1
|
Ito T, Suzuki T, Sakai Y, Nishioka K, Itoh Y, Sakamoto K, Ikemura N, Matoba S, Kanda Y, Takagi J, Okamoto T, Tahara K, Hoshino A. Engineered ACE2 decoy in dry powder form for inhalation: A novel therapy for SARS-CoV-2 variants. Mol Ther Methods Clin Dev 2025; 33:101459. [PMID: 40276779 PMCID: PMC12019485 DOI: 10.1016/j.omtm.2025.101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
The persistent threat of SARS-CoV-2 and the emergence of new variants has prompted the development of a novel, easily administered modality that can overcome viral mutations. The engineered ACE2 decoy shows neutralizing activity comparable to monoclonal antibodies and is broadly effective against SARS-CoV-2 variants and ACE2-utilizing sarbecoviruses. In addition to intravenous administration, this decoy has shown antiviral efficacy through nebulized aerosol inhalation in murine and primate models, offering a dose-sparing advantage. Clinically, dry powder formulation is ideal for convenience and storage but poses challenges for protein biologics. This study developed a freeze-dried spray formulation of the ACE2 decoy for inhalation. The trehalose and leucine-based excipient maintained neutralizing activity and prevented aggregate formation. The dry powder showed aerodynamic distribution from bronchi to alveoli, aiding protection against SARS-CoV-2 infections. Neutralizing activity, structural stability, and powder dispersibility were preserved after 6 months of storage. In a mouse model of SARS-CoV-2 infection, significant reductions in viral replication and lung pathology were observed with intratracheal administration 24 h post-infection. The ACE2 decoy retained activity against recent JN.1 and current KP.3 strains, confirming its robust efficacy against viral mutations. This ACE2 decoy powder inhalant is a self-administered, next-generation treatment addressing the ongoing immune-evading evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Takaaki Ito
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Tatsuya Suzuki
- Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Keisuke Nishioka
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yumi Itoh
- Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kentarou Sakamoto
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Nariko Ikemura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Junichi Takagi
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Toru Okamoto
- Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kohei Tahara
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu 501-1196, Japan
- Laboratory of Nanofiber Technology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
2
|
Berkenfeld K, Carneiro S, Corzo C, Laffleur F, Salar-Behzadi S, Winkeljann B, Esfahani G. Formulation strategies, preparation methods, and devices for pulmonary delivery of biologics. Eur J Pharm Biopharm 2024; 204:114530. [PMID: 39393712 DOI: 10.1016/j.ejpb.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Biological products, including vaccines, blood components, and recombinant therapeutic proteins, are derived from natural sources such as humans, animals, or microorganisms and are typically produced using advanced biotechnological methods. The success of biologics, particularly monoclonal antibodies, can be attributed to their favorable safety profiles and target specificity. However, their large molecular size presents significant challenges in drug delivery, particularly in overcoming biological barriers. Pulmonary delivery has emerged as a promising route for administering biologics, offering non-invasive delivery with rapid absorption, high systemic bioavailability, and avoidance of first-pass metabolism. This review first details the anatomy and physiological barriers of the respiratory tract and the associated challenges of pulmonary drug delivery (PDD). It further discusses innovations in PDD, the impact of particle size on drug deposition, and the use of secondary particles, such as nanoparticles, to enhance bioavailability and targeting. The review also explains various devices used for PDD, including dry powder inhalers (DPIs) and nebulizers, highlighting their advantages and limitations in delivering biologics. The role of excipients in improving the stability and performance of inhalation products is also addressed. Since dry powders are considered the suitable format for delivering biomolecules, particular emphasis is placed on the excipients used in DPI development. The final section of the article reviews and compares various dry powder manufacturing methods, clarifying their clinical relevance and potential for future applications in the field of inhalable drug formulation.
Collapse
Affiliation(s)
- Kai Berkenfeld
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Street 3, 53121 Bonn, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Simone Carneiro
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Carolina Corzo
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; RNhale GmbH, München 81371, Germany; Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Munich, German Center for Lung Research (DZL), 81377 Munich, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Golbarg Esfahani
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, Halle 06120, Saale, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS).
| |
Collapse
|
3
|
Hatazoe S, Hira D, Kondo T, Ueshima S, Okano T, Hamada S, Sato S, Terada T, Kakumoto M. Real-Time Particle Emission Monitoring for the Non-Invasive Prediction of Lung Deposition via a Dry Powder Inhaler. AAPS PharmSciTech 2024; 25:109. [PMID: 38730125 DOI: 10.1208/s12249-024-02825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Although inhalation therapy represents a promising drug delivery route for the treatment of respiratory diseases, the real-time evaluation of lung drug deposition remains an area yet to be fully explored. To evaluate the utility of the photo reflection method (PRM) as a real-time non-invasive monitoring of pulmonary drug delivery, the relationship between particle emission signals measured by the PRM and in vitro inhalation performance was evaluated in this study. Symbicort® Turbuhaler® was used as a model dry powder inhaler. In vitro aerodynamic particle deposition was evaluated using a twin-stage liquid impinger (TSLI). Four different inhalation patterns were defined based on the slope of increased flow rate (4.9-9.8 L/s2) and peak flow rate (30 L/min and 60 L/min). The inhalation flow rate and particle emission profile were measured using an inhalation flow meter and a PRM drug release detector, respectively. The inhalation performance was characterized by output efficiency (OE, %) and stage 2 deposition of TSLI (an index of the deagglomerating efficiency, St2, %). The OE × St2 is defined as the amount delivered to the lungs. The particle emissions generated by four different inhalation patterns were completed within 0.4 s after the start of inhalation, and were observed as a sharper and larger peak under conditions of a higher flow increase rate. These were significantly correlated between the OE or OE × St2 and the photo reflection signal (p < 0.001). The particle emission signal by PRM could be a useful non-invasive real-time monitoring tool for dry powder inhalers.
Collapse
Affiliation(s)
- Sakiko Hatazoe
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Daiki Hira
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan.
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Tetsuri Kondo
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Kanagawa, Japan
| | - Satoshi Ueshima
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tomonobu Okano
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Satoshi Hamada
- Department of Respiratory Medicine, Graduate school of Medicine, Kyoto University, Kyoto, Japan
- Department of Advanced Medicine for Respiratory Failure, Graduate school of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate school of Medicine, Kyoto University, Kyoto, Japan
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Terada
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Mikio Kakumoto
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
4
|
Okuda T, Okazaki M, Hayano A, Okamoto H. Stability of Naked Nucleic Acids under Physical Treatment and Powder Formation: Suitability for Development as Dry Powder Formulations for Inhalation. Pharmaceutics 2023; 15:2786. [PMID: 38140126 PMCID: PMC10747740 DOI: 10.3390/pharmaceutics15122786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
A number of functional nucleic acids, including plasmid DNA (pDNA) and small interfering RNA (siRNA), have been attracting increasing attention as new therapeutic modalities worldwide. Dry pDNA and siRNA powder formulations for inhalation are considered practical in clinical applications for respiratory diseases. However, physical stresses in the powder-forming process may destabilize nucleic acids, particularly when vectors with stabilizing effects are not used. We herein compare the stability of naked pDNA and siRNA through various physical treatments and two powder-forming processes. The structural and functional integrities of pDNA were markedly reduced via sonication, heating, and atomization, whereas those of siRNA were preserved throughout all of the physical treatments investigated. Spray-dried and spray-freeze-dried powders of siRNA maintained their structural and functional integrities, whereas those of pDNA did not. These results demonstrate that siRNA is more suitable for powder formation in the naked state than pDNA due to its higher stability under physical treatments. Furthermore, a spray-freeze-dried powder with a high content of naked siRNA (12% of the powder) was successfully produced that preserved its structural and functional integrities, achieving high aerosol performance with a fine particle fraction of approximately 40%.
Collapse
Affiliation(s)
- Tomoyuki Okuda
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan; (M.O.); (A.H.); (H.O.)
| | | | | | | |
Collapse
|
5
|
Ueda H, Hirakawa Y, Miyano T, Nakayama Y, Hatanaka Y, Uchiyama H, Tozuka Y, Kadota K. Improvement in Inhalation Properties of Theophylline and Levofloxacin by Co-Amorphization and Enhancement in Its Stability by Addition of Amino Acid as a Third Component. Mol Pharm 2023; 20:6368-6379. [PMID: 37942959 DOI: 10.1021/acs.molpharmaceut.3c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Co-amorphous systems are amorphous formulations stabilized by the miscible dispersion of small molecules. This study aimed to design a stable co-amorphous system for the co-delivery of two drugs to the lungs as an inhaled formulation. Theophylline (THE) and levofloxacin (LEV) were used as model drugs for treating lung infection with inflammation. Leucine (LEU) or tryptophan (TRP) was employed as the third component to improve the inhalation properties. The co-amorphous system containing THE and LEV in an equal molar ratio was successfully prepared via spray drying where reduction of the particle size and change to the spherical morphology were observed. The addition of LEU or TRP at a one-tenth molar ratio to THE-LEV did not affect the formation of the co-amorphous system, but only TRP acted as an antiplasticizer. The Fourier transform infrared spectroscopy spectra revealed intermolecular interactions between THE and LEV in the co-amorphous system that were retained after the addition of LEU or TRP. The co-amorphous THE-LEV system exhibited better in vitro aerodynamic performance than a physical mixture of these compounds and permitted the simultaneous delivery of both drugs in various stages. The co-amorphous THE-LEV system crystallized at 40 °C, and this crystallization was not prevented by LEU. However, THE-LEV-TRP maintained its amorphous state for 1 month. Thus, TRP can act as a third component to improve the physical stability of the co-amorphous THE-LEV system, while maintaining the enhanced aerodynamic properties.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Analysis and Evaluation Laboratory, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Yuya Hirakawa
- Analysis and Evaluation Laboratory, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Tetsuya Miyano
- Laboratory for Medicinal Chemistry Research, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Yuzuki Nakayama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Yuta Hatanaka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| |
Collapse
|
6
|
Ito T. Development of an Inhalation Dry Powder Preparation Method without Heat-drying Process. YAKUGAKU ZASSHI 2023; 143:353-358. [PMID: 37005236 DOI: 10.1248/yakushi.22-00170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Biopharmaceuticals, including therapeutic genes and proteins, are characterized by highly-targeted, specific action and flexible pharmacological design and have a rapidly growing market share; however, because of high molecular weight and low stability, injection is the most common delivery route of biopharmaceuticals. Thus, pharmaceutical innovations are required to provide alternative delivery routes for biopharmaceuticals. Pulmonary drug delivery via inhalation is a promising approach, particularly for targeting local diseases of the lung, because it can exert therapeutic effects in small doses and can noninvasively and directly deliver drugs to airway surfaces. However, biopharmaceutical inhalers must ensure that the biopharmaceuticals maintain their integrity as they are subjected to several types of physicochemical stress, such as hydrolysis, ultrasound, and heating, at various stages during the process from manufacturing to administration. In this symposium, I present a novel dry powder inhaler (DPI) preparation method without heat-drying, with the goal of developing biopharmaceutical DPIs. Spray-freeze-drying is a nonthermal drying technique that produces a powder with porous shapes; this powder has suitable inhalation characteristics for DPI. A model drug, plasmid DNA (pDNA), was stably prepared as a DPI using the spray-freeze-drying process. Under dry conditions, the powders maintained high inhalation characteristics and maintained pDNA integrity for 12 months. The powder induced pDNA expression in mouse lungs that exceeded at higher levels than the solution did. This novel preparation method is suitable for DPI preparation for various drugs and may help expand the clinical application of DPIs.
Collapse
|
7
|
de Pablo E, O'Connell P, Fernández-García R, Marchand S, Chauzy A, Tewes F, Dea-Ayuela MA, Kumar D, Bolás F, Ballesteros MP, Torrado JJ, Healy AM, Serrano DR. Targeting lung macrophages for fungal and parasitic pulmonary infections with innovative amphotericin B dry powder inhalers. Int J Pharm 2023; 635:122788. [PMID: 36863544 DOI: 10.1016/j.ijpharm.2023.122788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
The incidence of fungal pulmonary infections is known to be on the increase, and yet there is an alarming gap in terms of marketed antifungal therapies that are available for pulmonary administration. Amphotericin B (AmB) is a highly efficient broad-spectrum antifungal only marketed as an intravenous formulation. Based on the lack of effective antifungal and antiparasitic pulmonary treatments, the aim of this study was to develop a carbohydrate-based AmB dry powder inhaler (DPI) formulation, prepared by spray drying. Amorphous AmB microparticles were developed by combining 39.7 % AmB with 39.7 % γ-cyclodextrin, 8.1 % mannose and 12.5 % leucine. An increase in the mannose concentration from 8.1 to 29.8 %, led to partial drug crystallisation. Both formulations showed good in vitro lung deposition characteristics (80 % FPF < 5 µm and MMAD < 3 µm) at different air flow rates (60 and 30 L/min) when used with a DPI, but also during nebulisation upon reconstitution in water.
Collapse
Affiliation(s)
- E de Pablo
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - P O'Connell
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - R Fernández-García
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - S Marchand
- UMR 1070, Université de PoitiersPôle Biologie Santé, 1, Rue Georges Bonnet, 86073 Poitiers, France; Laboratoire de Toxicologie-Pharmacocinétique, CHU de Poitiers, 2, Rue de la milétrie, 86021 Poitiers, France
| | - A Chauzy
- UMR 1070, Université de PoitiersPôle Biologie Santé, 1, Rue Georges Bonnet, 86073 Poitiers, France
| | - F Tewes
- UMR 1070, Université de PoitiersPôle Biologie Santé, 1, Rue Georges Bonnet, 86073 Poitiers, France; Laboratoire de Toxicologie-Pharmacocinétique, CHU de Poitiers, 2, Rue de la milétrie, 86021 Poitiers, France
| | - M A Dea-Ayuela
- Pharmacy Department, School of Life Sciences, Universidad Cardenal Herrera-CEU, Moncada 46113 Valencia, Spain
| | - D Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - F Bolás
- Parasitology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - M P Ballesteros
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J J Torrado
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - A M Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - D R Serrano
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
8
|
Spray Freeze Drying of Biologics: A Review and Applications for Inhalation Delivery. Pharm Res 2022; 40:1115-1140. [DOI: 10.1007/s11095-022-03442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
|
9
|
Dry Powder Inhalers for Proteins Using Cryo-Milled Electrospun Polyvinyl Alcohol Nanofiber Mats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165158. [PMID: 36014394 PMCID: PMC9412343 DOI: 10.3390/molecules27165158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
To enable the efficient delivery of drugs to the lungs, the drug particle design for most dry powder inhalers (DPIs) involves reducing the aerodynamic particle size to a few microns using methods such as spray-drying or jet-milling. Stresses, including heat and the shear forces generated by the preparation processes, may result in the degradation and denaturation of drugs such as those based on peptides and proteins. Here, we showed that cryo-milled polyvinyl alcohol nanofiber mats loaded with α-chymotrypsin by electrospinning exhibited suitable inhalation properties for use in DPIs, while maintaining enzymatic activity. The cryo-milled nanofiber mats were porous to fine particles, and the particle size and drug stability depended on the freezing and milling times. The median diameter of the milled fiber mats was 12.6 μm, whereas the mass median aerodynamic diameter was 5.9 μm. The milled nanofiber mats were successfully prepared, while retaining the enzymatic activity of α-chymotrypsin; furthermore, the activity of milled fiber mats that had been stored for 6 months was comparable to the activity of those that were freshly prepared. This novel method may be suitable for the DPI preparation of various drugs because it avoids the heating step during the DPI preparation process.
Collapse
|
10
|
Spray-dried Pneumococcal Membrane Vesicles are Promising Candidates for Pulmonary Immunization. Int J Pharm 2022; 621:121794. [PMID: 35525468 DOI: 10.1016/j.ijpharm.2022.121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
Pneumococcal infections represent a global health threat, which requires novel vaccine developments. Extracellular vesicles are secreted from most cells, including prokaryotes, and harbor virulence factors and antigens. Hence, bacterial membrane vesicles (MVs) may induce a protective immune response. For the first time, we formulate spray-dried gram-positive pneumococcal MVs-loaded vaccine microparticles using lactose/leucine as inert carriers to enhance their stability and delivery for pulmonary immunization. The optimized vaccine microparticles showed a mean particle size of 1-2µm, corrugated surface, and nanocrystalline nature. Their aerodynamic diameter of 2.34µm, average percentage emitted dose of 88.8%, and fine powder fraction 79.7%, demonstrated optimal flow properties for deep alveolar delivery using a next-generation impactor. Furthermore, confocal microscopy confirmed the successful encapsulation of pneumococcal MVs within the prepared microparticles. Human macrophage-like THP-1 cells displayed excellent viability, negligible cytotoxicity, and a rapid uptake around 60% of fluorescently labeled MVs after incubation with vaccine microparticles. Moreover, vaccine microparticles increased the release of pro-inflammatory cytokines tumor necrosis factor and interleukin-6 from primary human peripheral blood mononuclear cells. Vaccine microparticles exhibited excellent properties as promising vaccine candidates for pulmonary immunization and are optimal for further animal testing, scale-up and clinical translation.
Collapse
|
11
|
Rostamnezhad M, Jafari H, Moradikhah F, Bahrainian S, Faghihi H, Khalvati R, Bafkary R, Vatanara A. Spray Freeze-Drying for inhalation application: Process and Formulation Variables. Pharm Dev Technol 2021; 27:251-267. [PMID: 34935582 DOI: 10.1080/10837450.2021.2021941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
High porous particles with specific aerodynamic properties were processed by the spray freeze-drying (SFD) method. Comprehensive knowledge about all aspects of the SFD method is required for particle engineering of various pharmaceutical products with good flow properties. In this review, different types of the SFD method, the most frequently employed excipients, properties of particles prepared by this method, and most recent approaches concerning SFD are summarized. Generally, this technique can prepare spherical-shaped particles with a highly porous interior structure, responsible for the very low density of powders. Increasing the solubility of spray freeze-dried formulations achieves the desired efficacy. Also, due to the high efficiency of SFD, by determining the different features of this method and optimizing the process by model-based studies, desirable results for various inhaled products can be achieved and significant progress can be made in the field of pulmonary drug delivery.
Collapse
Affiliation(s)
- Mostafa Rostamnezhad
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Jafari
- Department of Food and Drug Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Moradikhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sara Bahrainian
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Faghihi
- School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Khalvati
- Food and Drug Administration, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Reza Bafkary
- Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Alireza Vatanara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Wang X, Wan W, Lu J, Quan G, Pan X, Liu P. Effects of L-leucine on the properties of spray-dried swellable microparticles with wrinkled surfaces for inhalation therapy of pulmonary fibrosis. Int J Pharm 2021; 610:121223. [PMID: 34710541 DOI: 10.1016/j.ijpharm.2021.121223] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022]
Abstract
Swellable microparticles (SMs) provide a potential strategy for achieving sustained inhalation therapy. However, spray dried SMs are highly hygroscopic, exhibiting poor flowability and dispersibility properties. This study aimed at determining whether L-leucine (LL) can improve aerosolization performance of SMs with wrinkled surface and its potential mechanisms. Cryptotanshinone was co-spray dried with chitosan and LL (0-40%, mass fraction in carrier materials), after which the production yield, particle size, density, encapsulation efficiency, morphology, cohesion, crystallinity, surface LL distribution, hygroscopicity, water content and in vitro aerosolization performance of the developed formulations were characterized. In addition, we determined whether LL, as a hydrophobic amino acid, would impair swellability and macrophage phagocytosis of SMs. The possible impact of LL on in vitro drug release, cytotoxicity and anti-fibrosis effects on MRC-5 cells was also investigated. As the LL content increased, LL began to crystallize. At 7.5% LL, water content and hygroscopicity of the SMs were at their lowest. Moreover, at 7.5% LL, surface enrichment increased rapidly after which it achieved a comparatively complete coverage at 20-40% LL. However, LL ≥ 20% caused the formation of over-wrinkled, even dimpled or hollow particles, which significantly deteriorated powder properties. Optimum aerosolization performance was obtained at 10% LL, irrespective of its crystallization behavior, accompanied by the lowest cohesion, optimal flowability and production yield, and without impaired swellability, macrophage uptake and anti-fibrosis efficacy. The optimal formulation did not exhibit optimum surface LL coverage, implying that improvement of aerosolization performance of wrinkled SMs by LL not simply depended on its surface enrichment, but its significant influence on morphology and on related powder properties as well.
Collapse
Affiliation(s)
- Xiuhua Wang
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Wan
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Lu
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Zhang H, Zhang Y, Williams RO, Smyth HDC. Development of PEGylated chitosan/CRISPR-Cas9 dry powders for pulmonary delivery via thin-film freeze-drying. Int J Pharm 2021; 605:120831. [PMID: 34175380 DOI: 10.1016/j.ijpharm.2021.120831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/15/2022]
Abstract
Gene therapy and more recently, gene editing is attractive via pulmonary delivery for enhanced regional targeting. However, processing of sensitive therapeutics into dry powders for inhalation can be problematic due to relatively stressful spraying or milling steps. Thin-film freeze-drying (TFFD) has attracted attention with its promising application in the production of DPI formulations possessing respirable particle size range (1-5 µm) particularly for thermally or shear sensitive therapeutics. In this study, gene editing dry powder formulations containing PEGylated chitosan/CRISPR-Cas9 nanocomplexes were prepared by TFFD. To evaluate stability during processing, nanocomplex size, zeta potential and transfection efficiency of reconstituted formulations were evaluated, and six potential DPI formulations were identified and characterized in terms of geometric particle size, powder surface morphology, and crystallinity. It was found that two formulations containing 3% mannitol with or without leucine were identified as suitable for inhalation with a desired aerodynamic performance. The flow rate dependency and inhaler dependency of these two formulations were also evaluated at different flow rates (60 L/min and 45 L/min) and different inhaler devices (RS01 DPI and HandiHaler) using NGI testing. This study demonstrated that TFFD processing of CRISPR-Cas9 polymer nanocomplexes resulted in a suitable dry powder for inhalation.
Collapse
Affiliation(s)
- Hairui Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Yajie Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
14
|
Chang RYK, Chow MY, Khanal D, Chen D, Chan HK. Dry powder pharmaceutical biologics for inhalation therapy. Adv Drug Deliv Rev 2021; 172:64-79. [PMID: 33705876 DOI: 10.1016/j.addr.2021.02.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Therapeutic biologics such as genes, peptides, proteins, virus and cells provide clinical benefits and are becoming increasingly important tools in respiratory medicine. Pulmonary delivery of therapeutic biologics enables the potential for safe and effective treatment option for respiratory diseases due to high bioavailability while minimizing absorption into the systemic circulation, reducing off-target toxicity to other organs. Development of inhalable powder formulation requires stabilization of complex biological materials, and each type of biologics may present unique challenges and require different formulation strategy combined with manufacture process to ensure biological and physical stabilities during production and over shelf-life. This review examines key formulation strategies for stabilizing proteins, nucleic acids, virus (bacteriophages) and bacterial cells in inhalable powders. It also covers characterization methods used to assess physicochemical properties and aerosol performance of the powders, biological activity and structural integrity of the biologics, and chemical analysis at the nanoscale. Furthermore, the review includes manufacture technologies which are based on lyophilization and spray-drying as they have been applied to manufacture Food and Drug Administration (FDA)-approved protein powders. In perspective, formulation and manufacture of inhalable powders for biologic are highly challenging but attainable. The key requirements are the stability of both the biologics and the powder, along with the powder dispersibility. The formulation to be developed depends on the manufacture process as it will subject the biologics to different stresses (temperature, mechanical and chemical) which could lead to degradation by different pathways. Stabilizing excipients coupled with the suitable choice of process can alleviate the stability issues of inhaled powders of biologics.
Collapse
|
15
|
Miyamoto K, Ishibashi Y, Akita T, Yamashita C. Systemic Delivery of hGhrelin Derivative by Lyophilizate for Dry Powder Inhalation System in Monkeys. Pharmaceutics 2021; 13:pharmaceutics13020233. [PMID: 33562278 PMCID: PMC7914841 DOI: 10.3390/pharmaceutics13020233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 01/07/2023] Open
Abstract
Ghrelin is the peptide that increases the hunger sensation and food intake and is expected to be clinically applied for treatment of diseases such as cachexia and anorexia nervosa. In the clinical application of ghrelin, injections are problematic in that they are invasive and inconvenient. Thus, we aimed to develop a formulation that can eliminate the need for injections and can be applied clinically. We prepared formulations of an hGhrelin derivative, in which the octanoyl group essential for expression of activity is modified to avoid rapid des-acylation, using lyophilizate for a dry powder inhalation (LDPI) system. The formulation of hGhrelin derivative was optimized by the addition of phenylalanine, of which the fine particle fraction of 5 µm or less was 41.7 ± 3.8%. We also performed pharmacokinetic/pharmacodynamic tests in monkeys using the optimum formulation that can be applied clinically. The absolute bioavailability of inhaled hGhrelin derivative with respect to that intravenously injected was 16.9 ± 2.6%. An increase in growth hormone was shown as an effect of the inhaled hGhrelin derivative similar to intravenous injection. The LDPI formulation can deliver the hGhrelin derivative systemically, and it is expected to be applied clinically as a substitute for injections.
Collapse
|
16
|
Liao Q, Lam ICH, Lin HHS, Wan LTL, Lo JCK, Tai W, Kwok PCL, Lam JKW. Effect of formulation and inhaler parameters on the dispersion of spray freeze dried voriconazole particles. Int J Pharm 2020; 584:119444. [PMID: 32445908 DOI: 10.1016/j.ijpharm.2020.119444] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 11/17/2022]
Abstract
Spray freeze drying is a particle engineering technique that allows the production of porous particles of low density with excellent aerosol performance for inhalation. There are a number of operating parameters that can be manipulated in order to optimise the powder properties. In this study, a two-fluid nozzle was used to prepare spray freeze dried formulation of voriconazole, a triazole antifungal agent for the treatment of pulmonary aspergillosis. A full factorial design approach was adopted to explore the effects of drug concentration, atomisation gas flow rate and primary drying temperature. The aerosol performance of the spray freeze dried powder was evaluated using the next generation impactor (NGI) operated with different inhaler devices and flow rates. The results showed that the primary drying temperature played an important role in determining the aerosol properties of the powder. In general, the higher the primary drying temperature, the lower the emitted fraction (EF) and the higher the fine particle fraction (FPF). Formulations that contained the highest voriconazole concentration (80% w/w) and prepared at a high primary drying temperature (-10 °C) exhibited the best aerosol performance under different experimental conditions. The high concentration of the hydrophobic voriconazole reduced surface energy and cohesion, hence better powder dispersibility. The powders produced with higher primary drying temperature had a smaller particle size after dispersion and improved aerosol property, possibly due to the faster sublimation rate in the freeze-drying step that led to the formation of less aggregating or more fragile particles. Moreover, Breezhaler®, which has a low intrinsic resistance, was able to generate the best aerosol performance of the spray freeze dried voriconazole powders in terms of FPF.
Collapse
Affiliation(s)
- Qiuying Liao
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region
| | - Ivan C H Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region; Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom
| | - Hinson H S Lin
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region
| | - Leon T L Wan
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region
| | - Jason C K Lo
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region
| | - Waiting Tai
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, Pharmacy and Bank Building A15, The University of Sydney, NSW 2006, Australia
| | - Philip C L Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, Pharmacy and Bank Building A15, The University of Sydney, NSW 2006, Australia
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
17
|
Ohori R, Kiuchi S, Sugiyama S, Miyamoto K, Akita T, Yamashita C. Efficient optimization of high-dose formulation of novel lyophilizates for dry powder inhalation by the combination of response surface methodology and time-of-flight measurement. Int J Pharm 2020; 581:119255. [PMID: 32217154 DOI: 10.1016/j.ijpharm.2020.119255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/09/2020] [Accepted: 03/22/2020] [Indexed: 01/26/2023]
Abstract
Inhalation of proteins/peptides has recently received attention as various biopharmaceuticals have emerged on the market. Novel lyophilisates for dry powder inhalation (LDPIs), which are aerosolized by air impact, have been reported and LDPIs are considered an attractive option for the pulmonary administration of biopharmaceuticals. However, desirable disintegration and aerosolization properties have been unavailable in high-dose formulations, which has been a critical issue. This study aimed to investigate high-dose LDPIs and their optimization. In the present study, lysozyme (Lysoz) was used as a stable model protein and formulated with various amino acids. Furthermore, response surface methodology (RSM) and time-of-flight measurement were applied for efficient optimization. Superior disintegration and aerosolization properties were confirmed in the LDPIs with phenylalanine (Phe) and leucine (Leu). RSM results revealed that 0.5 mg/vial of Phe and 1.0 mg/vial of Leu are the optimal quantities for high-dose formulation. Based on these optimum quantities, high-dose LDPI formulations were prepared and the maximum formulable quantity of Lysoz with acceptable inhalation performance was confirmed to be 3.0 mg/vial. The results suggest that LDPI can cover the milligram-order pulmonary administration of proteins/peptides. LDPIs are expected to have biopharmaceutical applications.
Collapse
Affiliation(s)
- Ryo Ohori
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sakurako Kiuchi
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shintaro Sugiyama
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kahori Miyamoto
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tomomi Akita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Chikamasa Yamashita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
18
|
Ferdynand MS, Nokhodchi A. Co-spraying of carriers (mannitol-lactose) as a method to improve aerosolization performance of salbutamol sulfate dry powder inhaler. Drug Deliv Transl Res 2020; 10:1418-1427. [PMID: 31933129 PMCID: PMC7447673 DOI: 10.1007/s13346-020-00707-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Although in dry powder inhaler (DPI) formulations a single carrier is used, a single carrier is not able to provide an excellent aerosolization performance when it is used in DPI formulations. Thereby, the aim of this study was to engineer a suitable ternary mixture of mannitol-lactose-leucine to be used in a DPI formulation with enhanced aerosolization performance. To this end, binary mixtures of mannitol:lactose containing a constant amount of leucine (5% w/w of carriers) were spray-dried as a single solution. Spray-dried samples were blended with salbutamol sulfate to determine the efficiency of their aerosolization performance. Interestingly, note that lactose was in its amorphous state stabilized by the presence of mannitol in the samples. Spray-dried mannitol without lactose showed a combination of the α- and β-polymorphic forms which was the case in all other ratios of mannitol:lactose. It was shown that the highest fine particle fraction (FPF) was 62.42 ± 4.21% which was obtained for the distinct binary mixtures (1:3 mannitol:lactose) compared to a single carrier. This study opens a new window to investigate further the implementation of binary mixtures of sugar carriers containing leucine in DPI formulations to overcome poor aerosolization performance the mentioned DPI formulations.
Collapse
Affiliation(s)
- Mickey Socrates Ferdynand
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK.
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Kadota K, Inoue N, Matsunaga Y, Takemiya T, Kubo K, Imano H, Uchiyama H, Tozuka Y. Numerical simulations of particle behaviour in a realistic human airway model with varying inhalation patterns. J Pharm Pharmacol 2019; 72:17-28. [DOI: 10.1111/jphp.13195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/21/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Kazunori Kadota
- Osaka University of Pharmaceutical Sciences Takatsuki Osaka Japan
| | - Nana Inoue
- Osaka University of Pharmaceutical Sciences Takatsuki Osaka Japan
| | | | - Tetsushi Takemiya
- Siemens PLM Software Computational Dynamics K.K. Yokohama Kanagawa Japan
| | - Kenji Kubo
- Siemens PLM Software Computational Dynamics K.K. Yokohama Kanagawa Japan
| | - Hideki Imano
- Osaka University of Pharmaceutical Sciences Takatsuki Osaka Japan
| | | | - Yuichi Tozuka
- Osaka University of Pharmaceutical Sciences Takatsuki Osaka Japan
| |
Collapse
|
20
|
Establishment of an Evaluation Method for Gene Silencing by Serial Pulmonary Administration of siRNA and pDNA Powders: Naked siRNA Inhalation Powder Suppresses Luciferase Gene Expression in the Lung. J Pharm Sci 2019; 108:2661-2667. [PMID: 30954524 DOI: 10.1016/j.xphs.2019.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/07/2019] [Accepted: 03/22/2019] [Indexed: 11/22/2022]
Abstract
In order to evaluate the in vivo effect of inhaled formulations, it is a gold standard to create a lung metastasis model by intravenously injecting cancer cells into an animal. Because the cancer grows from the blood vessel side, there is a possibility of underestimating the effect of an inhaled formulation administered to the lung epithelium side. In addition, the metastasis model has disadvantages in terms of preparation time and expense. The present study aimed to establish a new method to evaluate the effect of an inhaled small interfering RNA (siRNA) formulation that is more correct, more rapid, and less expensive. We investigated whether siRNA can suppress gene expression of plasmid DNA (pDNA) by serial pulmonary administration of siRNA and pDNA powders prepared by spray-freeze-drying. We revealed that formulations of dry siRNA powder significantly suppressed gene expression of pDNA powder compared with a control group with no siRNA. Naked siRNA inhalation powder with no vector showed the suppression of gene expression equivalent to that of an siRNA-polyethyleneimine complex without damaging tissues. These results show that the present method is suitable for evaluating the gene-silencing effect of inhaled siRNA powders.
Collapse
|
21
|
Ito T, Okuda T, Takashima Y, Okamoto H. Naked pDNA Inhalation Powder Composed of Hyaluronic Acid Exhibits High Gene Expression in the Lungs. Mol Pharm 2019; 16:489-497. [PMID: 30092131 DOI: 10.1021/acs.molpharmaceut.8b00502] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gene therapy is a breakthrough treatment strategy against several intractable and lethal diseases that previously lacked established treatments. Viral and nonviral vectors have been studied to realize higher gene transfection efficiencies and to suppress the degradation of gene by nucleolytic enzymes in vivo. However, it is often the case that the addition of a vector results in adverse effects. In this study, we identified formulations of dry naked plasmid DNA (pDNA) powders with no vector showing significantly higher gene expression than pDNA solutions including vectors such as polyethylenimine (PEI) in the lungs of mice. We prepared the naked pDNA powders by spray-freeze-drying with various excipients. The gene expression of naked pDNA powders exceeded those of pDNA solutions containing PEI, naked pDNA solution, and reconstituted pDNA powder. Gene expression of each naked pDNA powder was dependent on the composition of excipients. Among them, the mice that were administered the pDNA powder composed of low-molecular-weight hyaluronic acid (LHA) as an excipient showed the highest gene expression. The lactate dehydrogenase activity and concentration of inflammatory cytokines in bronchoalveolar lavage fluid were comparable to those caused by ultrapure water. The results suggest that useful dry naked nucleic acid powders for inhalation could be created by optimizing the excipients, offering new insights into the development of pulmonary gene therapy.
Collapse
Affiliation(s)
- Takaaki Ito
- Department of Drug Delivery Research, Faculty of Pharmacy , Meijo University , 150 Yagotoyama , Tempaku-ku, Nagoya 468-8503 , Japan
| | - Tomoyuki Okuda
- Department of Drug Delivery Research, Faculty of Pharmacy , Meijo University , 150 Yagotoyama , Tempaku-ku, Nagoya 468-8503 , Japan
| | - Yoshimasa Takashima
- Department of Drug Delivery Research, Faculty of Pharmacy , Meijo University , 150 Yagotoyama , Tempaku-ku, Nagoya 468-8503 , Japan
| | - Hirokazu Okamoto
- Department of Drug Delivery Research, Faculty of Pharmacy , Meijo University , 150 Yagotoyama , Tempaku-ku, Nagoya 468-8503 , Japan
| |
Collapse
|
22
|
Cui Y, Zhang X, Wang W, Huang Z, Zhao Z, Wang G, Cai S, Jing H, Huang Y, Pan X, Wu C. Moisture-Resistant Co-Spray-Dried Netilmicin with l-Leucine as Dry Powder Inhalation for the Treatment of Respiratory Infections. Pharmaceutics 2018; 10:252. [PMID: 30513738 PMCID: PMC6321429 DOI: 10.3390/pharmaceutics10040252] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 12/27/2022] Open
Abstract
Netilmicin (NTM) is one of the first-line drugs for lower respiratory tract infections (LRTI) therapy, but its nephrotoxicity and ototoxicity caused by intravenous injection restrict its clinical application. Dry powder inhalation (DPI) is a popular local drug delivery system that is introduced as a solution. Due to the nature of NTM hygroscopicity that hinders its direct use through DPI, in this study, L-leucine (LL) was added into NTM dry powder to reduce its moisture absorption rate and improve its aerosolization performance. NTM DPIs were prepared using spray-drying with different LL proportions. The particle size, density, morphology, crystallinity, water content, hygroscopicity, antibacterial activity, in vitro aerosolization performance, and stability of each formulation were characterized. NTM DPIs were suitable for inhalation and amorphous with a corrugated surface. The analysis indicated that the water content and hygroscopicity were decreased with the addition of LL, whilst the antibacterial activity of NTM was maintained. The optimal formulation ND₂ (NTM:LL = 30:1) showed high fine particle fraction values (85.14 ± 8.97%), which was 2.78-fold those of ND₀ (100% NTM). It was stable after storage at 40 ± 2 °C, 75 ± 5% relative humidity (RH). The additional LL in NTM DPI successfully reduced the hygroscopicity and improved the aerosolization performance. NTM DPIs were proved to be a feasible and desirable approach for the treatment of LRTI.
Collapse
Affiliation(s)
- Yingtong Cui
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Xuejuan Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Wen Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Zhengwei Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Ziyu Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Shihao Cai
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China.
| | - Hui Jing
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
23
|
Kadota K, Imanaka A, Shimazaki M, Takemiya T, Kubo K, Uchiyama H, Tozuka Y. Effects of inhalation procedure on particle behavior and deposition in the airways analyzed by numerical simulation. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
A model to integrate patient preferences into delivery systems: the importance of end-user input into pulmonary delivery. Ther Deliv 2018; 7:591-3. [PMID: 27582231 DOI: 10.4155/tde-2016-0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Development of spray-freeze-dried siRNA/PEI powder for inhalation with high aerosol performance and strong pulmonary gene silencing activity. J Control Release 2018; 279:99-113. [PMID: 29627404 DOI: 10.1016/j.jconrel.2018.04.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/21/2018] [Accepted: 04/03/2018] [Indexed: 11/20/2022]
Abstract
In the present study, a novel dry small interfering RNA (siRNA) powder for inhalation, containing polyethyleneimine (PEI) as a delivery vector, was produced by spray freeze drying (SFD). The powder had spherical and highly porous structure of approximately 10 μm in diameter with high aerosol performance for emission and lung delivery. The reconstituted siRNA/PEI complex after dissolution of the powder had almost the same physicochemical properties and in vitro gene silencing activity as the original one constituted in the sample solution before SFD, showing that the integrity of the siRNA was maintained. In in vivo studies of intratracheal administration into lung metastasis mice and healthy mice, powder with a low dose of 3 μg siRNA exhibited strong and specific gene silencing activity against tumors metastasized to the lungs, whereas it caused no significant histological changes, lactate dehydrogenase leakage, or inflammatory cytokine induction in the lungs. These results strongly indicated that inhalable dry siRNA/PEI powders can provide effective pulmonary gene silencing without severe lung injury and that SFD can be applied to the production of such powders.
Collapse
|
26
|
Okuda T. [Development of Inhalable Dry Powder Formulations Loaded with Nanoparticles Maintaining Their Original Physical Properties and Functions]. YAKUGAKU ZASSHI 2017; 137:1339-1348. [PMID: 29093369 DOI: 10.1248/yakushi.17-00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functional nanoparticles, such as liposomes and polymeric micelles, are attractive drug delivery systems for solubilization, stabilization, sustained release, prolonged tissue retention, and tissue targeting of various encapsulated drugs. For their clinical application in therapy for pulmonary diseases, the development of dry powder inhalation (DPI) formulations is considered practical due to such advantages as: (1) it is noninvasive and can be directly delivered into the lungs; (2) there are few biocomponents in the lungs that interact with nanoparticles; and (3) it shows high storage stability in the solid state against aggregation or precipitation of nanoparticles in water. However, in order to produce effective nanoparticle-loaded dry powders for inhalation, it is essential to pursue an innovative and comprehensive formulation strategy in relation to composition and powderization which can achieve (1) the particle design of dry powders with physical properties suitable for pulmonary delivery through inhalation, and (2) the effective reconstitution of nanoparticles that will maintain their original physical properties and functions after dissolution of the powders. Spray-freeze drying (SFD) is a relatively new powderization technique combining atomization and lyophilization, which can easily produce highly porous dry powders from an aqueous sample solution. Previously, we advanced the optimization of components and process conditions for the production of SFD powders suitable to DPI application. This review describes our recent results in the development of novel DPI formulations effectively loaded with various nanoparticles (electrostatic nanocomplexes for gene therapy, liposomes, and self-assembled lipid nanoparticles), based on SFD.
Collapse
Affiliation(s)
- Tomoyuki Okuda
- Drug Delivery Research, Faculty of Pharmacy, Meijo University
| |
Collapse
|
27
|
Peng T, Lin S, Niu B, Wang X, Huang Y, Zhang X, Li G, Pan X, Wu C. Influence of physical properties of carrier on the performance of dry powder inhalers. Acta Pharm Sin B 2016; 6:308-18. [PMID: 27471671 PMCID: PMC4951591 DOI: 10.1016/j.apsb.2016.03.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/09/2016] [Accepted: 03/02/2016] [Indexed: 11/28/2022] Open
Abstract
Dry powder inhalers (DPIs) offer distinct advantages as a means of pulmonary drug delivery and have attracted much attention in the field of pharmaceutical science. DPIs commonly contain micronized drug particles which, because of their cohesiveness and strong propensity to aggregate, have poor aerosolization performance. Thus carriers with a larger particle size are added to address this problem. However, the performance of DPIs is profoundly influenced by the physical properties of the carrier, particularly their particle size, morphology/shape and surface roughness. Because these factors are interdependent, it is difficult to completely understand how they individually influence DPI performance. The purpose of this review is to summarize and illuminate how these factors affect drug–carrier interaction and influence the performance of DPIs.
Collapse
Key Words
- API, active pharmaceutical ingredient
- CLF, coarse lactose fines
- Carrier
- DPI, dry powder inhaler
- Dry powder inhaler
- ED, emission dose
- ER, elongation ratio
- FLF, fine lactose fines
- FPF, fine particle fraction
- FR, flatness ratio
- Fshape, shape factor
- Fsurface, surface factor
- MFV, minimum fluidization velocity
- Morphology
- PDD, pulmonary drug delivery
- Particle size
- Performance
- RO, roundness
- Surface roughness
- dae, aerodynamic diameter
- pMDI, pressurized metered-dose inhaler
Collapse
Affiliation(s)
- Tingting Peng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shiqi Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Boyi Niu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xinyi Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xuejuan Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ge Li
- Guangzhou Neworld Pharm. Co. Ltd., Guangzhou 51006, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Corresponding authors at: School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China. Tel.: +86 20 39943427/+86 20 39943117; fax: +86 20 39943115.School of Pharmaceutical Sciences, Sun Yat-Sen UniversityGuangzhou510006China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Research Center for Drug Delivery Systems, Guangzhou 510006, China
- Corresponding authors at: School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China. Tel.: +86 20 39943427/+86 20 39943117; fax: +86 20 39943115.School of Pharmaceutical Sciences, Sun Yat-Sen UniversityGuangzhou510006China
| |
Collapse
|