1
|
Duan M, Yang R, Wang Y, Zhang Y, Xiang G, Feng L, Liu X, Tan F, Wang F, Zhao Y, Hao B, Zhang G, Yang S. O-methylation modifications in the biosynthetic pathway of dibenzocyclooctadiene lignans. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109863. [PMID: 40194503 DOI: 10.1016/j.plaphy.2025.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 04/09/2025]
Abstract
Schisandra chinensis, a well-known traditional Chinese herb used for hepatitis treatment, contains dibenzocyclooctadiene lignans as its primary active compounds, which undergo extensive multi-site O-methylation. However, O-methyltransferases (OMT) involved in this process have not been previously reported. This study employed transcriptomic analysis of S. chinensis treated with methyl jasmonate, alongside expression profiling, phylogenetic analysis, and heterologous expression to characterize the functional roles of OMTs. The study identified 4 OMTs: SchiOMT4, SchiOMT12, SchiOMT16, and SchiOMT22, which catalyze C-3 O-methylation of caffeic acid and Caffeyl aldehyde to form ferulic acid and coniferyl aldehyde. Additionally, SchiOMT12 and SchiOMT16 methylated gomisin L2 at C-3, while SchiOMT16 also O-methylation schisanhenol at C-14 and performed sequential O-methylation at C-3 and C-12 of gomisin J. Molecular docking further clarified the regioselectivity of SchiOMT16 and SchiOMT12, elucidating the differences in their catalytic activities. This study is the first to identify methyltransferases involved in the subsequent modifications of dibenzocyclooctadiene lignans, underscoring the broad substrate range, selective O-methylation, and regulatory importance of OMTs in their biosynthesis.
Collapse
Affiliation(s)
- Meiyu Duan
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Run Yang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yina Wang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yongkang Zhang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Guisheng Xiang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lei Feng
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiangyu Liu
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fengling Tan
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Feifei Wang
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co Ltd, Kunming, Yunnan, 650106, China
| | - Yan Zhao
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China; Yunnan Yunke Characteristic Plant Extraction Laboratory Co Ltd, Kunming, Yunnan, 650106, China
| | - Bing Hao
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China; Yunnan Yunke Characteristic Plant Extraction Laboratory Co Ltd, Kunming, Yunnan, 650106, China
| | - Guanghui Zhang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China; Yunnan Yunke Characteristic Plant Extraction Laboratory Co Ltd, Kunming, Yunnan, 650106, China.
| | - Shengchao Yang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China; Yunnan Yunke Characteristic Plant Extraction Laboratory Co Ltd, Kunming, Yunnan, 650106, China; College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China.
| |
Collapse
|
2
|
Li S, Shao Q, Qiao H. Preclinical Concomitant Toxicokinetic Study of Schisandrin B by HPLC-MS/MS. Biomed Chromatogr 2025; 39:e70068. [PMID: 40150943 DOI: 10.1002/bmc.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Schisandrin B (Sch B), a natural lignan extracted from schisandra chinesis, has exhibited various pharmacological activities including anticancer effects. However, studies on the preclinical toxicokinetic profile of Sch B have not been publicly reported. This study aimed to investigate the preclinical concomitant toxicokinetics of multiple administration of Sch B. Sch B was administered orally to rats and dogs at 150, 300, and 600 mg/kg/day and 50, 100, and 200 mg/kg/day, respectively, for 26 weeks. Plasma concentrations of Sch B were determined by a validated HPLC-MS/MS method. According to the toxicokinetic results, significant gender differences were observed in the rats, and females had higher exposures than males for each dosing group. Toxicokinetic analysis demonstrated a notable accumulation in the plasma of dogs during the repeated administration of Sch B, and the degree of accumulation increased with the increase of the dose. The findings of this study indicated that there were differences in the concomitant toxicokinetics of Sch B between rats and dogs. These results can inform clinical studies and provide valuable insights for future human Sch B risk assessments.
Collapse
Affiliation(s)
- Sanwen Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Qing Shao
- Jiangsu Center for Safety Evaluation of Drugs, Jiangsu Provincial Institute of Materia Medica, Nanjing, China
| | - Hongqun Qiao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| |
Collapse
|
3
|
Peng CW, Ma PL, Dai HT. Schizandrin A promotes apoptosis in prostate cancer by inducing ROS-mediated endoplasmic reticulum stress and JNK MAPK signaling activation. Pathol Res Pract 2025; 269:155889. [PMID: 40081283 DOI: 10.1016/j.prp.2025.155889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Prostate cancer (PCa) is the most common malignant tumor in males with limited therapies. Schizandrin A (SchA) is a biologically active lignan isolated from the fruit of Schisandra chinensis. This research aimed to evaluate the roles and mechanisms of SchA in the progression of PCa. METHODS PCa cells (VCap and DU145) treated with or without SchA were subjected to MTT assays, colony formation assays, DCFH-DA assays, western blotting, TUNEL staining, and flow cytometry analyses of cell cycle, cell apoptosis, and JC-1. Tumor xenograft model was established in nude mice to assess the in vivo effect of SchA. RESULTS SchA suppressed cell proliferation and induced cell cycle arrest at G2/M and apoptosis in PCa cells. Additionally, SchA enhanced ROS generation and endoplasmic reticulum stress and activated JNK signaling to induce PCa apoptosis. Furthermore, SchA suppressed tumor growth in vivo. CONCLUSION SchA induces cell cycle arrest and apoptosis in PCa cells by activating ROS-mediated ER stress and JNK MAPK signaling.
Collapse
Affiliation(s)
- Chang-Wei Peng
- Department of Urology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China
| | - Pei-Li Ma
- Department of Urology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China
| | - Hai-Tao Dai
- Department of Urology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China.
| |
Collapse
|
4
|
Roman BH, Muzykiewicz-Szymańska A, Florkowska K, Tkacz M, Wilk B, Kucharski Ł, Madalińska A, Nowak A. The Use of Plants That Seal Blood Vessels in Preparations Applied Topically to the Skin: A Review. Molecules 2025; 30:1973. [PMID: 40363780 PMCID: PMC12073798 DOI: 10.3390/molecules30091973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/17/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Plants provide valuable compounds that positively influence the health of blood vessels, including those in the skin. Numerous plants exhibit anti-inflammatory, antioxidant, and vasodilating effects, which enhance blood circulation and may promote skin regeneration and suppleness. Botanical species like Camellia sinensis, Chrysanthellum indicum, Helichrysum italicum, Glycyrrhiza glabra, Ginkgo biloba, or Artemisia lavandulaefolia may positively influence the health of cutaneous blood vessels in the skin. The beneficial impact in this context is attributed to various secondary metabolites inherent to these plants, including phenolic acids, flavonoids, vitamins, or saponins, which can subsequently enhance microcirculation, diminish swelling, inhibit telangiectasia, occlude blood vessels, and enhance skin appearance. In addition, the high antioxidant activity of plants is also key here, which helps protect vessels from damage caused by oxidative stress. This article provides an overview of specific plants that may positively influence skin blood vessels, along with a discussion of particular active compounds within these plants that exhibit such effects. These herbs not only improve vascular health but also promote a more youthful appearance. By examining their distinct qualities, we can enhance our comprehension of their synergistic effects on skin vitality and resilience.
Collapse
Affiliation(s)
- Barbara Hanna Roman
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (B.H.R.); (A.M.-S.); (K.F.); (M.T.); (B.W.); (Ł.K.)
| | - Anna Muzykiewicz-Szymańska
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (B.H.R.); (A.M.-S.); (K.F.); (M.T.); (B.W.); (Ł.K.)
| | - Katarzyna Florkowska
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (B.H.R.); (A.M.-S.); (K.F.); (M.T.); (B.W.); (Ł.K.)
| | - Magdalena Tkacz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (B.H.R.); (A.M.-S.); (K.F.); (M.T.); (B.W.); (Ł.K.)
| | - Bartłomiej Wilk
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (B.H.R.); (A.M.-S.); (K.F.); (M.T.); (B.W.); (Ł.K.)
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (B.H.R.); (A.M.-S.); (K.F.); (M.T.); (B.W.); (Ł.K.)
| | - Agata Madalińska
- Students’ Scientific Club at the Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland;
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (B.H.R.); (A.M.-S.); (K.F.); (M.T.); (B.W.); (Ł.K.)
| |
Collapse
|
5
|
Ehambarampillai D, Wan MLY. A comprehensive review of Schisandra chinensis lignans: pharmacokinetics, pharmacological mechanisms, and future prospects in disease prevention and treatment. Chin Med 2025; 20:47. [PMID: 40205412 PMCID: PMC11984061 DOI: 10.1186/s13020-025-01096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
Lignans derived from Schisandra chinensis have attracted significant attention for their diverse pharmacological activities and clinical potential. This review presents a comprehensive analysis of the pharmacological properties of Schisandra chinensis lignans, including their antioxidant, anti-inflammatory, neuroprotective, hepatoprotective, antibacterial/viral, antidiabetic and anticancer effects. Their multifaceted mechanisms of action hold promise for therapeutic areas such as cancer, neurodegenerative diseases and metabolic disorders, aligning with urgent clinical needs. Additionally, this review explores the pharmacokinetics of these bioactive compounds, highlighting challenges in their absorption, distribution, metabolism and excretion, which impact their bioavailability. Recent advancements in drug delivery systems are discussed, highlighting their potential to enhance therapeutic efficacy in clinical settings. Furthermore, the synergistic effects of combining these lignans with other therapeutic agents are considered a strategy to increase their efficacy. Future research is imperative to identify additional active components and elucidate novel mechanisms of action, paving the way for expanded therapeutic applications and unlocking the full clinical potential of Schisandra chinensis in disease prevention and treatment.
Collapse
Affiliation(s)
- Danushiya Ehambarampillai
- School of Medicine, Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, PO1 2DT, Portsmouth, United Kingdom
| | - Murphy Lam Yim Wan
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, 221 84, Sweden.
- School of Medicine, Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, PO1 2DT, Portsmouth, United Kingdom.
| |
Collapse
|
6
|
Zhang YQ, Liu Y, Wang YQ, Jiang P, Li MM, Pan J, Guan W, Naseem A, Kuang HX, Yang BY. Three new schinortriterpenoids from the leaves of Schisandra chinensis (Turcz.) Baill. Nat Prod Res 2025; 39:2121-2129. [PMID: 38069504 DOI: 10.1080/14786419.2023.2290682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 04/09/2025]
Abstract
Three undescribed schinortriterpenoids, schinensilactones D-F (1-3), together with five known ones, namely, wuweizidilactone A (4), wuweizidilactone C (5), wuweizidilactone F (6), wuweizidilactone J (7) and wuweizidilactone N (8), were isolated from the leaves of Schisandra chinensis (Turcz.) Baill. The structures of new compounds were established by analysis of their spectroscopic data including MS, IR, 1D- and 2D-NMR spectra. The absolute configuration of 1 was confirmed by single-crystal X-ray diffraction and calculated electronic circular dichroism (ECD) spectra. All compounds were evaluated for their neuroprotective effects against H2O2-induced injury in human neuroblastoma SH-SY5Y cell lines. Cell viability was remarkably reduced to 52.33% in H2O2-treated cells. Compounds 5-7 exhibited moderate neuroprotective activities at 50 μM, with cell viability of 64.84%, 67.34% and 63.73%, respectively.
Collapse
Affiliation(s)
- Yi-Qiang Zhang
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yu-Qing Wang
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Peng Jiang
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Meng-Meng Li
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
7
|
Lim SK, Azmi MH, Kim MK, Kim SH, Lee SY, Jung HY. A Novel Phaeoacremonium Species Isolated from Galls on the Chinese Magnolia-Vine ( Schisandra chinensis) in Korea. MYCOBIOLOGY 2025; 53:243-249. [PMID: 40098943 PMCID: PMC11912284 DOI: 10.1080/12298093.2024.2438463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 03/19/2025]
Abstract
The fungal strain KNUF-24-9L1a, belonging to the genus Phaeoacremonium, was isolated from gall-midge (Lasioptera sp.; Diptera: Cecidomyiidae) larvae and their galleries on a Chinese magnolia-vine (Schisandra chinensis) sample collected in Mungyeong-si, Gyeongbuk province, Korea. Phylogenetic analyses based on concatenated nucleotide sequences of the beta-tubulin and actin genes revealed that the strain clustered with Phaeoacremonium species but occupied a distinct phylogenetic position. Morphological differences between strain KNUF-24-9L1a and closely related species were also observed. In this study, we provide detailed descriptions, illustrations, and discussions of the morphological and phylogenetic analyses of closely related species to support the novelty of this isolated species. The phylogenetic and morphological evidence suggests that strain KNUF-24-9L1a represents a novel species within the genus Phaeoacremonium, which we have designated this species as Phaeoacremonium schisandrae sp. nov.
Collapse
Affiliation(s)
- Seong-Keun Lim
- Department of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Mohammad Hamizan Azmi
- Department of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Min-Ki Kim
- Gyeongbuk Agricultural Research and Extension Services, Daegu, Republic of Korea
| | - Seung-Han Kim
- Gyeongbuk Agricultural Research and Extension Services, Daegu, Republic of Korea
| | - Seung-Yeol Lee
- Department of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hee-Young Jung
- Department of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
8
|
Skalski B, Kuźniak E, Kowalska I, Sikora M, Olas B. A Review of the Biological Activity and Structure-Property Relationships of the Main Compounds from Schisandra chinensis. Nutrients 2025; 17:436. [PMID: 39940298 PMCID: PMC11821066 DOI: 10.3390/nu17030436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
Schisandra chinensis is a plant from the Schisandraceae family that grows in humid climates, such as forests and mountain slopes. This plant is attracting the attention of an increasing number of scientists around the world, mainly due to its medicinal properties. It contains a variety of bioactive compounds that exhibit significant biological activities, including lignans, flavonoids, phenolic acids, triterpenoids, organic acids and essential oils. This publication is a review of the latest knowledge and research conducted in the field of analysis of biologically active compounds isolated from Schisandra chinensis.
Collapse
Affiliation(s)
- Bartosz Skalski
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland;
| | - Elżbieta Kuźniak
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland;
| | - Iwona Kowalska
- Department of Phytochemistry, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland;
| | - Monika Sikora
- Łukasiewicz Research Network, Łódź Institute of Technology, 90-570 Łódź, Poland;
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236 Łódź, Poland;
| |
Collapse
|
9
|
Sławińska N, Kontek B, Żuchowski J, Moniuszko-Szajwaj B, Białecki J, Zakrzewski K, Bogusz P, Stochmal A, Olas B. Phytochemical Analysis of the Extract from Berries of Schisandra chinensis Turcz. (Baill.) and Its Anti-Platelet Potential In Vitro. Int J Mol Sci 2025; 26:984. [PMID: 39940755 PMCID: PMC11816935 DOI: 10.3390/ijms26030984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Schisandra chinensis Turcz. (Baill.) is a dioecious vine belonging to the Schisandraceae family. Its berries show beneficial activities, including cardioprotective, antioxidant, and anti-inflammatory. We examined the chemical content of S. chinensis berry extract and its antiplatelet potential in vitro. The antiplatelet activity assays included measurements of thrombus formation in full blood (with Total Thrombus-formation Analysis System) and platelet activation and adhesion. We also assessed the extract's effect on coagulation times in human plasma and its cytotoxicity toward blood platelets based on extracellular lactate dehydrogenase activity. The most important constituents of the extract were dibenzocyclooctadiene lignans; schisandrin was the dominant compound. S. chinensis berry extract at the concentration of 50 μg/mL inhibited thrombus formation by approximately 15%. The adhesion of unstimulated and thrombin-activated blood platelets to collagen was inhibited by all used concentrations of the extract (0.5-50 μg/mL), while the adhesion of adenosine diphosphate (ADP)-activated platelets to fibrinogen was inhibited only by the concentrations of 10 and 50 μg/mL. The extract also inhibited the exposition of the active form of GPIIb/IIIa on the surface of platelets stimulated with 10 μM ADP (at 0.5-50 μg/mL) and 20 μM ADP (at 50 μg/mL). The exposition of P-selectin was inhibited only by the extract at the concentrations of 5-50 μg/mL in platelets stimulated with 10 μg/mL collagen. Moreover, the extract was not cytotoxic toward blood platelets. This indicates that S. chinensis berries hold promise as new antiplatelet agents, but more studies are needed to determine their mechanisms of action and in vivo efficiency.
Collapse
Affiliation(s)
- Natalia Sławińska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (N.S.); (B.K.); (K.Z.)
| | - Bogdan Kontek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (N.S.); (B.K.); (K.Z.)
| | - Jerzy Żuchowski
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation–State Research Institute, 24-100 Pulawy, Poland; (J.Ż.); (B.M.-S.); (A.S.)
| | - Barbara Moniuszko-Szajwaj
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation–State Research Institute, 24-100 Pulawy, Poland; (J.Ż.); (B.M.-S.); (A.S.)
| | - Jacek Białecki
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (N.S.); (B.K.); (K.Z.)
| | - Kamil Zakrzewski
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (N.S.); (B.K.); (K.Z.)
| | - Paulina Bogusz
- Fertilizer Research Group, Lukasiewicz Research Network–New Chemical Synthesis Institute, 24-110 Pulawy, Poland;
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation–State Research Institute, 24-100 Pulawy, Poland; (J.Ż.); (B.M.-S.); (A.S.)
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (N.S.); (B.K.); (K.Z.)
| |
Collapse
|
10
|
Li B, Zhou W, Zhang J, Wang N, Yang X, Ge X. Schisandrin a Ameliorates Cardiac Injury and Dysfunction Induced by Hemorrhagic Shock via Activating the Nrf2 Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2453-2468. [PMID: 39686793 DOI: 10.1142/s0192415x24500939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Hemorrhagic shock (HS) is a critical condition with high mortality caused by acute blood loss. Cardiac injury and dysfunction induced by HS is a major factor associated with the poor prognosis of affected patients. Schisandrin A (Sch A), a dibenzocyclooctadiene lignan extracted from Fructus schisandrae, exhibits multiple biological activities, including anti-inflammatory, and antioxidant effects. However, the effect of Sch A on HS-caused cardiac injury and its underlying mechanism still lack research. In this study, we established an HS rat model through blood loss from the femoral artery and monitoring mean arterial pressure (MAP) followed by fluid resuscitation. Our findings suggested that cardiac dysfunction and pathological injury were induced by HS and attenuated by Sch A treatment in a dose-dependent manner. Apoptosis in cardiac tissue was promoted by HS, but suppressed after administration of Sch A by decreasing the protein expressions of cleaved-caspase-3 and -9. Moreover, excessive ROS production induced by HS was mitigated by Sch A, and the levels of oxidative stress indicators were improved by Sch A. Additionally, HS triggered the reduction of mitochondrial membrane potential (MMP), and led to mitochondrial dysfunction. Sch A reversed this effect of HS on mitochondria. The transformation of cytochrome c (Cyto c) induced by HS was also restored by Sch A. Importantly, the activation of the Nrf2 signaling pathway mediated the protective effects of Sch A against cardiac injury induced by HS. In conclusion, it was found that Sch A ameliorated HS-induced cardiac injury and dysfunction through suppressing apoptosis and oxidative stress, as well as alleviating mitochondrial dysfunction via the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Bo Li
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P. R. China
| | - Wuming Zhou
- Department of Emergency and Critical Care Medicine, Wuxi 9th People's Hospital, Affiliated to Soochow University, Wuxi, Jiangsu 214000, P. R. China
| | - Jiacheng Zhang
- Department of Emergency and Critical Care Medicine, Wuxi 9th People's Hospital, Affiliated to Soochow University, Wuxi, Jiangsu 214000, P. R. China
| | - Nan Wang
- Department of Emergency and Critical Care Medicine, Wuxi 9th People's Hospital, Affiliated to Soochow University, Wuxi, Jiangsu 214000, P. R. China
| | - Xingguan Yang
- Department of ICU, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P. R. China
| | - Xin Ge
- Department of Emergency and Critical Care Medicine, Wuxi 9th People's Hospital, Affiliated to Soochow University, Wuxi, Jiangsu 214000, P. R. China
- Orthopedic Institution of Wuxi City, Wuxi, Jiangsu 214000, P. R. China
| |
Collapse
|
11
|
He L, Lin C, Zhuang L, Sun Y, Li Y, Ye Z. Targeting Hepatocellular Carcinoma: Schisandrin A Triggers Mitochondrial Disruption and Ferroptosis. Chem Biol Drug Des 2024; 104:e70010. [PMID: 39668608 PMCID: PMC11638659 DOI: 10.1111/cbdd.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 12/14/2024]
Abstract
The main focus of this research was to examine SchA's role in the hepatocellular carcinoma (HCC) development. LO2 and Huh7 cell viability were assessed using the MTT assay. The experiments included flow cytometry, colony formation, transwell, wound healing, and immunofluorescence assays to evaluate apoptosis levels, cells colony-forming ability, ROS levels, invasion and migration ability, and mitochondrial membrane potential. Biochemical kits was utilized for checking the ATP, mitochondrial DNA, MDA, GSH, and Fe2+ levels in the Huh7 cells, and western blot for measuring the ferroptosis and AMPK/mTOR related-protein expression levels. The MTT assay demonstrated that SchA significantly reduced the vitality of Huh7 cells ranging from 10 to 50 μM, whereas it exhibited no discernible impact on LO2 cells. Additionally, SchA significantly inhibited colony-forming ability, invasion ability, and migration ability within the concentration range of 10 to 50 μM, with a reduction of 68% in colony formation at 50 μM. SchA also induced apoptosis in a dose-dependent manner. Moreover, SchA was observed to significantly elevate ROS levels dose-dependently, down-regulate mitochondrial membrane potential (JC-1) at 20 and 50 μM, and reduce the levels of ATP and mtDNA dose-dependently. Various concentrations of SchA resulted in a notable elevation in MDA and Fe2+ levels as well as ACSL4 protein expression, accompanied by a reduction in GSH level and the protein expression of GPX4 and SLC7A11. Furthermore, SchA induced the activation of the AMPK/mTOR pathway in Huh7 cells, as evidenced by the increased phosphorylation level of AMPK and decreased phosphorylation level of mTOR. SchA might inhibit the progress of HCC through mitochondrial ferroptosis and dysfunction mediated by AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Lin‐wei He
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Chang‐jie Lin
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Lin‐jun Zhuang
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Yi‐hui Sun
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Ye‐cheng Li
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Zhen‐yu Ye
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| |
Collapse
|
12
|
Liu M, Yang K, Qiu H. Exploring the Effect of Gomisin A on Non-Small Cell Lung Cancer With Network Pharmacology, Molecular Docking, In Vitro and In Vivo Assays. Chem Biol Drug Des 2024; 104:e70014. [PMID: 39533773 DOI: 10.1111/cbdd.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/08/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Gomisin A is an active ingredient of Schisandra chinensis. Pre-clinical studies suggest Gomisin A has good anti-cancer activities against a variety of cancers, but its mechanism of action in non-small cell lung cancer (NSCLC) is unclear. This study aims to explore the potential mechanism of Gomisin A in treating NSCLC. The SwissTargetPrediction, CTD, HERB and PharmMapper databases were used to collect related targets of Gomisin A. NSCLC-related genes were obtained using the GEO, CTD, DisGeNET, OMIM, GeneCards, NCBI, and PharmGKB databases. The central targets and potential mechanisms of Gomisin A against NSCLC were screened using network pharmacology and molecular docking. Finally, the therapeutic activity of Gomisin A on NSCLC was verified by experiments. A total of 161 potential targets of Gomisin A against NSCLC were identified. TNF, AKT1, STAT3, and IL6 were identified as the central targets of Gomisin A. The binding energy of Gomisin A and the central targets was less than -5 kcal/mol. Gomisin A could inhibit NSCLC cell viability, migration and invasion and induce cell cycle arrest and apoptosis. Gomisin A also inhibited in vivo metastasis of NSCLC cells. In addition, Gomisin A could also reduce the expression level of the central targets and inhibit the PI3K-Akt signaling pathway. In summary, Gomisin A may be a candidate drug for the treatment of NSCLC, and TNF, AKT1, STAT3, and IL6 are potential targets for Gomisin A in NSCLC treatment, and its therapeutic mechanism may be related to the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Mei Liu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Kai Yang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Huibing Qiu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
13
|
Liu X, Huang Q, Li W, Yu J, Yu J, Yang Y, Song H, Liu Y, Niu X, Li W. The inhibitory impact of Schisandrin on inflammation and oxidative stress alleviates LPS-induced acute kidney injury. Biotechnol Appl Biochem 2024; 71:1116-1128. [PMID: 38798098 DOI: 10.1002/bab.2602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/29/2024]
Abstract
Inflammation and oxidative stress (OS) are the major pathogenic characteristics of acute kidney injury (AKI). Studies have shown that Schisandrin (Sch) could regulate inflammatory disease. However, the function and mechanism of Sch in AKI progression are still unknown. Here, we investigated Sch's potential effects and mechanism on mice's renal damage and macrophages induced by lipopolysaccharide (LPS). Sch decreased LPS-induced inflammatory factor production while increasing the activity of related antioxidant enzymes in macrophages and mouse kidney tissues. Hematoxylin and eosin staining revealed that Sch may have the ability to profoundly inhibit inflammatory cell invasion and tissue damage caused by LPS in renal tissue. Furthermore, Western blot and immunohistochemical studies showed that Sch exerted its effects mainly through up-regulation of nuclear factor erythroid 2-related factor 2/heme oxygenase-1 and inhibition of Toll-like receptor 4‒mitogen-activated protein kinases/nuclear factor-kappa B pathways. Collectively, this study illustrates that Sch suppresses LPS-stimulated AKI by descending inflammation and OS, illuminating prospective AKI treatment options.
Collapse
Affiliation(s)
- Xinyao Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Qiuxia Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Wenqi Li
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yajie Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
| |
Collapse
|
14
|
Xu S, Hu C, Han J, Luo W, Huang L, Jiang Y, Samorodov AV, Wang Y, Huang J. Schisandrin B alleviates angiotensin II-induced cardiac inflammatory remodeling by inhibiting the recruitment of MyD88 to TLRs in mouse cardiomyocytes. Int Immunopharmacol 2024; 139:112660. [PMID: 39018688 DOI: 10.1016/j.intimp.2024.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
Cardiac tissue remodeling is characterized by altered heart tissue architecture and dysfunction, leading to heart failure. Sustained activation of the renin-angiotensin-aldosterone system (RAAS) greatly promotes the development of myocardial remodeling. Angiotensin II (Ang II), which is the major component of RAAS, can directly lead to cardiac remodeling by inducing an inflammatory response. Schisandrin B (Sch B), the active component extracted from the fruit of Schisandra chinensis (Turcz.) Baill has been shown to exhibit anti-inflammatory activity through its ability to target TLR4 and its adaptor protein, MyD88. In this study, we explored whether Sch B alleviates Ang II-induced myocardial inflammation and remodeling via targeting MyD88. Sch B significantly suppressed Ang II-induced inflammation as well as increased the expression of several genes of tissue remodeling (β-Mhc, Tgfb, Anp, α-Ska) both in vivo and in vitro. These protective effects of Sch B were due to the inhibition of recruitment of MyD88 to TLR2 and TLR4, suppressing the Ang II-induced NF-κB activation and reducing the following inflammatory responses. Moreover, the knockdown of Myd88 in cardiomyocytes abrogated the Ang II-induced increases in the production of inflammatory cytokines and expression of remodeling genes. These findings provide new evidence that the mechanism of Sch B protection was attributed to selective inhibition of MyD88 signaling. This finding could pave the way for novel therapeutic strategies for myocardial inflammatory diseases.
Collapse
Affiliation(s)
- Sujing Xu
- Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo 315700, China; Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Chenghong Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jibo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lijiang Huang
- Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo 315700, China
| | - Yongsheng Jiang
- Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo 315700, China
| | | | - Yi Wang
- Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo 315700, China; School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jianxiong Huang
- Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo 315700, China.
| |
Collapse
|
15
|
Yinda LEDO, Onanga R, Obiang CS, Begouabe H, Akomo-Okoue EF, Obame-Nkoghe J, Mitola R, Ondo JP, Atome GRN, Engonga LCO, Ibrahim, Setchell JM, Godreuil S. Antibacterial and antioxidant activities of plants consumed by western lowland gorilla (Gorilla gorilla gorilla) in Gabon. PLoS One 2024; 19:e0306957. [PMID: 39259705 PMCID: PMC11389915 DOI: 10.1371/journal.pone.0306957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/26/2024] [Indexed: 09/13/2024] Open
Abstract
Zoopharmacognosy is the study of the self-medication behaviors of non-human animals that use plant, animal or soil items as remedies. Recent studies have shown that some of the plants employed by animals may also be used for the same therapeutic purposes in humans. The aim of this study was to determine the antioxidant and antibacterial activity of Ceiba pentandra, Myrianthus arboreus, Ficus subspecies (ssp.) and Milicia excelsa bark crude extracts (BCE), plants consumed by western lowland gorillas (Gorilla gorilla gorilla) in Moukalaba-Doudou National Park (MDNP) and used in traditional medicine, and then to characterize their phytochemical compounds. DPPH (2,2-Diphenyl-1-Picrylhydrazyl), phosphomolybdenum complex and β-carotene bleaching methods were used to assess antioxidant activity. Antimicrobial susceptibility testing was performed using the diffusion method, while minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were assessed using the microdilution method. The highest level of total phenolics was found in Myrianthus arboreus aqueous extract [385.83 ± 3.99 mg [gallic acid equivalent (GAE)/g]. Total flavonoid (134.46 ± 3.39) mg quercetin equivalent (QE)/100 g of extract] were highest in Milicia excelsa, tannin [(272.44 ± 3.39) mg tannic acid equivalent (TAE)/100 g of extract] in Myrianthus arboreus and proanthocyanidin [(404.33 ± 3.39) mg apple procyanidins equivalent (APE)/100 g of extract] in Ceiba pentandra. Ficus ssp. (IC50 1.34 ±3.36 μg/mL; AAI 18.57 ± 0.203) ethanolic BCE and Milicia excelsa (IC50 2.07 ± 3.37 μg/mL; AAI 12.03 ± 0.711) showed the strongest antioxidant activity. Myrianthus arboreus ethanolic BCE (73.25 ± 5.29) and Milicia excelsa aqueous BCE (38.67 ± 0.27) showed the strongest percentage of total antioxidant capacity (TAC). Ceiba pentandra ethanolic BCE (152.06 ± 19.11 mg AAE/g) and Ficus ssp aqueous BCE (124.33 ± 39.05 mg AAE/g) showed strongest relative antioxidant activity (RAA). The plant BCE showed antimicrobial activity against multidrug resistant (MDR) E. coli (DECs) isolates, with MICs varying from 1.56 to 50 mg/mL and inhibition diameters ranging from 7.34 ± 0.57 to 13.67 ± 0.57mm. Several families of compounds were found, including total phenolic compounds, flavonoids, tannins and proanthocyanidins were found in the plant BCEs. The plant BCEs showed antioxidant activities with free radical scavenging and antimicrobial activities against 10 MDR E. coli (DECs) isolates, and could be a promising novel source for new drug discovery.
Collapse
Affiliation(s)
| | - Richard Onanga
- Laboratory of Bacteriology, Interdisciplinary Medical Research Center of Franceville, Franceville, Gabon
| | - Cédric Sima Obiang
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | - Herman Begouabe
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | | | - Judicaël Obame-Nkoghe
- Unity of Vector Ecology, Interdisciplinary Medical Research Center of Franceville, Franceville, Gabon
| | - Roland Mitola
- Laboratory of Biology, University of Science and Technology of Masuku, Franceville, Gabon
| | - Joseph-Privat Ondo
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | - Guy-Roger Ndong Atome
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | - Louis-Clément Obame Engonga
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | - Ibrahim
- Laboratory of Biology, University of Science and Technology of Masuku, Franceville, Gabon
| | - Joanna M Setchell
- Department of Anthropology, Université de Durham, Durham, United Kingdom
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, CHU de Montpellier, UMR MIVEGEC (IRD, CNRS, Université de Montpelier), Montpellier, France
| |
Collapse
|
16
|
Hassanein EHM, Althagafy HS, Baraka MA, Abd-Alhameed EK, Ibrahim IM, Abd El-Maksoud MS, Mohamed NM, Ross SA. The promising antioxidant effects of lignans: Nrf2 activation comes into view. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6439-6458. [PMID: 38695909 PMCID: PMC11422461 DOI: 10.1007/s00210-024-03102-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/11/2024] [Indexed: 09/25/2024]
Abstract
Lignans are biologically active compounds widely distributed, recognized, and identified in seeds, fruits, and vegetables. Lignans have several intriguing bioactivities, including anti-inflammatory, antioxidant, and anticancer activities. Nrf2 controls the expression of many cytoprotective genes. Activation of Nrf2 is a promising therapeutic approach for treating and preventing diseases resulting from oxidative injury and inflammation. Lignans have been demonstrated to stimulate Nrf2 signaling in a variety of in vitro and experimental animal models. The review summarizes the findings of fourteen lignans (Schisandrin A, Schisandrin B, Schisandrian C, Magnolol, Honokiol, Sesamin, Sesamol, Sauchinone, Pinoresinol, Phyllanthin, Nectandrin B, Isoeucommin A, Arctigenin, Lariciresinol) as antioxidative and anti-inflammatory agents, affirming how Nrf2 activation affects their pharmacological effects. Therefore, lignans may offer therapeutic candidates for the treatment and prevention of various diseases and may contribute to the development of effective Nrf2 modulators.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad A Baraka
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa S Abd El-Maksoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Assiut, Assiut, 77771, Egypt.
| | - Samir A Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
- Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
17
|
Zhang BY, Yang R, Zhu WQ, Zhu CL, Chen LX, Zhao YS, Zhang Y, Wang YQ, Jiang DZ, Tang B, Zhang XM. Schisandrin B alleviates testicular inflammation and Sertoli cell apoptosis via AR-JNK pathway. Sci Rep 2024; 14:18418. [PMID: 39117695 PMCID: PMC11310458 DOI: 10.1038/s41598-024-69389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Bacterial testicular inflammation is one of the important causes of male infertility. Using plant-derived compounds to overcome the side effects of antibiotics is an alternative treatment strategy for many diseases. Schizandrin B (SchB) is a bioactive compound of herbal medicine Schisandra chinensis which has multiple pharmacological effects. However its effect and the mechanism against testicular inflammation are unknown. Here we tackled these questions using models of lipopolysaccharide (LPS)-induced mice and -Sertoli cells (SCs). Histologically, SchB ameliorated the LPS-induced damages of the seminiferous epithelium and blood-testicular barrier, and reduced the production of pro-inflammatory mediators in mouse testes. Furthermore, SchB decreased the levels of pro-inflammatory mediators and inhibited the nuclear factor kB (NF-κB) and MAPK (especially JNK) signaling pathway phosphorylation in LPS-induced mSCs. The bioinformatics analysis based on receptor prediction and the molecular docking was further conducted. We targeted androgen receptor (AR) and illustrated that AR might bind with SchB in its function. Further experiments indicate that the AR expression was upregulated by LPS stimulation, while SchB treatment reversed this phenomenon; similarly, the expression of the JNK-related proteins and apoptotic-related protein were also reversed after AR activator treatment. Together, SchB mitigates LPS-induced inflammation and apoptosis by inhibiting the AR-JNK pathway.
Collapse
Affiliation(s)
- Bo-Yang Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rui Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wen-Qian Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chun-Ling Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lan-Xin Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan-Sen Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yue-Qi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dao-Zhen Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bo Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue-Ming Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
18
|
Yang H, Zhan X, Zhao J, Shi W, Liu T, Wei Z, Li H, Hou X, Mu W, Chen Y, Zheng C, Wang Z, Wei S, Xiao X, Bai Z. Schisandrin C enhances type I IFN response activation to reduce tumor growth and sensitize chemotherapy through antitumor immunity. Front Pharmacol 2024; 15:1369563. [PMID: 39170700 PMCID: PMC11337024 DOI: 10.3389/fphar.2024.1369563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 08/23/2024] Open
Abstract
With the advancing comprehension of immunology, an increasing number of immunotherapies are being explored and implemented in the field of cancer treatment. The cGAS-STING pathway, a crucial element of the innate immune response, has been identified as pivotal in cancer immunotherapy. We evaluated the antitumor effects of Schisandra chinensis lignan component Schisandrin C (SC) in 4T1 and MC38 tumor-bearing mice, and studied the enhancing effects of SC on the cGAS-STING pathway and antitumor immunity through RNA sequencing, qRT-PCR, and flow cytometry. Our findings revealed that SC significantly inhibited tumor growth in models of both breast and colon cancer. This suppression of tumor growth was attributed to the activation of type I IFN response and the augmented presence of T cells and NK cells within the tumor. Additionally, SC markedly promoted the cGAS-STING pathway activation induced by cisplatin. In comparison to cisplatin monotherapy, the combined treatment of SC and cisplatin exhibited a greater inhibitory effect on tumor growth. The amplified chemotherapeutic efficacy was associated with an enhanced type I IFN response and strengthened antitumor immunity. SC was shown to reduce tumor growth and increase chemotherapy sensitivity by enhancing the type I IFN response activation and boosting antitumor immunity, which enriched the research into the antitumor immunity of S. chinensis and laid a theoretical basis for its application in combating breast and colon cancer.
Collapse
Affiliation(s)
- Huijie Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoyan Zhan
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, Beijing, China
| | - Jia Zhao
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Wei Shi
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Liu
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, China
| | - Ziying Wei
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaorong Hou
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wenqing Mu
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuanyuan Chen
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Congyang Zheng
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhongxia Wang
- Department of Nutrition, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shengli Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohe Xiao
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, Beijing, China
| | - Zhaofang Bai
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, Beijing, China
| |
Collapse
|
19
|
Reigada I, Kapp K, Kaudela T, García Soria M, Oksanen T, Hanski L. Tracking Chlamydia - Host interactions and antichlamydial activity in Caenorhabditis elegans. Biomed Pharmacother 2024; 177:116956. [PMID: 38901202 DOI: 10.1016/j.biopha.2024.116956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
The fading efficacy of antibiotics is a growing global health concern due to its life-threatening consequences and increased healthcare costs. Non-genetic mechanisms of antimicrobial resistance, such as those employed by Chlamydia pneumoniae and Chlamydia trachomatis, complicate treatment as these bacteria can enter a non-replicative, persistent state under stress, evading antibiotics and linking to inflammatory conditions. Understanding chlamydial persistence at the molecular level is challenging, and new models for studying Chlamydia-host interactions in vivo are urgently needed. Caenorhabditis elegans offers an alternative given its immune system and numerous orthologues of human genes. This study established C. elegans as an in vivo model for chlamydial infection. Both Chlamydia species reduced the worm's lifespan, their DNA being detectable at three- and six-days post-infection. Azithromycin at its MIC (25 nM) failed to prevent the infection-induced lifespan reduction, indicating a persister phenotype. In contrast, the methanolic extract of Schisandra chinensis berries showed anti-chlamydial activity both in vitro (in THP-1 macrophages) and in vivo, significantly extending the lifespan of infected C. elegans and reducing the bacterial load. Moreover, S. chinensis increased the transcriptional activity of SKN-1 in the worms, but was unable to impact the bacterial load or lifespan in a sek-1 defective C. elegans strain. In summary, this study validated C. elegans as a chlamydial infection model and showcased S. chinensis berries' in vivo anti-chlamydial potential, possibly through SEK/SKN-1 signaling modulation.
Collapse
Affiliation(s)
- Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Karmen Kapp
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Theresa Kaudela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - María García Soria
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge (San Jorge University), Zaragoza 50830, Spain
| | - Timo Oksanen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Leena Hanski
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
20
|
Wang Y, Yang Y, Li C, Liu Y, Fan S, Yan Y, Tian T, Li J, Wang Y, Qin H, Zhang B, Lu W, Xu P. Analysis of Lignan Content and Rhizosphere Microbial Diversity of Schisandra chinensis (Turcz.) Baill. Resources. Life (Basel) 2024; 14:946. [PMID: 39202688 PMCID: PMC11355859 DOI: 10.3390/life14080946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Genetic and environmental factors influence the growth and quality of medicinal plants. In recent years, rhizosphere microorganisms have also emerged as significant factors affecting the quality of medicinal plants. This study aimed to identify Schisandra resources with high lignan content and analyze the microbial diversity of the rhizosphere soil. High-performance liquid chromatography was used to measure the lignan content in nine Schisandra fruits. High-throughput sequencing was used to analyze the 16S rDNA sequences of rhizosphere bacteria to identify bacterial species diversity. The total lignan content of the nine Schisandra resources ranged from 9.726 mg/g to 14.031 mg/g, with ZJ27 having the highest content and ZJ25 the lowest. Among the six lignan components, Schisandrol A had the highest content, ranging from 5.133 mg/g to 6.345 mg/g, with a significant difference between ZJ25, ZJ27, and other resources (p < 0.05). Schizandrin C had the lowest content, ranging from 0.062 mg/g to 0.419 mg/g, with more significant differences among the resources. A total of 903,933 sequences were obtained from the rhizosphere soil of the nine Schisandra resources, clustered into 10,437 OTUs at a 97% similarity level. The dominant bacterial phyla were Actinobacteriota, Acidobacteriota, Proteobacteria, Chloroflexi, Gemmatimonadota, and Verrucomicrobiota. The dominant bacterial genera were Candidatus_Udaeobacter, Candidatus_Solibacter, RB41, Bradyrhizobium, Gaiella, and Arthrobacter. ZJ27 is the Schisandra resource with the highest lignan content, and the rhizosphere bacteria of Schisandra are rich in diversity. Schisandra B is negatively correlated with Bryobacter, Candidatus_Solibacter, and unnamed genera of Gaiellales.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Wenpeng Lu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.W.); (Y.Y.); (C.L.); (Y.L.); (S.F.); (Y.Y.); (T.T.); (J.L.); (Y.W.); (H.Q.); (B.Z.)
| | - Peilei Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.W.); (Y.Y.); (C.L.); (Y.L.); (S.F.); (Y.Y.); (T.T.); (J.L.); (Y.W.); (H.Q.); (B.Z.)
| |
Collapse
|
21
|
Liu Y, Wang K, Gong X, Qu W, Xiao Y, Sun H, Kang J, Sheng J, Wu F, Dai F. Schisandra chinensis inhibits the entry of BoHV-1 by blocking PI3K-Akt pathway and enhances the m6A methylation of gD to inhibit the entry of progeny virus. Front Microbiol 2024; 15:1444414. [PMID: 39104584 PMCID: PMC11298802 DOI: 10.3389/fmicb.2024.1444414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
Schisandra chinensis, a traditional Chinese medicine known for its antitussive and sedative effects, has shown promise in preventing various viral infections. Bovine herpesvirus-1 (BoHV-1) is an enveloped DNA virus that causes respiratory disease in cattle, leading to significant economic losses in the industry. Because the lack of previous reports on Schisandra chinensis resisting BoHV-1 infection, this study aimed to investigate the specific mechanisms involved. Results from TCID50, qPCR, IFA, and western blot analyses demonstrated that Schisandra chinensis could inhibit BoHV-1 entry into MDBK cells, primarily through its extract Methylgomisin O (Meth O). The specific mechanism involved Meth O blocking BoHV-1 entry into cells via clathrin- and caveolin-mediated endocytosis by suppressing the activation of PI3K-Akt signaling pathway. Additionally, findings from TCID50, qPCR, co-immunoprecipitation and western blot assays revealed that Schisandra chinensis blocked BoHV-1 gD transcription through enhancing m6A methylation of gD after virus entry, thereby hindering gD protein expression and preventing progeny virus entry into cells and ultimately inhibiting BoHV-1 replication. Overall, these results suggest that Schisandra chinensis can resist BoHV-1 infection by targeting the PI3K-Akt signaling pathway and inhibiting gD transcription.
Collapse
Affiliation(s)
- Yang Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Kang Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiao Gong
- Qingdao YeBio Bio-Engineering Co., Ltd., Qingdao, China
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Yangyang Xiao
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
- College of Animal Science and Technology, Shihezi University, Xinjiang, China
| | - Hongtao Sun
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Jingli Kang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Jinliang Sheng
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
- College of Animal Science and Technology, Shihezi University, Xinjiang, China
| | - Faxing Wu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Feiyan Dai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
22
|
Liu D, Yang K, Li T, Tang T, Wang Y, Wang W, Li J, Zhou P, Wang X, Zhao C, Guo D, Xie Y, Cheng J, Wang M, Sun J, Zhang X. The protective effects of aqueous extract of Schisandra sphenanthera against alcoholic liver disease partly through the PI3K-AKT-IKK signaling pathway. Heliyon 2024; 10:e34214. [PMID: 39091943 PMCID: PMC11292531 DOI: 10.1016/j.heliyon.2024.e34214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Purpose This study aimed to investigated the key chemical components and the effect of the aqueous extract of Schisandra sphenanthera (SSAE) on alcoholic liver disease (ALD) and the related molecular mechanism. Methods This study employed UPLC-Q-TOF-MS/MS to identify the chemical compositions in SSAE. ALD rat model was established through oral administration of white spirit. Transcriptome sequencing, weighted gene co-expression network construction analysis (WGCNA), and network pharmacology were used to predict key compositions and pathways targeted by SSAE for the treatment of ALD. Enzyme-linked immunosorbent assay (ELISA), biochemical kits, hematoxylin-eosin (HE) staining, Western blotting (WB) analysis, and immunohistochemical analysis were used to validate the mechanism of action of SSAE in treating ALD. Results Active ingredients such as schisandrin A, schisandrol A, and schisandrol B were found to regulate the PI3K/AKT/IKK signaling pathway. Compared to the model group, the SSAE group demonstrated significant improvements in cellular solidification and tissue inflammation in the liver tissues of ALD model rats. Additionally, SSAE regulated the levels of a spartate aminotransferase (AST), alanine aminotransferase (ALT), alcohol dehydrogenase (ADH), and aldehyde Dehydrogenase (ALDH) in serum (P < 0.05); Western blotting and immunohistochemical analyses showed that the expression levels of phosphorylated PI3K, AKT, IKK, NFκB, and FOXO1 proteins were significantly reduced in liver tissues (P < 0.05), whereas the expression level of Bcl-2 proteins was significantly increased (P < 0.05). Conclusion The active components of SSAE were schisandrin A, schisandrol A, and schisandrol B, which regulated the phosphorylation levels of PI3K, AKT, IKK, and NFκB and the expression of FOXO1 protein and upregulated the expression of Bcl-2 protein in the liver tissues of ALD rats. These findings indicate that SSAE acts against ALD partly through the PI3K-AKT-IKK signaling pathway. This study provided a reference for future research and treatment of ALD and the development of novel natural hepatoprotective drugs.
Collapse
Affiliation(s)
- Ding Liu
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Kai Yang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Taotao Li
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Tiantian Tang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Yujiao Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Wenfei Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Jia Li
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Peijie Zhou
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Xuan Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Chongbo Zhao
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Dongyan Guo
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Yundong Xie
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Jiangxue Cheng
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Mei Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
- Key Laboratory of Modern Chinese Medicine Preparation, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| |
Collapse
|
23
|
Pozzo LD, Xu Z, Lin S, Wang J, Wang Y, Enechojo OS, Abankwah JK, Peng Y, Chu X, Zhou H, Bian Y. Role of epigenetics in the regulation of skin aging and geroprotective intervention: A new sight. Biomed Pharmacother 2024; 174:116592. [PMID: 38615608 DOI: 10.1016/j.biopha.2024.116592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Multiple epigenetic factors play a regulatory role in maintaining the homeostasis of cutaneous components and are implicated in the aging process of the skin. They have been associated with the activation of the senescence program, which is the primary contributor to age-related decline in the skin. Senescent species drive a series of interconnected processes that impact the immediate surroundings, leading to structural changes, diminished functionality, and heightened vulnerability to infections. Geroprotective medicines that may restore the epigenetic balance represent valid therapeutic alliances against skin aging. Most of them are well-known Western medications such as metformin, nicotinamide adenine dinucleotide (NAD+), rapamycin, and histone deacetylase inhibitors, while others belong to Traditional Chinese Medicine (TCM) remedies for which the scientific literature provides limited information. With the help of the Geroprotectors.org database and a comprehensive analysis of the referenced literature, we have compiled data on compounds and formulae that have shown potential in preventing skin aging and have been identified as epigenetic modulators.
Collapse
Affiliation(s)
- Lisa Dal Pozzo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhe Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shan Lin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jida Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ogbe Susan Enechojo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Joseph Kofi Abankwah
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanfei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoqian Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huifang Zhou
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
24
|
Feng J, Yao Y, Qiao Y, Ma X, Wu Z, Duan Y, Di P, Chen W, Xiao Y. Effect of pinoresinol-lariciresinol reductases on biosynthesis of lignans with substrate selectivity in Schisandra chinensis. PHYTOCHEMISTRY 2024; 221:114053. [PMID: 38479587 DOI: 10.1016/j.phytochem.2024.114053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
Schisandra lignans are the main bioactive compounds found in Schisandra chinensis fruits, such as schisandrol lignans and schisandrin lignans, which play important roles in organ protection or other clinical roles. Pinoresinol-lariciresinol reductase (PLR) plays a pivotal role in plant lignan biosynthesis, however, limited research has been conducted on S. chinensis PLR to date. This study identified five genes as ScPLR, successfully cloned their coding sequences, and elucidated their catalytic capabilities. ScPLR3-5 could recognize both pinoresinol and lariciresinol as substrates, and convert them into lariciresinol and secoisolariciresinol, respectively, while ScPLR2 exclusively catalyzed the conversion of (+)-pinoresinol into (+)-lariciresinol. Transcript-metabolite correlation analysis indicated that ScPLR2 exhibited unique properties that differed from the other members. Molecular docking and site-directed mutagenesis revealed that Phe271 and Leu40 in the substrate binding motif were crucial for the catalytic activity of ScPLR2. This study serves as a foundation for understanding the essential enzymes involved in schisandra lignan biosynthesis.
Collapse
Affiliation(s)
- Jingxian Feng
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SHTCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuan Yao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SHTCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuqi Qiao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SHTCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xueqi Ma
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SHTCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zongtai Wu
- Faculty of Biology, University of Cambridge, Cambridge, United Kingdom.
| | - Yonghao Duan
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SHTCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Peng Di
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun, China.
| | - Wansheng Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SHTCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China.
| | - Ying Xiao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SHTCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
25
|
Chen ZH, Liu YX, Chen ZW, Lin MD, Zhang JL, Wang Z, Sun H. Effect and mechanism of gomisin D on the isoproterenol induced myocardial injury in H9C2 cells and mice. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:604-615. [PMID: 38634612 DOI: 10.1080/10286020.2024.2336152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
We established myocardial injury models in vivo and in vitro to investigate the cardioprotective effect of gomisin D obtained from Schisandra chinensis. Gomisin D significantly inhibited isoproterenol-induced apoptosis and hypertrophy in H9C2 cells. Gomisin D decreased serum BNP, ANP, CK-MB, cTn-T levels and histopathological alterations, and inhibited myocardial hypertrophy in mice. In mechanisms research, gomisin D reversed ISO-induced accumulation of intracellular ROS and Ca2+. Gomisin D further improved mitochondrial energy metabolism disorders by regulating the TCA cycle. These results demonstrated that gomisin D had a significant effect on isoproterenol-induced myocardial injury by inhibiting oxidative stress, calcium overload and improving mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Zi-Han Chen
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yan-Xin Liu
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zhi-Wei Chen
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Mo-Di Lin
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jin-Lan Zhang
- Drug Analysis Research Laboratory, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zhe Wang
- Drug Analysis Research Laboratory, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Hua Sun
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
26
|
Poynter ME, Mank MM, Ather JL. Obesity-associated inflammatory macrophage polarization is inhibited by capsaicin and phytolignans. Am J Physiol Regul Integr Comp Physiol 2024; 326:R370-R382. [PMID: 38436058 PMCID: PMC11398870 DOI: 10.1152/ajpregu.00161.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Obesity is often accompanied by increased adipose tissue inflammation, a process that is partially driven by adipose tissue-resident macrophages. In this study, we explored the potential for plant-derived dietary compounds to exert anti-inflammatory effects in macrophages that alleviate obesity-associated adipocyte dysfunction. Capsaicin (CAP), schisandrin A (SA), enterodiol (END), and enterolactone (ENL) treatment polarized J774 macrophages to an "M2" or anti-inflammatory phenotype and inhibited responses to stimulation with lipopolysaccharide (LPS). Furthermore, these compounds blocked inflammasome activation when administered just before ATP-induced NLRP3 activation, as evidenced by the abrogation of IL-1β release in mouse macrophages and human peripheral blood monocytes. The addition of CAP, SA, or ENL during the differentiation of bone marrow-derived macrophages was also sufficient to inhibit LPS-induced IL-6 and TNFα production. Finally, CAP, END, and ENL treatment during differentiation of 3T3-L1 adipocytes induced an adiponectin-high phenotype accompanied by increases in thermogenic gene expression, and conditioned media from these adipocytes inhibited LPS-induced production of IL-1β, IL-6, and TNFα from J774 macrophages. These polarizing effects were partially mediated by the elevated adiponectin and decreased syndecan-4 in the adipocyte-conditioned media. These results implicate the contribution of plant-derived dietary components to the modulation of macrophages and adipocytes in obesity.NEW & NOTEWORTHY The utility of food-based products to prevent or alleviate chronic conditions such as obesity and its associated comorbidities is an attractive approach. Capsaicin, schisandrin A, enterodiol, and enterolactone, phytochemicals present in traditional medicinal food, decreased proinflammatory cytokine production from macrophages that, in turn, reduced obesity-associated adipocyte dysfunction. These results implicate the contribution of plant-derived dietary components to the modulation of macrophages and adipocytes in obesity.
Collapse
Affiliation(s)
- Matthew E Poynter
- Department of Medicine, The University of Vermont, Burlington, Vermont, United States
- The Vermont Lung Center, The University of Vermont, Burlington, Vermont, United States
| | - Madeleine M Mank
- Department of Medicine, The University of Vermont, Burlington, Vermont, United States
- The Vermont Lung Center, The University of Vermont, Burlington, Vermont, United States
| | - Jennifer L Ather
- Department of Medicine, The University of Vermont, Burlington, Vermont, United States
- The Vermont Lung Center, The University of Vermont, Burlington, Vermont, United States
| |
Collapse
|
27
|
Zhao D, Wang Y, Wu S, Ji X, Gong K, Zheng H, Zhu M. Research progress on the role of macrophages in acne and regulation by natural plant products. Front Immunol 2024; 15:1383263. [PMID: 38736879 PMCID: PMC11082307 DOI: 10.3389/fimmu.2024.1383263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
Acne vulgaris is one of the most common skin diseases. The current understanding of acne primarily revolves around inflammatory responses, sebum metabolism disorders, aberrant hormone and receptor expression, colonization by Cutibacterium acnes, and abnormal keratinization of follicular sebaceous glands. Although the precise mechanism of action remains incompletely understood, it is plausible that macrophages exert an influence on these pathological features. Macrophages, as a constituent of the human innate immune system, typically manifest distinct phenotypes across various diseases. It has been observed that the polarization of macrophages toward the M1 phenotype plays a pivotal role in the pathogenesis of acne. In recent years, extensive research on acne has revealed an increasing number of natural remedies exhibiting therapeutic efficacy through the modulation of macrophage polarization. This review investigates the role of cutaneous macrophages, elucidates their potential significance in the pathogenesis of acne, a prevalent chronic inflammatory skin disorder, and explores the therapeutic mechanisms of natural plant products targeting macrophages. Despite these insights, the precise role of macrophages in the pathogenesis of acne remains poorly elucidated. Subsequent investigations in this domain will further illuminate the pathogenesis of acne and potentially offer guidance for identifying novel therapeutic targets for this condition.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yun Wang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shuhui Wu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaotian Ji
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ke Gong
- Department of Traditional Chinese Medicine, Cangzhou Central Hospital, Cangzhou, China
| | - Huie Zheng
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Mingfang Zhu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
28
|
Qiang T, Chen Y, Li B, Dong Y, Wei X, Liu J, Zhang B, Liu H, Xiao P. Transcriptome-wide analysis of PIP reductase gene family identified a phenylpropene synthase crucial for the biosynthesis of dibenzocyclooctadiene lignans in Schisandra chinensis. Synth Syst Biotechnol 2024; 9:78-87. [PMID: 38283950 PMCID: PMC10819558 DOI: 10.1016/j.synbio.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024] Open
Abstract
Phenylpropenes, such as isoeugenol and eugenol, are produced as defend compounds, floral attractants, and flavor constituents by phenylpropene synthases belonging to the PIP reductase family. Moreover, isoeugenol is proposed to be involved in the biosynthesis of dibenzocyclooctadiene lignans, the main active compounds of Schisandra chinensis (Turcz.) Baill. fruits (SCF). S. chinensis, a woody vine plant, is widely used for its medicinal, horticultural, edible, and economic values. In this study, nine ScPIP genes were identified and characterized from the transcriptome datasets of SCF. The expression profiles revealed that ScPIP genes were differentially expressed during different developmental stages of SCF. Three ScPIPs were selected and cloned as candidate genes encoding phenylpropene synthases according to phylogenetic analysis. ScPIP1 was proved to function as isoeugenol synthase (IGS) and designated as ScIGS1 through in vivo functional characterization in Escherichia coli. Subcellular localization analysis demonstrated that ScIGS1 was localized in both the cytoplasm and nucleus. The three-dimensional (3D) model of ScIGS1 was obtained using homology modeling. Site-directed mutagenesis experiments revealed that the substitution of residues at positions 110 and 113 impacted the product specificity of ScIGS1 and the mutation of Lys157 to Ala abolishing catalytic function. Moreover, the kcat values of mutants were lower than that of ScIGS1 using a deep learning approach. In conclusion, this study provides a basis for further research on PIP reductases and the biosynthetic pathway of dibenzocyclooctadiene lignans.
Collapse
Affiliation(s)
- Tingyan Qiang
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- College of Traditional Chinese Medicine, Hebei University, Baoding, 071000, China
| | - Yu Chen
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Bin Li
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Yuqing Dong
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Xueping Wei
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiushi Liu
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Bengang Zhang
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Haitao Liu
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Peigen Xiao
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
29
|
Kim HJ, Park SK, Park SH, Lee YG, Park JH, Hwang JT, Chung MY. Schisandrin A in Schisandra chinensis Upregulates the LDL Receptor by Inhibiting PCSK9 Protein Stabilization in Steatotic Model. J Microbiol Biotechnol 2024; 34:425-435. [PMID: 37997262 PMCID: PMC10940739 DOI: 10.4014/jmb.2306.06049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
Schisandra chinensis extract (SCE) protects against hypocholesterolemia by inhibiting proprotein convertase subtilisin/kexin 9 (PCSK9) protein stabilization. We hypothesized that the hypocholesterolemic activity of SCE can be attributable to upregulation of the PCSK9 inhibition-associated low-density lipoprotein receptor (LDLR). Male mice were fed a low-fat diet or a Western diet (WD) containing SCE at 1% for 12 weeks. WD increased final body weight and blood LDL cholesterol levels as well as alanine transaminase and aspartate aminotransferase expression. However, SCE supplementation significantly attenuated the increase in blood markers caused by WD. SCE also attenuated WD-mediated increases in hepatic LDLR protein expression in the obese mice. In addition, SCE increased LDLR protein expression and attenuated cellular PCSK9 levels in HepG2 cells supplemented with delipidated serum (DLPS). Non-toxic concentrations of schisandrin A (SA), one of the active components of SCE, significantly increased LDLR expression and tended to decrease PCSK9 protein levels in DLPS-treated HepG2 cells. High levels of SA-mediated PCSK9 attenuation was not attributable to reduced PCSK9 gene expression, but was associated with free PCSK9 protein degradation in this cell model. Our findings show that PCSK9 secretion can be significantly reduced by SA treatment, contributing to reductions in free cholesterol levels.
Collapse
Affiliation(s)
- Hyo-Jin Kim
- Personalized Diet Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Seon Kyeong Park
- Personalized Diet Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Soo Hyun Park
- Personalized Diet Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yu Geon Lee
- Personalized Diet Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jae-Ho Park
- Personalized Diet Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jin-Taek Hwang
- Personalized Diet Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Min-Yu Chung
- Department of Food and Nutrition, Gangseo University, Seoul 07661, Republic of Korea
| |
Collapse
|
30
|
Kumano T. Specialized metabolites degradation by microorganisms. Biosci Biotechnol Biochem 2024; 88:270-275. [PMID: 38169014 DOI: 10.1093/bbb/zbad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Secondary metabolites are specialized metabolic products synthesized by plants, insects, and bacteria, some of which exhibit significant physiological activities against other organisms. Plants containing bioactive secondary metabolites have been used in traditional medicine for centuries. In developed countries, one-fourth of medicines directly contain plant-derived compounds or indirectly contain them via semi-synthesis. These compounds have contributed considerably to the development of not only medicine but also molecular biology. Moreover, the biosynthesis of these physiologically active secondary metabolites has attracted substantial interest and has been extensively studied. However, in many cases, the degradation mechanisms of these secondary metabolites remain unclear. In this review, some unique microbial degradation pathways for lignans and C-glycosides are explored.
Collapse
Affiliation(s)
- Takuto Kumano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
31
|
Wróbel-Biedrawa D, Podolak I. Anti-Neuroinflammatory Effects of Adaptogens: A Mini-Review. Molecules 2024; 29:866. [PMID: 38398618 PMCID: PMC10891670 DOI: 10.3390/molecules29040866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Introduction: Adaptogens are a group of plants that exhibit complex, nonspecific effects on the human body, increasing its ability to adapt, develop resilience, and survive in stress conditions. They are found in many traditional medicinal systems and play a key role in restoring the body's strength and stamina. Research in recent years has attempted to elucidate the mechanisms behind their pharmacological effects, but it appears that these effects are difficult to define precisely and involve multiple molecular pathways. Neuroinflammation: In recent years, chronic inflammation has been recognized as one of the common features of many central nervous system disorders (dementia and other neurodegenerative diseases, depression, anxiety, ischemic stroke, and infections). Because of the specific nature of the brain, this process is called neuroinflammation, and its suppression can result in an improvement of patients' condition and may promote their recovery. Adaptogens as anti-inflammatory agents: As has been discovered, adaptogens display anti-inflammatory effects, which suggests that their application may be broader than previously thought. They regulate gene expression of anti- and proinflammatory cytokines (prostaglandins, leukotriens) and can modulate signaling pathways (e.g., NF-κB). Aim: This mini-review aims to present the anti-neuroinflammatory potential of the most important plants classified as adaptogens: Schisandra chinensis, Eleutherococcus senticosus, Rhodiola rosea and Withania somnifera.
Collapse
Affiliation(s)
| | - Irma Podolak
- Department of Pharmacognosy, Jagiellonian University Collegium Medicum, Medyczna 9, 30-688 Cracow, Poland;
| |
Collapse
|
32
|
Li Y, Yang K, Zhao L, Xu C, Zhou W, Wang Z, Hu H, You Y. Effects of schisandra lignans on the absorption of protopanaxadiol-type ginsenosides mediated by P-glycoprotein and protopanaxatriol-type ginsenosides mediated by CYP3A4. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117057. [PMID: 37597677 DOI: 10.1016/j.jep.2023.117057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng Radix et Rhizoma (GRR) and Schisandrae Chinensis Fructus (SCF) are frequently used as herb pairs in traditional herbal formulas especially for the synergetic beneficial effects on lung and heart. Shengmai-yin (SMY), a noted formula, was first published in the traditional Chinese medicine classic named Yixue Qiyuan written by Zhang Yuansu in the Jin Dynasty, and has been used for deficiency of both qi and yin, palpitation, shortness of breath and spontaneous sweating. In SMY, GRR, a sovereign herb, plays an essential role in tonifying lung and supplementing qi, and SCF as an adjuvant herb contributes to the effects of nourishing yin and promoting fluid production, both of which are traditionally used as invigorants in China, Korea, Japan, and Russia. However, the underlying compatibility mechanism of GRR-SCF has remained unknown. AIM OF THE STUDY In order to explore the impact and underlying mechanism of schisandra chinensis extract (SCE) on the absorption of ginsenosides Rb1, Rc, Rb2 and Rd belonging to protopanaxdiol (PPD)-type and ginsenosides Rg1 and Re belonging to protopanaxtriol (PPT)-type, pharmacokinetic studies, molecular docking technique and single-pass intestinal perfusion (SPIP) experiment were conducted. MATERIAL AND METHODS Preliminarily, pharmacokinetic characteristics of ginseng extract (GE) in the presence and absence of SCE were studied. Thereafter, molecular docking was used to predict whether ginsenosides were P-glycoprotein (P-gp) or cytochrome P450 isoenzyme 3A4 (CYP3A4) substrates. Finally, the effects and underlying mechanism of SCE on the absorption of GE were further investigated by in situ SPIP experiment. RESULTS Our findings indicated that SCE could increase exposure in vivo and the intestinal absorption of distinct ginsenosides. Additionally, we found that the PPD-type ginsenosides Rb1, Rc, Rb2, and Rd were substrates for P-gp, and the PPT-type ginsenosides Rg1 and Re were substrates for CYP3A4 rather than P-gp. SCE, which has been found with extensive inhibitory effects on P-gp and CYP3A4, could remarkably promote the intestinal absorption of ginsenosides Rg1, Re, Rb1, Rc, Rb2, and Rd, obtaining similar effects comparable with ketoconazole known as a classic dual inhibitor of P-gp and CYP3A4. CONCLUSIONS The study demonstrated that SCE could improve the absorption of GE, and revealed the underlying compatibility mechanism of GRR and SCF from the perspective of P-gp and CYP3A4-mediated interactions to some extent, which provided a certain scientific reference for the compatibility and clinical practice of GRR-SCF as common herb pairs in traditional prescriptions such as SMY. Moreover, this study also furnished a strategy for improving the oral bioavailability of different types of ginsenosides by drug combinations.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Linxian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunyi Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Weiling Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yu You
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
33
|
Zhu L, Wang Y, Huang X, Liu X, Ye B, He Y, Yu H, Lv W, Wang L, Hu J. Schizandrin A induces non-small cell lung cancer apoptosis by suppressing the epidermal growth factor receptor activation. Cancer Med 2024; 13:e6942. [PMID: 38376003 PMCID: PMC10877655 DOI: 10.1002/cam4.6942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 02/21/2024] Open
Abstract
OBJECTIVE The purpose of this study is to explore the biological mechanism of Schizandrin A (SchA) inducing non-small cell lung cancer (NSCLC) apoptosis. METHODS The reverse molecular docking tool "Swiss Target Prediction" was used to predict the targets of SchA. Protein-protein interaction analysis was performed on potential targets using the String database. Functional enrichment analyses of potential targets were performed with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. The conformation of SchA binding to target was simulated by chemical-protein interactomics and molecular docking. The effect of SchA on the expression and phosphorylation level of EGFR was detected by Western blot. Lipofectamine 3000 and EGFR plasmids were used to overexpress EGFR. Apoptosis was tested with Annexin V-FITC and propidium iodide staining, and cell cycle was detected by propidium iodide staining. RESULTS The "Swiss Target Prediction" database predicted 112 and 111 targets based on the 2D and 3D structures of SchA, respectively, of which kinases accounted for the most, accounting for 24%. Protein interaction network analyses showed that molecular targets such as ERBB family and SRC were at the center of the network. Functional enrichment analyses indicated that ERBB-related signaling pathways were enriched. Compound-protein interactomics and molecular docking revealed that SchA could bind to the ATP-active pocket of the EGFR tyrosine kinase domain. Laboratory results showed that SchA inhibited the phosphorylation of EGFR. Insulin could counteract the cytotoxic effect of SchA. EGFR overexpression and excess EGF or IGF-1 had limited impacts on the cytotoxicity of SchA. CONCLUSIONS Network pharmacology analyses suggested that ERBB family members may be the targets of SchA. SchA can inhibit NSCLC at least in part by inhibiting EGFR phosphorylation, and activating the EGFR bypass can neutralize the cytotoxicity of SchA.
Collapse
Affiliation(s)
- Linhai Zhu
- Department of Thoracic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yanye Wang
- Department of Thoracic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xuhua Huang
- Department of Thoracic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xide Liu
- Department of ArthropathyZhejiang University of Traditional Chinese Medicine Affiliated Integrated Chinese and Western Medicine HospitalHangzhouChina
| | - Bo Ye
- Department of Thoracic SurgeryHangzhou Red Cross HospitalHangzhouChina
| | - Yi He
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Luming Wang
- Department of Thoracic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical Evaluation Technology for Medical device of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
34
|
Gasmi A, Noor S, Dadar M, Semenova Y, Menzel A, Gasmi Benahmed A, Bjørklund G. The Role of Traditional Chinese Medicine and Chinese Pharmacopoeia in the Evaluation and Treatment of COVID-19. Curr Pharm Des 2024; 30:1060-1074. [PMID: 38523518 DOI: 10.2174/0113816128217263240220060252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 03/26/2024]
Abstract
The epidemic prompted by COVID-19 continues to spread, causing a great risk to the general population's safety and health. There are still no drugs capable of curing it. Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) are the two other diseases caused by coronaviruses. Traditional Chinese Medicine (TCM) showed benefits in treating SARS and MERS by preventing the disease early, substantially mitigating symptoms, shortening the treatment period, and minimizing risks and adverse reactions caused by hormone therapy. Although several vaccines have been developed and are being used for the treatment of COVID-19, existing vaccines cannot provide complete protection against the virus due to the rapid evolution and mutation of the virus, as mutated viral epitopes evade the vaccine's target and decrease the efficacy of vaccines. Thus, there is a need to develop alternative options. TCM has demonstrated positive effects in the treatment of COVID-19. Previous research studies on TCM showed broad-spectrum antiviral activity, offering a range of possibilities for their potential use against COVID-19. This study shed some light on common TCM used for SARS and MERS outbreaks and their effective use for COVID-19 management. This study provides new insights into COVID-19 drug discovery.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Maryam Dadar
- CONEM Iran Microbiology Research Group, Tehran, Iran
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
35
|
Li M, Tang Q, Li S, Yang X, Zhang Y, Tang X, Huang P, Yin D. Inhibition of autophagy enhances the anticancer effect of Schisandrin B on head and neck squamous cell carcinoma. J Biochem Mol Toxicol 2024; 38:e23585. [PMID: 37986106 DOI: 10.1002/jbt.23585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/10/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most common malignant tumors worldwide and has a poor prognosis. Autophagy regulation has been proposed as a possible treatment option for HNSCC. Schisandrin B (Sch B) exerts anticancer effects by regulating apoptosis and autophagy, but the anticancer effect of Sch B in HNSCC remains unclear. This study aimed to investigate the effects of Sch B on human Cal27 HNSCC cells and to further reveal its potential regulatory mechanisms. The anticancer effect of Sch B was evaluated in vitro by flow cytometry, clonogenic assays, and Western blot analysis. The regulatory mechanism of Sch B-induced apoptosis and autophagy was further explored by polymerase chain reaction, luciferase assay, and reactive oxygen species (ROS) detection. The results showed that Sch B significantly induced apoptosis and autophagy in Cal27 cells and that inhibition of autophagy enhanced the apoptotic effect of Sch B on Cal27 cells. Additionally, Sch B-activated autophagy in Cal27 cells was dependent on the nuclear factor-kappa B (NF-κB) pathway, and ROS acted as a regulator of the NF-B pathway. N-acetylcysteine, a scavenger of ROS, inhibited Sch B-dependent autophagy via the NF-κB pathway. Based on the results, Sch B is a potential therapeutic agent for HNSCC and activates the NF-κB pathway by increasing ROS production, which subsequently promotes autophagy in HNSCC cells. Therefore, the strategy of enhancing the anticancer effect of Sch B by inhibiting autophagy deserves further attention.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qinglai Tang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Shisheng Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xinming Yang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ying Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaojun Tang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Peiying Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Danhui Yin
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
36
|
Soh R, Fu L, Guo WM, Seetoh WG, Koay A. Inhibitors of human bitter taste receptors from the five-flavour berry, Schisandra chinensis. Food Funct 2023; 14:10700-10708. [PMID: 37986606 DOI: 10.1039/d3fo02303f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The human bitter taste 2 receptor member 16 (TAS2R16) is one of 25 class A G-protein-coupled receptors (GPCRs) and responds to a variety of molecules responsible for the bitter taste sensation perceived in humans. TAS2R16 can be activated by β-glucopyranosides, and its activation can be inhibited by probenecid, a synthetic drug compound used to treat gout. In this study we describe naturally derived compounds which can inhibit the activation of TAS2R16 by salicin in vitro. These compounds belong to the lignan class derived from the fruit of Schisandra chinensis, which is commonly known as the five-flavour berry. We further tested other analogs with this lignan scaffold, found their differential inhibitory activities towards TAS2R16 in vitro, and sought to rationalize the activity using molecular docking of these lignans on a computationally modelled structure of TAS2R16. Selected lignans with inhibitory activity against other TAS2Rs reveal sub-millimolar inhibitory activity towards TAS2R10, TAS2R14, and TAS2R43 in cell-based assays. These compounds with demonstrated in vitro inhibition of bitter taste receptors may serve as tool compounds to investigate the molecular mechanisms of hTAS2Rs biology in gustatory and non-gustatory tissues.
Collapse
Affiliation(s)
- Ryan Soh
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #02-01 Nanos, Singapore 138669, Singapore.
| | - Lin Fu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #02-01 Nanos, Singapore 138669, Singapore.
| | - Wei Mei Guo
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #02-01 Nanos, Singapore 138669, Singapore.
| | - Wei-Guang Seetoh
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #02-01 Nanos, Singapore 138669, Singapore.
| | - Ann Koay
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #02-01 Nanos, Singapore 138669, Singapore.
| |
Collapse
|
37
|
Liu SH, Huang HT, Lo IW, Lin YC, Liao GY, Chao CH, Huang HC, Chang FR, Li TL, Shen YC, Liaw CC. Potential natural product 3,4-seco-schitriterpenoids from Kadsura japonica L. as anti-neuroinflammatory agents. Bioorg Chem 2023; 141:106843. [PMID: 37696148 DOI: 10.1016/j.bioorg.2023.106843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/19/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
In the present study, the undescribed schitriterpenoids, kadsujanonols A-I (1-9), and eleven reported compounds (10-20) were isolated from K. japonica L. vines. Their structures of 3,4-seco-schitriterpenoids were elucidated mainly by spectroscopic analyses including 1H-, 13C-, and 2D-NMR, IR, HRESIMS spectra. The spatial configurations were determined by the single-crystal X-ray diffraction analysis of kadsujapnonol A (1), 15, 17, and 18, CD data and computational analysis. Furthermore, all isolates were evaluated for the anti-neuroinflammatory activity on LPS-stimulated NO production in BV2 microglial cells and compounds 2, 4, 5, 7, 9, 11, 13-16, and 18 exposed better or comparable suppression abilities than PDTC. Among them, kadlongilactone B (14) showed the best significant inhibiting ability (IC50 = 0.87 μg/mL) and the effect is through the attenuation of the inflammatory transcription factor p65NF-κB. Preliminary structure-activity relationship revealed that δ-lactone at the side chain and 7-member lactone at C-3/C-4, and 3,4:9,10 ring opening are important.
Collapse
Affiliation(s)
- Shu-Hsiang Liu
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan
| | - Hung-Tse Huang
- National Research Institute of Chinese Medicine, MOWH, Taipei 112026, Taiwan
| | - I-Wen Lo
- National Research Institute of Chinese Medicine, MOWH, Taipei 112026, Taiwan; Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan
| | - Yu-Chi Lin
- National Research Institute of Chinese Medicine, MOWH, Taipei 112026, Taiwan
| | - Geng-You Liao
- Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chih-Hua Chao
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404332, Taiwan; School of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, 404333, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan
| | - Yuh-Chiang Shen
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan; National Research Institute of Chinese Medicine, MOWH, Taipei 112026, Taiwan.
| | - Chia-Ching Liaw
- National Research Institute of Chinese Medicine, MOWH, Taipei 112026, Taiwan; Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600355, Taiwan.
| |
Collapse
|
38
|
Li Z, Zheng Y, Liu K, Liang Y, Lu J, Li Q, Zhao B, Liu X, Li X. Lignans as multi-targeted natural products in neurodegenerative diseases and depression: Recent perspectives. Phytother Res 2023; 37:5599-5621. [PMID: 37669911 DOI: 10.1002/ptr.8003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/09/2023] [Accepted: 08/19/2023] [Indexed: 09/07/2023]
Abstract
As the global population ages, the treatment of neurodegenerative diseases is becoming more and more important. There is an urgent need to discover novel drugs that are effective in treating neurological diseases. In recent years, natural products and their biological activities have gained widespread attention. Lignans are a class of metabolites extensively present in Chinese herbal medicine and possess good pharmacological effects. Latest studies have demonstrated their neuroprotective pharmacological activity in preventing acute/chronic neurodegenerative diseases and depression. In this review, the pharmacological effects of these disorders, the pharmacokinetics, safety, and clinical trials of lignans were summarized according to the scientific literature. These results proved that lignans mainly exert antioxidant and anti-inflammatory activities. Anti-apoptosis, regulation of nervous system functions, and modulation of synaptic signals are also potential effects. Despite the substantial evidence of the neuroprotective potential of lignans, it is not sufficient to support their use in the clinical management. Our study suggests that lignans can be used as prospective agents for the treatment of neurodegenerative diseases and depression, with a view to informing their further development and utilization.
Collapse
Affiliation(s)
- Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
39
|
Zuo A, Zhou Y, Chen Y, Liu S, Lu Y, Li Y, Cao S, Liu Z. Physiological and Transcriptome Analysis Reveal the Regulation Mechanism Underlying the Muscle Quality Effect of Dietary Schisandra chinensis in Triploid Crucian Carp (Carassius auratus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1191-1207. [PMID: 38079085 DOI: 10.1007/s10126-023-10270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Schisandra chinensis (sc) is generally demonstrated to improve antioxidant and immune functions in mammal. The present study through physiological and transcriptome analysis revealed alterations in muscle metabolisms of triploid crucian carp (Carassius auratus) cultured at different concentrations of S. chinensis diets (sc0, sc0.125%, sc0.25%, sc0.5%, sc1%, sc2%) after 8 weeks. The serum antioxidant enzyme activities analysis showed that dietary S. chinensis could reduce oxidative stress and increase organismic antioxidant capacity. Meanwhile, the detected results of muscle components presented that the amino acids and two flavor nucleotides of GMP and IMP significantly elevated while muscle crude lipid significantly reduced in S. chinensis feeding groups. In addition, springiness, chewiness, and fiber density in S. chinensis feeding groups muscle were significantly upregulated while muscle fiber diameter and area showed an opposite trend. By comparative transcriptome analysis of the muscles, functional enrichments of differentially expressed genes showed that multiple terms were related to purine metabolism, glycerolipid metabolism, regulation of actin cytoskeleton, and peroxisome. Finally, some key hub genes such as egln, gst, ggct, su1b, pi3kr4, myh9, lpl, gcdh, mylk, and col4a were identified by weighted gene co-expression network analysis. Taken together, our findings facilitate the understanding of the molecular basis underlying the muscle quality effect of dietary S. chinensis in triploid crucian carp, which provides valuable insights into the nutritional strategies of the aquaculture industry.
Collapse
Affiliation(s)
- Anli Zuo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yonghua Zhou
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Yuxian Chen
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Sipu Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Yuyao Lu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Yingjie Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China.
| |
Collapse
|
40
|
Valíčková J, Zezulka Š, Maršálková E, Kotlík J, Maršálek B, Opatřilová R. Potential toxicity of Schisandra chinensis to water environment: acute toxicity tests with water crustaceans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112625-112630. [PMID: 37837583 PMCID: PMC10643315 DOI: 10.1007/s11356-023-30182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023]
Abstract
Fruits of Schisandra chinensis, an East Asian liana plant, are currently more and more used to produce nutrient supplements that positively affect human health due to the content of various secondary metabolites. On the other hand, these substances because of their bioactivity can cause possible allelopathic or toxic effects concerning other organisms (algae, plants, animals). But the ecotoxicological properties of S. chinensis outside its area of origin have yet to be sufficiently verified. Two crustaceans, Daphnia magna and Thamnocephalus platyurus, were selected as model aquatic organisms to test the potential impact of S. chinensis active compounds on the aquatic environment. Crude water extract from S. chinensis fruits, simulating the natural leakage of active substances in water, was tested in treatments from 0.0045 to 45 mg/L (according to the content of schisandrin as the dominating lignan). Effective concentration (EC50) causing 50% lethal effect for D. magna was established to 0.0448 mg/L after 24 h and 0.0152 mg/L after 48 h. EC50 for T. platyurus reached 0.4572 mg/L after 24 h, i.e. more than ten times higher than for D. magna. This study showed that the potential environmentally relevant concentrations of S. chinensis bioactive compounds could represent a severe risk to aquatic ecosystems.
Collapse
Affiliation(s)
- Jana Valíčková
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200, Brno, Czech Republic.
| | - Štěpán Zezulka
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Czech Academy of Sciences, Lidická 25/27, 60200, Brno, Czech Republic
| | - Eliška Maršálková
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Czech Academy of Sciences, Lidická 25/27, 60200, Brno, Czech Republic
| | - Josef Kotlík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200, Brno, Czech Republic
| | - Blahoslav Maršálek
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Czech Academy of Sciences, Lidická 25/27, 60200, Brno, Czech Republic
| | - Radka Opatřilová
- Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 61200, Brno, Czech Republic
| |
Collapse
|
41
|
Sobstyl E, Szopa A, Olszowy-Tomczyk M, Gnat S, Jafernik K, Choma IM. Chromatographic and Biological Screening of Chosen Species of Schisandraceae Family: Schisandra chinensis, S. rubriflora, S. sphenanthera, S. henryi and Kadsura japonica. Chem Biodivers 2023; 20:e202300741. [PMID: 37694741 DOI: 10.1002/cbdv.202300741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/12/2023]
Abstract
HPLC and TLC profiling was carried out for leaf and fruit extracts of five Schisandraceae species: Schisandra chinensis, S. rubriflora, S. spehenanthera, S. henryi and Kadsura japonica. HPLC measurements confirmed presence of lignans and phenolic compounds in fruits and leaves of all tested species. The most abundant in lignans was S. chinensis fruit extract in which 15 compounds were detected (e. g.: schisandrol A, schisanhenol, γ-schisandrin, gomisin N). The effect-directed detection, i. e., TLC-direct bioautography against Bacillus subtilis, showed exceptionally high activity for S. chinensis and S. rubriflora fruit extracts. On the other hand, TLC-DB enzyme tests (α-glucosidase, lipase, tyrosinase and acetylcholinesterase (AChE) inhibition assays) showed that all fruit and leaf extracts have ability to inhibit the above-mentioned enzymes (except for the K. japonica fruit). The leaf extracts showed much stronger antioxidant activity than the fruit ones, which were assessed and compared using both TLC-direct bioautography and spectrophotometric measurements based on ABTS, DPPH and FRAP tests.
Collapse
Affiliation(s)
- Ewelina Sobstyl
- Department of Chromatography, Faculty of Chemistry, University of M. Curie-Skłodowska, M. Curie-Skłodowska Sq. 3, 20-031, Lublin, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna Str. 9, 30-688, Kraków, Poland
| | - Małgorzata Olszowy-Tomczyk
- Department of Chromatography, Faculty of Chemistry, University of M. Curie-Skłodowska, M. Curie-Skłodowska Sq. 3, 20-031, Lublin, Poland
| | - Sebastian Gnat
- Department of Veterinary Microbiology, University of Life Sciences, Akademicka Str. 13, 20-950, Lublin, Poland
| | - Karolina Jafernik
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna Str. 9, 30-688, Kraków, Poland
| | - Irena Maria Choma
- Department of Chromatography, Faculty of Chemistry, University of M. Curie-Skłodowska, M. Curie-Skłodowska Sq. 3, 20-031, Lublin, Poland
| |
Collapse
|
42
|
Shu L, Qiu H, Zhang S, Xue J, Liu S, Qian J, Chen S, Xu Y, Li Y. Rapid identification of chemical compositions of three species of Schisandra chinensis by ultra-high-performance liquid chromatography quadrupole-orbitrap-mass spectrometry. J Sep Sci 2023; 46:e2300466. [PMID: 37599277 DOI: 10.1002/jssc.202300466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Schisandra chinensis is a traditional Chinese medicine, which has played an important role in the field of medicine and food. In this study, ultra-high-performance liquid chromatography quadrupole-orbitrap-mass spectrometry was used to rapidly classify and identify the chemical compositions. Note that 32, 28, and 30 kinds of compounds were successfully identified from northern Schisandra chinensis, vinegar-processed Schisandra chinensis, and wine-processed Schisandra chinensis, respectively. The cleavage patterns of various components including lignans, organic acids, flavonoids, and terpenoids were summarized, and the effects of different processing methods on Schisandra chinensis were analyzed through chemical composition. This method realized the rapid classification and identification of raw Schisandra chinensis and two different processed products, and provided references for improving the traditional processing methods, strengthening quality control, and ensuring safe clinical application.
Collapse
Affiliation(s)
- Lexin Shu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Huixin Qiu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Shumin Zhang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Jing Xue
- The pharmacy Department of Tianjin University of Traditional Chinese Medicine First Affiliated Hospital, P. R. China
| | - Sitong Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Jun Qian
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Siyue Chen
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yanyan Xu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yubo Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
43
|
Jegal KH, Park HR, Choi BR, Kim JK, Ku SK. Synergistic Protective Effect of Fermented Schizandrae Fructus Pomace and Hoveniae Semen cum Fructus Extracts Mixture in the Ethanol-Induced Hepatotoxicity. Antioxidants (Basel) 2023; 12:1602. [PMID: 37627597 PMCID: PMC10451898 DOI: 10.3390/antiox12081602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Schizandrae Fructus (SF), fruits of Schisandra chinensis (Turcz.) Baill. and Hoveniae Semen cum Fructus (HSCF), the dried peduncle of Hovenia dulcis Thunb., have long been used for alcohol detoxification in the traditional medicine of Korea and China. In the current study, we aimed to evaluate the potential synergistic hepatoprotective effect of a combination mixture (MSH) comprising fermented SF pomace (fSFP) and HSCF hot water extracts at a 1:1 (w:w) ratio against ethanol-induced liver toxicity. Subacute ethanol-mediated hepatotoxicity was induced by the oral administration of ethanol (5 g/kg) in C57BL/6J mice once daily for 14 consecutive days. One hour after each ethanol administration, MSH (50, 100, and 200 mg/kg) was also orally administered daily. MSH administration significantly reduced the serum activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and γ-glutamyl transpeptidase. Histological observation indicated that MSH administration synergistically and significantly decreased the fatty changed region of hepatic parenchyma and the formation of lipid droplet in hepatocytes. Moreover, MSH significantly attenuated the hepatic triglyceride accumulation through reducing lipogenesis genes expression and increasing fatty acid oxidation genes expression. In addition, MSH significantly inhibited protein nitrosylation and lipid peroxidation by lowering cytochrome P450 2E1 enzyme activity and restoring the glutathione level, superoxide dismutase and catalase activity in liver. Furthermore, MSH synergistically decreased the mRNA level of tumor necrosis factor-α in the hepatic tissue. These findings indicate that MSH has potential for preventing alcoholic liver disease through inhibiting hepatic steatosis, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Kyung-Hwan Jegal
- Department of Korean Medical Classics, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea;
| | - Hye-Rim Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea;
- Nutracore Co., Ltd., Suwon 16514, Republic of Korea;
| | - Beom-Rak Choi
- Nutracore Co., Ltd., Suwon 16514, Republic of Korea;
| | - Jae-Kwang Kim
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea;
| |
Collapse
|
44
|
Gębalski J, Małkowska M, Graczyk F, Słomka A, Piskorska E, Gawenda-Kempczyńska D, Kondrzycka-Dąda A, Bogucka-Kocka A, Strzemski M, Sowa I, Wójciak M, Grzyb S, Krolik K, Ptaszyńska AA, Załuski D. Phenolic Compounds and Antioxidant and Anti-Enzymatic Activities of Selected Adaptogenic Plants from South America, Asia, and Africa. Molecules 2023; 28:6004. [PMID: 37630255 PMCID: PMC10457937 DOI: 10.3390/molecules28166004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Despite the fact that there are many studies related to the adaptogenic and pro-healthy activities of plant-based compounds, there are some adaptogenic plants whose activities are not fully known, especially those coming from the wild regions of Asia, Africa, and South America. The aim of these studies was to examine the contents of non-nutritional compounds, such as polyphenols, flavonoids, and phenolic acids in ten adaptogenic species (Astragalus membranaceus (AM), Uncaria rhynchophylla (UR), Polygonum multiflorum (PM), Angelica sinensis (AS), Andrographis paniculatea (AP), Tinospora cordifolia (TC), Uncaria tomentosa (UT), Pfaffia paniculate (PP), Sutherlandia frutescens (SF), and Rhaponticum carthamoides (RC)). Considering biological activity, their antioxidant (DPPH, ABTS, FRAP, and ferrous-ion-chelating ability assays), anti-acetylcholinesterase, anti-hyaluronidase, and anti-tyrosinase activities were evaluated. The richest in polyphenols, flavonoids, and phenolic acids was UR (327.78 mg GAE/g, 230.13 mg QE/g, and 81.03 mg CA/g, respectively). The highest inhibitions of acetylcholinesterase, hyaluronidase, and tyrosinase were observed for TC, UR, and PM, respectively. In the case of antioxidant properties, extract from PM appeared to most strongly reduce DPPH, extract from UR inhibited ABTS, and extract from SF showed the best chelating properties. It should be noted that a particularly interesting plant was Ulcaria rhynchophylla. The results mean that there were compounds in UR with broad biological activities, and this species should be explored in more detail. Additionally, our results justify the traditional use of these species in the nutripharmacological or ethnopharmacological care systems of different regions.
Collapse
Affiliation(s)
- Jakub Gębalski
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland; (M.M.); (F.G.); (D.G.-K.)
| | - Milena Małkowska
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland; (M.M.); (F.G.); (D.G.-K.)
| | - Filip Graczyk
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland; (M.M.); (F.G.); (D.G.-K.)
| | - Artur Słomka
- Department of Pathophysiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland;
| | - Elżbieta Piskorska
- Department of Pathobiochemistry and Clinical Chemistry, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland
| | - Dorota Gawenda-Kempczyńska
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland; (M.M.); (F.G.); (D.G.-K.)
| | | | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Sebastian Grzyb
- College of Engineering and Health in Warsaw, Bitwy Warszawskiej 1920 r. 18 Str., 02-366 Warsaw, Poland
| | - Krystian Krolik
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland; (M.M.); (F.G.); (D.G.-K.)
| | - Aneta A. Ptaszyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Daniel Załuski
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland; (M.M.); (F.G.); (D.G.-K.)
| |
Collapse
|
45
|
Kim JS, Jegal KH, Park HR, Choi BR, Kim JK, Ku SK. A Mixture of Fermented Schizandrae Fructus Pomace and Hoveniae Semen cum Fructus Extracts Synergistically Protects against Oxidative Stress-Mediated Liver Injury. Antioxidants (Basel) 2023; 12:1556. [PMID: 37627551 PMCID: PMC10451536 DOI: 10.3390/antiox12081556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Schizandrae Fructus (SF) and Hoveniae Semen cum Fructus (HSCF) have long been used as medicinal herbs for treating various diseases in Asian traditional medicine. In the current study, we investigated the protective effect of fermented SF pomace and HSCF extract 1:1 (w:w) combination mixture (MSH) against carbon tetrachloride (CCl4)-induced acute liver injury mice. After MSH (50-200 mg/kg) oral administration for 7 consecutive days, animals were injected intraperitoneally with CCl4 (0.5 mL/kg). Histopathological observation revealed that administration of MSH synergistically decreased the degeneration of hepatocytes and the infiltration of inflammatory cells induced by CCl4. Moreover, MSH administration reduced the activities of alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transpeptidase in serum, and mitigated apoptotic cell death in hepatic parenchyma. In addition, MSH alleviated CCl4-mediated lipid peroxidation by restoring endogenous antioxidants capacities including glutathione contents, superoxide dismutase, and catalase activities. In vitro assessments using tert-butyl hydroperoxide-induced oxidative stress in HepG2 cells revealed that MSH protects hepatocytes by lowering ROS generation and lipid peroxidation via upregulating the transcriptional activity of nuclear factor erythroid-2-related factor 2 and the expression of antioxidant genes. Furthermore, MSH synergistically attenuated the expression of proinflammatory cytokines in CCl4-injured liver and lipopolysaccharide-stimulated RAW 264.7 cells. Taken together, these findings suggest that MSH has the potential to prevent acute liver damage by effectively suppressing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jang-Soo Kim
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea; (J.-S.K.); (H.-R.P.)
| | - Kyung-Hwan Jegal
- Department of Korean Medical Classics, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea;
| | - Hye-Rim Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea; (J.-S.K.); (H.-R.P.)
- Nutracore Co., Ltd., Suwon-si 16514, Republic of Korea;
| | - Beom-Rak Choi
- Nutracore Co., Ltd., Suwon-si 16514, Republic of Korea;
| | - Jae-Kwang Kim
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea; (J.-S.K.); (H.-R.P.)
| |
Collapse
|
46
|
You YL, Lee JY, Choi HS. S chisandra chinensis-derived gomisin C suppreses lipid accumulation by JAK2-STAT signaling in adipocyte. Food Sci Biotechnol 2023; 32:1225-1233. [PMID: 37362811 PMCID: PMC10290005 DOI: 10.1007/s10068-023-01263-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/23/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Gomisin C is a lignan isolated from the fruit of Schisandra chinensis. The current study aimed to investigate the effect of gomisin C on lipid accumulation in adipocytes and its underlying mechanism. Gomisin C effectively inhibited lipid accumulation by downregulating adipogenic factors such as PPARγ and C/EBPα. Gomisin C-mediated suppression of lipid accumulation occurred in the early adipogenic stage; C/EBPβ was downregulated by 55%, while KLF2 was upregulated by 1.5-fold. Gomisin C significantly reduced the production of reactive oxygen species but upregulated antioxidant enzymes, including catalase, SOD1, and Gpx at the mRNA level. Gomisin C regulated NRF2-KEAP1 pathway by increasing NRF2 and decreasing KEAP1, in protein abundance. Furthermore, gomisin C suppressed the JAK2-STAT signaling pathway by decreasing phosphorylation. Taken together, gomisin C reduced early adipogenesis and ROS production by inhibiting the JAK2-STAT signaling pathway but activating the NRF2-KEAP1 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01263-8.
Collapse
Affiliation(s)
- Ye-Lim You
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| | - Ji-Yeon Lee
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| |
Collapse
|
47
|
Jia M, Zhou L, Lou Y, Yang X, Zhao H, Ouyang X, Huang Y. An analysis of the nutritional effects of Schisandra chinensis components based on mass spectrometry technology. Front Nutr 2023; 10:1227027. [PMID: 37560060 PMCID: PMC10408133 DOI: 10.3389/fnut.2023.1227027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
OBJECTIVE Schisandra chinensis (Turcz.) Baill. (S. chinensis) is a Traditional Chinese medicinal herb that can be used both for medicinal purposes and as a food ingredient due to its beneficial properties, and it is enriched with a wide of natural plant nutrients, including flavonoids, phenolic acids, anthocyanins, lignans, triterpenes, organic acids, and sugars. At present, there is lack of comprehensive study or systemic characterization of nutritional and active ingredients of S. chinensis using innovative mass spectrometry techniques. METHODS The comprehensive review was conducted by searching the PubMed databases for relevant literature of various mass spectrometry techniques employed in the analysis of nutritional components in S. chinensis, as well as their main nutritional effects. The literature search covered the past 5 years until March 15, 2023. RESULTS The potential nutritional effects of S. chinensis are discussed, including its ability to enhance immunity, function as an antioxidant, anti-allergen, antidepressant, and anti-anxiety agent, as well as its ability to act as a sedative-hypnotic and improve memory, cognitive function, and metabolic imbalances. Meanwhile, the use of advanced mass spectrometry detection technologies have the potential to enable the discovery of new nutritional components of S. chinensis, and to verify the effects of different extraction methods on these components. The contents of anthocyanins, lignans, organic acids, and polysaccharides, the main nutritional components in S. chinensis, are also closely associated to its quality. CONCLUSION This review will provide guidelines for an in-depth study on the nutritional value of S. chinensis and for the development of healthy food products with effective components.
Collapse
Affiliation(s)
- Mengzhen Jia
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Li Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanyuan Lou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Hangyu Zhao
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinshou Ouyang
- Department of Internal Medicine, Digestive Disease Section, Yale University, New Haven, CT, United States
| | - Yanjie Huang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| |
Collapse
|
48
|
Li B, Qiao L, Xiao Q, Zhang J, Liu J, Zhang B, Liu H. Effects of diarylbutane lignans from Schisandra chinensis fruit on SARS-CoV-2 3CL pro and PL pro and their in vitro anti-inflammatory properties. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 3:100432. [PMID: 36968623 PMCID: PMC10005971 DOI: 10.1016/j.phyplu.2023.100432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND Schisandra chinensis fruit is a well-known traditional Chinese medicine (TCM), whose extract has a potent inhibitory effect on the severe acute respiratory syndrome-coronavirus-2 (SARS‑CoV‑2) 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro). PURPOSE This work aims to find the active components from the fruit of S. chinensis against SARS‑CoV‑2 3CLpro and PLpro. MATERIALS AND METHODS The chemical constituents of the fruit of S. chinensis were retrieved based on the electronic databases, such as Web of Science, PubMed, Medline Plus, and CNKI. Molecular docking was used to screen the active components against SARS‑CoV‑2 3CLpro and PLpro. Potential hit compounds were further evaluated by enzymatic activity assay. Furthermore, the anti-inflammatory activities of the active compounds were further explored using the phorbol-12-myristate-13-acetate (PMA)-induced THP1 cells model. RESULTS In this work, we retrieved 75 components of S. chinensis fruit, including 62 dibenzocyclooctadiene-type lignans, 3 diarylbutane-type lignans, 2 tetrahydrofuran-type lignans, and 8 nortriterpenoids. Combining molecular docking study and in vitro experiments, we found that pregomisin (63), meso‑dihydroguaiaretic acid (64), and nordihydroguaiaretic acid (65) could potently inhibit 3CLpro with IC50 values of 3.07 ± 0.38, 4.12 ± 0.38, and 6.06 ± 0.62 μM, respectively, and inhibit PLpro with IC50 values of 5.23 ± 0.33, 4.24 ± 0.46, and 16.28 ± 0.54 μM, respectively. Interestingly, compounds 63, 64, and 65 also have potent activities of regulating the inflammatory response in vitro. CONCLUSION Our results suggest that compounds 63, 64, and 65 may be promising SARS-CoV-2 3CLpro and PLpro inhibitors and anti-inflammatory.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, 100193, Beijing China
| | - Liansheng Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Qi Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, 100193, Beijing China
| | - Jianuo Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, 100193, Beijing China
| | - Jiushi Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, 100193, Beijing China
| | - Bengang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, 100193, Beijing China
| | - Haitao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, 100193, Beijing China
| |
Collapse
|
49
|
Chin Y, Gumilar KE, Li XG, Tjokroprawiro BA, Lu CH, Lu J, Zhou M, Sobol RW, Tan M. Targeting HSF1 for cancer treatment: mechanisms and inhibitor development. Theranostics 2023; 13:2281-2300. [PMID: 37153737 PMCID: PMC10157728 DOI: 10.7150/thno.82431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
Heat Shock Factor 1 (HSF1) is a master regulator of heat shock responsive signaling. In addition to playing critical roles in cellular heat shock response, emerging evidence suggests that HSF1 also regulates a non-heat shock responsive transcriptional network to handle metabolic, chemical, and genetic stress. The function of HSF1 in cellular transformation and cancer development has been extensively studied in recent years. Due to important roles for HSF1 for coping with various stressful cellular states, research on HSF1 has been very active. New functions and molecular mechanisms underlying these functions have been continuously discovered, providing new targets for novel cancer treatment strategies. In this article, we review the essential roles and mechanisms of HSF1 action in cancer cells, focusing more on recently discovered functions and their underlying mechanisms to reflect the new advances in cancer biology. In addition, we emphasize new advances with regard to HSF1 inhibitors for cancer drug development.
Collapse
Affiliation(s)
- Yeh Chin
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
| | - Khanisyah E Gumilar
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
- The Department of Obstetrics and Gynecology, Medical Faculty, Universitas Airlangga, Surabaya, Indonesia
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
- Institute of Biochemistry & Molecular Biology, China Medical University, Taichung, Taiwan, R.O.C
| | - Brahmana A. Tjokroprawiro
- The Department of Obstetrics and Gynecology, Medical Faculty, Universitas Airlangga, Surabaya, Indonesia
| | - Chien-Hsing Lu
- Department of Gynecology and Obstetrics, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, USA
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, USA
| | - Ming Tan
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
- Institute of Biochemistry & Molecular Biology, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
50
|
Malík M, Tlustoš P. Nootropic Herbs, Shrubs, and Trees as Potential Cognitive Enhancers. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061364. [PMID: 36987052 PMCID: PMC10056569 DOI: 10.3390/plants12061364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 05/13/2023]
Abstract
Plant-based nootropics are a diverse group of natural drugs that can improve cognitive abilities through various physiological mechanisms, especially in cases where these functions are weakened or impaired. In many cases, the nootropics enhance erythrocyte plasticity and inhibit aggregation, which improves the blood's rheological properties and increases its flow to the brain. Many of these formulations possess antioxidant activity that protects brain tissue from neurotoxicity and improves the brain's oxygen supply. They can induce the synthesis of neuronal proteins, nucleic acids, and phospholipids for constructing and repairing neurohormonal membranes. These natural compounds can potentially be present in a great variety of herbs, shrubs, and even some trees and vines. The plant species reviewed here were selected based on the availability of verifiable experimental data and clinical trials investigating potential nootropic effects. Original research articles, relevant animal studies, meta-analyses, systematic reviews, and clinical trials were included in this review. Selected representatives of this heterogeneous group included Bacopa monnieri (L.) Wettst., Centella asiatica (L.) Urban, Eleutherococcus senticosus (Rupr. & Maxim.) Maxim., Ginkgo biloba L., Lepidium meyenii Walp., Panax ginseng C.A. Meyer, Paullinia cupana Kunth, Rhodiola rosea L., Schisandra chinensis (Turcz.) Baill., and Withania somnifera (L.) Dunal. The species are depicted and described, together with their active components and nootropic effects, and evidence of their efficacy is presented. The study provides brief descriptions of the representative species, their occurrence, history, and the chemical composition of the principle medicinal compounds, with uses, indications, experimental treatments, dosages, possible side effects, and contraindications. Most plant nootropics must be taken at optimal doses for extended periods before measurable improvement occurs, but they are generally very well tolerated. Their psychoactive properties are not produced by a single molecule but by a synergistic combination of several compounds. The available data suggest that including extracts from these plants in medicinal products to treat cognitive disorders can have substantial potential therapeutic benefits.
Collapse
|