1
|
Demircubuk I, Candar E, Sengul G. Anatomical and neurochemical organization of the dorsal, lumbar precerebellar and sacral precerebellar nuclei in the human spinal cord. Ann Anat 2025; 259:152390. [PMID: 39938757 DOI: 10.1016/j.aanat.2025.152390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/19/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND AND PURPOSE The dorsal nucleus (Clarke's nucleus, D), lumbar precerebellar nucleus (LPrCb), and sacral precerebellar nucleus (Stilling's sacral nucleus, SPrCb) are precerebellar nuclei of the spinal cord. This study investigates the cytoarchitecture and neurochemical organization of the D, LPrCb, and SPrCb nuclei in the human spinal cord. MATERIAL AND METHODS Using Nissl staining and immunohistochemistry for markers including calbindin (Cb), calretinin (Cr), parvalbumin (Pv), choline acetyltransferase (ChAT), glutamic acid decarboxylase (GAD 65/67), and vesicular glutamate transporter 1 (VGLUT1), we analyzed sections from T1-T12, L1-L5, and S1-Co1 segments of a human spinal cord. RESULTS Our findings reveal a diverse range of neuron sizes and morphologies within these nuclei, with multipolar neurons being predominant. The immunohistochemical analysis showed distinct neurochemical characteristics, with varying densities of the markers across the D, LPrCb, and SPrCb. CONCLUSION This study provides the first detailed characterization of these nuclei in the human spinal cord, highlighting their intricate organization and suggesting potential functional similarities. The comprehensive understanding of the neurochemical profiles of these nuclei lays the groundwork for future research into their roles in motor coordination and their involvement in neurodegenerative diseases. Our findings underscore the importance of further investigation into the pathological changes occurring within the precerebellar nuclei to advance treatment and prevention strategies for related neurological disorders.
Collapse
Affiliation(s)
- Ibrahim Demircubuk
- Department of Anatomy, Institute of Health Sciences, Ege University, Izmir, Turkiye
| | - Esra Candar
- Department of Neuroscience, Institute of Health Sciences, Ege University, Izmir, Turkiye
| | - Gulgun Sengul
- Department of Anatomy, Institute of Health Sciences, Ege University, Izmir, Turkiye; Department of Anatomy School of Medicine, Ege University, Izmir, Turkiye.
| |
Collapse
|
2
|
Veshchitskii A, Shkorbatova P, Merkulyeva N. Neurochemical atlas of the rabbit spinal cord. Brain Struct Funct 2024; 229:2011-2027. [PMID: 39115602 DOI: 10.1007/s00429-024-02842-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/15/2024] [Indexed: 10/18/2024]
Abstract
Complex neurophysiological and morphologic experiments require suitable animal models for investigation. The rabbit is one of the most successful models for studying spinal cord functions owing to its substantial size. However, achieving precise surgical access to specific spinal regions requires a thorough understanding of the spinal cord's cytoarchitectonic structure and its spatial relationship with the vertebrae. The comprehensive anatomo-neurochemical atlases of the spinal cord are invaluable for attaining such insight. While such atlases exist for some rodents and primates, none exist for rabbits. We have developed a spinal cord atlas for rabbits to bridge this gap. Utilizing various neurochemical markers-including antibodies to NeuN, calbindin 28 kDa, parvalbumin, choline acetyltransferase, nitric oxide synthase, and non-phosphorylated heavy-chain neurofilaments (SMI-32 antibody)-we present the visualization of diverse spinal neuronal populations, various spinal cord metrics, stereotaxic maps of transverse slices for each spinal segment, and a spatial map detailing the intricate relationship between the spinal cord and the vertebrae across its entire length.
Collapse
Affiliation(s)
- Aleksandr Veshchitskii
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia, 199034
| | - Polina Shkorbatova
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia, 199034
| | - Natalia Merkulyeva
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia, 199034.
| |
Collapse
|
3
|
Veshchitskii A, Merkulyeva N. Calcium-binding protein parvalbumin in the spinal cord and dorsal root ganglia. Neurochem Int 2023; 171:105634. [PMID: 37967669 DOI: 10.1016/j.neuint.2023.105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Parvalbumin is one of the calcium-binding proteins. In the spinal cord, it is mainly expressed in inhibitory neurons; in the dorsal root ganglia, it is expressed in proprioceptive neurons. In contrast to in the brain, weak systematization of parvalbumin-expressing neurons occurs in the spinal cord. The aim of this paper is to provide a systematic review of parvalbumin-expressing neuronal populations throughout the spinal cord and the dorsal root ganglia of mammals, regarding their mapping, co-expression with some functional markers. The data reviewed are mostly concerning rodentia species because they are predominantly presented in literature.
Collapse
Affiliation(s)
- Aleksandr Veshchitskii
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia
| | - Natalia Merkulyeva
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia.
| |
Collapse
|
4
|
Hilscher MM, Mikulovic S, Perry S, Lundberg S, Kullander K. The alpha2 nicotinic acetylcholine receptor, a subunit with unique and selective expression in inhibitory interneurons associated with principal cells. Pharmacol Res 2023; 196:106895. [PMID: 37652281 DOI: 10.1016/j.phrs.2023.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play crucial roles in various human disorders, with the α7, α4, α6, and α3-containing nAChR subtypes extensively studied in relation to conditions such as Alzheimer's disease, Parkinson's disease, nicotine dependence, mood disorders, and stress disorders. In contrast, the α2-nAChR subunit has received less attention due to its more restricted expression and the scarcity of specific agonists and antagonists for studying its function. Nevertheless, recent research has shed light on the unique expression pattern of the Chrna2 gene, which encodes the α2-nAChR subunit, and its involvement in distinct populations of inhibitory interneurons. This review highlights the structure, pharmacology, localization, function, and disease associations of α2-containing nAChRs and points to the unique expression pattern of the Chrna2 gene and its role in different inhibitory interneuron populations. These populations, including the oriens lacunosum moleculare (OLM) cells in the hippocampus, Martinotti cells in the neocortex, and Renshaw cells in the spinal cord, share common features and contribute to recurrent inhibitory microcircuits. Thus, the α2-nAChR subunit's unique expression pattern in specific interneuron populations and its role in recurrent inhibitory microcircuits highlight its importance in various physiological processes. Further research is necessary to uncover the comprehensive functionality of α2-containing nAChRs, delineate their specific contributions to neuronal circuits, and investigate their potential as therapeutic targets for related disorders.
Collapse
Affiliation(s)
- Markus M Hilscher
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Sanja Mikulovic
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Leibniz Institute for Neurobiology, Cognition & Emotion Laboratory, Magdeburg, Germany; German Center for Mental Health(DZPG), Germany
| | - Sharn Perry
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Stina Lundberg
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden
| | - Klas Kullander
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden.
| |
Collapse
|
5
|
Huang Z, Sun L, Zheng X, Zhang Y, Zhu Y, Chen T, Chen Z, Ja L, OuYang L, Zhu Y, Chen S, Lei W. A neural tract tracing study on synaptic connections for cortical glutamatergic terminals and cervical spinal calretinin neurons in rats. Front Neural Circuits 2023; 17:1086873. [PMID: 37187913 PMCID: PMC10175624 DOI: 10.3389/fncir.2023.1086873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The cerebral cortex innervates motor neurons in the anterior horn of the spinal cord by regulating of interneurons. At present, nerve tracing, immunohistochemistry, and immunoelectron microscopy are used to explore and confirm the characteristics of synaptic connections between the corticospinal tract (CST) and cervical spinal calretinin (Cr) interneurons. Our morphological results revealed that (1) biotinylated dextran amine labeled (BDA+) fibers from the cerebral cortex primarily presented a contralateral spinal distribution, with a denser distribution in the ventral horn (VH) than in the dorsal horn (DH). An electron microscope (EM) showed that BDA+ terminals formed asymmetric synapses with spinal neurons, and their mean labeling rate was not different between the DH and VH. (2) Cr-immunoreactive (Cr+) neurons were unevenly distributed throughout the spinal gray matter, and were denser and larger in the VH than in the DH. At the single labeling electron microscope (EM) level, the labeling rate of Cr+ dendrites was higher in the VH than in the DH, in which Cr+ dendrites mainly received asymmetric synaptic inputs, and between the VH and DH. (3) Immunofluorescence triple labeling showed obvious apposition points among BDA+ terminals, synaptophysin and Cr+ dendrites, with a higher density in the VH than in the DH. (4) Double labeling in EM, BDA+ terminals and Cr+ dendrites presented the same pattern, BDA+ terminals formed asymmetric synapses either with Cr+ dendrites or Cr negative (Cr-) dendrites, and Cr+ dendrites received either BDA+ terminals or BDA- synaptic inputs. The average percentage of BDA+ terminals targeting Cr+ dendrites was higher in the VH than in the DH, but the percentage of BDA+ terminals targeting Cr- dendrites was prominently higher than that targeting Cr+ dendrites. There was no difference in BDA+ terminal size. The percentage rate for Cr+ dendrites receiving BDA+ terminal inputs was lower than that receiving BDA- terminal inputs, and the BDA+ terminal size was larger than the BDA- terminal size received by Cr+ dendrites. The present morphological results suggested that spinal Cr+ interneurons are involved in the regulatory process of the cortico-spinal pathway.
Collapse
Affiliation(s)
- Ziyun Huang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liping Sun
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuefeng Zheng
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Ye Zhang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Yaxi Zhu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhi Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linju Ja
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lisi OuYang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaofeng Zhu
- College of Medicine, Institute of Medical Sciences, Jishou University, Jishou, China
- Yaofeng Zhu, ,
| | - Si Chen
- Department of Human Anatomy, Histology and Embryology, Zunyi Medical University, Zhuhai, China
- Si Chen, ,
| | - Wanlong Lei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wanlong Lei, ,
| |
Collapse
|
6
|
Veshchitskii A, Shkorbatova P, Merkulyeva N. Neurochemical atlas of the cat spinal cord. Front Neuroanat 2022; 16:1034395. [PMID: 36337139 PMCID: PMC9627295 DOI: 10.3389/fnana.2022.1034395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/30/2022] [Indexed: 11/15/2022] Open
Abstract
The spinal cord is a complex heterogeneous structure, which provides multiple vital functions. The precise surgical access to the spinal regions of interest requires precise schemes for the spinal cord structure and the spatial relation between the spinal cord and the vertebrae. One way to obtain such information is a combined anatomical and morphological spinal cord atlas. One of the widely used models for the investigation of spinal cord functions is a cat. We create a single cell-resolution spinal cord atlas of the cat using a variety of neurochemical markers [antibodies to NeuN, choline acetyltransferase, calbindin 28 kDa, calretinin, parvalbumin, and non-phosphorylated heavy-chain neurofilaments (SMI-32 antibody)] allowing to visualize several spinal neuronal populations. In parallel, we present a map of the spatial relation between the spinal cord and the vertebrae for the entire length of the spinal cord.
Collapse
|
7
|
Mortensen D, Thoefner MS, Agerholm JS, Slumstrup L, Jensen TS, Bjerrum OJ, Berendt M, Nyengaard JR. Dorsal horn volume loss and pain pathway changes in Cavalier King Charles Spaniels with syringomyelia, signs of pain, and phantom scratching. Pain 2022; 163:2365-2379. [PMID: 35353770 DOI: 10.1097/j.pain.0000000000002630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Central neuropathic pain is a core clinical sign of syringomyelia in humans and Cavalier King Charles Spaniel (CKCS) dogs. This histopathological study used spinal cords from CKCS with syringomyelia to investigate: 1) whether specific structural cervical spinal cord entities involved in nociception are affected by loss of neuroparenchyma or other pathological changes in CKCS with pain-related behaviour and phantom scratching, 2) if pain related behaviour or phantom scratching correlated with loss of a specific anatomical entity or upregulation of glia cells, and 3) if syringomyelia-related lesions affected specific functional spinal cord units of nociception.Spinal cord segments C1-C8 from CKCS with MRI-confirmed syringomyelia and clinical signs of pain and phantom scratch (n=8) were compared to CKCS without syringomyelia (n=4). Dogs with unilateral scratching (n=7) had a volume loss (P=0.043) of the dorsal horn laminae I-III in the ipsilateral side compared to the contralateral dorsal horn. A clear pattern of ipsilateral changes in the dorsal root entry zone characterised by deafferentation and reorganization of first-order axons into deeper laminae was found in cases with lateralised scratching. Significant changes in cell number density were not found for astrocytes or microglia, suggesting that the dogs represented cases of end-stage syringomyelia and thus could not reveal astrogliosis and microgliosis, which may be involved in the early phases of syrinx development and phantom scratch.The present relationship between clinical findings and dorsal horn and pain pathway pathology in CKCS suggests that these dogs may be of interest as a supplement to experimental model pain research.
Collapse
Affiliation(s)
- Danny Mortensen
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Center for Stochastic Geometry and Advanced Bioimaging
| | - Maria Soendergaard Thoefner
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Joergen Steen Agerholm
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lasse Slumstrup
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Center for Stochastic Geometry and Advanced Bioimaging
| | | | - Ole Jannik Bjerrum
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Mette Berendt
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Randel Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Center for Stochastic Geometry and Advanced Bioimaging.,Department of Pathology, Aarhus University Hospital, Denmark
| |
Collapse
|
8
|
Gradwell MA, Boyle KA, Browne TJ, Bell AM, Leonardo J, Peralta Reyes FS, Dickie AC, Smith KM, Callister RJ, Dayas CV, Hughes DI, Graham BA. Diversity of inhibitory and excitatory parvalbumin interneuron circuits in the dorsal horn. Pain 2022; 163:e432-e452. [PMID: 34326298 PMCID: PMC8832545 DOI: 10.1097/j.pain.0000000000002422] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/03/2022]
Abstract
ABSTRACT Parvalbumin-expressing interneurons (PVINs) in the spinal dorsal horn are found primarily in laminae II inner and III. Inhibitory PVINs play an important role in segregating innocuous tactile input from pain-processing circuits through presynaptic inhibition of myelinated low-threshold mechanoreceptors and postsynaptic inhibition of distinct spinal circuits. By comparison, relatively little is known of the role of excitatory PVINs (ePVINs) in sensory processing. Here, we use neuroanatomical and optogenetic approaches to show that ePVINs comprise a larger proportion of the PVIN population than previously reported and that both ePVIN and inhibitory PVIN populations form synaptic connections among (and between) themselves. We find that these cells contribute to neuronal networks that influence activity within several functionally distinct circuits and that aberrant activity of ePVINs under pathological conditions is well placed to contribute to the development of mechanical hypersensitivity.
Collapse
Affiliation(s)
- Mark A. Gradwell
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Kieran A. Boyle
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tyler J. Browne
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Andrew M. Bell
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jacklyn Leonardo
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Fernanda S. Peralta Reyes
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Allen C. Dickie
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kelly M. Smith
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert J. Callister
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Christopher V. Dayas
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - David I. Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brett A. Graham
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| |
Collapse
|
9
|
Veshchitskii AA, Musienko PE, Merkulyeva NS. Distribution of Calretinin-Immunopositive Neurons in the Cat Lumbar Spinal Cord. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Dorsal Horn of Mouse Lumbar Spinal Cord Imaged with CLARITY. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3689380. [PMID: 32855963 PMCID: PMC7443243 DOI: 10.1155/2020/3689380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022]
Abstract
The organization of the mouse spinal dorsal horn has been delineated in 2D for the six Rexed laminae in our publication Atlas of the Spinal Cord: Mouse, Rat, Rhesus, Marmoset, and Human. In the present study, the tissue clearing technique CLARITY was used to observe the cyto- and chemoarchitecture of the mouse spinal cord in 3D, using a variety of immunohistochemical markers. We confirm prior observations regarding the location of glycine and serotonin immunoreactivities. Novel observations include the demonstration of numerous calcitonin gene-related peptide (CGRP) perikarya, as well as CGRP fibers and terminals in all laminae of the dorsal horn. We also observed sparse choline acetyltransferase (ChAT) immunoreactivity in small perikarya and fibers and terminals in all dorsal horn laminae, while gamma aminobutyric acid (GABA) and glutamate decarboxylase-67 (GAD67) immunoreactivities were found only in small perikarya and fibers. Finally, numerous serotonergic fibers were observed in all laminae of the dorsal horn. In conclusion, CLARITY confirmed the 2D immunohistochemical properties of the spinal cord. Furthermore, we observed novel anatomical characteristics of the spinal cord and demonstrated that CLARITY can be used on spinal cord tissue to examine many proteins of interest.
Collapse
|
11
|
Goffigan-Holmes J, Sanabria D, Diaz J, Flock D, Chavez-Valdez R. Calbindin-1 Expression in the Hippocampus following Neonatal Hypoxia-Ischemia and Therapeutic Hypothermia and Deficits in Spatial Memory. Dev Neurosci 2019; 40:1-15. [PMID: 30861522 PMCID: PMC6742590 DOI: 10.1159/000497056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Hippocampal injury following neonatal hypoxia-ischemia (HI) leads to memory impairments despite therapeutic hypothermia (TH). In the hippocampus, the expression of calbindin-1 (Calb1), a Ca2+-buffering protein, increases during postnatal development and decreases with aging and neurodegenerative disorders. Since persistent Ca2+ dysregulation after HI may lead to ongoing injury, persistent changes in hippocampal expression of Calb1 may contribute to memory impairments after neonatal HI. We hypothesized that, despite TH, neonatal HI persistently decreases Calb1 expression in the hippocampus, a change associated with memory deficits in the mouse. We induced cerebral HI in C57BL6 mice at postnatal day 10 (P10) with right carotid ligation and 45 min of hypoxia (FiO2 = 0.08), followed by normothermia (36°C, NT) or TH (31°C) for 4 h with anesthesia-shams as controls. Nissl staining and glial fibrillary acidic protein (GFAP) immunohistochemistry (IHC) were used to grade brain injury and astrogliosis at P11, P18, and P40 prior to the assessment of Calb1 expression by IHC. The subset of mice followed to P40 also performed a memory behavior task (Y-maze) at P22-P26. Nonparametric statistics stratified by sex were applied. In both anterior and posterior coronal brain sections, hippocampal Calb1 expression doubled between P11 and P40 due to an increase in the cornus ammonis (CA) field (Kruskal-Wallis [KW] p < 0.001) and not the dentate gyrus (DG). Neonatal HI produced delayed (P18) and late (P40) deficits in the expression of Calb1 exclusively in the CA field (KW p = 0.02) in posterior brain sections. TH did not attenuate Calb1 deficits after HI. Thirty days after HI injury (at P40), GFAP scores in the hippocampus (p < 0.001, r = -0.47) and CA field (p < 0.001, r = -0.39) of posterior brain sections inversely correlated with their respective Calb1 expression. Both sexes demonstrated deficits in Y-maze testing, including approximately 40% lower spontaneous alterations performance and twice as much total impairment compared to sham mice (KW p < 0.001), but it was only in females that these deficits correlated with the Calb1 expression in the hippocampal CA field (p < 0.05) of the posterior sections. Hippocampal atrophy after neonatal HI also correlated with worse deficits in Y-maze testing, but it did not predict Calb1 deficits. Neonatal HI produces a long-lasting Calb1 deficit in the hippocampal CA field during development, which is not mitigated by TH. Late Calb1 deficit after HI may be the result of persistent astrogliosis and can lead to memory impairment, particularly in female mice.
Collapse
Affiliation(s)
- Janasha Goffigan-Holmes
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Dafne Sanabria
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Johana Diaz
- Division of Neonatology, Department of Pediatrics, University of Maryland, Baltimore, Maryland, USA
| | - Debra Flock
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Raul Chavez-Valdez
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
12
|
Porseva VV, Emanuilov AI, Masliukov PM. Changes in the Expression of Calbindin and Calretinin in Interneurons of the Spinal Dorsal Horns Under Conditions of Antiorthostatic Suspension in Mice. Bull Exp Biol Med 2018; 166:22-25. [DOI: 10.1007/s10517-018-4280-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 10/27/2022]
|
13
|
Merighi A. The histology, physiology, neurochemistry and circuitry of the substantia gelatinosa Rolandi (lamina II) in mammalian spinal cord. Prog Neurobiol 2018; 169:91-134. [PMID: 29981393 DOI: 10.1016/j.pneurobio.2018.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 06/07/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023]
Abstract
The substantia gelatinosa Rolandi (SGR) was first described about two centuries ago. In the following decades an enormous amount of information has permitted us to understand - at least in part - its role in the initial processing of pain and itch. Here, I will first provide a comprehensive picture of the histology, physiology, and neurochemistry of the normal SGR. Then, I will analytically discuss the SGR circuits that have been directly demonstrated or deductively envisaged in the course of the intensive research on this area of the spinal cord, with particular emphasis on the pathways connecting the primary afferent fibers and the intrinsic neurons. The perspective existence of neurochemically-defined sets of primary afferent neurons giving rise to these circuits will be also discussed, with the proposition that a cross-talk between different subsets of peptidergic fibers may be the structural and functional substrate of additional gating mechanisms in SGR. Finally, I highlight the role played by slow acting high molecular weight modulators in these gating mechanisms.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095 Grugliasco (TO), Italy.
| |
Collapse
|
14
|
Berg EM, Bertuzzi M, Ampatzis K. Complementary expression of calcium binding proteins delineates the functional organization of the locomotor network. Brain Struct Funct 2018; 223:2181-2196. [PMID: 29423637 PMCID: PMC5968073 DOI: 10.1007/s00429-018-1622-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
Neuronal networks in the spinal cord generate and execute all locomotor-related movements by transforming descending signals from supraspinal areas into appropriate rhythmic activity patterns. In these spinal networks, neurons that arise from the same progenitor domain share similar distribution patterns, neurotransmitter phenotypes, morphological and electrophysiological features. However, subgroups of them participate in different functionally distinct microcircuits to produce locomotion at different speeds and of different modalities. To better understand the nature of this network complexity, here we characterized the distribution of parvalbumin (PV), calbindin D-28 k (CB) and calretinin (CR) which are regulators of intracellular calcium levels and can serve as anatomical markers for morphologically and potential functionally distinct neuronal subpopulations. We observed wide expression of CBPs in the adult zebrafish, in several spinal and reticulospinal neuronal populations with a diverse neurotransmitter phenotype. We also found that several spinal motoneurons express CR and PV. However, only the motoneuron pools that are responsible for generation of fast locomotion were CR-positive. CR can thus be used as a marker for fast motoneurons and might potentially label the fast locomotor module. Moreover, CB was mainly observed in the neuronal progenitor cells that are distributed around the central canal. Thus, our results suggest that during development the spinal neurons utilize CB and as the neurons mature and establish a neurotransmitter phenotype they use CR or/and PV. The detailed characterization of CBPs expression, in the spinal cord and brainstem neurons, is a crucial step toward a better understanding of the development and functionality of neuronal locomotor networks.
Collapse
Affiliation(s)
- Eva M Berg
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Maria Bertuzzi
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | |
Collapse
|
15
|
Floyd TL, Dai Y, Ladle DR. Characterization of calbindin D28k expressing interneurons in the ventral horn of the mouse spinal cord. Dev Dyn 2017; 247:185-193. [PMID: 29090497 DOI: 10.1002/dvdy.24601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Expression of the calcium binding protein, calbindin (CB), is well established as a hallmark of Renshaw cells, a class of interneurons found in spatially restricted areas in the ventral spinal cord that directly modulate motor neuron activity. CB expression, however, is not restricted only to Renshaw cells in the ventral horn, and within this population other interneuron subtypes may be identifiable on the basis of cell position and the potential for coexpression of other calcium binding proteins. RESULTS Here we have quantified the changing CB expression pattern in the ventral spinal cord across postnatal development in the mouse. Fewer neurons express CB as postnatal development progresses, and those neurons frequently coexpress other calcium binding proteins (calretinin and parvalbumin) in subpopulations with distinct spatial distributions. We also found a significant portion of CB-expressing interneurons receive putative synaptic contacts from primary sensory afferents. CONCLUSIONS These findings suggest CB labels a heterogeneous group of interneurons in the ventral horn, some of which may process sensory information. Based on cellular position, CB expression may be a shared feature of subsets of interneurons arising from multiple ventral progenitor domains. Developmental Dynamics 247:185-193, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Taylor L Floyd
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio, USA
| | - Yiyun Dai
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio, USA
| | - David R Ladle
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio, USA
| |
Collapse
|
16
|
Chen S, Yang G, Zhu Y, Liu Z, Wang W, Wei J, Li K, Wu J, Chen Z, Li Y, Mu S, OuYang L, Lei W. A Comparative Study of Three Interneuron Types in the Rat Spinal Cord. PLoS One 2016; 11:e0162969. [PMID: 27658248 PMCID: PMC5033377 DOI: 10.1371/journal.pone.0162969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Interneurons are involved in the physiological function and the pathomechanism of the spinal cord. Present study aimed to examine and compare the characteristics of Cr+, Calb+ and Parv+ interneurons in morphology and distribution by using immunhistochemical and Western blot techniques. Results showed that 1) Cr-Calb presented a higher co-existence rate than that of Cr-Parv, and both of them were higher in the ventral horn than in the dosal horn; 2) Cr+, Calb+ and Parv+ neurons distributing zonally in the superficial dosal horn were small-sized. Parv+ neuronswere the largest, and Cr+ and Calb+ neurons were higher density among them. In the deep dorsal horn, Parv+ neurons were mainly located in nucleus thoracicus and the remaining scatteredly distributed. Cr+ neuronal size was the largest, and Calb+ neurons were the least among three interneuron types; 3) Cr+, Calb+ and Parv+ neurons of ventral horns displayed polygonal, round and fusiform, and Cr+ and Parv+ neurons were mainly distributed in the deep layer, but Calb+ neurons mainly in the superficial layer. Cr+ neurons were the largest, and distributed more in ventral horns than in dorsal horns; 4) in the dorsal horn of lumbar cords, Calb protein levels was the highest, but Parv protein level in ventral horns was the highest among the three protein types. Present results suggested that the morphological characteristics of three interneuron types imply their physiological function and pathomechanism relevance.
Collapse
Affiliation(s)
- Si Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guangqi Yang
- Department of Radiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yaxi Zhu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zongwei Liu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiping Wang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiayou Wei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Keyi Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiajia Wu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youlan Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuhua Mu
- School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Lisi OuYang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wanlong Lei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: ,
| |
Collapse
|
17
|
Torres-da-Silva KR, Da Silva AV, Barioni NO, Tessarin GWL, De Oliveira JA, Ervolino E, Horta-Junior JAC, Casatti CA. Neurochemistry study of spinal cord in non-human primate (Sapajus spp.). Eur J Histochem 2016; 60:2623. [PMID: 27734991 PMCID: PMC5062631 DOI: 10.4081/ejh.2016.2623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 08/07/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023] Open
Abstract
The spinal cord is involved in local, ascending and descending neural pathways. Few studies analyzed the distribution of neuromediators in the laminae of non-human primates along all segments. The present study described the classic neuromediators in the spinal cord of the non-human primate Sapajus spp. through histochemical and immunohistochemical methods. Nicotinamide adenine dinucleotide hydrogen phosphate-diaphorase (NADPH-d) method showed neuronal somata in the intermediolateral column (IML), central cervical nucleus (CCN), laminae I, II, III, IV, V, VI, VII, VIII and X, besides dense presence of nerve fibers in laminae II and IX. Acetylcholinesterase (AChE) activity was evident in the neuronal somata in laminae V, VI, VII, VIII, IX, CCN, IML and in the Clarke’s column (CC). Immunohistochemistry data revealed neuronal nitric oxide synthase (nNOS) immunoreactivity in neuronal somata and in fibers of laminae I, II, III, VII, VIII, X and IML; choline acetyltransferase (ChAT) in neuronal somata and in fibers of laminae VII, VIII and IX; calcitonin gene-related peptide (CGRP) was noticed in neuronal somata of lamina IX and in nerve fibers of laminae I, II, III, IV, V, VI and VII; substance P (SP) in nerve fibers of laminae I, II, III, IV, V, VI, VII, VIII, IX, X, CCN, CC and IML; serotonin (5-HT) and vesicular glutamate transporter-1 (VGLUT1) was noticed in nerve fibers of all laminae; somatostatin (SOM) in neuronal somata of laminae III, IV, V, VI, VII, VIII and IX and nerve fibers in laminae I, II, V, VI, VII, X and IML; calbindin (Cb) in neuronal somata of laminae I, II, VI, VII, IX and X; parvalbumin (PV) was found in neuronal somata and in nerve fibers of laminae III, IV, V, VI, VII, VIII, IX and CC; finally, gamma-amino butyric acid (GABA) was present in neuronal somata of laminae V, VI, VII, VIII, IX and X. This study revealed interesting results concerning the chemoarchitecture of the Sapajus spp. spinal cord with a distribution pattern mostly similar to other mammals. The data corroborate the result described in literature, except for some differences in CGRP, SP, Cb, PV and GABA immunoreactivities present in neuronal somata and in nerve fibers. This could suggest certain specificity for the neurochemistry distribution in this non-human primate species, besides adding relevant data to support further studies related to processes involving spinal cord components.
Collapse
|
18
|
Murray E, Cho JH, Goodwin D, Ku T, Swaney J, Kim SY, Choi H, Park YG, Park JY, Hubbert A, McCue M, Vassallo S, Bakh N, Frosch MP, Wedeen VJ, Seung HS, Chung K. Simple, Scalable Proteomic Imaging for High-Dimensional Profiling of Intact Systems. Cell 2016; 163:1500-14. [PMID: 26638076 DOI: 10.1016/j.cell.2015.11.025] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/09/2015] [Accepted: 11/10/2015] [Indexed: 01/25/2023]
Abstract
Combined measurement of diverse molecular and anatomical traits that span multiple levels remains a major challenge in biology. Here, we introduce a simple method that enables proteomic imaging for scalable, integrated, high-dimensional phenotyping of both animal tissues and human clinical samples. This method, termed SWITCH, uniformly secures tissue architecture, native biomolecules, and antigenicity across an entire system by synchronizing the tissue preservation reaction. The heat- and chemical-resistant nature of the resulting framework permits multiple rounds (>20) of relabeling. We have performed 22 rounds of labeling of a single tissue with precise co-registration of multiple datasets. Furthermore, SWITCH synchronizes labeling reactions to improve probe penetration depth and uniformity of staining. With SWITCH, we performed combinatorial protein expression profiling of the human cortex and also interrogated the geometric structure of the fiber pathways in mouse brains. Such integrated high-dimensional information may accelerate our understanding of biological systems at multiple levels.
Collapse
Affiliation(s)
- Evan Murray
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jae Hun Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Goodwin
- Simons Center for Data Analysis, 160 Fifth Avenue, 8th Floor, New York, NY 10010, USA
| | - Taeyun Ku
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Justin Swaney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sung-Yon Kim
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heejin Choi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Young-Gyun Park
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeong-Yoon Park
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Austin Hubbert
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Margaret McCue
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sara Vassallo
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Naveed Bakh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory of Neuropathology, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Van J Wedeen
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - H Sebastian Seung
- Simons Center for Data Analysis, 160 Fifth Avenue, 8th Floor, New York, NY 10010, USA; Princeton Neuroscience Institute and Computer Science Department, Princeton University, Princeton, NJ 08544, USA
| | - Kwanghun Chung
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
19
|
Merkulyeva N, Veshchitskii A, Makarov F, Gerasimenko Y, Musienko P. Distribution of 28 kDa Calbindin-Immunopositive Neurons in the Cat Spinal Cord. Front Neuroanat 2016; 9:166. [PMID: 26858610 PMCID: PMC4729936 DOI: 10.3389/fnana.2015.00166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/21/2015] [Indexed: 01/05/2023] Open
Abstract
The distribution of vitamin D-dependent calcium-binding protein (28 kDa calbindin) was investigated in cat lumbar and sacral spinal cord segments (L1-S3). We observed specific multi-dimensional distributions over the spinal segments for small immunopositive cells in Rexed laminae II-III and medium-to-large cells of varying morphology in lamina I and laminae V-VIII. The small neurons in laminae II-III were clustered into the columns along the dorsal horn curvature. The medium-to-large cells were grouped into four assemblages that were located in (1) the most lateral region of lamina VII at the L1-L4 level; (2) the laminae IV-V boundary at the L5-L7 level; (3) the lamina VII dorsal border at the L5-L7 level; and (4) the lamina VIII at the L5-S3 level. The data obtained suggest that the morphological and physiological heterogeneity of calbindin immunolabeling cells formed morpho-functional clusters over the gray matter. A significant portion of the lumbosacral enlargement had immunopositive neurons within all Rexed laminae, suggesting an important functional role within and among the spinal networks that control hindlimb movements.
Collapse
Affiliation(s)
- Natalia Merkulyeva
- Laboratory of Neuromorphology, Pavlov Institute of Physiology RASSaint Petersburg, Russia
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Saint Petersburg State UniversitySaint Petersburg, Russia
| | - Aleksandr Veshchitskii
- Laboratory of Neuromorphology, Pavlov Institute of Physiology RASSaint Petersburg, Russia
| | - Felix Makarov
- Laboratory of Neuromorphology, Pavlov Institute of Physiology RASSaint Petersburg, Russia
| | - Yury Gerasimenko
- Laboratory of Motor Physiology, Pavlov Institute of Physiology RASSaint Petersburg, Russia
| | - Pavel Musienko
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Saint Petersburg State UniversitySaint Petersburg, Russia
- Laboratory of Motor Physiology, Pavlov Institute of Physiology RASSaint Petersburg, Russia
- Laboratory of Neurophysiology and Experimental Neurorehabilitation, Children’s Surgery and Orthopedic Clinic, Department of Non-pulmonary Tuberculosis, Research Institute of PhthysiopulmonologySaint Petersburg, Russia
| |
Collapse
|
20
|
Barbaresi P, Mensà E, Lariccia V, Pugnaloni A, Amoroso S, Fabri M. Differential distribution of parvalbumin- and calbindin-D28K-immunoreactive neurons in the rat periaqueductal gray matter and their colocalization with enzymes producing nitric oxide. Brain Res Bull 2013; 99:48-62. [PMID: 24107244 DOI: 10.1016/j.brainresbull.2013.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/09/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
Abstract
The distribution, colocalization with enzymes producing nitric oxide (NO), and the synaptic organization of neurons containing two calcium-binding proteins (CaBPs) - parvalbumin (Parv) and calbindin-D28K (Calb) - were investigated in the rat periaqueductal gray matter (PAG). Parv-immunopositive (ParvIP) neurons were detected in the mesencephalic nucleus and rarely in the PAG. CalbIP neurons were found both in the dorsolateral (PAG-dl) and ventrolateral PAG (PAG-vl); their size ranged from 112.96 μm(2) (PAG-dl) to 125.13 μm(2) (PAG-vl). Ultrastructurally Parv and Calb immunoreactivity was mostly found in dendritic profiles. Axon terminals containing each of the two CaBPs formed symmetric synapses. Moreover both Parv and Calb were used to label a subpopulation of NO-producing neurons. Colocalization was investigated using two protocols: (i) a combination of Calb and Parv immunocytochemistry (Icc) with nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry (Hi) and (ii) neuronal NO synthase-Icc (nNOS) (immunofluorescence). Both techniques demonstrated a complete lack of colocalization of Parv and NADPH-d/nNOS in PAG neurons. Double-labeled (DL) neurons (Calb-NADPH-d; Calb-nNOS) were detected in PAG-dl. NADPH-d-Hi/Calb-Icc indicated that 41-47% of NADPH-d-positive neurons contained Calb, whereas 17-23% of CalbIP cells contained NADPH-d. Two-color immunofluorescence revealed that 53-66% of nNOSIP cells colocalized with Calb and 24-34% of CalbIP neurons contained nNOS. DL neuron size was 104.44 μm(2); neurons labeled only with NADPH-d or Calb measured 89.793 μm(2) and 113.48 μm(2), respectively. Together with previous findings (Barbaresi et al. [2012]) these data suggest that: Therefore the important aspect of the PAG intrinsic organization emerging from this and previous double-labeling studies is the chemical diversity of NO-synthesizing neurons, which is likely related to the different functions in which these neurons are involved.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, I-60020 Ancona, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Asante CO, Martin JH. Differential joint-specific corticospinal tract projections within the cervical enlargement. PLoS One 2013; 8:e74454. [PMID: 24058570 PMCID: PMC3776849 DOI: 10.1371/journal.pone.0074454] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/31/2013] [Indexed: 12/20/2022] Open
Abstract
The motor cortex represents muscle and joint control and projects to spinal cord interneurons and-in many primates, including humans-motoneurons, via the corticospinal tract (CST). To examine these spinal CST anatomical mechanisms, we determined if motor cortex sites controlling individual forelimb joints project differentially to distinct cervical spinal cord territories, defined regionally and by the locations of putative last-order interneurons that were transneuronally labeled by intramuscular injection of pseudorabies virus. Motor cortex joint-specific sites were identified using intracortical-microstimulation. CST segmental termination fields from joint-specific sites, determined using anterograde tracers, comprised a high density core of terminations that was consistent between animals and a surrounding lower density projection that was more variable. Core terminations from shoulder, elbow, and wrist control sites overlapped in the medial dorsal horn and intermediate zone at C5/C6 but were separated at C7/C8. Shoulder sites preferentially terminated dorsally, in the dorsal horn; wrist/digit sites, more ventrally in the intermediate zone; and elbow sites, medially in the dorsal horn and intermediate zone. Pseudorabies virus injected in shoulder, elbow, or wrist muscles labeled overlapping populations of predominantly muscle-specific putative premotor interneurons, at a survival time for disynaptic transfer from muscle. At C5/C6, CST core projections from all joint zones were located medial to regions of densely labeled last-order interneurons, irrespective of injected muscle. At C7/C8 wrist CST core projections overlapped the densest interneuron territory, which was located in the lateral intermediate zone. In contrast, elbow CST core projections were located medial to the densest interneuron territories, and shoulder CST core projections were located dorsally and only partially overlapped the densest interneuron territory. Our findings show a surprising fractionation of CST terminations in the caudal cervical enlargement that may be organized to engage different spinal premotor circuits for distal and proximal joint control.
Collapse
Affiliation(s)
- Curtis O. Asante
- Department of Physiology, Pharmacology, and Neuroscience, City College of the City University of New York, New York, New York, United States of America
| | - John H. Martin
- Department of Physiology, Pharmacology, and Neuroscience, City College of the City University of New York, New York, New York, United States of America
- Department of Neuroscience, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Lukáčová N, Kisucká A, Pavel J, Hricová Ľ, Kucharíková A, Gálik J, Maršala M, Langfort J, Chalimoniuk M. Spinal cord transection modifies neuronal nitric oxide synthase expression in medullar reticular nuclei and in the spinal cord and increases parvalbumin immunopositivity in motoneurons below the site of injury in experimental rabbits. Acta Histochem 2012; 114:518-24. [PMID: 22000862 DOI: 10.1016/j.acthis.2011.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 09/09/2011] [Accepted: 09/22/2011] [Indexed: 10/16/2022]
Abstract
Using immunohistochemistry, we detected the expression of neuronal nitric oxide synthase (nNOS) in ventral medullary gigantocellular reticular nuclei and in the lumbosacral spinal cord 10 days after thoracic transection in experimental rabbits. We tried to determine whether neurons located below the site of injury are protected by the calcium binding protein parvalbumin (PV). Changes of nNOS immunoreactivity (IR) in spinal cord were correlated with the level of nNOS protein in dorsal and ventral horns. Ten days after transection, nNOS was upregulated predominantly in lateral gigantocellular nuclei. In the spinal cord, we revealed a significant increase of nNOS protein in the dorsal horn. This is consistent with a higher density of punctate and fiber-like immunostaining for nNOS in laminae III-IV and the up-regulation of nNOS-IR in neurons of the deep dorsal horn. After surgery, the perikarya of motoneurons remained nNOS immunonegative. Contrary to nNOS, the PV-IR was upregulated in α-motoneurons and small-sized neurons of the ventral horn. However, its expression was considerably reduced in neurons of the deep dorsal horn. The findings indicate that spinal transection affects nNOS and PV in different neuronal circuits.
Collapse
|
23
|
In vitro expanded stem cells from the developing retina fail to generate photoreceptors but differentiate into myelinating oligodendrocytes. PLoS One 2012; 7:e41798. [PMID: 22848612 PMCID: PMC3405018 DOI: 10.1371/journal.pone.0041798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/25/2012] [Indexed: 01/06/2023] Open
Abstract
Cell transplantation to treat retinal degenerative diseases represents an option for the replacement of lost photoreceptor cells. In vitro expandable cells isolated from the developing mammalian retina have been suggested as a potential source for the generation of high numbers of donor photoreceptors. In this study we used standardized culture conditions based on the presence of the mitogens FGF-2 and EGF to generate high numbers of cells in vitro from the developing mouse retina. These presumptive ‘retinal stem cells’ (‘RSCs’) can be propagated as monolayer cultures over multiple passages, express markers of undifferentiated neural cells, and generate neuronal and glial cell types upon withdrawal of mitogens in vitro or following transplantation into the adult mouse retina. The proportion of neuronal differentiation can be significantly increased by stepwise removal of mitogens and inhibition of the notch signaling pathway. However, ‘RSCs’, by contrast to their primary counterparts in vivo, i.e. retinal progenitor cells, loose the expression of retina-specific progenitor markers like Rax and Chx10 after passaging and fail to differentiate into photoreceptors both in vitro or after intraretinal transplantation. Notably, ‘RSCs’ can be induced to differentiate into myelinating oligodendrocytes, a cell type not generated by primary retinal progenitor cells. Based on these findings we conclude that ‘RSCs’ expanded in high concentrations of FGF-2 and EGF loose their retinal identity and acquire features of in vitro expandable neural stem-like cells making them an inappropriate cell source for strategies aimed at replacing photoreceptor cells in the degenerated retina.
Collapse
|
24
|
Hughes DI, Sikander S, Kinnon CM, Boyle KA, Watanabe M, Callister RJ, Graham BA. Morphological, neurochemical and electrophysiological features of parvalbumin-expressing cells: a likely source of axo-axonic inputs in the mouse spinal dorsal horn. J Physiol 2012; 590:3927-51. [PMID: 22674718 DOI: 10.1113/jphysiol.2012.235655] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Perception of normal bodily sensations relies on the precise regulation of sensory information entering the dorsal horn of the spinal cord. Inhibitory, axoaxonic, synapses provide a mechanism for this regulation, but the source of these important inhibitory connections remains to be elucidated. This study shows that a subpopulation of spinal interneurons that expresses parvalbumin and have specific morphological, connectivity and functional characteristics are a likely source of the inhibitory inputs that selectivity regulate non-noxious tactile input in the spinal cord. Our findings suggest that a loss of normal function in parvalbumin positive dorsal horn neurons may result in the development of tactile allodynia, where non-painful stimuli gain the capacity to evoke the sensation of pain.
Collapse
Affiliation(s)
- D I Hughes
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | | | | | | | | | |
Collapse
|
25
|
The spinal precerebellar nuclei: Calcium binding proteins and gene expression profile in the mouse. Neurosci Lett 2012; 518:161-6. [DOI: 10.1016/j.neulet.2012.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/18/2012] [Accepted: 05/01/2012] [Indexed: 11/17/2022]
|
26
|
Chakrabarty S, Martin JH. Co-development of proprioceptive afferents and the corticospinal tract within the cervical spinal cord. Eur J Neurosci 2011; 34:682-94. [PMID: 21896059 DOI: 10.1111/j.1460-9568.2011.07798.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In maturity, skilled movements depend on coordination of control signals by descending pathways, such as the corticospinal tract (CST), and proprioceptive afferents (PAs). An important locus for this coordination is the spinal cord intermediate zone. Convergence of CST and PA terminations onto common regions leads to interactions that may underlie afferent gating and modulation of descending control signals during movements. We determined establishment of CST and PA terminations within common spinal cord regions and development of synaptic interactions in 4-week-old cats, which is before major spinal motor circuit refinement, and two ages after refinement (weeks 8, 11). We examined the influence of one or the other system on monosynaptic responses, on the spinal cord surface and locally in the intermediate zone, evoked by either CST or deep radial nerve (DRN) stimulation. DRN stimulation suppressed CST monosynaptic responses at 4 weeks, but this converted to facilitation by 8 weeks. This may reflect a strategy to limit CST movement control when it has aberrant immature connections, and could produce errant movements. CST stimulation showed delayed development of mixed suppression and facilitation of DRN responses. We found development of age-dependent overlap of PA and CST terminations where interactions were recorded in the intermediate zone. Our findings reveal a novel co-development of different inputs onto common spinal circuits and suggest a logic to CST-PA interactions at an age before the CST has established connectional specificity with spinal circuits.
Collapse
Affiliation(s)
- Samit Chakrabarty
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York, NY, USA.
| | | |
Collapse
|
27
|
Chakrabarty S, Martin J. Postnatal refinement of proprioceptive afferents in the cat cervical spinal cord. Eur J Neurosci 2011; 33:1656-66. [PMID: 21501251 DOI: 10.1111/j.1460-9568.2011.07662.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proprioceptive afferent (PA) information is integrated with signals from descending pathways, including the corticospinal tract (CST), by spinal interneurons in the dorsal horn and intermediate zone for controlling movements. PA spinal projections, and the reflexes that they evoke, develop prenatally. The CST projects to the spinal cord postnatally, and its connections are subsequently refined. Consequently, the tract becomes effective in transmitting control signals from motor cortex to muscle. This suggests sequential development of PAs and the CST rather than co-development. In this study we determined if there was also late postnatal refinement of PA spinal connections, which would support PA-CST co-development. We examined changes in PA spinal connections at 4 weeks of age, when CST terminations are immature, at 8 weeks, after CST refinement, and at 11 weeks, when CST terminations are mature. We electrically stimulated PA afferents in the deep radial nerve. Evoked PA responses were small and not localized at 4 weeks. By 8 and 11 weeks, responses were substantially larger and maximal in laminae VI and dorsal VII. We used intramuscular injection of cholera toxin β subunit to determine the distribution of PAs from the extensor carpii radialis muscle in the cervical enlargement at the same ages as in the electrophysiological studies. We found a reduction of the distribution of PAs with age that paralleled the physiological changes. This age-related sharpening of PA spinal connections also paralleled CST development, suggesting coordinated PA-CST co-development rather than sequential development. This is likely to be important for the development of adaptive motor control.
Collapse
Affiliation(s)
- Samit Chakrabarty
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York, 160 Convent Avenue, New York, NY 10031, USA
| | | |
Collapse
|
28
|
Jovanovic K, Pastor AM, O'Donovan MJ. The use of PRV-Bartha to define premotor inputs to lumbar motoneurons in the neonatal spinal cord of the mouse. PLoS One 2010; 5:e11743. [PMID: 20668534 PMCID: PMC2909228 DOI: 10.1371/journal.pone.0011743] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 06/16/2010] [Indexed: 12/17/2022] Open
Abstract
Background The neonatal mouse has become a model system for studying the locomotor function of the lumbar spinal cord. However, information about the synaptic connectivity within the governing neural network remains scarce. A neurotropic pseudorabies virus (PRV) Bartha has been used to map neuronal connectivity in other parts of the nervous system, due to its ability to travel trans-neuronally. Its use in spinal circuits regulating locomotion has been limited and no study has defined the time course of labelling for neurons known to project monosynaptically to motoneurons. Methodology/Principal Findings Here we investigated the ability of PRV Bartha, expressing green and/or red fluorescence, to label spinal neurons projecting monosynaptically to motoneurons of two principal hindlimb muscles, the tibialis anterior (TA) and gastrocnemius (GC). As revealed by combined immunocytochemistry and confocal microscopy, 24–32 h after the viral muscle injection the label was restricted to the motoneuron pool while at 32–40 h the fluorescence was seen in interneurons throughout the medial and lateral ventral grey matter. Two classes of ipsilateral interneurons known to project monosynaptically to motoneurons (Renshaw cells and cells of origin of C-terminals) were consistently labeled at 40 h post-injection but also a group in the ventral grey matter contralaterally. Our results suggest that the labeling of last order interneurons occurred 8–12 h after motoneuron labeling and we presume this is the time taken by the virus to cross one synapse, to travel retrogradely and to replicate in the labeled cells. Conclusions/Significance The study establishes the time window for virally - labelling monosynaptic projections to lumbar motoneurons following viral injection into hindlimb muscles. Moreover, it provides a good foundation for intracellular targeting of the labeled neurons in future physiological studies and better understanding the functional organization of the lumbar neural networks.
Collapse
Affiliation(s)
- Ksenija Jovanovic
- Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Laboratorio Reparación Neural y Biomateriales, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Angel M. Pastor
- Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Michael J. O'Donovan
- Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Dávidová A, Schreiberová A, Kolesár D, Capková L, Krizanová O, Lukácová N. Spinal cord transection significantly influences nNOS-IR in neuronal circuitry that underlies the tail-flick reflex activity. Cell Mol Neurobiol 2009; 29:879-86. [PMID: 19291395 PMCID: PMC11505792 DOI: 10.1007/s10571-009-9370-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
Abstract
AIM Spinal cord transection interrupts supraspinal input and leads to the development of prominent spasticity. In this study, we investigated the effect of rat spinal cord transection performed at low thoracic level on changes in (i) neuronal nitric oxide synthase immunoreactivity (nNOS-IR), and (ii) the level of neuronal nitric oxide synthase (nNOS) protein in the neuronal circuitry that underlies tail-flick reflex. METHODS nNOS-IR was detected by immunohistochemistry and the level of nNOS protein was determined by the Western blot analysis. The tail-flick reflex was tested by a noxious thermal stimulus delivered to the tail of experimental animals. After surgery, experimental animals survived for 7 days. RESULTS A significant increase in the level of nNOS protein was found 1 week after thoracic transection in the L2-L6 segments. Immunohistochemical analysis discovered that this increase may be a result of (1) a high nNOS-IR in a large number of axons, located predominantly in the dorsal columns (DCs) of lower lumbosacral segments, and (2) a slight increase of density in nNOS-IR in motoneurons. On the other hand the number of nNOS-IR neurons in the superficial dorsal horn and in area surrounded the central canal (CC) was greatly reduced. The tail-flick response was immediate in animals after spinal transection, while control rats responded to thermal stimulus with a slight delay. However, the tail-flick latency in experimental animals was significantly higher than in control. CONCLUSION These data indicate that transection of the spinal cord significantly influences nNOS-IR in neuronal circuitry that underlies the tail-flick reflex activity.
Collapse
Affiliation(s)
- Alexandra Dávidová
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
30
|
Activity-dependent codevelopment of the corticospinal system and target interneurons in the cervical spinal cord. J Neurosci 2009; 29:8816-27. [PMID: 19587289 DOI: 10.1523/jneurosci.0735-09.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Corticospinal tract (CST) connections to spinal interneurons are conserved across species. We identified spinal interneuronal populations targeted by the CST in the cervical enlargement of the cat during development. We focused on the periods before and after laminar refinement of the CST terminations, between weeks 5 and 7. We used immunohistochemistry of choline acetyltransferase (ChAT), calbindin, calretinin, and parvalbumin to mark interneurons. We first compared interneuron marker distribution before and after CST refinement. ChAT interneurons increased, while calbindin interneurons decreased during this period. No significant changes were noted in parvalbumin and calretinin. We next used anterograde labeling to determine whether the CST targets different interneuron populations before and after the refinement period. Before refinement, the CST terminated sparsely where calbindin interneurons were located and spared ChAT interneurons. After refinement, the CST no longer terminated in calbindin-expressing areas but did so where ChAT interneurons were located. Remarkably, early CST terminations were dense where ChAT interneurons later increased in numbers. Finally, we determined whether corticospinal system activity was necessary for the ChAT and calbindin changes. We unilaterally inactivated M1 between weeks 5 and 7 by muscimol infusion. Inactivation resulted in a distribution of calbindin and ChAT in spinal gray matter regions where the CST terminates that resembled the immature more than mature pattern. Our results show that the CST plays a crucial role in restructuring spinal motor circuits during development, possibly through trophic support, and provide strong evidence for the importance of connections with key spinal interneuron populations in development of motor control functions.
Collapse
|
31
|
Nibe K, Nakayama H, Uchida K. Immunohistochemical Features of Dystrophic Axons in Papillon Dogs with Neuroaxonal Dystrophy. Vet Pathol 2009; 46:474-83. [DOI: 10.1354/vp.08-vp-0156-u-fl] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The immunohistochemical features of dystrophic axons in brain tissues of Papillon dogs with neuroaxonal dystrophy (NAD) were examined in comparison with 1 dog with cerebellar cortical abiotrophy (CCA) and a dog without neurologic signs. Histologically, many dystrophic axons were observed throughout the central nervous system of all dogs with NAD. These axonal changes were absent in the dog with CCA and in the control dog. Severe Purkinje cell loss was found in the dog with CCA, whereas the lesions were milder in all dogs with NAD. Immunohistochemically, the many dystrophic axons were positive for neurofilaments, tau, α/β-synuclein, HSP70, ubiquitin, synaptophysin, syntaxin-1, and synaptosomal-associated protein-25 (SNAP-25). A few dystrophic axons were positive for α-synuclein. In addition, these dystrophic axons, especially in the nucleus gracilis, cuneatus, olivaris, and spinal tract of the trigeminal nerve, were intensely immunopositive for the 3 calcium-binding proteins calretinin, calbindin, and parvalbumin. The accumulation of synapse-associated proteins in the dystrophic axons may indicate dysfunction of the synapse at the presynaptic portion. The accumulation of α-synuclein in the dystrophic axon and region-specific appearance of calcium-binding protein-positive spheroids are considered as unique features in NAD of Papillon dogs, providing the key to elucidate the pathogenesis.
Collapse
Affiliation(s)
- K. Nibe
- Division of the Project for Zoonosis Education and Research, University of Miyazaki, Miyazaki 889-2199
| | - H. Nakayama
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - K. Uchida
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
32
|
Chang IY, Kim SW, Lee KJ, Yoon SP. Calbindin D-28k, Parvalbumin and Calcitonin Gene-Related Peptide Immunoreactivity in the Canine Spinal Cord. Anat Histol Embryol 2008; 37:446-51. [DOI: 10.1111/j.1439-0264.2008.00879.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Boros C, Lukácsi E, Horváth-Oszwald E, Réthelyi M. Neurochemical architecture of the filum terminale in the rat. Brain Res 2008; 1209:105-14. [DOI: 10.1016/j.brainres.2008.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 02/04/2008] [Accepted: 02/05/2008] [Indexed: 11/16/2022]
|
34
|
Anelli R, Sanelli L, Bennett DJ, Heckman CJ. Expression of L-type calcium channel alpha(1)-1.2 and alpha(1)-1.3 subunits on rat sacral motoneurons following chronic spinal cord injury. Neuroscience 2007; 145:751-63. [PMID: 17291691 DOI: 10.1016/j.neuroscience.2006.12.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 12/10/2006] [Accepted: 12/11/2006] [Indexed: 12/22/2022]
Abstract
In the presence of the monoamines serotonin and norepinephrine, motoneurons readily generate large persistent inward currents (PICs). The resulting plateau potentials amplify and sustain motor output. Monoaminergic input to the cord originates in the brainstem and the sharp reduction in monoamine levels that occurs following acute spinal cord injury greatly decreases motoneuron excitability. However, recent studies in the adult sacral cord of the rat have shown that motoneurons reacquire the ability to generate PICs and plateau potentials within 1-2 months following spinal transection. Ca(v)1.3 L-type calcium channels are involved in generating PICs in both healthy and injured animals. Additionally, expression of Ca(v)1.2 and Ca(v)1.3 L-type calcium channels is altered in several pathological conditions. Therefore, in this paper we analyzed the expression of L-type calcium channel alpha(1) subunits within the motoneuron pool following a complete transection of the spinal cord at the level of the sacral vertebra (S)2 segment. The analysis was done both caudally (S4 segment) and rostrally [thoracic vertebra (T)6 segment] from the injury site. The S4 segment was significantly reduced in diameter when compared with control animals, and this reduction was more evident in the white matter. Ca(v)1.2 alpha(1) subunit expression significantly increased (26%) in the motoneuron pool located caudally but not rostrally from the injury site. In contrast, the expression of Ca(v)1.3 alpha(1) subunit remained unchanged in both S4 and T6 segments. The differential expression of the two alpha(1) subunits in spinal injury suggests that Ca(v)1.2 and Ca(v)1.3 channels have different functions in neuronal adaptation following spinal cord injury.
Collapse
Affiliation(s)
- R Anelli
- Department of Physiology, Northwestern University Feinberg School of Medicine, Morton 5-666, 303 East Chicago Avenue (M211), Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
35
|
Zhang M, Møller M, Broman J, Sukiasyan N, Wienecke J, Hultborn H. Expression of calcium channel CaV1.3 in cat spinal cord: Light and electron microscopic immunohistochemical study. J Comp Neurol 2007; 507:1109-27. [DOI: 10.1002/cne.21595] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|