct volume, neurological deficits, and neuron survival. The results showed that the autophagic activities of Beclin1 and LC3-II in neurons were markedly promoted by 7 days of EGb-761 therapy. Meanwhile, the autophagic cargoes of insoluble p62 and ubiquitinated proteins were effectively degraded by EGb-761-augmented lysosomal activity of cathepsin B and cathepsin D. Moreover, the infarction size, neurological deficiencies, and neuron death were also substantially attenuated by EGb-761 therapy. Taken together, our study suggests that EGb-761 exerts a neuroprotective effect against ischemic stroke by promoting autophagic/lysosomal signaling in neurons at the penumbra. Thus, it might be a new therapeutic target for treating ischemic stroke.
Collapse
Affiliation(s)
- Rui Zang
- Department of Clinical Application of Traditional Chinese Medicine Integrated with Western Medicine, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong 657000, China
| | - Fayang Ling
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Traditional Chinese Medicine Clinic, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong 657000, China
| | - Zhiyuan Wu
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jun Sun
- Department of Emergency, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong 657000, China
| | - Licong Yang
- Department of Clinical Application of Traditional Chinese Medicine Integrated with Western Medicine, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong 657000, China
| | - Zuyin Lv
- Department of Clinical Application of Traditional Chinese Medicine Integrated with Western Medicine, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong 657000, China
| | - Nengbo Ji
- Pain Management, Zhaotong Hospital of Traditional Chinese Medicine, No. 26, Unity Road, Zhaotong, City, Yunnan Province, 657000, China.
| |
Collapse
|
8
|
Li X, Sung P, Zhang D, Yan L. Curcumin in vitro Neuroprotective Effects Are Mediated by p62/keap-1/Nrf2 and PI3K/AKT Signaling Pathway and Autophagy Inhibition. Physiol Res 2023; 72:497-510. [PMID: 37795892 PMCID: PMC10634561 DOI: 10.33549/physiolres.935054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/11/2023] [Indexed: 01/05/2024] Open
Abstract
Oxidative stress and autophagy are potential mechanisms associated with cerebral ischemia/reperfusion injury (IRI) and is usually linked to inflammatory responses and apoptosis. Curcumin has recently been demonstrated to exhibit anti-inflammatory, anti-oxidant, anti-apoptotic and autophagy regulation properties. However, mechanism of curcumin on IRI-induced oxidative stress and autophagy remains not well understood. We evaluated the protective effects and potential mechanisms of curcumin on cerebral microvascular endothelial cells (bEnd.3) and neuronal cells (HT22) against oxygen glucose deprivation/reoxygenation (OGD/R) in vitro models that mimic in vivo cerebral IRI. The cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) activity assays revealed that curcumin attenuated the OGD/R-induced injury in a dose-specific manner. OGD/R induced elevated levels of inflammatory cytokines TNF-alpha, IL-6 as well as IL-1beta, and these effects were notably reduced by curcumin. OGD/R-mediated apoptosis was suppressed by curcumin via upregulating B-cell lymphoma-2 (Bcl-2) and downregulating Bcl-associated X (Bax), cleaved-caspase3 and TUNEL apoptosis marker. Additionally, curcumin increased superoxide dismutase (SOD) and glutathione (GSH), but suppressed malondialdehyde (MDA) and reactive oxygen species (ROS) content. Curcumin inhibited the levels of autophagic biomarkers such as LC3 II/LC3 I and Beclin1. Particularly, curcumin induced p62 accumulation and its interactions with keap1 and promoted NF-E2-related factor 2 (Nrf2) translocation to nucleus, accompanied by increased NADPH quinone dehydrogenase (Nqo1) and heme oxygenase 1 (HO-1). Treatment of curcumin increased phosphorylation-phosphatidylinositol 3 kinase (p-PI3K) and p-protein kinase B (p-AKT). The autophagy inhibitor 3-methyladenine (3-MA) activated the keap-1/Nrf2 and PI3K/AKT pathways. This study highlights the neuroprotective effects of curcumin on cerebral IRI.
Collapse
Affiliation(s)
- X Li
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | | | | | | |
Collapse
|
9
|
Wen H, Zuo Y, Li L, Zhan L, Xue J, Sun W, Xu E. Hypoxic postconditioning restores mitophagy against transient global cerebral ischemia via Parkin-induced posttranslational modification of TBK1. Neurobiol Dis 2023; 179:106043. [PMID: 36805078 DOI: 10.1016/j.nbd.2023.106043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Hypoxic postconditioning (HPC) has been reported to enhance Parkin-catalyzed mitochondrial ubiquitination to restore mitophagy in hippocampal CA1 against transient global cerebral ischemia (tGCI). However, the molecular mechanism leading ubiquitinated mitochondria to final clearance during HPC-mediated mitophagy after tGCI is unclear. This study aims to investigate whether HPC restores mitophagy after tGCI through Parkin-induced K63-linked poly-ubiquitination (K63-Ub) to activate tumor necrosis factor associated factor family member associated nuclear factor κB activator -binding kinase 1 (TBK1) in CA1 of male rats. We found that HPC maintained TBK1 expression, promoted p62 and TBK1 phosphorylation in mitochondria, and enhanced their recruitments to mitochondria in CA1 after tGCI. However, these effects were partially abolished by TBK1 inhibitor BX795. K63-Ub of mitochondrial TBK1 was disturbed at 26 h of reperfusion after tGCI, which was reversed by HPC. The maintenance of K63-Ub of mitochondrial TBK1 induced by HPC was counteracted under Parkin knockdown with AAV-mediated Prkn small-interfering RNA, accompanied by the suppression on TBK1 activation and the reduction of mitochondrial p62 phosphorylation. This innovative study indicated that HPC maintained K63-Ub of TBK1 in a Parkin-dependent manner to promote TBK1 phosphorylation, and then phosphorylated TBK1 activated p62 to restore mitophagy, thereby alleviating neuronal damage in CA1 after tGCI.
Collapse
Affiliation(s)
- Haixia Wen
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China; Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yunyan Zuo
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China
| | - Luxi Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China; Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lixuan Zhan
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China
| | - Jiahui Xue
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China
| | - Weiwen Sun
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China
| | - En Xu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China.
| |
Collapse
|
10
|
Bi M, Li D, Zhang J. Role of curcumin in ischemia and reperfusion injury. Front Pharmacol 2023; 14:1057144. [PMID: 37021057 PMCID: PMC10067738 DOI: 10.3389/fphar.2023.1057144] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/23/2023] [Indexed: 03/22/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is an inevitable pathological process after organic transplantations. Although traditional treatments restore the blood supply of ischemic organs, the damage caused by IRI is always ignored. Therefore, the ideal and effective therapeutic strategy to mitigate IRI is warrented. Curcumin is a type of polyphenols, processing such properties as anti-oxidative stress, anti-inflammation and anti-apoptosis. However, although many researches have been confirmed that curcumin can exert great effects on the mitigation of IRI, there are still some controversies about its underlying mechanisms among these researches. Thus, this review is to summarize the protective role of curcumin against IRI as well as the controversies of current researches, so as to clarify its underlying mechanisms clearly and provide clinicians a novel idea of the therapy for IRI.
Collapse
Affiliation(s)
- Minglei Bi
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Danyi Li
- Department of Ophthalmology, Jiading District Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jin Zhang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- *Correspondence: Jin Zhang,
| |
Collapse
|
11
|
Hydroxysafflor Yellow A Exerts Neuroprotective Effects via HIF-1α/BNIP3 Pathway to Activate Neuronal Autophagy after OGD/R. Cells 2022; 11:cells11233726. [PMID: 36496986 PMCID: PMC9736542 DOI: 10.3390/cells11233726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/12/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
In the process of ischemic stroke (IS), cellular macroautophagy/autophagy and apoptosis play a vital role in neuroprotection against it. Therefore, regulating their balance is a potential therapeutic strategy. It has been proved that hydroxysafflor yellow A (HSYA) has anti-inflammatory and antioxidant effects, which can both protect neurons. By exploring bioinformatics combined with network pharmacology, we found that HIF1A and CASP3, key factors regulating autophagy and apoptosis, may be important targets of HSYA for neuroprotection in an oxygen glucose deprivation and reperfusion (OGD/R) model. In this study, we explored a possible new mechanism of HSYA neuroprotection in the OGD/R model. The results showed that OGD/R increased the expression of HIF1A and CASP3 in SH-SY5Y cells and induced autophagy and apoptosis, while HSYA intervention further promoted the expression of HIF1A and inhibited the level of CASP3, accompanied by an increase in autophagy and a decrease in apoptosis in SH-SY5Y cells. The inhibition of HIF1A diminished the activation of autophagy induced with HSYA, while the inhibition of autophagy increased cell apoptosis and blocked the neuroprotective effect of HSYA, suggesting that the neuroprotective effect of HSYA should be mediated by activating the HIF1A/BNIP3 signaling pathway to induce autophagy. These results demonstrate that HSYA may be a promising agent for treating IS.
Collapse
|
12
|
Wang M, Yang X, Zhou Q, Guo Y, Chen Y, Song L, Yang J, Li L, Luo L. Neuroprotective Mechanism of Icariin on Hypoxic Ischemic Brain Damage in Neonatal Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1330928. [PMID: 36425058 PMCID: PMC9681555 DOI: 10.1155/2022/1330928] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024]
Abstract
Objective Our previous results showed that icariin (ICA) could inhibit apoptosis and provide neuroprotection against hypoxic-ischemic brain damage (HIBD) in neonatal mice, but the specific mechanism of its neuroprotective effect remains unknown. This study aims at exploring whether ICA plays a neuroprotective role in apoptosis inhibition by regulating autophagy through the estrogen receptor α (ERα)/estrogen receptor β (ERβ) pathway in neonatal mice with HIBD. Methods A neonatal mouse model of HIBD was constructed in vivo, and an oxygen and glucose deprivation (OGD) model in HT22 cells from the hippocampal neuronal system was constructed in vitro. The effects of ICA pretreatment on autophagy and the expression of ERα and ERβ were detected in vitro and in vivo, respectively. ICA pretreatment was also supplemented with the autophagy inhibitor 3-methyladenine (3-MA), ERα inhibitor methylpiperidino pyrazole (MPP), and ERβ inhibitor 4-(2-phenyl-5,7-bis (trifluoromethyl) pyrazolo [1,5-a] pyramidin-3-yl) phenol (PHTPP) to further detect whether ICA pretreatment can activate the ERα/ERβ pathway to promote autophagy and reduce HIBD-induced apoptosis to play a neuroprotective role against HIBD in neonatal mice. Results ICA pretreatment significantly promoted autophagy in HIBD mice. Treatment with 3-MA significantly inhibited the increase in autophagy induced by ICA pretreatment, reversed the neuroprotective effect of ICA pretreatment, and promoted apoptosis. Moreover, ICA pretreatment significantly increased the expression levels of the ERα and ERβ proteins in HIBD newborn mice. Both MPP and PHTPP administration significantly inhibited the expression levels of the ERα and ERβ proteins activated by ICA pretreatment, reversed the neuroprotective effects of ICA pretreatment, inhibited the increase in autophagy induced by ICA pretreatment, and promoted apoptosis. Conclusion ICA pretreatment may promote autophagy by activating the ERα and ERβ pathways, thus reducing the apoptosis induced by HIBD and exerting a neuroprotective effect on neonatal mice with HIBD.
Collapse
Affiliation(s)
- Mengxia Wang
- Intensive Care Unit, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xiaoxia Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Zhou
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingqi Guo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingxiu Chen
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Linyang Song
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junhua Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lixia Li
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Li Luo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Medical Association, Guangzhou 510180, China
| |
Collapse
|
13
|
Lu M, Wang Y, Yin X, Li Y, Li H. Cerebral protection by remote ischemic post-conditioning in patients with ischemic stroke: A systematic review and meta-analysis of randomized controlled trials. Front Neurol 2022; 13:905400. [PMID: 36212669 PMCID: PMC9532592 DOI: 10.3389/fneur.2022.905400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background There is evidence that remote limb ischemic postconditioning (RIPostC) can reduce ischemia-reperfusion injury (IRI) and improve the prognosis of patients with ischemic stroke. However, so far, only few relevant clinical studies have been conducted. Therefore, we carried out a meta-analysis of eligible randomized controlled trials to compare the RIPostC group with a control group (no intervention or sham surgery) in patients with ischemic stroke. Methods Four English-language publication databases, PubMed, Cochrane, Embase, and Web of Science, were systematically searched up to March 2022. The data were analyzed using Review Manager fixed-effects and random-effects models. Results A total of 12 studies were included, and 11 of those were analyzed quantitatively. Compared to controls, The RIPostC group showed significantly reduced NIHHS scores in patients with ischemic stroke, (MD: −1.09, 95% confidence interval [CI]: −1.60, −0.57, P < 0.0001) and improved patients' Montreal Cognitive Assessment (MoCA) scores, (MD: 1.89, 95% CI: 0.78, 3.00, P = 0.0009), Our results showed that RIPostC is safe, (RR = 0.81, 95%CI: 0.61, 1.08, P = 0.15). Conclusion Our meta-analysis showed that RIPostC is safe and effective and has a positive cerebral protective effect in patients with ischemic stroke, which is safe and effective, and future large-sample, multicenter trials are needed to validate the cerebral protective effect of RIPostC.
Collapse
Affiliation(s)
- Meng Lu
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yujiao Wang
- Department of Neurology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Xin Yin
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yuanyuan Li
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Hongyan Li
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
- *Correspondence: Hongyan Li
| |
Collapse
|
14
|
Wang T, Liu C. Role of hypoxia inducible factor 1α/Bcl-2/adenovirus E1B 19-kDa interacting protein 3 in alleviating effect of interleukin-4 on cerebral ischemia reperfusion injury in mice. Afr Health Sci 2022; 22:369-374. [PMID: 36910409 PMCID: PMC9993290 DOI: 10.4314/ahs.v22i3.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Cerebral ischemia reperfusion injury (CIRI) is the pathophysiological basis of various cerebrovascular diseases. The aim of this study was to explore the role of HIF-1α/BNIP3 in the alleviating effect of IL-4 on CIRI in mice. Methodology Mice were randomly divided into sham operation (Sham), ischemia reperfusion (IR), IL-4, HIF-1α inhibitor 2ME2 and IL-4+2ME2 groups. Middle cerebral artery occlusion model was established. After 24-h reperfusion, neurologic deficit score (NDS) was given. Cerebral infarction volume and brain water content were measured by 2,3,5-triphenyltetrazolium chloride staining and dry-wet weights, respectively. Apoptosis was detected by TUNEL staining. SOD, MDA and ROS levels, and HIF-1α, BNIP3, LC3II and Beclin-1 expressions were detected through colorimetry and Western blotting, respectively. Results Compared with IR group, NDS, cerebral infarction volume, brain water content, apoptosis rate, and MDA and ROS levels decreased, while SOD, HIF-1α, BNIP3, LC3-II and Beclin-1 levels increased in IL-4 group (P<0.05). 2ME2 and IL-4+2ME2 groups had decreased NDS, cerebral infarction volume, brain water content, apoptosis rate and MDA, ROS, HIF-1α, BNIP3, LC3-II and Beclin-1 levels, but increased SOD level compared with those of IL-4 group (P<0.05). Conclusion IL-4 reduces apoptosis and oxidative stress through activating the HIF-1α/BNIP3 pathway, thereby alleviating mouse CIRI.
Collapse
Affiliation(s)
- Tianjing Wang
- Department of Geriatrics, Daqing Oilfield General Hospital, Daqing 163001, Heilongjiang Province, China
| | - Chang Liu
- Department of Neurology, Daqing Oilfield General Hospital, Daqing 163001, Heilongjiang Province, China
| |
Collapse
|
15
|
Roshan-Milani S, Sattari P, Ghaderi-Pakdel F, Naderi R. miR-23b/TAB3/NF-κB/p53 axis is involved in hippocampus injury induced by cerebral ischemia-reperfusion in rats: The protective effect of chlorogenic acid. Biofactors 2022; 48:908-917. [PMID: 35201648 DOI: 10.1002/biof.1830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/01/2022] [Indexed: 12/18/2022]
Abstract
Apoptosis is the main pathological aspect of neuronal injury after cerebral ischemia-reperfusion (I/R) injury. However the detailed molecular mediators are still under debate. The aim of this study is to explore the effect of cerebral I/R on miR-23a/TGF-β-activated kinase 1 binding protein 3 (TAB3)/nuclear factor kappa B (NF-κB)/p53 axis in rat hippocampus alone and in combination with chlorogenic acid (CGA). Common carotid artery occlusion (CCAO) was performed by nylon monofilament for 20 min to establish a model of ischemic brain injury. CGA (30 mg/kg) was administered intraperitoneally (ip), 10 min prior to ischemia and 10 min before reperfusion. Examination of hippocampus neurons by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining showed that the number of apoptotic neurons was elevated at 24 h after reperfusion. At the molecular levels, I/R injury resulted in an increased protein expression of p53 with a concomitant upregulation of cleaved-caspase3/phosphorelated-caspase3 ratio and cytochrome c level. Further miR-23b gene expression was significantly downregulated after 24 h of reperfusion. Also, we observed increased TAB3 and NF-κB protein expressions after 24 h following CCAO. Treatment with CGA significantly reduced the apoptotic damage and also reversed miR-23b gene expression, TAB3 and NF-κB protein expressions in hippocampus neurons in I/R rats. In conclusion our data suggest that miR-23b/TAB3/NF-κB/p53 axis could play a regulatory role in hippocampus cell death, which provide a new target for novel therapeutic interventions during transit ischemic stroke. It also demonstrated that CGA could reverse these molecular alterations indicating an effective component against hippocampus apoptotic insult following acute I/R injury.
Collapse
Affiliation(s)
- Shiva Roshan-Milani
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parisa Sattari
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Firouz Ghaderi-Pakdel
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
16
|
Ma W, Zhu K, Yin L, Yang J, Zhang J, Wu H, Liu K, Li C, Liu W, Guo J, Li L. Effects of ischemic postconditioning and long non-coding RNAs in ischemic stroke. Bioengineered 2022; 13:14799-14814. [PMID: 36420646 PMCID: PMC9704383 DOI: 10.1080/21655979.2022.2108266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Stroke is a main cause of disability and death among adults in China, and acute ischemic stroke accounts for 80% of cases. The key to ischemic stroke treatment is to recanalize the blocked blood vessels. However, more than 90% of patients cannot receive effective treatment within an appropriate time, and delayed recanalization of blood vessels causes reperfusion injury. Recent research has revealed that ischemic postconditioning has a neuroprotective effect on the brain, but the mechanism has not been fully clarified. Long non-coding RNAs (lncRNAs) have previously been associated with ischemic reperfusion injury in ischemic stroke. LncRNAs regulate important cellular and molecular events through a variety of mechanisms, but a comprehensive analysis of potential lncRNAs involved in the brain protection produced by ischemic postconditioning has not been conducted. In this review, we summarize the common mechanisms of cerebral injury in ischemic stroke and the effect of ischemic postconditioning, and we describe the potential mechanisms of some lncRNAs associated with ischemic stroke.
Collapse
Affiliation(s)
- Wei Ma
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Kewei Zhu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Luwei Yin
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Jinwei Yang
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, China
| | - Jinfen Zhang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Hongjie Wu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Kuangpin Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Chunyan Li
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Wei Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Jianhui Guo
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, China,Jianhui Guo Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming 650034, Yunnan, China
| | - Liyan Li
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China,CONTACT Liyan Li Institute of Neurosicence, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| |
Collapse
|
17
|
Zhang R, Liu Y, Zhong W, Hu Z, Wu C, Ma M, Zhang Y, He X, Wang L, Li S, Hong Y. SIK2 Improving Mitochondrial Autophagy Restriction Induced by Cerebral Ischemia-Reperfusion in Rats. Front Pharmacol 2022; 13:683898. [PMID: 35586047 PMCID: PMC9108450 DOI: 10.3389/fphar.2022.683898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies have shown that Salt-induced kinase-2(SIK2) is involved in the regulation of various energy-metabolism-related reactions, and it also can regulate angiogenesis after cerebral ischemia-reperfusion. However, it is unclear whether SIK2 can regulate energy metabolism in cerebral ischemia-reperfusion injury. As mitochondria plays an important role in energy metabolism, whether SIK2 regulates energy metabolism through affecting mitochondrial changes is also worth to be explored. In this study, rats were treated with adeno-associated virus-SIK2-Green fluorescent protein (AAV-SIK2-GFP) for the overexpression of SIK2 before middle cerebral artery occlusion (MCAO). We found that SIK2 overexpression could alleviate the neuronal damage, reduce the area of cerebral infarction, and increase the adenosine triphosphate (ATP) content, which could promote the expression of phosphorylated-mammalian target of rapamycin-1 (p-mTORC1), hypoxia-inducible factor-1α (HIF-1α), phosphatase and tensin homologue-induced putative kinase 1 (PINK1) and E3 ubiquitinligating enzyme (Parkin). Transmission electron microscopy revealed that SIK2 overexpression enhanced mitochondrial autophagy. It is concluded that SIK2 can ameliorate neuronal injury and promote the energy metabolism by regulating the mTOR pathway during cerebral ischemia-reperfusion, and this process is related to mitochondrial autophagy.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Pathophysiology, Wannan Medical College, Wuhu, China
- Department of Clinical, Wannan Medical College, Wuhu, China
| | - Yun Liu
- Department of Pathophysiology, Wannan Medical College, Wuhu, China
| | - Wenhua Zhong
- Department of Pathophysiology, Wannan Medical College, Wuhu, China
| | - Zebo Hu
- Department of Pathophysiology, Wannan Medical College, Wuhu, China
| | - Chao Wu
- Department of Pathophysiology, Wannan Medical College, Wuhu, China
| | - Mengyao Ma
- Department of Pathophysiology, Wannan Medical College, Wuhu, China
| | - Yi Zhang
- Department of Pathophysiology, Wannan Medical College, Wuhu, China
| | - Xiangyun He
- Department of Pathophysiology, Wannan Medical College, Wuhu, China
| | - Lin Wang
- Department of Pathophysiology, Wannan Medical College, Wuhu, China
- *Correspondence: Lin Wang, ; Shu Li, ; Yun Hong,
| | - Shu Li
- Department of Pathophysiology, Wannan Medical College, Wuhu, China
- Department of Public Health, Wannan Medical College, Wuhu, China
- *Correspondence: Lin Wang, ; Shu Li, ; Yun Hong,
| | - Yun Hong
- Department of Ultrasonic Medicine, Yijishan Hospital, Wannan Medical College, Wuhu, China
- *Correspondence: Lin Wang, ; Shu Li, ; Yun Hong,
| |
Collapse
|
18
|
Fan F, Lei M. Mechanisms Underlying Curcumin-Induced Neuroprotection in Cerebral Ischemia. Front Pharmacol 2022; 13:893118. [PMID: 35559238 PMCID: PMC9090137 DOI: 10.3389/fphar.2022.893118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is the leading cause of death and disability worldwide, and restoring the blood flow to ischemic brain tissues is currently the main therapeutic strategy. However, reperfusion after brain ischemia leads to excessive reactive oxygen species production, inflammatory cell recruitment, the release of inflammatory mediators, cell death, mitochondrial dysfunction, endoplasmic reticulum stress, and blood-brain barrier damage; these pathological mechanisms will further aggravate brain tissue injury, ultimately affecting the recovery of neurological functions. It has attracted the attention of researchers to develop drugs with multitarget intervention effects for individuals with cerebral ischemia. A large number of studies have established that curcumin plays a significant neuroprotective role in cerebral ischemia via various mechanisms, including antioxidation, anti-inflammation, anti-apoptosis, protection of the blood-brain barrier, and restoration of mitochondrial function and structure, restoring cerebral circulation, reducing infarct volume, improving brain edema, promoting blood-brain barrier repair, and improving the neurological functions. Therefore, summarizing the results from the latest literature and identifying the potential mechanisms of action of curcumin in cerebral ischemia will serve as a basis and guidance for the clinical applications of curcumin in the future.
Collapse
Affiliation(s)
- Feng Fan
- Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Lei
- Department of Neurology, The Third People’s Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
19
|
Yang X, Wang M, Zhou Q, Bai Y, Liu J, Yang J, Li L, Li G, Luo L. Macamide B Pretreatment Attenuates Neonatal Hypoxic-Ischemic Brain Damage of Mice Induced Apoptosis and Regulates Autophagy via the PI3K/AKT Signaling Pathway. Mol Neurobiol 2022; 59:2776-2798. [PMID: 35190953 DOI: 10.1007/s12035-022-02751-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/16/2022] [Indexed: 01/19/2023]
Abstract
Lepidium meyenii (maca) is an annual or biennial herb from South America that is a member of the genus Lepidium L. in the family Cruciferae. This herb possesses antioxidant and antiapoptotic activities, enhances autophagy functions, prevents cell death, and protects neurons from ischemic damage. Macamide B, an effective active ingredient of maca, exerts a neuroprotective effect on neonatal hypoxic-ischemic brain damage (HIBD), but the mechanism underlying its neuroprotective effect is not yet known. The purpose of this study was to explore the effect of macamide B on HIBD-induced autophagy and apoptosis and its potential neuroprotective mechanism. The modified Rice-Vannucci method was used to induce HIBD in 7-day-old (P7) macamide B- and vehicle-pretreated pups. TTC staining was performed to evaluate the cerebral infarct volume in pups, the brain water content was measured to evaluate the neurological function of pups, neurobehavioural testing was conducted to assess functional recovery after HIBD, TUNEL and FJC staining was performed to detect cellular autophagy and apoptosis, and Western blot analysis was used to detect the levels of proteins in the pro-survival phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling pathway and autophagy and apoptosis-related proteins. Macamide B pretreatment significantly decreases brain damage and improves the recovery of neural function after HIBD. At the same time, macamide B pretreatment activates the PI3K/AKT signaling pathway after HIBD, enhances autophagy, and reduces hypoxic-ischemic (HI)-induced apoptosis. In addition, 3-methyladenine (3-MA), an inhibitor of the PI3K/AKT signaling pathway, significantly inhibits the increase in autophagy levels, aggravates HI-induced apoptosis, and reverses the neuroprotective effect of macamide B on HIBD. Our data indicate that a macamide B pretreatment might regulate autophagy through the PI3K/AKT signaling pathway, thereby reducing HIBD-induced apoptosis and exerting neuroprotective effects on neonatal HIBD. Macamide B may become a new drug for the prevention and treatment of HIBD.
Collapse
Affiliation(s)
- Xiaoxia Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Mengxia Wang
- Intensive Care Unit, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, People's Republic of China
| | - Qian Zhou
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yanxian Bai
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jing Liu
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Junhua Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Lixia Li
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Guoying Li
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China. .,Guangdong Medical Association, Guangzhou, 510180, Guangdong, People's Republic of China.
| | - Li Luo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China. .,Guangdong Medical Association, Guangzhou, 510180, Guangdong, People's Republic of China.
| |
Collapse
|
20
|
Hong T, Zhou Y, Peng L, Wu X, Li Y, Li Y, Zhao Y. Knocking Down Peroxiredoxin 6 Aggravates Cerebral Ischemia-Reperfusion Injury by Enhancing Mitophagy. Neuroscience 2021; 482:30-42. [PMID: 34863856 DOI: 10.1016/j.neuroscience.2021.11.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 01/18/2023]
Abstract
Cerebral ischemia-reperfusion injury (IRI) is caused by reperfusion following ischemia. Mitophagy is closely related to cerebral IRI. Mitophagy disorder or excess may be harmful and lead to neuronal apoptosis. Peroxiredoxin 6 (PRDX6) is an antioxidant protein and plays an important role in ischemic stroke. However, the relationship between PRDX6 and mitophagy is not clear at present. In order to explore and solve this problem. We have established a middle cerebral artery occlusion (MCAO) model of cerebral ischemia-reperfusion in SD rats and knockdown PRDX6 and PINK1 with lentivirus. Knocking down PRDX6 led to further aggravation of cerebral IRI. Our research found that knockdown PRDX6 increased the expression of mitophagy-related and apoptosis-related proteins. Knocking down PINK1 relieved mitophagy and apoptosis caused by knocking down PRDX6. In conclusion, knockdown of PRDX6 could aggravate cerebral IRI by enhancing PINK1/PARKIN pathway mediated mitophagy, and this effect could increase neuronal apoptosis.
Collapse
Affiliation(s)
- Toushen Hong
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 400016 Chongqing, People's Republic of China
| | - Yang Zhou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 400016 Chongqing, People's Republic of China; Molecular Medical Laboratory, Chongqing Medical University, 400016 Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, 400016 Chongqing, People's Republic of China; Key Laboratory of Neurobiology, Chongqing Medical University, 400016 Chongqing, People's Republic of China.
| | - Li Peng
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 400016 Chongqing, People's Republic of China; Molecular Medical Laboratory, Chongqing Medical University, 400016 Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, 400016 Chongqing, People's Republic of China; Key Laboratory of Neurobiology, Chongqing Medical University, 400016 Chongqing, People's Republic of China
| | - Xiaoying Wu
- Department of Gastroenterology, Qijiang District People's Hospital, 401420 Chongqing, People's Republic of China
| | - Yixin Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 400016 Chongqing, People's Republic of China; Molecular Medical Laboratory, Chongqing Medical University, 400016 Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, 400016 Chongqing, People's Republic of China; Key Laboratory of Neurobiology, Chongqing Medical University, 400016 Chongqing, People's Republic of China
| | - Yumei Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 400016 Chongqing, People's Republic of China
| | - Yong Zhao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 400016 Chongqing, People's Republic of China; Molecular Medical Laboratory, Chongqing Medical University, 400016 Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, 400016 Chongqing, People's Republic of China; Key Laboratory of Neurobiology, Chongqing Medical University, 400016 Chongqing, People's Republic of China.
| |
Collapse
|
21
|
Meng J, Ma H, Zhu Y, Zhao Q. Dehydrocostuslactone attenuated oxygen and glucose deprivation/reperfusion-induced PC12 cell injury through inhibition of apoptosis and autophagy by activating the PI3K/AKT/mTOR pathway. Eur J Pharmacol 2021; 911:174554. [PMID: 34627804 DOI: 10.1016/j.ejphar.2021.174554] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
The purpose of this study is to investigate the protective effect of dehydrocostuslactone (DHL) on PC12 cells injury induced by oxygen and glucose deprivation/reperfusion (OGD/R) and its possible mechanism on the PI3K/AKT/mTOR pathway. The maestro 11.1 software was used to predict the binding sites of DHL with LC3, Beclin-1, PI3K, AKT, mTOR, Bax, Bcl-2, Caspase-3, Caspase-9, and Caspase-7. We used a cellular model of 2 h of OGD and 24 h of reperfusion to mimic cerebral ischemia-reperfusion injury. Cells were treated with DHL during the reperfusion phase. The docking results showed that DHL had binding sites with LC3, Beclin-1, PI3K, AKT, mTOR, Bax, Bcl-2, Caspase-3, Caspase-9, and Caspase-7. The expression levels of autophagy-related proteins, LC3 and Beclin-1 increased while P-PI3K, P-AKT, and P-mTOR decreased. Apoptosis-related proteins, namely, Bax, Cyto-c, Caspase-3, Caspase-7, Caspase-9 increased, but the anti-apoptosis Bcl-2 protein decreased. However, DHL effectively inhibited these undesirable changes induced by OGD/R in PC12 cells. Our results suggested that DHL attenuated OGD/R-induced neuronal injury by inhibiting apoptosis and autophagy by activating PI3K/AKT/mTOR signaling. This inhibition can improve cell survival and offer evidence for the beneficial effects of DHL on the nervous system.
Collapse
Affiliation(s)
- Jinni Meng
- School of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Xingqing District Yinchuan City, 750004, China
| | - Huixia Ma
- School of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Xingqing District Yinchuan City, 750004, China
| | - Yafei Zhu
- School of Basic Medical Sciences, Ningxia Medical University, No. 1160 Shengli Street, Xingqing District Yinchuan City, 750004, China.
| | - Qipeng Zhao
- School of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Xingqing District Yinchuan City, 750004, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education (Ningxia Medical University), No. 1160 Shengli Street, Xingqing District Yinchuan City, 750004, China.
| |
Collapse
|
22
|
Jin L, Mo Y, Yue EL, Liu Y, Liu KY. Ibrutinib ameliorates cerebral ischemia/reperfusion injury through autophagy activation and PI3K/Akt/mTOR signaling pathway in diabetic mice. Bioengineered 2021; 12:7432-7445. [PMID: 34605340 PMCID: PMC8806753 DOI: 10.1080/21655979.2021.1974810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) is involved in the diabetogenic process and cerebral ischemic injury. However, it remained unclear whether BTK inhibition has remedial effects on ischemia/reperfusion (I/R) injury complicated with diabetes. We aim to investigate the regulatory role and potential mechanism of ibrutinib, a selective inhibitor of BTK, in cerebral I/R injured diabetic mice. The cytotoxicity and cell vitality tests were performed to evaluate the toxic and protective effects of ibrutinib at different incubating concentrations on normal PC12 cells or which were exposed to high glucose for 24 h, followed by hypoxia and reoxygenation (H/R), respectively. Streptozotocin (STZ) stimulation-induced diabetic mice were subjected to 1 h ischemia and then reperfusion. Then the diabetic mice received different dosages of ibrutinib or vehicle immediately and 24 h after the middle cerebral artery occlusion (MCAO). The behavioral, histopathological, and molecular biological tests were then performed to demonstrate the neuroprotective effects and mechanism in I/R injured diabetic mice. Consequently, Ibrutinib improved the decreased cell viability and attenuated oxidative stress in the high glucose incubated PC12 cells which subjected to H/R injury. In the I/R injured diabetic mice, ibrutinib reduced the cerebral infarct volume, improved neurological deficits, ameliorated pathological changes, and improved autophagy in a slightly dose-dependent manner. Furthermore, the expression of PI3K/AKT/mTOR pathway-related proteins were significantly upregulated by ibrutinib treatment. In summary, our finding collectively demonstrated that Ibrutinib could effectively ameliorate cerebral ischemia/reperfusion injury via ameliorating inflammatory response, oxidative stress, and improving autophagy through PI3K/Akt/mTOR signaling pathway in diabetic mice.
Collapse
Affiliation(s)
- Lei Jin
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, PR China
| | - Yun Mo
- Department of Neurology, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Er-Li Yue
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, PR China
| | - Yuan Liu
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, PR China
| | - Kang-Yong Liu
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, PR China.,Department of Neurology, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| |
Collapse
|
23
|
Li TH, Sun HW, Song LJ, Yang B, Zhang P, Yan DM, Liu XZ, Luo YR. Long non-coding RNA MEG3 regulates autophagy after cerebral ischemia/reperfusion injury. Neural Regen Res 2021; 17:824-831. [PMID: 34472482 PMCID: PMC8530138 DOI: 10.4103/1673-5374.322466] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Severe cerebral ischemia/reperfusion injury has been shown to induce high-level autophagy and neuronal death. Therefore, it is extremely important to search for a target that inhibits autophagy activation. Long non-coding RNA MEG3 participates in autophagy. However, it remains unclear whether it can be targeted to regulate cerebral ischemia/reperfusion injury. Our results revealed that in oxygen and glucose deprivation/reoxygenation-treated HT22 cells, MEG3 expression was obviously upregulated, and autophagy was increased, while knockdown of MEG3 expression greatly reduced autophagy. Furthermore, MEG3 bound miR-181c-5p and inhibited its expression, while miR-181c-5p bound to autophagy-related gene ATG7 and inhibited its expression. Further experiments revealed that mir-181c-5p overexpression reversed the effect of MEG3 on autophagy and ATG7 expression in HT22 cells subjected to oxygen and glucose deprivation/reoxygenation. In vivo experiments revealed that MEG3 knockdown suppressed autophagy, infarct volume and behavioral deficits in cerebral ischemia/reperfusion mice. These findings suggest that MEG3 knockdown inhibited autophagy and alleviated cerebral ischemia/reperfusion injury through the miR-181c-5p/ATG7 signaling pathway. Therefore, MEG3 can be considered as an intervention target for the treatment of cerebral ischemia/reperfusion injury. This study was approved by the Animal Ethics Committee of the First Affiliated Hospital of Zhengzhou University, China (approval No. XF20190538) on January 4, 2019.
Collapse
Affiliation(s)
- Tian-Hao Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hong-Wei Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Lai-Jun Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Peng Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Dong-Ming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xian-Zhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yu-Ru Luo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
24
|
Yao Y, Ji Y, Ren J, Liu H, Khanna R, Sun L. Inhibition of autophagy by CRMP2-derived peptide ST2-104 (R9-CBD3) via a CaMKKβ/AMPK/mTOR pathway contributes to ischemic postconditioning-induced neuroprotection against cerebral ischemia-reperfusion injury. Mol Brain 2021; 14:123. [PMID: 34362425 PMCID: PMC8344221 DOI: 10.1186/s13041-021-00836-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/28/2021] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia, a common cerebrovascular disease, is characterized by functional deficits and apoptotic cell death. Autophagy, a type of programmed cell death, plays critical roles in controlling neuronal damage and metabolic homeostasis, and has been inextricably linked to cerebral ischemia. We previously identified a short peptide aptamer from collapsin response mediator protein 2 (CRMP2), designated the Ca2+ channel-binding domain 3 (CBD3) peptide, that conferred protection against excitotoxicity and traumatic brain injury. ST2-104, a nona-arginine (R9)-fused CBD3 peptide, exerted beneficial effects on neuropathic pain and was neuroprotective in a model of Alzheimer's disease; however, the effect of ST2-104 on cerebral ischemia and its mechanism of action have not been studied. In this study, we modeled cerebral ischemia-reperfusion injury in rats with the middle cerebral artery occlusion (MCAO) as well as challenged SH-SY5Y neuroblastoma cells with glutamate to induce toxicity to interrogate the effects of ST2-104 on autophagy following ischemic/excitotoxic insults. ST2-104 reduced the infarct volume and improved the neurological score of rats subjected to MCAO. ST2-104 protected SH-SY5Y cells from death following glutamate exposure via blunting apoptosis and autophagy as well as limiting excessive calcium entry. 3-Methyladenine (3-MA), an inhibitor of autophagy, promoted the effects of ST2-104 in inhibiting apoptosis triggered by glutamate while rapamycin, an activator of autophagy, failed to do so. ST2-104 peptide reversed glutamate-induced apoptosis via inhibiting Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ)-mediated autophagy, which was partly enhanced by STO-609 (an inhibitor of CaMKKβ). ST2-104 attenuated neuronal apoptosis by inhibiting autophagy through CaMKKβ/AMPK/mTOR pathway. Our results suggest that the neuroprotective effect of ST2-104 are due to actions on the crosstalk between apoptosis and autophagy via the CaMKKβ/AMPK/mTOR signaling pathway. The findings present novel insights into the potential neuroprotection of ST2-104 in cerebral ischemia.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021 People’s Republic of China
| | - Yingshi Ji
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021 People’s Republic of China
| | - Jinghong Ren
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021 People’s Republic of China
| | - Huanyu Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021 People’s Republic of China
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ 85724 USA
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital, Jilin University, Changchun, Jilin 130021 People’s Republic of China
| |
Collapse
|
25
|
Patrizz AN, Moruno-Manchon JF, O’Keefe LM, Doran SJ, Patel AR, Venna VR, Tsvetkov AS, Li J, McCullough LD. Sex-Specific Differences in Autophagic Responses to Experimental Ischemic Stroke. Cells 2021; 10:cells10071825. [PMID: 34359998 PMCID: PMC8304137 DOI: 10.3390/cells10071825] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke triggers a series of complex pathophysiological processes including autophagy. Differential activation of autophagy occurs in neurons derived from males versus females after stressors such as nutrient deprivation. Whether autophagy displays sexual dimorphism after ischemic stroke is unknown. We used a cerebral ischemia mouse model (middle cerebral artery occlusion, MCAO) to evaluate the effects of inhibiting autophagy in ischemic brain pathology. We observed that inhibiting autophagy reduced infarct volume in males and ovariectomized females. However, autophagy inhibition enhanced infarct size in females and in ovariectomized females supplemented with estrogen compared to control mice. We also observed that males had increased levels of Beclin1 and LC3 and decreased levels of pULK1 and p62 at 24 h, while females had decreased levels of Beclin1 and increased levels of ATG7. Furthermore, the levels of autophagy markers were increased under basal conditions and after oxygen and glucose deprivation in male neurons compared with female neurons in vitro. E2 supplementation significantly inhibited autophagy only in male neurons, and was beneficial for cell survival only in female neurons. This study shows that autophagy in the ischemic brain differs between the sexes, and that autophagy regulators have different effects in a sex-dependent manner in neurons.
Collapse
Affiliation(s)
- Anthony N. Patrizz
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; (A.N.P.); (J.F.M.-M.); (V.R.V.); (A.S.T.); (J.L.)
| | - Jose F. Moruno-Manchon
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; (A.N.P.); (J.F.M.-M.); (V.R.V.); (A.S.T.); (J.L.)
| | - Lena M. O’Keefe
- Department of Neurology, Beth Israel Deaconess Hospital, 330 Brookline Avenue, Boston, MA 02215, USA;
| | - Sarah J. Doran
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA; (S.J.D.); (A.R.P.)
| | - Anita R. Patel
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA; (S.J.D.); (A.R.P.)
| | - Venugopal R. Venna
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; (A.N.P.); (J.F.M.-M.); (V.R.V.); (A.S.T.); (J.L.)
| | - Andrey S. Tsvetkov
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; (A.N.P.); (J.F.M.-M.); (V.R.V.); (A.S.T.); (J.L.)
| | - Jun Li
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; (A.N.P.); (J.F.M.-M.); (V.R.V.); (A.S.T.); (J.L.)
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; (A.N.P.); (J.F.M.-M.); (V.R.V.); (A.S.T.); (J.L.)
- Correspondence:
| |
Collapse
|
26
|
Liu Z, Huang W, Chen Y, Du Z, Zhu F, Wang T, Jiang B. Ischemic postconditioning ameliorates acute kidney injury induced by limb ischemia/reperfusion via transforming TLR4 and NF-κB signaling in rats. J Orthop Surg Res 2021; 16:416. [PMID: 34210334 PMCID: PMC8247170 DOI: 10.1186/s13018-021-02565-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The present study investigated the influence of ischemic postconditioning (I-postC) on the adjustment of renal injury after limb ischemia-reperfusion (I/R) injury, to elucidate the mechanisms of the Toll-like receptor 4 (TLR 4)/NF-κB signaling pathway using histopathological and immunohistochemical methods. METHODS Male Sprague-Dawley rats were randomly assigned to five groups (numbered from 1 to 5): the sham group (Group 1, only the anesthesia procedure was conducted without limb I/R), the I/R group (Group 2, 4 h of reperfusion was conducted following 4 h limb ischemia under anesthesia), the I/R + I-postC group (Group 3, 4 h of ischemia and 4 h of reperfusion was conducted; before perfusion, 5 min of limb ischemia and 5 min of reperfusion were performed in the rats and repeated 3 times), the I/R + TAK group (Group 4, rats were injected with TLR4 antagonist TAK through the caudal vein before limb ischemia and reperfusion under anesthesia), the TAK group (Group 5, rats were injected with TAK, and the anesthesia procedure was conducted without limb I/R). Histological changes in the kidney in different groups were observed, and the extent of tubular injury was assessed. Changes in biochemical indexes and the expression of inflammatory factors, TLR4, and NF-κB were also evaluated. RESULTS Compared with rats in the I/R group, the secretion of inflammatory factors and the expression levels of TLR4 and NF-κB were decreased in rats in the I/R + I-postC group. Histological analysis revealed renal injury, including inflammatory cell infiltration, dilatation of the tubuli lumen, congestion in glomerular capillaries, degeneration of tubuli epithelial cells, and necrosis was ameliorated by I-postC. Immunohistochemical studies showed that I/R-induced elevation in TLR4 and NF-κB expression was reduced by I-postC treatment. Moreover, the expression levels of TLR4, NF-κB, and inflammatory factors in rats in the I/R + TAK group were also decreased, and the renal pathological lesion was alleviated, which was similar to that in rats in the I/R + I-postC group. CONCLUSIONS The present findings suggest that I-postC can reduce tissue injury and kidney inflammation induced by limb I/R injury, possibly via inhibition of the TLR4 and NF-κB pathways.
Collapse
Affiliation(s)
- Zhongdi Liu
- National Center for Trauma Medicine, Ministry of Education Key Laboratory of Trauma and Neural Regeneration, Trauma Medicine Center, Peking University People’s Hospital, No. 11 XiZhiMen South Street, Xicheng District, Beijing, 100044 China
| | - Wei Huang
- National Center for Trauma Medicine, Ministry of Education Key Laboratory of Trauma and Neural Regeneration, Trauma Medicine Center, Peking University People’s Hospital, No. 11 XiZhiMen South Street, Xicheng District, Beijing, 100044 China
| | - Yifan Chen
- National Center for Trauma Medicine, Ministry of Education Key Laboratory of Trauma and Neural Regeneration, Trauma Medicine Center, Peking University People’s Hospital, No. 11 XiZhiMen South Street, Xicheng District, Beijing, 100044 China
| | - Zhe Du
- National Center for Trauma Medicine, Ministry of Education Key Laboratory of Trauma and Neural Regeneration, Trauma Medicine Center, Peking University People’s Hospital, No. 11 XiZhiMen South Street, Xicheng District, Beijing, 100044 China
| | - Fengxue Zhu
- National Center for Trauma Medicine, Ministry of Education Key Laboratory of Trauma and Neural Regeneration, Trauma Medicine Center, Peking University People’s Hospital, No. 11 XiZhiMen South Street, Xicheng District, Beijing, 100044 China
| | - Tianbing Wang
- National Center for Trauma Medicine, Ministry of Education Key Laboratory of Trauma and Neural Regeneration, Trauma Medicine Center, Peking University People’s Hospital, No. 11 XiZhiMen South Street, Xicheng District, Beijing, 100044 China
| | - Baoguo Jiang
- National Center for Trauma Medicine, Ministry of Education Key Laboratory of Trauma and Neural Regeneration, Trauma Medicine Center, Peking University People’s Hospital, No. 11 XiZhiMen South Street, Xicheng District, Beijing, 100044 China
| |
Collapse
|
27
|
Normobaric Oxygen (NBO) Therapy Reduces Cerebral Ischemia/Reperfusion Injury through Inhibition of Early Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7041290. [PMID: 34306153 PMCID: PMC8263229 DOI: 10.1155/2021/7041290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/20/2021] [Indexed: 11/17/2022]
Abstract
Objectives Normobaric oxygen (NBO) therapy has great clinical potential in the treatment of ischemic stroke, but its underlying mechanism is unknown. Our study aimed to investigate the role of autophagy during the application of NBO on cerebral ischemia/reperfusion injury. Methods Male Sprague Dawley rats received 2 hours of middle cerebral artery occlusion (MCAO), followed by 2, 6, or 24 hours of reperfusion. At the beginning of reperfusion, rats were randomly given NBO (95% O2) or room air (21% O2) for 2 hours. In some animals, 3-methyladenine (3-MA, autophagy inhibitor) was administered 10 minutes before reperfusion. The severity of the ischemic injury was determined by infarct volume, neurological deficit, and apoptotic cell death. Western blotting was used to determine the protein expression of autophagy and apoptosis, while mRNA expression of apoptotic molecules was detected by real-time PCR. Results NBO treatment after ischemia/reperfusion significantly decreased infarct volume and neurobehavioral defects. The increased expression of the autophagy markers, including microtubule-associated protein 1A light chain 3 (LC3) and Beclin 1, after ischemia/reperfusion was reversed by NBO, while promoting Sequestosome 1 (p62/SQSTM1) expression. In addition, NBO reduced cerebral apoptosis in association with alleviated BAX expression and increased BCL-2 expression. 3-MA reduced autophagy and apoptotic death but did not further improve NBO-attenuated ischemic damage. Conclusion NBO induced remarkable neuroprotection from ischemic injury, which was correlated with blocked autophagy activity.
Collapse
|
28
|
Deng YH, Dong LL, Zhang YJ, Zhao XM, He HY. Enriched environment boosts the post-stroke recovery of neurological function by promoting autophagy. Neural Regen Res 2021; 16:813-819. [PMID: 33229714 PMCID: PMC8178758 DOI: 10.4103/1673-5374.297084] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/20/2020] [Accepted: 06/06/2020] [Indexed: 12/22/2022] Open
Abstract
Autophagy is crucial for maintaining cellular homeostasis, and can be activated after ischemic stroke. It also participates in nerve injury and repair. The purpose of this study was to investigate whether an enriched environment has neuroprotective effects through affecting autophagy. A Sprague-Dawley rat model of transient ischemic stroke was prepared by occlusion of the middle cerebral artery followed by reperfusion. One week after surgery, these rats were raised in either a standard environment or an enriched environment for 4 successive weeks. The enriched environment increased Beclin-1 expression and the LC3-II/LC3-I ratio in the autophagy/lysosomal pathway in the penumbra of middle cerebral artery-occluded rats. Enriched environment-induced elevations in autophagic activity were mainly observed in neurons. Enriched environment treatment also promoted the fusion of autophagosomes with lysosomes, enhanced the lysosomal activities of lysosomal-associated membrane protein 1, cathepsin B, and cathepsin D, and reduced the expression of ubiquitin and p62. After 4 weeks of enriched environment treatment, neurological deficits and neuronal death caused by middle cerebral artery occlusion/reperfusion were significantly alleviated, and infarct volume was significantly reduced. These findings suggest that neuronal autophagy is likely the neuroprotective mechanism by which an enriched environment promotes recovery from ischemic stroke. This study was approved by the Animal Ethics Committee of the Kunming University of Science and Technology, China (approval No. 5301002013855) on March 1, 2019.
Collapse
Affiliation(s)
- Yi-Hao Deng
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Ling-Ling Dong
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Yong-Jie Zhang
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Xiao-Ming Zhao
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Hong-Yun He
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| |
Collapse
|
29
|
Xu ZQ, Zhang WJ, Su DF, Zhang GQ, Miao CY. Cellular responses and functions of α7 nicotinic acetylcholine receptor activation in the brain: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:509. [PMID: 33850906 PMCID: PMC8039675 DOI: 10.21037/atm-21-273] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The α7 nicotinic acetylcholine receptor (α7nAChR) has been studied for many years since its discovery. Although many functions and characteristics of brain α7nAChR are widely understood, much remains to be elucidated. The α7nAChR is widely expressed in the central nervous system, not only in neurons but also in astrocytes, microglia, and endothelial cells. α7nAChR can be activated by endogenous agonist like acetylcholine or exogenous agonists like nicotine and PNU282987. Its agonists can be divided into selective agonists and non-selective agonists. The activation of α7nAChR results in a series of physiological processes which have both short-term and long-term effects on cells, for example, calcium influx, neurotransmitter release, synaptic plasticity, and excitatory transmission. It also induces other downstream events, such as inflammation, autophagy, necrosis, transcription, and apoptosis. The cellular responses to α7nAChR activation vary according to cell types and conditions. For example, α7nAChR activation in pyramidal neurons leads to long-term potentiation, while α7nAChR activation in GABAergic interneurons leads to long-term depression. Studies have also shown some contradictory phenomena, which requires further study for clarification. Herein, the cellular responses of α7nAChR activation are summarized, and the functions of α7nAChR in neurons and non-neuronal cells are discussed. We also summarized contradictory conclusions to show where we stand and where to go for future studies.
Collapse
Affiliation(s)
- Zhe-Qi Xu
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China.,Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Wen-Jun Zhang
- Department of Neurology, Dongying People's Hospital, Dongying, China
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Guo-Qing Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China
| |
Collapse
|
30
|
Zhang A, Song Y, Zhang Z, Jiang S, Chang S, Cai Z, Liu F, Zhang X, Ni G. Effects of autophagy inhibitor 3-Methyladenine on ischemic stroke: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e23873. [PMID: 33530181 PMCID: PMC7850754 DOI: 10.1097/md.0000000000023873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Ischemic stroke is a huge threat to human health globally. Rescuing neurons in the ischemic penumbra (IP) is pivotal after the onset of ischemic stroke, and autophagy is essential to the survival of IP neurons and the development of related pathological processes. As the most common autophagy inhibitor, 3-Methyladenine (3-MA) is widely used in studies related to the mechanism of neuronal autophagy in ischemic stroke; however, there is no consensus has been reached on its effects of neuroprotection or neurodamage, which hinders the development and clinical application of autophagy-targeted therapy strategies for the treatment of ischemic stroke. METHODS We will search the following electronic bibliographic databases: PubMed, EMBASE, Scopus, Science Direct, and Web of Science. Participant intervention comparator outcomes of this study are as flowing: P, animal models of ischemic stroke; I, received 3-MA treatment merely; C, received only vehicle or sham treatment, or no treatment; O, Primary outcomes are infarct volume; neuro-behavioral scores. Secondary outcomes are cerebral blood flow, blood-brain barrier permeability, cerebral hemorrhage, brain water content. Review Manager 5.3 and Stata 15.1 will be used in data analysis. The characteristics of the studies, the experimental model, and the main results will be described, the quality assessment and the risk of bias assessment will be conducted. A narrative synthesis will be made for the included studies. Besides, if sufficient qualitative data is available, a meta-analysis will be conducted. I2 statistics will be used to assess heterogeneity. DISCUSSION This systematic review and meta-analysis of the autophagy inhibitor 3-MAs effects on animal models of ischemic stroke can help us to understand whether inhibiting autophagy brings protection or damage to IP neurons; in addition, it also helps to clarify the specific role of autophagy in cerebral infarction. Therefore, this study can provide evidence for the future development of therapy strategies targeting autophagy and bring more hope to patients with ischemic stroke. PROSPERO REGISTRATION NUMBER CRD42020194262.
Collapse
|
31
|
ClC-3 induction protects against cerebral ischemia/reperfusion injury through promoting Beclin1/Vps34-mediated autophagy. Hum Cell 2020; 33:1046-1055. [DOI: 10.1007/s13577-020-00406-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023]
|
32
|
Mei ZG, Huang YG, Feng ZT, Luo YN, Yang SB, Du LP, Jiang K, Liu XL, Fu XY, Deng YH, Zhou HJ. Electroacupuncture ameliorates cerebral ischemia/reperfusion injury by suppressing autophagy via the SIRT1-FOXO1 signaling pathway. Aging (Albany NY) 2020; 12:13187-13205. [PMID: 32620714 PMCID: PMC7377856 DOI: 10.18632/aging.103420] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia/reperfusion (CIR) injury occurs when blood flow is restored in the brain, causing secondary damage to the ischemic tissues. Previous studies have shown that electroacupuncture (EA) treatment contributes to brain protection against CIR injury through modulating autophagy. Studies indicated that SIRT1-FOXO1 plays a crucial role in regulating autophagy. Here we investigated the mechanisms underlying the neuroprotective effect of EA and its role in modulating autophagy via the SIRT1-FOXO1 signaling pathway in rats with CIR injury. EA pretreatment at "Baihui", "Quchi" and "Zusanli" acupoints (2/15Hz, 1mA, 30 min/day) was performed for 5 days before the rats were subjected to middle cerebral artery occlusion, and the results indicated that EA pretreatment substantially reduced the Longa score and infarct volume, increased the dendritic spine density and lessened autophagosomes in the peri-ischemic cortex of rats. Additionally, EA pretreatment also reduced the ratio of LC3-II/LC3-I, the levels of Ac-FOXO1 and Atg7, and the interaction of Ac-FOXO1 and Atg7, but increased the levels of p62, SIRT1, and FOXO1. The above effects were abrogated by the SIRT1 inhibitor EX527. Thus, we presume that EA pretreatment elicits a neuroprotective effect against CIR injury, potentially by suppressing autophagy via activating the SIRT1-FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya-Guang Huang
- Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Zhi-Tao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya-Nan Luo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Song-Bai Yang
- Yichang Hospital of Traditional Chinese Medicine, Clinical Medical College of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Li-Peng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Kang Jiang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xiao-Lu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xian-Yun Fu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Yi-Hui Deng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hua-Jun Zhou
- The Institute of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
33
|
Chen H, Shen J, Zhao H. Ischemic postconditioning for stroke treatment: current experimental advances and future directions. CONDITIONING MEDICINE 2020; 3:104-115. [PMID: 34396060 PMCID: PMC8360401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ischemic postconditioning (IPostC) protects against brain injury induced by stroke and is a potential strategy for ischemic stroke treatment. Understanding its underlying mechanisms and potential hurdles is essential for clinical translation. In this review article, we will summarize the current advances in IPostC for stroke treatment and the underlying protective mechanisms. Strong evidence suggests that IPostC reduces brain infarct size, attenuates blood-brain barrier (BBB) damage and brain edema, and improves neurological outcomes. IPostC also promotes neurogenesis and angiogenesis at the recovery phase of ischemic stroke. The protective mechanisms involve its effects on anti-oxidative stress, anti-inflammation, and anti-apoptosis. In addition, it regulates neurotransmitter receptors, ion channels, heat shock proteins (HSP) 40/70, as well as growth factors such as BDNF and VEGF. Furthermore, IPostC modulates several cell signaling pathways, including the PI3K/Akt, MAPK, NF-κB, and the Gluk2/PSD95/MLK3/MKK7/JNK3 pathways. We also discuss the potential hurdles for IPostC's clinical translation, including insufficient IPostC algorithm studies, such as therapeutic time windows and ischemia-reperfusion periods and cycles, as well as its long-term protection. In addition, future studies should address confounding factors such as age, sex, and pre-existing conditions such as hypertension and hyperglycemia before stroke onset. At last, the combination of IPostC with other treatments, such as tissue plasminogen activator (t-PA), merits further exploration.
Collapse
Affiliation(s)
- Hansen Chen
- Department of Neurosurgery, School of Medicine, Stanford University, CA, 94305 USA
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R, P. R China
| | - Heng Zhao
- Department of Neurosurgery, School of Medicine, Stanford University, CA, 94305 USA
| |
Collapse
|
34
|
Liu X, Cui Y, Li X, Yang H. In-depth transcriptomic and proteomic analyses of the hippocampus and cortex in a rat model after cerebral ischemic injury and repair by Shuxuetong (SXT) injection. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112362. [PMID: 31676400 DOI: 10.1016/j.jep.2019.112362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/29/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND There is a lack of systematic descriptions and characterization of strokes and their effects in both the cerebral hippocampus and cortex. Shuxuetong (SXT) injection was reported to have good therapeutic effects in the clinic; therefore, it was selected as a drug intervention method for cerebral ischemia repair in rat models. The aim of this study was to understand the features of molecules and pathways and to reveal key processes of SXT repair. MATERIALS AND METHODS Evaluation of neurological deficit and infarct volume measurement was used to estimate the pharmacological effects of SXT injection on Ischemia-reperfusion(I/R) model rats. LC-MS/MS and RNA-Seq analysis were used to analyze the proteins and mRNA expression in the cerebral hippocampus and cortex 6 h and 24 h after ischemic injury and repair. A label-free approach (IBAQ) for proteomics analysis and FPKM based on gene read count for transcriptomics analysis were used to quantify the differences among the three experimental groups (Sham, Model and SXT-treated groups). Transcriptomics and proteomics analyses were verified by RT-qPCR and western blotting. RESULTS By combining LC-MS/MS and RNA-Seq, eight larger datasets (two time points and two tissues) were confidently identified in more than three biological replicates. An average of 4500 unique proteins and 8200 protein-coding genes were confidently identified. By combining the subcellular localization, hierarchical clustering, pathway enrichment analysis in the injury and repair phase, six core proteins and related genes that were significantly expressed were verified as candidates for cerebral ischemic injury by western blotting and quantitative real-time PCR. Meanwhile, the results indicated that there was better expression in the 6 h group by significant proteomics analysis during the development and progression of cerebral ischemia. Two primary co-enriched pathways, the PI3K-AKT and MAPK signaling pathways, and six related core candidates may play key roles in molecular mechanisms related to cerebral ischemic injury and repair by SXT injection. CONCLUSION Our data not only identified six core candidates and two key signaling pathways for cerebral ischemic injury and verification but also provided evidence for the explanation, prevention and treatment of cerebral ischemia by SXT injection. The results of the present study provide evidence for the explanation, prevention and treatment of cerebral ischemia by SXT injection.
Collapse
Affiliation(s)
- Xin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yiran Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
35
|
Sun X, Wang D, Zhang T, Lu X, Duan F, Ju L, Zhuang X, Jiang X. Eugenol Attenuates Cerebral Ischemia-Reperfusion Injury by Enhancing Autophagy via AMPK-mTOR-P70S6K Pathway. Front Pharmacol 2020; 11:84. [PMID: 32153404 PMCID: PMC7047211 DOI: 10.3389/fphar.2020.00084] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 01/10/2023] Open
Abstract
Eugenol, as an active compound isolated from Acorus gramineus, has been shown to protect against cerebral ischemia-reperfusion (I/R) injury. Nonetheless, the detailed neuroprotective mechanisms of eugenol in cerebral I/R injury have not been elaborated. In the present study, cerebral I/R injury model was established by middle cerebral artery occlusion (MCAO) in rats. HT22 cells were subjected to oxygen-glucose deprivation/reperfusion (OGD/R) to mimic cerebral I/R injury in vitro. The results showed that eugenol pre-treatment relieved cerebral I/R injury as evidenced by improving neurological deficits and reducing infarct volume. Autophagy was induced by MCAO, which was further promoted by eugenol administration. Moreover, rapamycin, an activator of autophagy, promoted eugenol-induced decreases in neurological score, infarct volume, brain water content, and apoptosis. However, pretreatment with 3-MA, an inhibitor of autophagy, led to the opposite results. Similarly, eugenol pretreatment increased the viability and restrained apoptosis of OGD/R-challenged HT22 cells. OGD/R-induced autophagy was strengthened by eugenol. Mechanically, eugenol promoted autophagy through regulating AMPK/mTOR/P70S6K signaling pathway in vivo and in vitro. In conclusion, pretreatment with eugenol attenuated cerebral I/R injury by inducing autophagy via AMPK/mTOR/P70S6K signaling pathway.
Collapse
Affiliation(s)
- Xiaowei Sun
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dongyan Wang
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tingting Zhang
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuejian Lu
- Department of Chinese Medicine Clinical Foundation, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fangfang Duan
- Department of Chinese Medicine Clinical Foundation, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lili Ju
- Department of Chinese Medicine Clinical Foundation, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaotong Zhuang
- Department of Chinese Medicine Clinical Foundation, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xicheng Jiang
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
36
|
Zhang Y, Zhang Y, Jin XF, Zhou XH, Dong XH, Yu WT, Gao WJ. The Role of Astragaloside IV against Cerebral Ischemia/Reperfusion Injury: Suppression of Apoptosis via Promotion of P62-LC3-Autophagy. Molecules 2019; 24:molecules24091838. [PMID: 31086091 PMCID: PMC6539971 DOI: 10.3390/molecules24091838] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Ischemia/reperfusion (I/R) caused by ischemic stroke treatments leads to brain injury, and autophagy plays a role in the pathology. Astragaloside IV is a potential neuroprotectant, but its underlying mechanism on cerebral I/R injury needs to be explored. The objective of this study is to investigate the neuroprotective mechanism of Astragaloside IV against cerebral I/R injury. Methods: Middle cerebral artery occlusion method (MCAO) and oxygen and glucose deprivation/reoxygenation (OGD/R) method were used to simulate cerebral I/R injury in Sprague-Dawley (SD) rats and HT22 cells, respectively. The neurological score, 2,3,5-Triphe-nyltetrazolium chloride (TTC) staining, and transmission electron microscope were used to detect cerebral damage in SD rats. Cell viability and cytotoxicity assay were tested in vitro. Fluorescent staining and flow cytometry were applied to detect the level of apoptosis. Western blotting was conducted to examine the expression of proteins associated with autophagy. Results: This study found that Astragaloside IV could decrease the neurological score, reduce the infarct volume in the brain, and alleviate cerebral I/R injury in MCAO rats. Astragaloside IV promoted cell viability and balanced Bcl-2 and Bax expression in vitro, reduced the rate of apoptosis, decreased the expression of P62, and increased the expression of LC3II/LC3I in HT22 cells after OGD/R. Conclusions: These data suggested that Astragaloside IV plays a neuroprotective role by down-regulating apoptosis by promoting the degree of autophagy.
Collapse
Affiliation(s)
- Yi Zhang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Ying Zhang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Xiao-Fei Jin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Xiao-Hong Zhou
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Xian-Hui Dong
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Wen-Tao Yu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Wei-Juan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| |
Collapse
|
37
|
Zhao B, Yuan Q, Hou JB, Xia ZY, Zhan LY, Li M, Jiang M, Gao WW, Liu L. Inhibition of HDAC3 Ameliorates Cerebral Ischemia Reperfusion Injury in Diabetic Mice In Vivo and In Vitro. J Diabetes Res 2019; 2019:8520856. [PMID: 30906786 PMCID: PMC6393870 DOI: 10.1155/2019/8520856] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/27/2018] [Accepted: 12/23/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A substantial increase in histone deacetylase 3 (HDAC3) expression is implicated in the pathological process of diabetes and stroke. However, it is unclear whether HDAC3 plays an important role in diabetes complicated with stroke. We aimed to explore the role and the potential mechanisms of HDAC3 in cerebral ischemia/reperfusion (I/R) injury in diabetic state. METHODS Diabetic mice were subjected to 1 h ischemia, followed by 24 h reperfusion. PC12 cells were exposed to high glucose for 24 h, followed by 3 h of hypoxia and 6 h of reoxygenation (H/R). Diabetic mice received RGFP966 (the specific HDAC3 inhibitor) or vehicle 30 minutes before the middle cerebral artery occlusion (MCAO), and high glucose-incubated PC12 cells were pretreated with RGFP966 or vehicle 6 h before H/R. RESULTS HDAC3 inhibition reduced the cerebral infarct volume, ameliorated pathological changes, improved the cell viability and cytotoxicity, alleviated apoptosis, attenuated oxidative stress, and enhanced autophagy in cerebral I/R injury model in diabetic state in vivo and in vitro. Furthermore, we found that the expression of HDAC3 was remarkably amplified, and the Bmal1 expression was notably decreased in diabetic mice with cerebral I/R, whereas this phenomenon was obviously reversed by RGFP966 pretreatment. CONCLUSIONS These results suggested that the HDAC3 was involved in the pathological process of the complex disease of diabetic stroke. Suppression of HDAC3 exerted protective effects against cerebral I/R injury in diabetic state in vivo and in vitro via the modulation of oxidative stress, apoptosis, and autophagy, which might be mediated by the upregulation of Bmal1.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Quan Yuan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Jia-bao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Zhong-yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Li-ying Zhan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Mei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Meng Jiang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Wen-wei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| |
Collapse
|