1
|
Hasan AM, Cavalu S, Kira AY, Hamad RS, Abdel-Reheim MA, Elmorsy EA, El-kott AF, Morsy K, AlSheri AS, Negm S, Saber S. Localized Drug Delivery in Different Gastrointestinal Cancers: Navigating Challenges and Advancing Nanotechnological Solutions. Int J Nanomedicine 2025; 20:741-770. [PMID: 39845772 PMCID: PMC11752831 DOI: 10.2147/ijn.s502833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Different types of cancers affect the gastrointestinal tract (GIT), starting from the oral cavity and extending to the colon. In general, most of the current research focuses on the systemic delivery of the therapeutic agents, which leads to undesired side effects and a limited enhancement in the therapeutic outcomes. As a result, localized delivery within gastrointestinal (GI) cancers is favorable in overcoming these limitations. However, the localized delivery via oral administration faces many challenges related to the complex structure of GIT (varied pH levels and transit times) as well as the harsh environment within tumor cells (hypoxia, efflux pumps, and acidity). To overcome these obstacles, nano-drug delivery systems (NDDs) have been designed and proved their potential by exploiting these challenges in favor of offering a specific delivery to the desired target. The current review begins with an overview of different GI cancers and their impact globally. Then, it discusses the current treatment approaches and their corresponding limitations. Additionally, the different challenges associated with localized drug delivery for GI cancers are summarized. Finally, the review discusses in detail the recent therapeutic and diagnostic applications of NDDs that have been conducted in oral, esophageal, gastric, colon, and liver cancers, aiming to offer valuable insights into the current and future state of utilizing NDDs for the local treatment of GI cancers.
Collapse
Affiliation(s)
- Alexandru Madalin Hasan
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, 410087, Romania
| | - Simona Cavalu
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, 410087, Romania
| | - Ahmed Y Kira
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Attalla F El-kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ali S AlSheri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sally Negm
- Department of Life Sciences, College of Science and Art, Mahyel Aseer, King Khalid University, Abha, 62529, Saudi Arabia
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| |
Collapse
|
2
|
Tobón YNF, Herrera-Ramírez A, Cardona-Galeano W, Mesa M. Correlations between in vitro gastrointestinal digestion of β-galactosidase/carboxymethylchitosan-silica dosage powder and its physicochemical properties. Int J Biol Macromol 2024; 279:135106. [PMID: 39197611 DOI: 10.1016/j.ijbiomac.2024.135106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Oral administration of β-galactosidase, which alleviate lactose intolerance symptoms, is challenging due to its instability throughout the gastrointestinal tract. The objective of this work was to make correlations between the in-vitro digestion and chemical characteristics of a β-galactosidase/carboxymethylchitosan-silica biocatalyst powder. This was obtained by a one-pot silica gel route assisted by carboxymethyl chitosan, using maltose as lyoprotectant. The chemical characterization allowed to understand as was modulated the calcium incorporation, through electrostatic interactions and as maltose protects the enzyme from agglomeration, by vitrification and formation of hydrogen bonds. The formulated biocatalyst could be a complement of silicon and calcium, in turn, it preserves 96 % and 63 % of the enzymatic activity compared with the biocatalyst control (without simulated digestion), in the gastric and intestinal phases, respectively. This activity was even greater than that observed in the commercial products evaluated in these phases. Likewise, the biocatalyst obtained retained its activity after 12 months of storage at 25 °C and it did not present cytotoxicity in cells derived from human colon epithelial mucosa (NCM460) under the conditions and concentrations evaluated. These results make this biocatalyst in an excellent candidate for release of this enzyme. Therefore, it could be useful for lactose-intolerant people.
Collapse
Affiliation(s)
| | | | | | - M Mesa
- Materials Science Group, Colombia
| |
Collapse
|
3
|
Chebykin YS, Musin EV, Kim AL, Tikhonenko SA. Encapsulation of β-Galactosidase into Polyallylamine/Polystyrene Sulphonate Polyelectrolyte Microcapsules. Int J Mol Sci 2024; 25:10978. [PMID: 39456759 PMCID: PMC11507378 DOI: 10.3390/ijms252010978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
More than half of the global population is unable to consume dairy products due to lactose intolerance (hypolactasia). Current enzyme replacement therapy methods are insufficiently effective as a therapeutic approach to treating lactose intolerance. The encapsulation of β-galactosidase in polyelectrolyte microcapsules by using the layer-by-layer method could be a possible solution to this problem. In this study, adsorption and co-precipitation methods were employed for encapsulating β-galactosidase in polyelectrolyte microcapsules composed of (polyallylamine /polystyrene sulphonate)₃. As a result, the co-precipitation method was chosen for β-galactosidase encapsulation. The adsorption method permits to encapsulate six times less enzyme compared with the co-precipitation method; the β-galactosidase encapsulated via the co-precipitation method released no more than 20% of the initially encapsulated enzyme in pH 2 or 1 M NaCl solutions. In contrast, when using the sorption method, about 100% of the initially encapsulated enzyme was released from the microcapsules under the conditions described above. The co-precipitation method effectively prevents the complete loss of enzyme activity after 2 h of incubation in a solution with pH 2 while also alleviating the adverse effects of ionic strength. Consequently, the encapsulated form of β-galactosidase shows promise as a potential therapeutic agent for enzyme replacement therapy in the treatment of hypolactasia.
Collapse
Affiliation(s)
| | | | | | - Sergey A. Tikhonenko
- Institute of Theoretical and Experimental Biophysics Russian Academy of Science, Institutskaya St., 3, 142290 Puschino, Moscow Region, Russia; (Y.S.C.); (E.V.M.); (A.L.K.)
| |
Collapse
|
4
|
Torres-Herrero B, Armenia I, Ortiz C, de la Fuente JM, Betancor L, Grazú V. Opportunities for nanomaterials in enzyme therapy. J Control Release 2024; 372:619-647. [PMID: 38909702 DOI: 10.1016/j.jconrel.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
In recent years, enzyme therapy strategies have rapidly evolved to catalyze essential biochemical reactions with therapeutic potential. These approaches hold particular promise in addressing rare genetic disorders, cancer treatment, neurodegenerative conditions, wound healing, inflammation management, and infectious disease control, among others. There are several primary reasons for the utilization of enzymes as therapeutics: their substrate specificity, their biological compatibility, and their ability to generate a high number of product molecules per enzyme unit. These features have encouraged their application in enzyme replacement therapy where the enzyme serves as the therapeutic agent to rectify abnormal metabolic and physiological processes, enzyme prodrug therapy where the enzyme initiates a clinical effect by activating prodrugs, and enzyme dynamic or starving therapy where the enzyme acts upon host substrate molecules. Currently, there are >20 commercialized products based on therapeutic enzymes, but approval rates are considerably lower than other biologicals. This has stimulated nanobiotechnology in the last years to develop nanoparticle-based solutions that integrate therapeutic enzymes. This approach aims to enhance stability, prevent rapid clearance, reduce immunogenicity, and even enable spatio-temporal activation of the therapeutic catalyst. This comprehensive review delves into emerging trends in the application of therapeutic enzymes, with a particular emphasis on the synergistic opportunities presented by incorporating enzymes into nanomaterials. Such integration holds the promise of enhancing existing therapies or even paving the way for innovative nanotherapeutic approaches.
Collapse
Affiliation(s)
- Beatriz Torres-Herrero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Cecilia Ortiz
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Jesús Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Valeria Grazú
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
5
|
Han Y, Spicer J, Huang Y, Bunt C, Liu M, Wen J. Advancements in oral insulin: A century of research and the emergence of targeted nanoparticle strategies. EUR J LIPID SCI TECH 2024; 126. [DOI: 10.1002/ejlt.202300271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 01/03/2025]
Abstract
AbstractWith the growing prevalence of diabetes, there is an urgent demand for a user‐friendly treatment option that minimizes side effects related to the use of subcutaneous injections. Scientists have dedicated over a century to developing an oral dosage form of insulin that can be administrated orally. The oral route of administration is the most desirable route for regularly dosed drugs in terms of safety and patient compliance. However, oral delivery of insulin remains a formidable challenge due to its intrinsically limited ability to cross the intestinal epithelium membrane and susceptibility to enzymatic degradation. This article reviews oral insulin research over the past decade, with a particular focus on surface modifications of nanoparticles (NPs). Various strategies involving controlling surface charges, utilizing protective proteins, and targeting specific receptors with ligands have been explored. Notably, surface modifications of the NPs for targeting specific intestinal receptors have shown promise in enhancing insulin oral absorption and bioavailability. Advanced technologies such as oral microneedles and gene therapy have also been developed, but their safety requires further assessment. Despite encouraging preclinical results across numerous strategies, the current clinical evidence is less optimistic. In summary, the present findings highlight the substantial journey that still lies ahead before achieving successful oral delivery of insulin.Practical Applications: This review provides a summary of recent progress in oral insulin delivery, particularly highlighting surface‐modified functional nanoparticles serving as an effective drug delivery system, which offers valuable information to the researchers. Due to the limited effectiveness of oral protein drugs caused by biological barriers, innovative technologies and drug delivery systems have been developed to overcome these obstacles and achieve therapeutic goals. This review concluded that surface modifications to nanoparticles can improve insulin stability and permeability, thereby enhancing oral bioavailability. It could assist researchers in developing more effective and patient‐friendly oral drug delivery systems.
Collapse
Affiliation(s)
- Yue Han
- School of Pharmacy Faculty of Medical and Health Sciences The University of Auckland Auckland New Zealand
| | - Julie Spicer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland Auckland New Zealand
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery, West China School of Pharmacy, Sichuan University Chengdu China
| | - Craig Bunt
- The Department of Food Science University of Otago Dunedin New Zealand
| | - Mengyang Liu
- School of Pharmacy Faculty of Medical and Health Sciences The University of Auckland Auckland New Zealand
| | - Jingyuan Wen
- School of Pharmacy Faculty of Medical and Health Sciences The University of Auckland Auckland New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland Auckland New Zealand
| |
Collapse
|
6
|
Fraile-Gutiérrez I, Iglesias S, Acosta N, Revuelta J. Chitosan-based oral hydrogel formulations of β-galactosidase to improve enzyme supplementation therapy for lactose intolerance. Int J Biol Macromol 2024; 255:127755. [PMID: 37935291 DOI: 10.1016/j.ijbiomac.2023.127755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023]
Abstract
β-Galactosidase supplementation plays an important role in the life of people with lactose intolerance. However, these formulations are rendered ineffective by the low pH and pepsin in the stomach and pancreatic proteases in the intestine. Therefore, it is necessary to develop oral transport systems for carrying this enzyme in the active form up to the intestine, where the lactose digestion occurs. In this research, a new hydrogel was developed that could potentially be used for enzyme supplement therapy. In this regard, the chitosan-based β-Gal formulations described in the manuscript are an alternative long-acting preparation to the so far available preparations that allow for enzyme protection and mucosal targeting. These hydrogels were prepared from chitosan and polyethylene glycol and contained a covalently immobilized β-galactosidase from Aspergillus oryzae. The β-galactosidase in the hydrogel was protected from degradation in a gastric medium at a pH of 2.5 and retained 75 % of its original activity under subsequent intestinal conditions. In the case of a simulated gastric fluid with a pH of 1.5, a copolymer containing methacrylic acid functional groups was sufficient to protect the hybrid hydrogel from the extremely acidic pH. In addition, the surface of the hydrogel was chemically modified with thiol and amidine groups, which increased the binding to intestinal mucin by 20 % compared with the unmodified hydrogel. These results represent a promising approach for oral transport as a reservoir for β-galactosidase in the small intestine to reduce the symptoms of hypolactasia.
Collapse
Affiliation(s)
- Isabel Fraile-Gutiérrez
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; Infiqus, S.L. Instituto de Estudios Biofuncionales - UCM, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Susana Iglesias
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Niuris Acosta
- Infiqus, S.L. Instituto de Estudios Biofuncionales - UCM, Paseo Juan XXIII 1, 28040 Madrid, Spain; Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain.
| | - Julia Revuelta
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
7
|
Yang W, Ma Y, Xu H, Zhu Z, Wu J, Xu C, Sun W, Zhao E, Wang M, Reis RL, Kundu SC, Shi X, Xiao B. Mulberry Biomass-Derived Nanomedicines Mitigate Colitis through Improved Inflamed Mucosa Accumulation and Intestinal Microenvironment Modulation. RESEARCH (WASHINGTON, D.C.) 2023; 6:0188. [PMID: 37426473 PMCID: PMC10328391 DOI: 10.34133/research.0188] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
The therapeutic outcomes of conventional oral medications against ulcerative colitis (UC) are restricted by inefficient drug delivery to the colitis mucosa and weak capacity to modulate the inflammatory microenvironment. Herein, a fluorinated pluronic (FP127) was synthesized and employed to functionalize the surface of mulberry leaf-derived nanoparticles (MLNs) loading with resveratrol nanocrystals (RNs). The obtained FP127@RN-MLNs possessed exosome-like morphologies, desirable particle sizes (around 171.4 nm), and negatively charged surfaces (-14.8 mV). The introduction of FP127 to RN-MLNs greatly improved their stability in the colon and promoted their mucus infiltration and mucosal penetration capacities due to the unique fluorine effect. These MLNs could efficiently be internalized by colon epithelial cells and macrophages, reconstruct disrupted epithelial barriers, alleviate oxidative stress, provoke macrophage polarization to M2 phenotype, and down-regulate inflammatory responses. Importantly, in vivo studies based on chronic and acute UC mouse models demonstrated that oral administration of chitosan/alginate hydrogel-embedding FP127@RN-MLNs achieved substantially improved therapeutic efficacies compared with nonfluorinated MLNs and a first-line UC drug (dexamethasone), as evidenced by decreased colonic and systemic inflammation, integrated colonic tight junctions, and intestinal microbiota balance. This study brings new insights into the facile construction of a natural, versatile nanoplatform for oral treatment of UC without adverse effects.
Collapse
Affiliation(s)
- Wenjing Yang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Faculty of Materials and Energy,
Southwest University, Chongqing 400715, China
| | - Ya Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Haiting Xu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Zhenhua Zhu
- Department of Gastroenterology,
The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiaxue Wu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Cheng Xu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Wei Sun
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Min Wang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Faculty of Materials and Energy,
Southwest University, Chongqing 400715, China
| | - Rui L. Reis
- 3Bs Research Group, I3Bs — Research Institute on Biomaterials, Biodegradables and Biomimetics,
University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C. Kundu
- 3Bs Research Group, I3Bs — Research Institute on Biomaterials, Biodegradables and Biomimetics,
University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Xiaoxiao Shi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Kommineni N, Sainaga Jyothi VGS, Butreddy A, Raju S, Shapira T, Khan W, Angsantikul P, Domb AJ. SNAC for Enhanced Oral Bioavailability: An Updated Review. Pharm Res 2023; 40:633-650. [PMID: 36539668 DOI: 10.1007/s11095-022-03459-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
The delivery of proteins and peptides via an oral route poses numerous challenges to improve the oral bioavailability and patient compliance. To overcome these challenges, as well as to improve the permeation of proteins and peptides via intestinal mucosa, several chemicals have been studied such as surfactants, fatty acids, bile salts, pH modifiers, and chelating agents, amongst these medium chain fatty acid like C10 (sodium caprate) and Sodium N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC) and its derivatives that have been well studied from a clinical perspective. This current review enumerates the challenges involved in protein and peptide delivery via the oral route, i.e., non-invasive routes of protein and peptide administration. This review also covers the chemistry behind SNAC and toxicity as well as mechanisms to enhance the oral delivery of clinically proven molecules like simaglutide and other small molecules under clinical development, as well as other permeation enhancers for efficient delivery of proteins and peptides.
Collapse
Affiliation(s)
- Nagavendra Kommineni
- Center for Biomedical Research, Population Council, New York, NY, 10065, USA.
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| | - Vaskuri G S Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS, 38677, USA
| | - Saka Raju
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Tovi Shapira
- School of Pharmacy and Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical Center, Ein Kerem Campus, 91120, Jerusalem, Israel
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
- Natco Research Centre, NATCO Pharma Limited, Hyderabad, 500018, India
| | - Pavimol Angsantikul
- Center for Biomedical Research, Population Council, New York, NY, 10065, USA
| | - Abraham J Domb
- School of Pharmacy and Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical Center, Ein Kerem Campus, 91120, Jerusalem, Israel.
| |
Collapse
|
9
|
Pharmaceutical Coating and Its Different Approaches, a Review. Polymers (Basel) 2022; 14:polym14163318. [PMID: 36015575 PMCID: PMC9415771 DOI: 10.3390/polym14163318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022] Open
Abstract
Coating the solid dosage form, such as tablets, is considered common, but it is a critical process that provides different characteristics to tablets. It increases the value of solid dosage form, administered orally, and thus meets diverse clinical requirements. As tablet coating is a process driven by technology, it relies on advancements in coating techniques, equipment used for the coating process, evaluation of coated tablets, and coated material used. Although different techniques were employed for coating purposes, which may be based on the use of solvents or solvent-free, each of the methods used has its advantages and disadvantages, and the techniques need continued modification too. During the process of film coating, several inter-and intra-batch uniformity of coated material on the tablets is considered a critical point that ensures the worth of the final product, particularly for those drugs that contain an active medicament in the coating layer. Meanwhile, computational modeling and experimental evaluation were actively used to predict the impact of the operational parameters on the final product quality and optimize the variables in tablet coating. The efforts produced by computational modeling or experimental evaluation not only save cost in optimizing the coating process but also saves time. This review delivers a brief review on film coating in solid dosage form, which includes tablets, with a focus on the polymers and processes used in the coating. At the end, some pharmaceutical applications were also discussed.
Collapse
|
10
|
Dahal A, Parajuli P, Singh SS, Shrestha L, Sonju JJ, Shrestha P, Chatzistamou I, Jois S. Targeting protein–protein interaction for immunomodulation: A sunflower trypsin inhibitor analog peptidomimetic suppresses RA progression in CIA model. J Pharmacol Sci 2022; 149:124-138. [PMID: 35641025 PMCID: PMC9208026 DOI: 10.1016/j.jphs.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
Protein–protein interactions (PPI) of co-stimulatory molecules CD2-CD58 are important in the early stage of an immune response, and increased expression of these co-stimulatory molecules is observed in the synovial region of joints in rheumatoid arthritis (RA) patients. A CD2 epitope region that binds to CD58 was grafted on to sunflower trypsin inhibitor (SFTI) template structure to inhibit CD2-CD58 PPI. The peptide was incorporated with an organic moiety dibenzofuran (DBF) in its structure. The designed peptidomimetic was studied for its ability to inhibit CD2-CD58 interactions in vitro, and its thermal and enzymatic stability was evaluated. Stability studies indicated that the grafted peptidomimetic was stable against trypsin cleavage. In vivo studies using the collagen-induced arthritis (CIA) model in mice indicated that the peptidomimetic was able to slow down the progress of arthritis, an autoimmune disease in the mice model. These studies suggest that with the grafting of organic functional groups in the stable peptide template SFTI stabilizes the peptide structure, and these peptides can be used as a template to design stable peptides for therapeutic purposes.
Collapse
Affiliation(s)
- Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Pravin Parajuli
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Leeza Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Prajesh Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology & Immunology (PMI), School of Medicine, USC, SC 6439 Garners Ferry Rd, Columbia, SC, 29208, USA
| | - Seetharama Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA.
| |
Collapse
|
11
|
Won C, Kwon C, Park K, Seo J, Lee T. Electronic Drugs: Spatial and Temporal Medical Treatment of Human Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005930. [PMID: 33938022 DOI: 10.1002/adma.202005930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Recent advances in diagnostics and medicines emphasize the spatial and temporal aspects of monitoring and treating diseases. However, conventional therapeutics, including oral administration and injection, have difficulties meeting these aspects due to physiological and technological limitations, such as long-term implantation and a narrow therapeutic window. As an innovative approach to overcome these limitations, electronic devices known as electronic drugs (e-drugs) have been developed to monitor real-time body signals and deliver specific treatments to targeted tissues or organs. For example, ingestible and patch-type e-drugs could detect changes in biomarkers at the target sites, including the gastrointestinal (GI) tract and the skin, and deliver therapeutics to enhance healing in a spatiotemporal manner. However, medical treatments often require invasive surgical procedures and implantation of medical equipment for either short or long-term use. Therefore, approaches that could minimize implantation-associated side effects, such as inflammation and scar tissue formation, while maintaining high functionality of e-drugs, are highly needed. Herein, the importance of the spatial and temporal aspects of medical treatment is thoroughly reviewed along with how e-drugs use cutting-edge technological innovations to deal with unresolved medical challenges. Furthermore, diverse uses of e-drugs in clinical applications and the future perspectives of e-drugs are discussed.
Collapse
Affiliation(s)
- Chihyeong Won
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chaebeen Kwon
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kijun Park
- Biological Interfaces and Sensor Systems Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jungmok Seo
- Biological Interfaces and Sensor Systems Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taeyoon Lee
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
12
|
Zhu Q, Chen Z, Paul PK, Lu Y, Wu W, Qi J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm Sin B 2021; 11:2416-2448. [PMID: 34522593 PMCID: PMC8424290 DOI: 10.1016/j.apsb.2021.04.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Proteins and peptides (PPs) have gradually become more attractive therapeutic molecules than small molecular drugs due to their high selectivity and efficacy, but fewer side effects. Owing to the poor stability and limited permeability through gastrointestinal (GI) tract and epithelia, the therapeutic PPs are usually administered by parenteral route. Given the big demand for oral administration in clinical use, a variety of researches focused on developing new technologies to overcome GI barriers of PPs, such as enteric coating, enzyme inhibitors, permeation enhancers, nanoparticles, as well as intestinal microdevices. Some new technologies have been developed under clinical trials and even on the market. This review summarizes the history, the physiological barriers and the overcoming approaches, current clinical and preclinical technologies, and future prospects of oral delivery of PPs.
Collapse
Key Words
- ASBT, apical sodium-dependent bile acid transporter
- BSA, bovine serum albumin
- CAGR, compound annual growth
- CD, Crohn's disease
- COPD, chronic obstructive pulmonary disease
- CPP, cell penetrating peptide
- CaP, calcium phosphate
- Clinical
- DCs, dendritic cells
- DDVAP, desmopressin acetate
- DTPA, diethylene triamine pentaacetic acid
- EDTA, ethylene diamine tetraacetic acid
- EPD, empirical phase diagrams
- EPR, electron paramagnetic resonance
- Enzyme inhibitor
- FA, folic acid
- FDA, U.S. Food and Drug Administration
- FcRn, Fc receptor
- GALT, gut-associated lymphoid tissue
- GI, gastrointestinal
- GIPET, gastrointestinal permeation enhancement technology
- GLP-1, glucagon-like peptide 1
- GRAS, generally recognized as safe
- HBsAg, hepatitis B surface antigen
- HPMCP, hydroxypropyl methylcellulose phthalate
- IBD, inflammatory bowel disease
- ILs, ionic liquids
- LBNs, lipid-based nanoparticles
- LMWP, low molecular weight protamine
- MCT-1, monocarborxylate transporter 1
- MSNs, mesoporous silica nanoparticles
- NAC, N-acetyl-l-cysteine
- NLCs, nanostructured lipid carriers
- Oral delivery
- PAA, polyacrylic acid
- PBPK, physiologically based pharmacokinetics
- PCA, principal component analysis
- PCL, polycarprolacton
- PGA, poly-γ-glutamic acid
- PLA, poly(latic acid)
- PLGA, poly(lactic-co-glycolic acid)
- PPs, proteins and peptides
- PVA, poly vinyl alcohol
- Peptides
- Permeation enhancer
- Proteins
- RGD, Arg-Gly-Asp
- RTILs, room temperature ionic liquids
- SAR, structure–activity relationship
- SDC, sodium deoxycholate
- SGC, sodium glycocholate
- SGF, simulated gastric fluids
- SIF, simulated intestinal fluids
- SLNs, solid lipid nanoparticles
- SNAC, sodium N-[8-(2-hydroxybenzoyl)amino]caprylate
- SNEDDS, self-nanoemulsifying drug delivery systems
- STC, sodium taurocholate
- Stability
- TAT, trans-activating transcriptional peptide
- TMC, N-trimethyl chitosan
- Tf, transferrin
- TfR, transferrin receptors
- UC, ulcerative colitis
- UEA1, ulex europaeus agglutinin 1
- VB12, vitamin B12
- WGA, wheat germ agglutinin
- pHPMA, N-(2-hydroxypropyl)methacrylamide
- pI, isoelectric point
- sCT, salmon calcitonin
- sc, subcutaneous
Collapse
Affiliation(s)
- Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Pijush Kumar Paul
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Department of Pharmacy, Gono Bishwabidyalay (University), Mirzanagar Savar, Dhaka 1344, Bangladesh
| | - Yi Lu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
13
|
Design of Catalase Monolithic Tablets for Intestinal Targeted Delivery. Pharmaceutics 2021; 13:pharmaceutics13010069. [PMID: 33430270 PMCID: PMC7825700 DOI: 10.3390/pharmaceutics13010069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 01/29/2023] Open
Abstract
Several studies confirmed a correlation between elevated hydrogen peroxide (H2O2) levels in patients with intestinal bowel diseases (IBD) and the negative effects caused by its presence. The objective of this study was to explore the potential use of catalase (CAT) to diminish the level of H2O2 and its deleterious action on intestinal mucosa. Oral dosage forms of a CAT bioactive agent targeted to the intestines were designed and tested in various simulated gastric and intestinal media. Monolithic tablets (30% loading) were prepared using commercial CarboxyMethylCellulose (CMC) or synthesized CarboxyMethylStarch (CMS) and TriMethylAmineCarboxyMethylStarch (TMACMS) as matrix-forming excipients. For starch derivatives, the presence of the ionic groups (carboxymethyl and trimethylamine) was validated by spectral analysis. In vitro studies have shown that tablets formulated with TMACMS and 30% CAT resisted the acidity of the simulated gastric fluid and gradually released the enzyme into the simulated intestinal fluid. The investigation of the CAT release mechanism revealed the role of anionic and cationic groups of polymeric excipients and their involvement in the modulation of the CAT dissolution profile. The proposed drug delivery system can be considered an efficient solution to target CAT release in the intestine and contribute to the reduction of H2O2 associated with intestinal inflammation.
Collapse
|
14
|
Carvalho CTD, Lima WBDB, de Medeiros FGM, Dantas JMDM, de Araújo Padilha CE, Dos Santos ES, de Macêdo GR, de Sousa Júnior FC. Lactose hydrolysis using β-galactosidase from Kluyveromyces lactis immobilized with sodium alginate for potential industrial applications. Prep Biochem Biotechnol 2020; 51:714-722. [PMID: 33287624 DOI: 10.1080/10826068.2020.1853157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The present study aimed to evaluate the lactose hydrolysis conditions from "coalho" cheese whey using β-galactosidase (β-gal) produced by Kluyveromyces lactis immobilized with sodium alginate. Three sodium alginate-based immobilization systems were evaluated (0.5, 0.7, and 1% w/v) for maximizing the immobilization yield (Y), efficiency (EM), and recovered activity (ar). The lactose hydrolysis capacity of the immobilized form of β-gal was determined, and simulated environments were used to assess the preservation of the immobilized enzyme in the gastrointestinal tract. The results showed that β-gal immobilization with 1% (w/v) sodium alginate presented the best results (EM of 66%, Y of 41%, and ar of 65%). The immobilization system maintained the highest pH stability in the range between 5.0 and 7.0, with the highest relative activity obtained under pH 5 conditions. The temperature stability was also favored by immobilization at 50 °C for 30 min was obtained a relative activity of 180.0 ± 1.37%. In 6 h, the immobilized β-gal was able to hydrolyze 46% of the initial lactose content. For the gastrointestinal simulations, around 40% of the activity was preserved after 2 h. Overall, the results described here are promising for the industrial applications of β-galactosidase from K. lactis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gorete Ribeiro de Macêdo
- Department of Chemical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | | |
Collapse
|
15
|
Facile preparation of succinylated-zein-ZIF-8 hybrid for enhanced stability and pH-responsive drug delivery. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115981] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Seo KS, Bajracharya R, Lee SH, Han HK. Pharmaceutical Application of Tablet Film Coating. Pharmaceutics 2020; 12:pharmaceutics12090853. [PMID: 32911720 PMCID: PMC7558083 DOI: 10.3390/pharmaceutics12090853] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 12/27/2022] Open
Abstract
Tablet film coating is a common but critical process providing various functionalities to tablets, thereby meeting diverse clinical needs and increasing the value of oral solid dosage forms. Tablet film coating is a technology-driven process and the evolution of coated dosage forms relies on advancements in coating technology, equipment, analytical techniques, and coating materials. Although multiple coating techniques are developed for solvent-based or solvent-free coating processes, each method has advantages and disadvantages that may require continuous technical refinement. In the film coating process, intra- and inter-batch coating uniformity of tablets is critical to ensure the quality of the final product, especially for active film coating containing active pharmaceutical ingredients in the coating layer. In addition to experimental evaluation, computational modeling is also actively pursued to predict the influence of operation parameters on the quality of the final product and optimize process variables of tablet film coating. The concerted efforts of experiments and computational modeling can save time and cost in optimizing the tablet coating process. This review provides a brief overview of tablet film coating technology and modeling approaches with a focus on recent advancements in pharmaceutical applications.
Collapse
Affiliation(s)
- Ki-Soo Seo
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Korea; (K.-S.S.); (R.B.); (S.H.L.)
- Research Institute, Dong Wha Pharm., Tapsil-ro-35, Giheung-gu, Yongin 17084, Korea
| | - Rajiv Bajracharya
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Korea; (K.-S.S.); (R.B.); (S.H.L.)
| | - Sang Hoon Lee
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Korea; (K.-S.S.); (R.B.); (S.H.L.)
| | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Korea; (K.-S.S.); (R.B.); (S.H.L.)
- Correspondence: ; Tel.: +82-31-961-5217; Fax: +82-31-961-5206
| |
Collapse
|
17
|
A microparticulate based formulation to protect therapeutic enzymes from proteolytic digestion: phenylalanine ammonia lyase as case study. Sci Rep 2020; 10:3651. [PMID: 32107425 PMCID: PMC7046617 DOI: 10.1038/s41598-020-60463-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/10/2020] [Indexed: 11/08/2022] Open
Abstract
AbstractPhenylketonuria is a genetic disorder affecting the metabolism of phenylalanine (phe) due to a deficiency in the enzyme phenylalanine hydroxylase. This disorder is characterized by an elevated phe blood level, which can lead to severe intellectual disabilities in newborns. The current strategy to prevent these devastating consequences is limited to a life-long phe-free diet, which implies major lifestyle changes and restrictions. Recently, an injectable enzyme replacement therapy, Pegvaliase, has been approved for treating phenylketonuria, but is associated with significant side-effects. In this study a phe-metabolizing system suitable for oral delivery is designed to overcome the need for daily injections. Active phenylalanine ammonia-lyase (PAL), an enzyme that catalyses phe metabolism, is loaded into mesoporous silica microparticles (MSP) with pore sizes ranging from 10 to 35 nm. The surface of the MSP is lined with a semipermeable barrier to allow permeation of phe while blocking digestive enzymes that degrade PAL. The enzymatic activity can be partially preserved in vitro by coating the MSP with poly(allylamine) and poly(acrylic acid)-bowman birk (protease inhibitor) conjugate. The carrier system presented herein may provide a general approach to overcome gastro-intestinal proteolytic digestion and to deliver active enzymes to the intestinal lumen for prolonged local action.
Collapse
|
18
|
Hegyesi N, Hodosi E, Polyák P, Faludi G, Balogh-Weiser D, Pukánszky B. Controlled degradation of poly-ε-caprolactone for resorbable scaffolds. Colloids Surf B Biointerfaces 2020; 186:110678. [DOI: 10.1016/j.colsurfb.2019.110678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
|
19
|
Ding Y, Wang Q, Liu G, Feng Y, Zhou W. Cholesterol moieties as building blocks for assembling nanoparticles to achieve effective oral delivery of insulin. Biomater Sci 2020; 8:3979-3993. [DOI: 10.1039/d0bm00577k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The amphiphilic cholesterol-phosphate conjugate can fabricate into cholesterol-coated nanoparticles by reverse emulsion method. The nanoparticles generated a rapid-onset and long-lasting hypoglycemic effect following gavage in T1DM rats.
Collapse
Affiliation(s)
- Yu Ding
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Qiaochu Wang
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Guangqu Liu
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Yaqian Feng
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Wei Zhou
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing
- P. R. China
| |
Collapse
|
20
|
Leichner C, Jelkmann M, Prüfert F, Laffleur F, Bernkop-Schnürch A. Intestinal enzyme delivery: Chitosan/tripolyphosphate nanoparticles providing a targeted release behind the mucus gel barrier. Eur J Pharm Biopharm 2019; 144:125-131. [DOI: 10.1016/j.ejpb.2019.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 10/26/2022]
|
21
|
Lapuhs P, Fuhrmann G. Engineering Strategies for Oral Therapeutic Enzymes to Enhance Their Stability and Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:151-172. [PMID: 31482499 DOI: 10.1007/978-981-13-7709-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oral application of therapeutic enzymes is a promising and non-invasive administration that improves patient compliance. However, the gastrointestinal tract poses several challenges to the oral delivery of proteins, including harsh pH conditions and digestive proteases. A promising way to stabilise enzymes during their gastrointestinal route is by modification with polymers that can provide both steric shielding and selective interaction in different digestive compartments. We give an overview of modification technologies for oral enzymes ranging from functionalisation of native proteins, to site-specific mutation and protein-polymer engineering. We specifically focus on enzymes that are active directly in the gastrointestinal lumen and not systemically absorbed. In addition, we discuss examples of microparticle and nanoparticle encapsulated enzymes for improved oral delivery. The modification of orally administered enzymes offers a broad chemical variability and may be a promising tool for enhancing their gastrointestinal stability.
Collapse
Affiliation(s)
- Philipp Lapuhs
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Saarbrücken, Germany
| | - Gregor Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Saarbrücken, Germany. .,Department of Pharmacy, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
22
|
Production and Purification of Therapeutic Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:1-24. [DOI: 10.1007/978-981-13-7709-9_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Ghosh S, Alam S, Rathore AS, Khare SK. Stability of Therapeutic Enzymes: Challenges and Recent Advances. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:131-150. [DOI: 10.1007/978-981-13-7709-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Gracia R, Yus C, Abian O, Mendoza G, Irusta S, Sebastian V, Andreu V, Arruebo M. Enzyme structure and function protection from gastrointestinal degradation using enteric coatings. Int J Biol Macromol 2018; 119:413-422. [DOI: 10.1016/j.ijbiomac.2018.07.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/18/2022]
|
25
|
Bertoni S, Albertini B, Dolci LS, Passerini N. Spray congealed lipid microparticles for the local delivery of β-galactosidase to the small intestine. Eur J Pharm Biopharm 2018; 132:1-10. [PMID: 30176285 DOI: 10.1016/j.ejpb.2018.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 01/02/2023]
Abstract
Oral local delivery of therapeutic biologics is generally limited due to the multiple obstacles of the gastrointestinal (GI) tract, mainly represented by acidic stomach pH and digestive enzymes. In the present study, spray congealing was used to prepare solid lipid microparticles (SLMs) loaded with β-galactosidase (lactase), an enzyme used for the treatment of lactose intolerance, to achieve a local drug delivery to the small intestine. Lactase was characterized in terms of activity at different pH, kinetic parameters and proteolytic degradation by digestive enzymes. Then, five lipid excipients were used to prepare unloaded SLMs, which were tested regarding lipase-induced digestion. The lipid with the best performance (glyceryl trimyristate) was used to prepare lactase-loaded SLMs. Spray congealed SLMs were spherical with very good encapsulation efficiency (>95%). The ability of the SLMs to protect the enzyme from the degradation in gastric environment was correlated with the particle size and the best formulation preserved the lactase activity up to 70%. Lactase was promptly released in simulated intestinal environment, and an in vitro positive food effect was observed. The present study demonstrated the potential of spray congealing for the preparation of solid lipid formulations able to achieve local oral delivery of a biologic drug.
Collapse
Affiliation(s)
- Serena Bertoni
- Department of Pharmacy and BioTechnology, PharmTech Lab, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Beatrice Albertini
- Department of Pharmacy and BioTechnology, PharmTech Lab, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| | - Luisa Stella Dolci
- Department of Pharmacy and BioTechnology, PharmTech Lab, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Nadia Passerini
- Department of Pharmacy and BioTechnology, PharmTech Lab, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| |
Collapse
|
26
|
Frank J, Richter M, de Rossi C, Lehr CM, Fuhrmann K, Fuhrmann G. Extracellular vesicles protect glucuronidase model enzymes during freeze-drying. Sci Rep 2018; 8:12377. [PMID: 30120298 PMCID: PMC6098026 DOI: 10.1038/s41598-018-30786-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are natural nanoparticles that play important roles in intercellular communication and are increasingly studied for biosignalling, pathogenesis and therapy. Nevertheless, little is known about optimal conditions for their transfer and storage, and the potential impact on preserving EV-loaded cargoes. We present the first comprehensive stability assessment of different widely available types of EVs during various storage conditions including -80 °C, 4 °C, room temperature, and freeze-drying (lyophilisation). Lyophilisation of EVs would allow easy handling at room temperature and thus significantly enhance their expanded investigation. A model enzyme, β-glucuronidase, was loaded into different types of EVs derived from mesenchymal stem cells, endothelial cells and cancer cells. Using asymmetric flow field-flow fractionation we proved that the model enzyme is indeed stably encapsulated into EVs. When assessing enzyme activity as indicator for EV stability, and in comparison to liposomes, we show that EVs are intrinsically stable during lyophilisation, an effect further enhanced by cryoprotectants. Our findings provide new insight for exploring lyophilisation as a novel storage modality and we create an important basis for standardised and advanced EV applications in biomedical research.
Collapse
Affiliation(s)
- Julia Frank
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics group (BION), Campus E8.1, 66123, Saarbrücken, Germany
| | - Maximilian Richter
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics group (BION), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Chiara de Rossi
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Drug Delivery (DDEL), Campus E8.1, 66123, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Drug Delivery (DDEL), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Kathrin Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics group (BION), Campus E8.1, 66123, Saarbrücken, Germany
| | - Gregor Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics group (BION), Campus E8.1, 66123, Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany.
| |
Collapse
|
27
|
Affiliation(s)
- Yanjing Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
28
|
Fuhrmann G, Chandrawati R, Parmar PA, Keane TJ, Maynard SA, Bertazzo S, Stevens MM. Engineering Extracellular Vesicles with the Tools of Enzyme Prodrug Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706616. [PMID: 29473230 PMCID: PMC5901706 DOI: 10.1002/adma.201706616] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/14/2017] [Indexed: 05/26/2023]
Abstract
Extracellular vesicles (EVs) have recently gained significant attention as important mediators of intercellular communication, potential drug carriers, and disease biomarkers. These natural cell-derived nanoparticles are postulated to be biocompatible, stable under physiological conditions, and to show reduced immunogenicity as compared to other synthetic nanoparticles. Although initial clinical trials are ongoing, the use of EVs for therapeutic applications may be limited due to undesired off-target activity and potential "dilution effects" upon systemic administration which may affect their ability to reach their target tissues. To fully exploit their therapeutic potential, EVs are embedded into implantable biomaterials designed to achieve local delivery of therapeutics taking advantage of enzyme prodrug therapy (EPT). In this first application of EVs for an EPT approach, EVs are used as smart carriers for stabilizing enzymes in a hydrogel for local controlled conversion of benign prodrugs to active antiinflammatory compounds. It is shown that the natural EVs' antiinflammatory potential is comparable or superior to synthetic carriers, in particular upon repeated long-term incubations and in different macrophage models of inflammation. Moreover, density-dependent color scanning electron microscopy imaging of EVs in a hydrogel is presented herein, an impactful tool for further understanding EVs in biological settings.
Collapse
Affiliation(s)
- Gregor Fuhrmann
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Biogenic Nanotherapeutics Group, Campus E8.1, 66123, Saarbrücken, Germany
| | - Rona Chandrawati
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Paresh A Parmar
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Timothy J Keane
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Stephanie A Maynard
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
29
|
Niu Z, Samaridou E, Jaumain E, Coëne J, Ullio G, Shrestha N, Garcia J, Durán-Lobato M, Tovar S, Santander-Ortega MJ, Lozano MV, Arroyo-Jimenez MM, Ramos-Membrive R, Peñuelas I, Mabondzo A, Préat V, Teixidó M, Giralt E, Alonso MJ. PEG-PGA enveloped octaarginine-peptide nanocomplexes: An oral peptide delivery strategy. J Control Release 2018. [PMID: 29518466 DOI: 10.1016/j.jconrel.2018.03.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The objective of this work was the development of a new drug nanocarrier intended to overcome the barriers associated to the oral modality of administration and to assess its value for the systemic or local delivery of peptides. The nanocarrier was rationally designed taking into account the nature of the intestinal barriers and was loaded with insulin, which was selected as a model peptide. The nanocarrier consisted of a complex between insulin and a hydrophobically-modified cell penetrating peptide (CPP), enveloped by a protecting polymer. The selected CPP was octaarginine (r8), chemically conjugated with cholesterol (Chol) or lauric acid (C12), whereas the protecting polymer was poly (glutamic acid)-poly (ethylene glycol) (PGA-PEG). This enveloping material was intended to preserve the stability of the nanocomplex in the intestinal medium and facilitate its diffusion across the intestinal mucus. The enveloped nanocomplexes (ENCPs) exhibited a number of key features, namely (i) a unimodal size distribution with a mean size of 200 nm and a neutral zeta potential, (ii) the capacity to associate insulin (~100% association efficiency) and protect it from degradation in simulated intestinal fluids, (iii) the ability to diffuse through intestinal mucus and, most importantly, (iv) the capacity to interact with the Caco-2 model epithelium, resulting in a massive insulin cell uptake (47.59 ± 5.79%). This enhanced accumulation of insulin at the epithelial level was not translated into an enhanced insulin transport. In fact, only 2% of insulin was transported across the monolayer, and this was correlated with a moderate response of insulin following oral administration to healthy rats. Despite of this, the accumulation of the insulin-loaded nanocarriers in the intestinal mucosa could be verified in vivo upon their labeling with 99mTc. Overall, these data underline the capacity of the nanocarriers to overcome substantial barriers associated to the oral modality of administration and to facilitate the accumulation of the associated peptide at the intestinal level.
Collapse
Affiliation(s)
- Zhigao Niu
- Center for Research in Molecular Medicine and Chronic Diseases, IDIS research Institute, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eleni Samaridou
- Center for Research in Molecular Medicine and Chronic Diseases, IDIS research Institute, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Emilie Jaumain
- Service de Pharmacologie et d'Immunoanalyse, IBITECS, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Julie Coëne
- Service de Pharmacologie et d'Immunoanalyse, IBITECS, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Gabriela Ullio
- Service de Pharmacologie et d'Immunoanalyse, IBITECS, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Neha Shrestha
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Josep Garcia
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - Matilde Durán-Lobato
- Center for Research in Molecular Medicine and Chronic Diseases, IDIS research Institute, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Sulay Tovar
- Biomedical Research Group, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel J Santander-Ortega
- Cellular Neuroanatomy, Molecular Chemistry of Central Nervous System Group, Faculty of Pharmacy, University of Castilla-La Mancha, 02071 Albacete, Spain; Regional Centre of Biomedical Research (CRIB), University of Castilla-La Mancha, Albacete, Spain
| | - M Victoria Lozano
- Cellular Neuroanatomy, Molecular Chemistry of Central Nervous System Group, Faculty of Pharmacy, University of Castilla-La Mancha, 02071 Albacete, Spain; Regional Centre of Biomedical Research (CRIB), University of Castilla-La Mancha, Albacete, Spain
| | - M Mar Arroyo-Jimenez
- Cellular Neuroanatomy, Molecular Chemistry of Central Nervous System Group, Faculty of Pharmacy, University of Castilla-La Mancha, 02071 Albacete, Spain; Regional Centre of Biomedical Research (CRIB), University of Castilla-La Mancha, Albacete, Spain
| | - Rocío Ramos-Membrive
- Radiopharmacy Unit, Department of Nuclear Medicine, Clínica Universidad de Navarra, University Clinic of Navarra, 31008 Pamplona, Spain
| | - Iván Peñuelas
- Radiopharmacy Unit, Department of Nuclear Medicine, Clínica Universidad de Navarra, University Clinic of Navarra, 31008 Pamplona, Spain
| | - Aloïse Mabondzo
- Service de Pharmacologie et d'Immunoanalyse, IBITECS, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Véronique Préat
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases, IDIS research Institute, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
30
|
Goldsmith M, Tawfik DS. Enzyme engineering: reaching the maximal catalytic efficiency peak. Curr Opin Struct Biol 2017; 47:140-150. [PMID: 29035814 DOI: 10.1016/j.sbi.2017.09.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/04/2017] [Accepted: 09/20/2017] [Indexed: 01/01/2023]
Abstract
The practical need for highly efficient enzymes presents new challenges in enzyme engineering, in particular, the need to improve catalytic turnover (kcat) or efficiency (kcat/KM) by several orders of magnitude. However, optimizing catalysis demands navigation through complex and rugged fitness landscapes, with optimization trajectories often leading to strong diminishing returns and dead-ends. When no further improvements are observed in library screens or selections, it remains unclear whether the maximal catalytic efficiency of the enzyme (the catalytic 'fitness peak') has been reached; or perhaps, an alternative combination of mutations exists that could yield additional improvements. Here, we discuss fundamental aspects of the process of catalytic optimization, and offer practical solutions with respect to overcoming optimization plateaus.
Collapse
Affiliation(s)
- Moshe Goldsmith
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
31
|
Recent advances in oral delivery of macromolecular drugs and benefits of polymer conjugation. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
32
|
Alavi S, Haeri A, Dadashzadeh S. Utilization of chitosan-caged liposomes to push the boundaries of therapeutic delivery. Carbohydr Polym 2017; 157:991-1012. [DOI: 10.1016/j.carbpol.2016.10.063] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 11/25/2022]
|
33
|
Roveri M, Bernasconi M, Leroux JC, Luciani P. Peptides for tumor-specific drug targeting: state of the art and beyond. J Mater Chem B 2017; 5:4348-4364. [DOI: 10.1039/c7tb00318h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review outlines the most recent advances in peptide-mediated tumor-targeting and gives insight into the direction of the field.
Collapse
Affiliation(s)
- Maurizio Roveri
- Institute of Pharmaceutical Sciences
- ETH Zurich
- 8093 Zurich
- Switzerland
- Experimental Infectious Diseases and Cancer Research
| | - Michele Bernasconi
- Experimental Infectious Diseases and Cancer Research
- Children's Research Center
- University Children's Hospital Zurich
- 8032 Zurich
- Switzerland
| | | | - Paola Luciani
- Institute of Pharmacy
- Department of Pharmaceutical Technology
- Friedrich Schiller University
- 07743 Jena
- Germany
| |
Collapse
|
34
|
Oral delivery of macromolecular drugs: Where we are after almost 100years of attempts. Adv Drug Deliv Rev 2016; 101:108-121. [PMID: 26826437 DOI: 10.1016/j.addr.2016.01.010] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/11/2016] [Accepted: 01/18/2016] [Indexed: 02/08/2023]
Abstract
Since the first attempt to administer insulin orally in humans more than 90years ago, the oral delivery of macromolecular drugs (>1000g/mol) has been rather disappointing. Although several clinical pilot studies have demonstrated that the oral absorption of macromolecules is possible, the bioavailability remains generally low and variable. This article reviews the formulations and biopharmaceutical aspects of orally administered biomacromolecules on the market and in clinical development for local and systemic delivery. The most successful approaches for systemic delivery often involve a combination of enteric coating, protease inhibitors and permeation enhancers in relatively high amounts. However, some of these excipients have induced local or systemic adverse reactions in preclinical and clinical studies, and long-term studies are often missing. Therefore, strategies aimed at increasing the oral absorption of macromolecular drugs should carefully take into account the benefit-risk ratio. In the absence of specific uptake pathways, small and potent peptides that are resistant to degradation and that present a large therapeutic window certainly represent the best candidates for systemic absorption. While we acknowledge the need for systemically delivering biomacromolecules, it is our opinion that the oral delivery to local gastrointestinal targets is currently more promising because of their accessibility and the lacking requirement for intestinal permeability enhancement.
Collapse
|
35
|
Schulz JD, Patt M, Basler S, Kries H, Hilvert D, Gauthier MA, Leroux JC. Site-Specific Polymer Conjugation Stabilizes Therapeutic Enzymes in the Gastrointestinal Tract. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1455-1460. [PMID: 26640034 DOI: 10.1002/adma.201504797] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/30/2015] [Indexed: 06/05/2023]
Abstract
The site-specific conjugation of polymers to multiple engineered cysteine residues of a prolyl endopeptidase leads to its stabilization in the gastrointestinal tract of rats, without compromising the activity relative to the native enzyme. The importance of polymer attachment sites is investigated, as well as the significance of polymer structure.
Collapse
Affiliation(s)
- Jessica D Schulz
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), 8093, Zurich, Switzerland
| | - Melanie Patt
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), 8093, Zurich, Switzerland
| | - Sophie Basler
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), 8093, Zurich, Switzerland
| | - Hajo Kries
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, Swiss Federal Institute of Technology Zurich (ETH Zurich), 8093, Zurich, Switzerland
| | - Donald Hilvert
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, Swiss Federal Institute of Technology Zurich (ETH Zurich), 8093, Zurich, Switzerland
| | - Marc A Gauthier
- EMT Research Center, Institut National de la Recherche Scientifique (INRS), J3X 1S2 Varennes, Quebec, Canada
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), 8093, Zurich, Switzerland
| |
Collapse
|
36
|
Schulz JD, Gauthier MA, Leroux JC. Improving oral drug bioavailability with polycations? Eur J Pharm Biopharm 2015; 97:427-37. [DOI: 10.1016/j.ejpb.2015.04.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/30/2015] [Accepted: 04/22/2015] [Indexed: 11/24/2022]
|
37
|
Leonaviciute G, Bernkop-Schnürch A. Self-emulsifying drug delivery systems in oral (poly)peptide drug delivery. Expert Opin Drug Deliv 2015; 12:1703-16. [PMID: 26477549 DOI: 10.1517/17425247.2015.1068287] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Oral administration of most therapeutic peptides and proteins is mainly restricted due to the enzymatic and absorption membrane barrier of the GI tract. In order to overcome these barriers, various technologies have been explored. Among them, self-emulsifying drug delivery systems (SEDDS) received considerable attention as potential carriers to facilitate oral peptide and protein delivery in recent years. AREAS COVERED This review article intends to summarize physiological barriers which limit the bioavailability of orally administrated peptide and protein drugs. Furthermore, the potential of SEDDS to protect incorporated peptides and proteins towards peptidases and proteases and to penetrate the mucus layer is reviewed. Their permeation-enhancing properties and their ability to release the drug in a controlled way are described. Moreover, this review covers the results of in vivo studies providing evidence for this promising approach. EXPERT OPINION As SEDDS can: i) provide a protective effect towards a presystemic metabolism; ii) efficiently permeate the intestinal mucus gel layer in order to reach the absorption membrane; and iii) be produced in a very simple and cost-effective manner, they are a promising tool for oral peptide and protein drug delivery.
Collapse
Affiliation(s)
- Gintare Leonaviciute
- a Leopold - Franzens University Innsbruck, Institut of Pharmacy, Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology , Innrain 80/82, Innsbruck, Austria +43 512 507 58601 ; +43 512 507 58699 ;
| | - Andreas Bernkop-Schnürch
- a Leopold - Franzens University Innsbruck, Institut of Pharmacy, Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology , Innrain 80/82, Innsbruck, Austria +43 512 507 58601 ; +43 512 507 58699 ;
| |
Collapse
|