1
|
Zhao M, Guo Z, Zhang M, Zhang J, Chen X, Yang F, Li Z, Li W. Optimization strategies to improve the carbon sink capacity of C 3 plants under the background of dual carbon strategy. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109837. [PMID: 40168858 DOI: 10.1016/j.plaphy.2025.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
In the 21st century, mankind is facing serious climate challenges, and the greenhouse effect caused by excessive CO2 emissions is a difficult problem that mankind urgently needs to solve. In this context, the dual-carbon strategy is proposed, that is, it is hoped that by reducing carbon sources and increasing carbon sinks, the purpose of improving the climate can be achieved. Plants themselves have a certain carbon sequestration capacity, and C4 plants have a stronger carbon sequestration capacity than C3. Therefore, it is a good research prospect to improve C3 plants by utilizing the relevant characteristics of C4 plants to enhance the CO2 absorption capacity of C3 plants. Current research is generally focused on genetic engineering, this paper summarizes the enzymes that have some research significance in C3 plant modification, such as, Rubisco, PPDK, PEPC, NADP-MDH, NADP-ME, etc., as well as the related genes that constitute the enzymes, and also outlines a series of recent advances in the modification of photorespiratory branching and non-photochemical quenching (NPQ). It is hoped that this paper will provide certain research directions and ideas for researchers to obtain C3 plants with higher carbon sequestration capacity.
Collapse
Affiliation(s)
- Mengmeng Zhao
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China.
| | - Zixuan Guo
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| | - Mingxia Zhang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| | - Jingwen Zhang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| | - Xiong Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| | - Fanfan Yang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| | - Ziting Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| | - Wangrun Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| |
Collapse
|
2
|
Sheng W, Zhang G, Zhai L, Xu J. Candidate genes for alkali tolerance identified by genome-wide association study at the seedling stage in rice (Oryza sativa L.). Sci Rep 2024; 14:30063. [PMID: 39627306 PMCID: PMC11614934 DOI: 10.1038/s41598-024-79273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/07/2024] [Indexed: 12/06/2024] Open
Abstract
Alkali stress is one of the most serious abiotic stresses limiting crop yield and it has become an increasingly serious global problem in recent years. Alkalinity tolerance (AT) at the seedling stage is one of the determinant factors for establishment of rice population under alkaline stress condition. Here, we evaluated and measured seven traits related to AT of 528 diverse rice accessions at the seedling stage. Xian accessions were generally more alkali-tolerant than Geng accessions. GJ-tmp accessions showed the most alkali tolerance in the Geng subgroups and XI-1B accessions had the weakest alkali tolerance in the Xian subgroups. A total of 121 QTLs were identified for AT by genome-wide association study (GWAS), and five important candidate genes, LOC_Os01g19800, LOC_Os01g20160, LOC_Os01g52500, LOC_Os01g67370 and LOC_Os03g03900, were selected by gene function annotation, haplotype analysis, and qRT-PCR. Pyramiding of multiple AT advanced candidate genes is a favorable strategy for improving AT of rice varieties. Our study has screened alkali-tolerant germplasm resources and provided valuable genetic information for alkali-tolerant rice breeding.
Collapse
Affiliation(s)
- Wan Sheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guogen Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Laiyuan Zhai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Jianlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China.
| |
Collapse
|
3
|
Li B, Zhou X, Yao W, Lin J, Ding X, Chen Q, Huang H, Chen W, Huang X, Pan S, Xiao Y, Liu J, Liu X, Liu J. NADP-malic Enzyme OsNADP-ME2 Modulates Plant Height Involving in Gibberellin Signaling in Rice. RICE (NEW YORK, N.Y.) 2024; 17:52. [PMID: 39152344 PMCID: PMC11329442 DOI: 10.1186/s12284-024-00729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Plants NADP-malic enzymes (NADP-MEs) act as a class of oxidative decarboxylase to mediate malic acid metabolism in organisms. Despite NADP-MEs have been demonstrated to play pivotal roles in regulating diverse biological processes, the role of NADP-MEs involving in plant growth and development remains rarely known. Here, we characterized the function of rice cytosolic OsNADP-ME2 in regulating plant height. The results showed that RNAi silencing and knock-out of OsNADP-ME2 in rice results in a dwarf plant structure, associating with significant expression inhibition of genes involving in phytohormone Gibberellin (GA) biosynthesis and signaling transduction, but with up-regulation for the expression of GA signaling suppressor SLR1. The accumulation of major bioactive GA1, GA4 and GA7 are evidently altered in RNAi lines, and exogenous GA treatment compromises the dwarf phenotype of OsNADP-ME2 RNAi lines. RNAi silencing of OsNADP-ME2 also causes the reduction of NADP-ME activity associating with decreased production of pyruvate. Thus, our data revealed a novel function of plant NADP-MEs in modulation of rice plant height through regulating bioactive GAs accumulation and GA signaling, and provided a valuable gene resource for rice plant architecture improvement.
Collapse
Affiliation(s)
- Bing Li
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaolong Zhou
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Yao
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Jinjun Lin
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaowen Ding
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Qianru Chen
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Huang
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wenfeng Chen
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xilai Huang
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Sujun Pan
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Yinghui Xiao
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Jianfeng Liu
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xionglun Liu
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| | - Jinling Liu
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
4
|
Alektiar JM, Shan M, Radyk MD, Zhang L, Halbrook CJ, Lin L, Espinoza C, Mier IF, Lavoie BL, Salvatore L, Pasca di Magliano M, Cantley LC, Mueller JL, Lyssiotis CA. Malic enzyme 1 knockout has no deleterious phenotype and is favored in the male germline under standard laboratory conditions. PLoS One 2024; 19:e0303577. [PMID: 38843233 PMCID: PMC11156412 DOI: 10.1371/journal.pone.0303577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/26/2024] [Indexed: 06/09/2024] Open
Abstract
Malic Enzyme 1 (ME1) plays an integral role in fatty acid synthesis and cellular energetics through its production of NADPH and pyruvate. As such, it has been identified as a gene of interest in obesity, type 2 diabetes, and an array of epithelial cancers, with most work being performed in vitro. The current standard model for ME1 loss in vivo is the spontaneous Mod-1 null allele, which produces a canonically inactive form of ME1. Herein, we describe two new genetically engineered mouse models exhibiting ME1 loss at dynamic timepoints. Using murine embryonic stem cells and Flp/FRT and Cre/loxP class switch recombination, we established a germline Me1 knockout model (Me1 KO) and an inducible conditional knockout model (Me1 cKO), activated upon tamoxifen treatment in adulthood. Collectively, neither the Me1 KO nor Me1 cKO models exhibited deleterious phenotype under standard laboratory conditions. Knockout of ME1 was validated by immunohistochemistry and genotype confirmed by PCR. Transmission patterns favor Me1 loss in Me1 KO mice when maternally transmitted to male progeny. Hematological examination of these models through complete blood count and serum chemistry panels revealed no discrepancy with their wild-type counterparts. Orthotopic pancreatic tumors in Me1 cKO mice grow similarly to Me1 expressing mice. Similarly, no behavioral phenotype was observed in Me1 cKO mice when aged for 52 weeks. Histological analysis of several tissues revealed no pathological phenotype. These models provide a more modern approach to ME1 knockout in vivo while opening the door for further study into the role of ME1 loss under more biologically relevant, stressful conditions.
Collapse
Affiliation(s)
- Jonathan M. Alektiar
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mengrou Shan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Megan D. Radyk
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Li Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christopher J. Halbrook
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lin Lin
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Carlos Espinoza
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ivan F. Mier
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Brooke L. Lavoie
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lucie Salvatore
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lewis C. Cantley
- Department of Cancer Biology, Dana Farber Cancer Center, Boston, Massachusetts, United States of America
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jacob L. Mueller
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
5
|
Zhang Y, Zhao Z, Liu Z, Yao J, Yin K, Yan C, Zhang Y, Liu J, Li J, Zhao N, Zhao R, Zhou X, Chen S. Populus euphratica PeNADP-ME interacts with PePLDδ to mediate sodium and ROS homeostasis under salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108600. [PMID: 38593488 DOI: 10.1016/j.plaphy.2024.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/16/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Populus euphratica phospholipase Dδ (PePLDδ) is transcriptionally regulated and mediates reactive oxygen species (ROS) and ion homeostasis under saline conditions. The purpose of this study is to explore the post-transcriptional regulation of PePLDδ in response to salt environment. P. euphratica PePLDδ was shown to interact with the NADP-dependent malic enzyme (NADP-ME) by screening the yeast two-hybrid libraries. The transcription level of PeNADP-ME increased upon salt exposure to NaCl (200 mM) in leaves and roots of P. euphratica. PeNADP-ME had a similar subcellular location with PePLDδ in the cytoplasm, and the interaction between PeNADP-ME and PePLDδ was further verified by GST pull-down and yeast two-hybrid. To clarify whether PeNADP-ME interacts with PePLDδ to enhance salt tolerance, PePLDδ and PeNADP-ME were overexpressed singly or doubly in Arabidopsis thaliana. Dual overexpression of PeNADP-ME and PePLDδ resulted in an even more pronounced improvement in salt tolerance compared with single transformants overexpressing PeNADP-ME or PePLDδ alone. Greater Na+ limitation and Na+ efflux in roots were observed in doubly overexpressed plants compared with singly overexpressed plants with PeNADP-ME or PePLDδ. Furthermore, NaCl stimulation of SOD, APX, and POD activity and transcription were more remarkable in the doubly overexpressed plants. It is noteworthy that the enzymic activity of NADP-ME and PLD, and total phosphatidic acid (PA) concentrations were significantly higher in the double-overexpressed plants than in the single transformants. We conclude that PeNADP-ME interacts with PePLDδ in Arabidopsis to promote PLD-derived PA signaling, conferring Na+ extrusion and ROS scavenging under salt stress.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Ziyan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Zhe Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jun Yao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Kexin Yin
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Caixia Yan
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanli Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jian Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jing Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Nan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Rui Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoyang Zhou
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Shaoliang Chen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
6
|
Gao Q, Yu R, Ma X, Wuriyanghan H, Yan F. Transcriptome Analysis for Salt-Responsive Genes in Two Different Alfalfa ( Medicago sativa L.) Cultivars and Functional Analysis of MsHPCA1. PLANTS (BASEL, SWITZERLAND) 2024; 13:1073. [PMID: 38674482 PMCID: PMC11054072 DOI: 10.3390/plants13081073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Alfalfa (Medicago sativa L.) is an important forage legume and soil salinization seriously affects its growth and yield. In a previous study, we identified a salt-tolerant variety 'Gongnong NO.1' and a salt-sensitive variety 'Sibeide'. To unravel the molecular mechanism involved in salt stress, we conducted transcriptomic analysis on these two cultivars grown under 0 and 250 mM NaCl treatments for 0, 12, and 24 h. Totals of 336, and 548 differentially expressed genes (DEGs) in response to NaCl were, respectively, identified in the 'Gongnong NO.1' and 'Sibeide' varieties. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway enrichment analysis showed that the DEGs were classified in carbohydrate metabolism, energy production, transcription factor, and stress-associated pathway. Expression of MsHPCA1, encoding a putative H2O2 receptor, was responsive to both NaCl and H2O2 treatment. MsHPCA1 was localized in cell membrane and overexpression of MsHPCA1 in alfalfa increased salt tolerance and H2O2 content. This study will provide new gene resources for the improvement in salt tolerance in alfalfa and legume crops, which has important theoretical significance and potential application value.
Collapse
Affiliation(s)
- Qican Gao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Q.G.); (R.Y.); (X.M.)
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Q.G.); (R.Y.); (X.M.)
- Crop Cultivation and Genetic Improvement Research Center, College of Agricultural, Hulunbuir University, Hulunbuir 021008, China
| | - Xuesong Ma
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Q.G.); (R.Y.); (X.M.)
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Q.G.); (R.Y.); (X.M.)
| | - Fang Yan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Q.G.); (R.Y.); (X.M.)
| |
Collapse
|
7
|
Aliyeva N, Nasibova A, Mammadov Z, Eftekhari A, Khalilov R. Individual and combinative effect of NaCl and γ-radiation on NADPH-generating enzymes activity in corn ( Zea mays L. ) sprouts. Heliyon 2023; 9:e22126. [PMID: 38034760 PMCID: PMC10685361 DOI: 10.1016/j.heliyon.2023.e22126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Being a universal reducing agent nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) plays an important role in the cellular metabolism and the implementation of anti-stress reactions in plants. There are only a few enzymes that ensure the NADPH pool formation in cells. Among them, the most important are glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49), malate dehydrogenase decarboxylating (DMDH, malic enzyme, EC 1.1.1.40) and NADP-isocitrate dehydrogenase (NADP-IDH, EC 1.1.1.42). The presented investigation is devoted to studying the influence of the individual and combinative effects of NaCl and γ-radiation as abiotic stress factors on biometric indicators and activity of these NADPH-generating enzymes, on organic content, and the formation of paramagnetic centers as defense reaction in corn (Zagatala-68 genotype) sprouts. It was found that 100 mM NaCl had an inhibitory effect on the development of sprouts. Relatively lower doses (50 Gy and 100 Gy) of γ-radiation had a positive, but its higher doses (150 Gy and 200 Gy) had a negative effect on this process. 500 Gy was a lethal dose (LD) for the corn sprouts. Combinative stress in all cases considerably delayed the development of sprouts. G6PDH showed the highest activity in the first, whereas, NADP-IDH showed the same activity in the last days of the experiment. All three enzymes, especially the G6PDH, have been activated in both root and stem tissues under the influence of stress factors (either radiation or salt). Combinative stress (γ-radiation + salt) also led to an induction of these activities which was necessary to neutralize the negative consequences of stress factors. Stress factors in all cases also had a negative effect on the content of organic matter in seedlings. Ionizing gamma radiation, which resulted in the formation of new paramagnetic centers as an anti-stress defense reaction in many cases was observed in wheat seedlings, but not in corn sprouts, which clearly shows that there are some differences in the protective mechanisms of these C3- and C4-types of plants to γ-radiation.
Collapse
Affiliation(s)
- Naila Aliyeva
- Department of Biophysics and Biochemistry, Baku State University, AZ1148, Baku, Azerbaijan
| | - Aygun Nasibova
- Department of Biophysics and Biochemistry, Baku State University, AZ1148, Baku, Azerbaijan
- Institute of Radiation Problems, Ministry of Science and Education Republic of Azerbaijan, AZ1143, Baku, Azerbaijan
- Nanotechnology and Biochemical Toxicology (NBT) Center, Azerbaijan State University of Economics (UNEC), Baku, AZ1001, Azerbaijan
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
| | - Ziyaddin Mammadov
- Department of Molecular Biology and Biotechnology, Baku State University, AZ1148, Baku, Azerbaijan
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir, 35040, Turkey
- Nanotechnology and Biochemical Toxicology (NBT) Center, Azerbaijan State University of Economics (UNEC), Baku, AZ1001, Azerbaijan
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Rovshan Khalilov
- Department of Biophysics and Biochemistry, Baku State University, AZ1148, Baku, Azerbaijan
- Institute of Radiation Problems, Ministry of Science and Education Republic of Azerbaijan, AZ1143, Baku, Azerbaijan
- Nanotechnology and Biochemical Toxicology (NBT) Center, Azerbaijan State University of Economics (UNEC), Baku, AZ1001, Azerbaijan
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
| |
Collapse
|
8
|
Dai JL, He YJ, Chen HH, Jiang JG. Dual Roles of Two Malic Enzymes in Lipid Biosynthesis and Salt Stress Response in Dunaliella salina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37906521 DOI: 10.1021/acs.jafc.3c04810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Triacylglycerols (TAG) from microalgae can be used as feedstocks for biofuel production to address fuel shortages. Most of the current research has focused on the enzymes involved in TAG biosynthesis. In this study, the effects of malic enzyme (ME), which provides precursor and reducing power for TAG biosynthesis, on biomass and lipid accumulation and its response to salt stress in Dunaliella salina were investigated. The overexpression of DsME1 and DsME2 improved the lipid production, which reached 0.243 and 0.253 g/L and were 30.5 and 36.3% higher than wild type, respectively. The transcript levels of DsME1 and DsME2 increased with increasing salt concentration (0, 1, 2, 3, and 4.5 mol/L NaCl), indicating that DsMEs participated in the salt stress response in D. salina. It was found that cis-acting elements associated with the salt stress response were present on the promoters of two DsMEs. The deletion of the MYB binding site (MBS) on the DsME2 promoter confirmed that MBS drives the expression of DsME2 to participate in osmotic regulation in D. salina. In conclusion, MEs are the critical enzymes that play pivotal roles in lipid accumulation and osmotic regulation.
Collapse
Affiliation(s)
- Jv-Liang Dai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yu-Jing He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao-Hong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Kandoi D, Tripathy BC. Overexpression of chloroplastic Zea mays NADP-malic enzyme (ZmNADP-ME) confers tolerance to salt stress in Arabidopsis thaliana. PHOTOSYNTHESIS RESEARCH 2023; 158:57-76. [PMID: 37561272 DOI: 10.1007/s11120-023-01041-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 07/29/2023] [Indexed: 08/11/2023]
Abstract
The C4 plants photosynthesize better than C3 plants especially in arid environment. As an attempt to genetically convert C3 plant to C4, the cDNA of decarboxylating C4 type NADP-malic enzyme from Zea mays (ZmNADP-ME) that has lower Km for malate and NADP than its C3 isoforms, was overexpressed in Arabidopsis thaliana under the control of 35S promoter. Due to increased activity of NADP-ME in the transgenics the malate decarboxylation increased that resulted in loss of carbon skeletons needed for amino acid and protein synthesis. Consequently, amino acid and protein content of the transgenics declined. Therefore, the Chl content, photosynthetic efficiency (Fv/Fm), electron transport rate (ETR), the quantum yield of photosynthetic CO2 assimilation, rosette diameter, and biomass were lower in the transgenics. However, in salt stress (150 mM NaCl), the overexpressers had higher Chl, protein content, Fv/Fm, ETR, and biomass than the vector control. NADPH generated in the transgenics due to increased malate decarboxylation, contributed to augmented synthesis of proline, the osmoprotectant required to alleviate the reactive oxygen species-mediated membrane damage and oxidative stress. Consequently, the glutathione peroxidase activity increased and H2O2 content decreased in the salt-stressed transgenics. The reduced membrane lipid peroxidation and lower malondialdehyde production resulted in better preservation, of thylakoid integrity and membrane architecture in the transgenics under saline environment. Our results clearly demonstrate that overexpression of C4 chloroplastic ZmNADP-ME in the C3 Arabidopsis thaliana, although decrease their photosynthetic efficiency, protects the transgenics from salinity stress.
Collapse
Affiliation(s)
- Deepika Kandoi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Life Sciences, Sharda University, Greater Noida, UP, 201310, India
| | - Baishnab C Tripathy
- Department of Biotechnology, Sharda University, Greater Noida, UP, 201310, India.
| |
Collapse
|
10
|
Janicka M, Reda M, Mroczko E, Wdowikowska A, Kabała K. Jasmonic Acid Effect on Cucumis sativus L. Growth Is Related to Inhibition of Plasma Membrane Proton Pump and the Uptake and Assimilation of Nitrates. Cells 2023; 12:2263. [PMID: 37759486 PMCID: PMC10526807 DOI: 10.3390/cells12182263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
When plants are exposed to environmental stress, their growth is inhibited. Under such conditions, controlled inhibition of growth is beneficial for plant survival. Jasmonic acid (JA) is a well-known phytohormone that limits plant growth, which has been confirmed in several species. However, its role in cucumber seedlings has not yet been comprehensively investigated. For this reason, we aimed to determine the involvement of JA in the regulation of proteins crucial for growth including plasma membrane proton pump (PM H+-ATPase), PM nitrate transporters, and nitrate reductase (NR). Treatment of cucumber seedlings with JA not only limited their growth but also increased the H2O2 content in their roots. The main sources of ROS generated for signalling purposes are PM NADPH oxidase (RBOH) and superoxide dismutase (SOD). Exposure of seedlings to JA induced the expression of some CsRBOH and SOD encoding genes, suggesting that ROS signalling can be activated by JA. As a consequence of JA exposure, the activity of all analysed proteins was inhibited and the expression of their genes was modified. The results indicate that reduction of PM H+-ATPase activity and the related decrease in nitrate uptake and assimilation are responsible for the root growth retardation of JA-treated plants.
Collapse
Affiliation(s)
| | | | | | | | - Katarzyna Kabała
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland; (M.J.); (M.R.); (E.M.); (A.W.)
| |
Collapse
|
11
|
Yang ZT, Fan SX, Wang JJ, An Y, Guo ZQ, Li K, Liu JX. The plasma membrane-associated transcription factor NAC091 regulates unfolded protein response in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111777. [PMID: 37353008 DOI: 10.1016/j.plantsci.2023.111777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Adverse environmental stresses may cause the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER), and the unfolded protein response (UPR) pathway is initiated to mitigate the ER stress. Previous studies demonstrate that NAC062, a plasma membrane-associated transcription factor, plays important roles in promoting cell survival under ER stress conditions in Arabidopsis thaliana. In this study, we identified another plasma membrane-associated transcription factor, NAC091 (also known as ANAC091/TIP), as an important UPR mediator. ER stress induces the expression of NAC091, which is mainly dependent on the ER stress regulators bZIP60 and bZIP28. In addition, NAC091 has transcriptional activation activity, and the truncated form of NAC091 devoid of the C-terminal transmembrane domain (TMD) forms a homodimer in the nucleus. Under ER stress conditions, NAC091 relocates from the plasma membrane to the nucleus and regulates the expression of canonical UPR genes involved in cell survival. Further, the loss-of-function mutant of NAC091 confers impaired ER stress tolerance. Together, these results reveal the important role of NAC091 in ER stress response in Arabidopsis, and demonstrate that NAC091 relays the ER stress signal from the plasma membrane to the nucleus to alleviate ER stress and promote cell survival in plants.
Collapse
Affiliation(s)
- Zheng-Ting Yang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou 550025, China.
| | - Si-Xian Fan
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Jing-Jing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Yin An
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Zi-Qiang Guo
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Kun Li
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
12
|
Yang H, Lu L, Chen Y, Ye J. Transcriptomic Analysis Reveals the Response of the Bacterium Priestia Aryabhattai SK1-7 to Interactions and Dissolution with Potassium Feldspar. Appl Environ Microbiol 2023; 89:e0203422. [PMID: 37154709 DOI: 10.1128/aem.02034-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Potassium feldspar (K2O·Al2O3·6SiO2) is considered to be the most important source of potash fertilizer. The use of microorganisms to dissolve potassium feldspar is a low-cost and environmentally friendly method. Priestia aryabhattai SK1-7 is a strain with a strong ability to dissolve potassium feldspar; it showed a faster pH drop and produced more acid in the medium with potassium feldspar as the insoluble potassium source than in the medium with K2HPO4 as the soluble potassium source. We speculated whether the cause of acid production was related to one or more stresses, such as mineral-induced generation of reactive oxygen species (ROS), the presence of aluminum in potassium feldspar, and cell membrane damage due to friction between SK1-7 and potassium feldspar, and analyzed it by transcriptome. The results revealed that the expression of the genes related to pyruvate metabolism, the two-component system, DNA repair, and oxidative stress pathways in strain SK1-7 was significantly upregulated in potassium feldspar medium. The subsequent validation experiments revealed that ROS were the stress faced by strain SK1-7 when interacting with potassium feldspar and led to a decrease in the total fatty acid content of SK1-7. In the face of ROS stress, strain SK1-7 upregulated the expression of the maeA-1 gene, allowing malic enzyme (ME2) to produce more pyruvate to be secreted outside the cell using malate as a substrate. Pyruvate is both a scavenger of external ROS and a gas pedal of dissolved potassium feldspar. IMPORTANCE Mineral-microbe interactions play important roles in the biogeochemical cycling of elements. Manipulating mineral-microbe interactions and optimizing the consequences of such interactions can be used to benefit society. It is necessary to explore the black hole of the mechanism of interaction between the two. In this study, it is revealed that P. aryabhattai SK1-7 faces mineral-induced ROS stress by upregulating a series of antioxidant genes as a passive defense, while overexpression of malic enzyme (ME2) secretes pyruvate to scavenge ROS as well as to increase feldspar dissolution, releasing K, Al, and Si into the medium. Our research provides a theoretical basis for improving the ability of microorganisms to weather minerals through genetic manipulation in the future.
Collapse
Affiliation(s)
- Hui Yang
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Lanxiang Lu
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yifan Chen
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jianren Ye
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Singh J, Garai S, Das S, Thakur JK, Tripathy BC. Role of C4 photosynthetic enzyme isoforms in C3 plants and their potential applications in improving agronomic traits in crops. PHOTOSYNTHESIS RESEARCH 2022; 154:233-258. [PMID: 36309625 DOI: 10.1007/s11120-022-00978-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
As compared to C3, C4 plants have higher photosynthetic rates and better tolerance to high temperature and drought. These traits are highly beneficial in the current scenario of global warming. Interestingly, all the genes of the C4 photosynthetic pathway are present in C3 plants, although they are involved in diverse non-photosynthetic functions. Non-photosynthetic isoforms of carbonic anhydrase (CA), phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), the decarboxylating enzymes NAD/NADP-malic enzyme (NAD/NADP-ME), and phosphoenolpyruvate carboxykinase (PEPCK), and finally pyruvate orthophosphate dikinase (PPDK) catalyze reactions that are essential for major plant metabolism pathways, such as the tricarboxylic acid (TCA) cycle, maintenance of cellular pH, uptake of nutrients and their assimilation. Consistent with this view differential expression pattern of these non-photosynthetic C3 isoforms has been observed in different tissues across the plant developmental stages, such as germination, grain filling, and leaf senescence. Also abundance of these C3 isoforms is increased considerably in response to environmental fluctuations particularly during abiotic stress. Here we review the vital roles played by C3 isoforms of C4 enzymes and the probable mechanisms by which they help plants in acclimation to adverse growth conditions. Further, their potential applications to increase the agronomic trait value of C3 crops is discussed.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| | - Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, 110067, India.
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | | |
Collapse
|
14
|
Sano N, Lounifi I, Cueff G, Collet B, Clément G, Balzergue S, Huguet S, Valot B, Galland M, Rajjou L. Multi-Omics Approaches Unravel Specific Features of Embryo and Endosperm in Rice Seed Germination. FRONTIERS IN PLANT SCIENCE 2022; 13:867263. [PMID: 35755645 PMCID: PMC9225960 DOI: 10.3389/fpls.2022.867263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Seed germination and subsequent seedling growth affect the final yield and quality of the crop. Seed germination is defined as a series of processes that begins with water uptake by a quiescent dry seed and ends with the elongation of embryonic axis. Rice is an important cereal crop species, and during seed germination, two tissues function in a different manner; the embryo grows into a seedling as the next generation and the endosperm is responsible for nutritional supply. Toward understanding the integrated roles of each tissue at the transcriptional, translational, and metabolic production levels during germination, an exhaustive "multi-omics" analysis was performed by combining transcriptomics, label-free shotgun proteomics, and metabolomics on rice germinating embryo and endosperm, independently. Time-course analyses of the transcriptome and metabolome in germinating seeds revealed a major turning point in the early phase of germination in both embryo and endosperm, suggesting that dramatic changes begin immediately after water imbibition in the rice germination program at least at the mRNA and metabolite levels. In endosperm, protein profiles mostly showed abundant decreases corresponding to 90% of the differentially accumulated proteins. An ontological classification revealed the shift from the maturation to the germination process where over-represented classes belonged to embryonic development and cellular amino acid biosynthetic processes. In the embryo, 19% of the detected proteins are differentially accumulated during germination. Stress response, carbohydrate, fatty acid metabolism, and transport are the main functional classes representing embryo proteome change. Moreover, proteins specific to the germinated state were detected by both transcriptomic and proteomic approaches and a major change in the network operating during rice germination was uncovered. In particular, concomitant changes of hormonal metabolism-related proteins (GID1L2 and CNX1) implicated in GAs and ABA metabolism, signaling proteins, and protein turnover events emphasized the importance of such biological networks in rice seeds. Using metabolomics, we highlighted the importance of an energetic supply in rice seeds during germination. In both embryo and endosperm, starch degradation, glycolysis, and subsequent pathways related to these cascades, such as the aspartate-family pathway, are activated during germination. A relevant number of accumulated proteins and metabolites, especially in embryos, testifies the pivotal role of energetic supply in the preparation of plant growth. This article summarizes the key genetic pathways in embryo and endosperm during rice seed germination at the transcriptional, translational, and metabolite levels and thereby, emphasizes the value of combined multi-omics approaches to uncover the specific feature of tissues during germination.
Collapse
Affiliation(s)
- Naoto Sano
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Imen Lounifi
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- MBCC Group, Master Builders Construction Chemical, Singapore, Singapore
| | - Gwendal Cueff
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Boris Collet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Gilles Clément
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sandrine Balzergue
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | - Stéphanie Huguet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Benoît Valot
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, PAPPSO, Plateforme d'Analyse de Proteomique Paris-Sud-Ouest, Gif-sur-Yvette, France
- Chrono-Environnement Research Team UMR/CNRS-6249, Bourgogne-Franche-Comté University, Besançon, France
| | - Marc Galland
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
15
|
Wen Z, Wang Y, Xia C, Zhang Y, Zhang H. Chloroplastic SaNADP-ME4 of C 3-C 4 Woody Desert Species Salsola laricifolia Confers Drought and Salt Stress Resistance to Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2021; 10:1827. [PMID: 34579361 PMCID: PMC8471237 DOI: 10.3390/plants10091827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
The NADP-malic enzyme (NADP-ME) catalyzes the reversible decarboxylation of L-malate to produce pyruvate, CO2, and NADPH in the presence of a bivalent cation. In addition, this enzyme plays crucial roles in plant developmental and environment responses, especially for the plastidic isoform. However, this isoform is less studied in C3-C4 intermediate species under drought and salt stresses than in C3 and C4 species. In the present study, we characterized SaNADP-ME4 from the intermediate woody desert species Salsola laricifolia. SaNADP-ME4 encoded a protein of 646 amino acids, which was found to be located in the chloroplasts based on confocal imaging. Quantitative real-time PCR analysis showed that SaNADP-ME4 was highly expressed in leaves, followed by stems and roots, and SaNADP-ME4 expression was improved and reached its maximum under the 200 mm mannitol and 100 mm NaCl treatments, respectively. Arabidopsis overexpressing SaNADP-ME4 showed increased root length and fresh weight under mannitol and salt stress conditions at the seedling stage. In the adult stage, SaNADP-ME4 could alleviate the decreased in chlorophyll contents and PSII photochemical efficiency, as well as improve the expression of superoxide dismutase, peroxidase, and pyrroline-5-carboxylate synthase genes to enhance reactive oxygen species scavenging capability and proline levels. Our results suggest that SaNADP-ME4 overexpression in Arabidopsis increases drought and salt stress resistance.
Collapse
Affiliation(s)
- Zhibin Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.W.); (Y.W.); (C.X.); (Y.Z.)
- The Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulan Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.W.); (Y.W.); (C.X.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlan Xia
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.W.); (Y.W.); (C.X.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.W.); (Y.W.); (C.X.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxiang Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.W.); (Y.W.); (C.X.); (Y.Z.)
- The Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Swain A, Behera D, Karmakar S, Dash M, Dash BP, Swain P, Molla KA, Baig MJ. Morphophysiological alterations in transgenic rice lines expressing PPDK and ME genes from the C4 model Setaria italica. JOURNAL OF PLANT PHYSIOLOGY 2021; 264:153482. [PMID: 34330009 DOI: 10.1016/j.jplph.2021.153482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
C4 plants are superior to C3 plants in terms of productivity and limited photorespiration. PPDK (pyruvate orthophosphate dikinase) and NADP-ME (NADP-dependent malic enzyme) are two important photosynthetic C4-specific enzymes present in the mesophyll cells of C4 plants. To evaluate the effect of C4 enzymes in rice, we developed transgenic rice lines by separately introducing Setaria italica PPDK [SiPPDK] and S. italica ME [SiME] gene constructs under the control of the green tissue-specific maize PPDK promoter. Rice plant lines for both constructs were screened using the polymerase chain reaction (PCR), Southern hybridization, and expression analysis. The best transgenic plant lines for each case were selected for physiological and biochemical characterization. The results from qRT-PCR and enzyme activity analysis revealed higher expression and activity of both PPDK and NADP-ME genes compared with the nontransformed and empty-vector-transformed plants. The average photosynthetic efficiency of transgenic plant lines carrying the PPDK and NADP-ME genes increased by 18% and 12%, respectively, and was positively correlated with the increased accumulation of photosynthetic pigment. The decrease in Fv/Fm, increased electron transport rate (ETR), and increased photochemical quenching (qP) compared with nontransformed control plants suggest that transgenic rice plants transferred more absorbed light energy to photochemical reactions than wild-type plants. SiME-transgenic plants displayed reduced leaf malate content and superior performance under water deficit conditions. Interestingly, the transgenic plants showed yield enhancement by exhibiting increased plant height, panicle length, panicle weight and thousand grain weight. Overall, the exogenous foxtail millet C4 gene PPDK enhanced photosynthesis and yield to a greater extent than NADP-ME.
Collapse
Affiliation(s)
- Alaka Swain
- ICAR- National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Subhasis Karmakar
- ICAR- National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Manaswini Dash
- ICAR- National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Bisnu Prasad Dash
- Department of Bioscience and Biotechnology, Fakir Mohan University, Balasore, 756020, Odisha, India
| | - Padmini Swain
- ICAR- National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Mirza J Baig
- ICAR- National Rice Research Institute, Cuttack, 753006, Odisha, India.
| |
Collapse
|
17
|
Vasumathy SK, Alagu M. SSR marker-based genetic diversity analysis and SNP haplotyping of genes associating abiotic and biotic stress tolerance, rice growth and development and yield across 93 rice landraces. Mol Biol Rep 2021; 48:5943-5953. [PMID: 34319545 DOI: 10.1007/s11033-021-06595-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND As rice is the staple food for more than half of the world's population, enhancing grain yield irrespective of the variable climatic conditions is indispensable. Many traditionally cultivated rice landraces are well adapted to severe environmental conditions and have high genetic diversity that could play an important role in crop improvement. METHODS AND RESULTS The present study revealed a high level of genetic diversity among the unexploited rice landraces cultivated by the farmers of Kerala. Twelve polymorphic markers detected a total of seventy- seven alleles with an average of 6.416 alleles per locus. Polymorphic Information Content (PIC) value ranged from 0.459 to 0.809, and to differentiate the rice genotypes, RM 242 was found to be the most appropriate marker with a high value of 0.809. The current study indicated that the rice landraces are highly diverse with higher values of the adequate number of alleles, PIC, and Shannon information index. Utilizing these informative SSR markers for future molecular characterization and population genetic studies in rice landraces are advisable. Haplotypes are sets of genomic regions within a chromosome inherited together, and haplotype-based breeding is a promising strategy for designing next-generation rice varieties. Here, haplotype analysis explored 270 haplotype blocks and 775 haplotypes from all the chromosomes of landraces under study. The number of SNPs in each haplotype block ranged from two to 28. Haplotypes of genes related to biotic and abiotic stress tolerance, yield-enhancing, and growth and development in rice landraces were also elucidated in the current study. CONCLUSIONS The present investigation revealed the genetic diversity of rice landraces and the haplotype analysis will open the way for genome-wide association studies, QTL identification, and marker-assisted selection in the unexplored rice landraces collected from Kerala.
Collapse
Affiliation(s)
| | - Manickavelu Alagu
- Department of Genomic Science, Central University of Kerala, Periye, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
18
|
Quitadamo F, De Simone V, Beleggia R, Trono D. Chitosan-Induced Activation of the Antioxidant Defense System Counteracts the Adverse Effects of Salinity in Durum Wheat. PLANTS (BASEL, SWITZERLAND) 2021; 10:1365. [PMID: 34371568 PMCID: PMC8309458 DOI: 10.3390/plants10071365] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
The present study was carried out with the aim of (i) evaluating the effect of chitosan (CTS) on the growth of durum wheat under salinity and (ii) examining CTS-regulated mechanisms of salinity tolerance associated with the antioxidant defense system. To achieve these goals, durum wheat seedlings were treated with CTS at different molecular weight, low (L-CTS, 50-190 kDa), medium (M-CTS, 190-310 kDa) and high (H-CTS, 310-375 kDa). The results obtained show that exposure to 200 mM NaCl reduced the shoot and the root dried biomass by 38% and 59%, respectively. The growth impairment induced by salinity was strongly correlated with an increase in the superoxide anion production (5-fold), hydrogen peroxide content (2-fold) and malondialdehyde (MDA) content (4-fold). Seedlings responded to the oxidative stress triggered by salinity with an increase in the total phenolic content (TPC), total flavonoid content (TFC) and total antioxidant activity (TAA) by 67%, 51% and 32%, respectively. A salt-induced increase in the activity of the antioxidant enzymes superoxide dismutase and catalase (CAT) of 89% and 86%, respectively, was also observed. Treatment of salt-stressed seedlings with exogenous CTS significantly promoted seedling growth, with the strongest effects observed for L-CTS and M-CTS, which increased the shoot biomass of stressed seedlings by 32% and 44%, respectively, whereas the root dried biomass increased by 87% and 64%, respectively. L-CTS and M-CTS treatments also decreased the superoxide anion production (57% and 59%, respectively), the hydrogen peroxide content (35% and 38%, respectively) and the MDA content (48% and 56%, respectively) and increased the TPC (23% and 14%, respectively), the TFC (19% and 10%, respectively), the TAA (up to 10% and 7%, respectively) and the CAT activity (29% and 20%, respectively). Overall, our findings indicate that CTS exerts its protective role against the oxidative damages induced by salinity by enhancing the antioxidant defense system. L-CTS and M-CTS were the most effective in alleviating the adverse effect of NaCl, thus demonstrating that the CTS action is strictly related to its molecular weight.
Collapse
Affiliation(s)
| | | | | | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e, Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (F.Q.); (V.D.S.); (R.B.)
| |
Collapse
|
19
|
Wang J, Gao H, Guo Z, Meng Y, Yang M, Li X, Yang Q. Adaptation responses in C 4 photosynthesis of sweet maize (Zea mays L.) exposed to nicosulfuron. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112096. [PMID: 33647854 DOI: 10.1016/j.ecoenv.2021.112096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Nicosulfuron is an ingredient in photosynthesis-inhibiting herbicides and has been widely used in corn post-emergence weed control. In the current study, a pair of sister lines, HK301 (nicosulfuron-tolerence, NT) and HK320 (nicosulfuron-sensitive, NS), was used to study the effect of nicosulfuron in sweet maize seedlings on C4 photosynthetic enzymes and non-enzymatic substances, expression levels of key enzymes, and chloroplast structure. Nicosulfuron was sprayed at the four-leaf stage, and water was sprayed as a control. After nicosulfuron treatment, phosphoenolpyruvate carboxylase (PEPC), NADP-malic dehydrogenase (NADP-MDH), NADP-malic enzyme (NADP-ME), pyruvate orthophosphate dikinase (PPDK), and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activities of NT were significantly higher than those of NS. Compared to NT, malate, oxaloacetic acid, and pyruvic acid significantly decreased as exposure time increased in NS. Compared to NS, nicosulfuron treatment significantly increased the expression levels of PEPC, NADP-MDH, NADP-ME, PPDK, and Rubisco genes in NT. Under nicosulfuron treatment, chloroplast ultrastructure of NS, compared to that of NT, nicosulfuron induced swelling of the chloroplast volume and reduced starch granules in NS. In general, our results indicate that in different resistant sweet maize, C4 photosynthetic enzymes activity and key genes expression play a critical role in enhancing the adaptability of plants to nicosulfuron stress at a photosynthetic physiological level.
Collapse
Affiliation(s)
- Jian Wang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao 066000, Hebei Province, China.
| | - Hui Gao
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao 066000, Hebei Province, China
| | - Zhenqing Guo
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao 066000, Hebei Province, China
| | - Yanyu Meng
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao 066000, Hebei Province, China
| | - Min Yang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao 066000, Hebei Province, China
| | - Xiangling Li
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao 066000, Hebei Province, China
| | - Qing Yang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao 066000, Hebei Province, China.
| |
Collapse
|
20
|
Souri Z, Karimi N, Ahmad P. The effect of NADPH oxidase inhibitor diphenyleneiodonium (DPI) and glutathione (GSH) on Isatis cappadocica, under Arsenic (As) toxicity. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:945-957. [PMID: 33472408 DOI: 10.1080/15226514.2020.1870435] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present work was conducted to assess the effects of arsenic (As, 1000 µM), diphenyleneiodonium (DPI, 10 µM) and reduced glutathione (GSH, 500 µM) on Isatis cappadocica. As treatment decreased plant growth and fresh and dry weight of shoot and root and also enhanced the accumulation of As. As stress also enhanced the oxidative stress biomarkers, hydrogen peroxide (H2O2) and malondialdehyde (MDA) content. However, the application of GSH decreased the content of H2O2 and MDA by 43% and 55%, respectively, as compared to As treatment. The antioxidants like superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione S-transferase (GST) also enhanced with As stress. NADPH oxidase inhibitor, the DPI, enhances the effect of As toxicity by increasing the accumulation of As, H2O2, MDA. DPI also enhances the activity of antioxidant enzymes except GR and GST, However, the application GSH increased the plant growth and biomass yield, decreases accumulation of As, H2O2 and MDA content in As as well as As + DPI treated plants. The thiols content [total thiol (TT), non-protein thiol (NPT) protein thiols (PT), and glutathione (GSH)] were decreased in the As + DPI treatment but supplementation of GSH enhanced them. Novelty statement: The study reveals the beneficial role of GSH in mitigating the deleterious effects of Arsenic toxicity through its active involvement in the antioxidant metabolism, thiol synthesis and osmolyte accumulation. Apart from As, We provided the plants NADPH oxidase inhibitor, the diphenyleneiodonium (DPI), which boosts the As toxicity. At present, there is dearth of information pertaining to the effects of DPI on plants growth and their responses under heavy metal stress.GSH application reversed the effect of diphenyleneiodonium (DPI) under As stress preventing the oxidative damage to biomolecules through the modulation of different antioxidant enzymes. The application of GSH for As stressed soil could be a sustainable approach for crop production.
Collapse
Affiliation(s)
- Zahra Souri
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | | |
Collapse
|
21
|
Doré H, Farrant GK, Guyet U, Haguait J, Humily F, Ratin M, Pitt FD, Ostrowski M, Six C, Brillet-Guéguen L, Hoebeke M, Bisch A, Le Corguillé G, Corre E, Labadie K, Aury JM, Wincker P, Choi DH, Noh JH, Eveillard D, Scanlan DJ, Partensky F, Garczarek L. Evolutionary Mechanisms of Long-Term Genome Diversification Associated With Niche Partitioning in Marine Picocyanobacteria. Front Microbiol 2020; 11:567431. [PMID: 33042072 PMCID: PMC7522525 DOI: 10.3389/fmicb.2020.567431] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus are the most abundant photosynthetic organisms on Earth, an ecological success thought to be linked to the differential partitioning of distinct ecotypes into specific ecological niches. However, the underlying processes that governed the diversification of these microorganisms and the appearance of niche-related phenotypic traits are just starting to be elucidated. Here, by comparing 81 genomes, including 34 new Synechococcus, we explored the evolutionary processes that shaped the genomic diversity of picocyanobacteria. Time-calibration of a core-protein tree showed that gene gain/loss occurred at an unexpectedly low rate between the different lineages, with for instance 5.6 genes gained per million years (My) for the major Synechococcus lineage (sub-cluster 5.1), among which only 0.71/My have been fixed in the long term. Gene content comparisons revealed a number of candidates involved in nutrient adaptation, a large proportion of which are located in genomic islands shared between either closely or more distantly related strains, as identified using an original network construction approach. Interestingly, strains representative of the different ecotypes co-occurring in phosphorus-depleted waters (Synechococcus clades III, WPC1, and sub-cluster 5.3) were shown to display different adaptation strategies to this limitation. In contrast, we found few genes potentially involved in adaptation to temperature when comparing cold and warm thermotypes. Indeed, comparison of core protein sequences highlighted variants specific to cold thermotypes, notably involved in carotenoid biosynthesis and the oxidative stress response, revealing that long-term adaptation to thermal niches relies on amino acid substitutions rather than on gene content variation. Altogether, this study not only deciphers the respective roles of gene gains/losses and sequence variation but also uncovers numerous gene candidates likely involved in niche partitioning of two key members of the marine phytoplankton.
Collapse
Affiliation(s)
- Hugo Doré
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Gregory K Farrant
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Ulysse Guyet
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Julie Haguait
- LS2N, UMR CNRS 6004, IMT Atlantique, ECN, Université de Nantes, Nantes, France
| | - Florian Humily
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Morgane Ratin
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Frances D Pitt
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Martin Ostrowski
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Christophe Six
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Loraine Brillet-Guéguen
- CNRS, FR 2424, ABiMS Platform, Station Biologique de Roscoff (SBR), Roscoff, France.,Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Mark Hoebeke
- CNRS, FR 2424, ABiMS Platform, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Antoine Bisch
- CNRS, FR 2424, ABiMS Platform, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Gildas Le Corguillé
- CNRS, FR 2424, ABiMS Platform, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Erwan Corre
- CNRS, FR 2424, ABiMS Platform, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Karine Labadie
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Évry, France
| | - Jean-Marc Aury
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Évry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, Évry, France
| | - Dong Han Choi
- Marine Ecosystem Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea.,Ocean Science and Technology School, Korea Maritime and Ocean University, Busan, South Korea
| | - Jae Hoon Noh
- Marine Ecosystem Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea.,Department of Marine Biology, Korea University of Science and Technology, Daejeon, South Korea
| | - Damien Eveillard
- LS2N, UMR CNRS 6004, IMT Atlantique, ECN, Université de Nantes, Nantes, France.,Research Federation (FR2022) Tara Océans GO-SEE, Paris, France
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Frédéric Partensky
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Laurence Garczarek
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France.,Research Federation (FR2022) Tara Océans GO-SEE, Paris, France
| |
Collapse
|
22
|
Liu X, Yu Y, Liu Q, Deng S, Jin X, Yin Y, Guo J, Li N, Liu Y, Han S, Wang C, Hao D. A Na 2CO 3-Responsive Chitinase Gene From Leymus chinensis Improve Pathogen Resistance and Saline-Alkali Stress Tolerance in Transgenic Tobacco and Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:504. [PMID: 32411170 PMCID: PMC7198794 DOI: 10.3389/fpls.2020.00504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Salinity and microbial pathogens are the major limiting factors for crop production. Although the manipulation of many genes could improve plant performance under either of these stresses, few genes have reported that could improve both pathogen resistance and saline-alkali stress tolerance. In this study, we identified a new chitinase gene CHITINASE 2 (LcCHI2) that encodes a class II chitinase from Leymus chinensis, which grows naturally on alkaline-sodic soil. Overexpression of LcCHI2 increased chitinase activity in transgenic plants. The transgenic tobacco and maize exhibited improved pathogen resistance and enhanced both neutral salt and alkaline salt stress tolerance. Overexpression of LcCHI2 reduced sodium (Na+) accumulation, malondialdehyde content and relative electrical conductivity in transgenic tobacco under salt stress. In addition, the transgenic tobacco showed diminished lesion against bacterial and fungal pathogen challenge, suggesting an improved disease resistance. Similar improved performance was also observed in LcCHI2-overexpressed maize under both pathogen and salt stresses. It is worth noting that this genetic manipulation does not impair the growth and yield of transgenic tobacco and maize under normal cultivation condition. Apparently, application of LcCHI2 provides a new train of thought for genetically engineering saline-alkali and pathogen resistant crops of both dicots and monocots.
Collapse
Affiliation(s)
- Xiangguo Liu
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Ying Yu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qing Liu
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Suren Deng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture (MOA), Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Xuebo Jin
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuejia Yin
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jia Guo
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Nan Li
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yang Liu
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Siping Han
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chuang Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture (MOA), Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Dongyun Hao
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
23
|
Liu X, Yu Y, Liu Q, Deng S, Jin X, Yin Y, Guo J, Li N, Liu Y, Han S, Wang C, Hao D. A Na 2CO 3-Responsive Chitinase Gene From Leymus chinensis Improve Pathogen Resistance and Saline-Alkali Stress Tolerance in Transgenic Tobacco and Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:504. [PMID: 32411170 DOI: 10.1101/707281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/03/2020] [Indexed: 05/24/2023]
Abstract
Salinity and microbial pathogens are the major limiting factors for crop production. Although the manipulation of many genes could improve plant performance under either of these stresses, few genes have reported that could improve both pathogen resistance and saline-alkali stress tolerance. In this study, we identified a new chitinase gene CHITINASE 2 (LcCHI2) that encodes a class II chitinase from Leymus chinensis, which grows naturally on alkaline-sodic soil. Overexpression of LcCHI2 increased chitinase activity in transgenic plants. The transgenic tobacco and maize exhibited improved pathogen resistance and enhanced both neutral salt and alkaline salt stress tolerance. Overexpression of LcCHI2 reduced sodium (Na+) accumulation, malondialdehyde content and relative electrical conductivity in transgenic tobacco under salt stress. In addition, the transgenic tobacco showed diminished lesion against bacterial and fungal pathogen challenge, suggesting an improved disease resistance. Similar improved performance was also observed in LcCHI2-overexpressed maize under both pathogen and salt stresses. It is worth noting that this genetic manipulation does not impair the growth and yield of transgenic tobacco and maize under normal cultivation condition. Apparently, application of LcCHI2 provides a new train of thought for genetically engineering saline-alkali and pathogen resistant crops of both dicots and monocots.
Collapse
Affiliation(s)
- Xiangguo Liu
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Ying Yu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qing Liu
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Suren Deng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture (MOA), Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Xuebo Jin
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuejia Yin
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jia Guo
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Nan Li
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yang Liu
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Siping Han
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chuang Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture (MOA), Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Dongyun Hao
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
24
|
Yang Z, Li JL, Liu LN, Xie Q, Sui N. Photosynthetic Regulation Under Salt Stress and Salt-Tolerance Mechanism of Sweet Sorghum. FRONTIERS IN PLANT SCIENCE 2020; 10:1722. [PMID: 32010174 PMCID: PMC6974683 DOI: 10.3389/fpls.2019.01722] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/09/2019] [Indexed: 05/18/2023]
Abstract
Sweet sorghum is a C4 crop with the characteristic of fast-growth and high-yields. It is a good source for food, feed, fiber, and fuel. On saline land, sweet sorghum can not only survive, but increase its sugar content. Therefore, it is regarded as a potential source for identifying salt-related genes. Here, we review the physiological and biochemical responses of sweet sorghum to salt stress, such as photosynthesis, sucrose synthesis, hormonal regulation, and ion homeostasis, as well as their potential salt-resistance mechanisms. The major advantages of salt-tolerant sweet sorghum include: 1) improving the Na+ exclusion ability to maintain ion homeostasis in roots under salt-stress conditions, which ensures a relatively low Na+ concentration in shoots; 2) maintaining a high sugar content in shoots under salt-stress conditions, by protecting the structures of photosystems, enhancing photosynthetic performance and sucrose synthetase activity, as well as inhibiting sucrose degradation. To study the regulatory mechanism of such genes will provide opportunities for increasing the salt tolerance of sweet sorghum by breeding and genetic engineering.
Collapse
Affiliation(s)
- Zhen Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biological Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jin-Lu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
25
|
Li J, Sun P, Xia Y, Zheng G, Sun J, Jia H. A Stress-Associated Protein, PtSAP13, From Populus trichocarpa Provides Tolerance to Salt Stress. Int J Mol Sci 2019; 20:ijms20225782. [PMID: 31744233 PMCID: PMC6888306 DOI: 10.3390/ijms20225782] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 01/19/2023] Open
Abstract
The growth and production of poplars are usually affected by unfavorable environmental conditions such as soil salinization. Thus, enhancing salt tolerance of poplars will promote their better adaptation to environmental stresses and improve their biomass production. Stress-associated proteins (SAPs) are a novel class of A20/AN1 zinc finger proteins that have been shown to confer plants' tolerance to multiple abiotic stresses. However, the precise functions of SAP genes in poplars are still largely unknown. Here, the expression profiles of Populus trichocarpa SAPs in response to salt stress revealed that PtSAP13 with two AN1 domains was up-regulated dramatically during salt treatment. The β-glucuronidase (GUS) staining showed that PtSAP13 was accumulated dominantly in leaf and root, and the GUS signal was increased under salt condition. The Arabidopsis transgenic plants overexpressing PtSAP13 exhibited higher seed germination and better growth than wild-type (WT) plants under salt stress, demonstrating that overexpression of PtSAP13 increased salt tolerance. Higher activities of antioxidant enzymes were found in PtSAP13-overexpressing plants than in WT plants under salt stress. Transcriptome analysis revealed that some stress-related genes, including Glutathione peroxidase 8, NADP-malic enzyme 2, Response to ABA and Salt 1, WRKYs, Glutathione S-Transferase, and MYBs, were induced by salt in transgenic plants. Moreover, the pathways of flavonoid biosynthesis and metabolic processes, regulation of response to stress, response to ethylene, dioxygenase activity, glucosyltransferase activity, monooxygenase activity, and oxidoreductase activity were specially enriched in transgenic plants under salt condition. Taken together, our results demonstrate that PtSAP13 enhances salt tolerance through up-regulating the expression of stress-related genes and mediating multiple biological pathways.
Collapse
Affiliation(s)
- Jianbo Li
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China;
- Correspondence: (J.L.); (H.J.)
| | - Pei Sun
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China;
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yongxiu Xia
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
| | - Guangshun Zheng
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
| | - Jingshuang Sun
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
| | - Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China;
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Correspondence: (J.L.); (H.J.)
| |
Collapse
|
26
|
Ye C, Zhou Q, Wu X, Ji G, Li QQ. Genome-wide alternative polyadenylation dynamics in response to biotic and abiotic stresses in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109485. [PMID: 31376807 DOI: 10.1016/j.ecoenv.2019.109485] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 05/24/2023]
Abstract
Alternative polyadenylation (APA) is an important way to regulate gene expression at the post-transcriptional level, and is extensively involved in plant stress responses. However, the systematic roles of APA regulation in response to abiotic and biotic stresses in rice at the genome scale remain unknown. To take advantage of available RNA-seq datasets, using a novel tool APAtrap, we identified thousands of genes with significantly differential usage of polyadenylation [poly(A)] sites in response to the abiotic stress (drought, heat shock, and cadmium) and biotic stress [bacterial blight (BB), rice blast, and rice stripe virus (RSV)]. Genes with stress-responsive APA dynamics commonly exhibited higher expression levels when their isoforms with short 3' untranslated region (3' UTR) were more abundant. The stress-responsive APA events were widely involved in crucial stress-responsive genes and pathways: e.g. APA acted as a negative regulator in heat stress tolerance; APA events were involved in DNA repair and cell wall formation under Cd stress; APA regulated chlorophyll metabolism, being associated with the pathogenesis of leaf diseases under RSV and BB challenges. Furthermore, APA events were found to be involved in glutathione metabolism and MAPK signaling pathways, mediating a crosstalk among the abiotic and biotic stress-responsive regulatory networks in rice. Analysis of large-scale datasets revealed that APA may regulate abiotic and biotic stress-responsive processes in rice. Such post-transcriptome diversities contribute to rice adaption to various environmental challenges. Our study would supply useful resource for further molecular assisted breeding of multiple stress-tolerant cultivars for rice.
Collapse
Affiliation(s)
- Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Qian Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA.
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA.
| |
Collapse
|
27
|
Havird JC, Noe GR, Link L, Torres A, Logan DC, Sloan DB, Chicco AJ. Do angiosperms with highly divergent mitochondrial genomes have altered mitochondrial function? Mitochondrion 2019; 49:1-11. [PMID: 31229574 PMCID: PMC6885534 DOI: 10.1016/j.mito.2019.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
Angiosperm mitochondrial (mt) genes are generally slow-evolving, but multiple lineages have undergone dramatic accelerations in rates of nucleotide substitution and extreme changes in mt genome structure. While molecular evolution in these lineages has been investigated, very little is known about their mt function. Some studies have suggested altered respiration in individual taxa, although there are several reasons why mt variation might be neutral in others. Here, we develop a new protocol to characterize respiration in isolated plant mitochondria and apply it to species of Silene with mt genomes that are rapidly evolving, highly fragmented, and exceptionally large (~11 Mbp). This protocol, complemented with traditional measures of plant fitness, cytochrome c oxidase activity assays, and fluorescence microscopy, was also used to characterize inter- and intraspecific variation in mt function. Contributions of the individual "classic" OXPHOS complexes, the alternative oxidase, and external NADH dehydrogenases to overall mt respiratory flux were found to be similar to previously studied angiosperms with more typical mt genomes. Some differences in mt function could be explained by inter- and intraspecific variation. This study suggests that Silene species with peculiar mt genomes still show relatively normal mt respiration. This may be due to strong purifying selection on mt variants, coevolutionary responses in the nucleus, or a combination of both. Future experiments should explore such questions using a comparative framework and investigating other lineages with unusual mitogenomes.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, USA; Department of Integrative Biology, The University of Texas, Austin, TX, USA.
| | - Gregory R Noe
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Luke Link
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Amber Torres
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - David C Logan
- IRHS, INRA, Université d'Angers, AGROCAMPUS-Ouest, SFR 4207 QUASAV, 49071 Beaucouzé cedex, France
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
28
|
Begara-Morales JC, Sánchez-Calvo B, Gómez-Rodríguez MV, Chaki M, Valderrama R, Mata-Pérez C, López-Jaramillo J, Corpas FJ, Barroso JB. Short-Term Low Temperature Induces Nitro-Oxidative Stress that Deregulates the NADP-Malic Enzyme Function by Tyrosine Nitration in Arabidopsis thaliana. Antioxidants (Basel) 2019; 8:antiox8100448. [PMID: 31581524 PMCID: PMC6827146 DOI: 10.3390/antiox8100448] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Low temperature (LT) negatively affects plant growth and development via the alteration of the metabolism of reactive oxygen and nitrogen species (ROS and RNS). Among RNS, tyrosine nitration, the addition of an NO2 group to a tyrosine residue, can modulate reduced nicotinamide-dinucleotide phosphate (NADPH)-generating systems and, therefore, can alter the levels of NADPH, a key cofactor in cellular redox homeostasis. NADPH also acts as an indispensable electron donor within a wide range of enzymatic reactions, biosynthetic pathways, and detoxification processes, which could affect plant viability. To extend our knowledge about the regulation of this key cofactor by this nitric oxide (NO)-related post-translational modification, we analyzed the effect of tyrosine nitration on another NADPH-generating enzyme, the NADP-malic enzyme (NADP-ME), under LT stress. In Arabidopsis thaliana seedlings exposed to short-term LT (4 °C for 48 h), a 50% growth reduction accompanied by an increase in the content of superoxide, nitric oxide, and peroxynitrite, in addition to diminished cytosolic NADP-ME activity, were found. In vitro assays confirmed that peroxynitrite inhibits cytosolic NADP-ME2 activity due to tyrosine nitration. The mass spectrometric analysis of nitrated NADP-ME2 enabled us to determine that Tyr-73 was exclusively nitrated to 3-nitrotyrosine by peroxynitrite. The in silico analysis of the Arabidopsis NADP-ME2 protein sequence suggests that Tyr73 nitration could disrupt the interactions between the specific amino acids responsible for protein structure stability. In conclusion, the present data show that short-term LT stress affects the metabolism of ROS and RNS, which appears to negatively modulate the activity of cytosolic NADP-ME through the tyrosine nitration process.
Collapse
Affiliation(s)
- Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - María V Gómez-Rodríguez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Javier López-Jaramillo
- Institute of Biotechnology, Department of Organic Chemistry, Faculty of Sciences, University of Granada, E-18071 Granada, Spain.
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals, and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1, E-18080 Granada, Spain.
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| |
Collapse
|
29
|
Zhang X, Pu P, Tang Y, Zhang L, Lv J. C4 photosynthetic enzymes play a key role in wheat spike bracts primary carbon metabolism response under water deficit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:163-172. [PMID: 31299598 DOI: 10.1016/j.plaphy.2019.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 05/15/2023]
Abstract
C4 photosynthetic enzymes are present in C3 plants and participate in non-photosynthetic metabolism. Wheat spike bracts had a higher drought tolerance, photosynthesis and senesced later compared to the flag leaves under water deficit. This research was conducted to investigate the different response of primary carbon metabolism induced by C4 photosynthetic enzymes in wheat flag leaves and spike bracts including glumes and lemmas under water deficit. The activities of C4 photosynthetic enzymes and Ribulose bisphosphate carboxylase oxygenase (Rubisco), the expression of related genes and primary carbon metabolism contents were demonstrated in wheat flag leaves and spike bracts exposed to water deficit. Results showed that drought stress strongly inhibited wheat photosynthetic metabolism by decreasing Rubisco activity in flag leaves. The activities of phosphoenolpyruvate carboxylase (PEPC), NADP-malic enzyme (NADP-ME), phosphate dikinase (PPDK) and NADP- malic dehydrogenase (NADP-MDH) increased in wheat spike bracts under water deficit. Transcript levels of C4 photosynthetic genes in wheat spike bracts were higher under water deficit than that of control. Furthermore, the results indicated that drought stress induced changes in the contents of primary carbon metabolism including malate, oxaloacetic acid (OAA), citric, fumaric acid were organ-specific. In conclusion, the functions of C4 photosynthetic enzymes appear to be important for wheat spike bracts primary carbon metabolism and defence response under drought stress.
Collapse
Affiliation(s)
- Xu Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Peng Pu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yan Tang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jinyin Lv
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
30
|
Sun X, Han G, Meng Z, Lin L, Sui N. Roles of malic enzymes in plant development and stress responses. PLANT SIGNALING & BEHAVIOR 2019; 14:e1644596. [PMID: 31322479 PMCID: PMC6768271 DOI: 10.1080/15592324.2019.1644596] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 05/12/2023]
Abstract
Malic enzyme (ME) comprises a family of proteins with multiple isoforms located in different compartments of eukaryotic cells. It is a key enzyme regulating malic acid metabolism and can catalyze the reversible reaction of oxidative decarboxylation of malic acid. And it is also one of the important enzymes in plant metabolism and is involved in multiple metabolic processes. ME is widely present in plants and mainly discovered in cytoplasmic stroma, mitochondria, chloroplasts. It is involved in plant growth, development, and stress response. Plants are stressed by various environmental factors such as drought, high salt, and high temperature during plant growth, and the mechanisms of plant response to various environmental stresses are synergistic. Numerous studies have shown that ME participates in the process of coping with the above environmental factors by increasing water use efficiency, improving photosynthesis of plants, providing reducing power, and so on. In this review, we discuss the important role of ME in plant development and plant stress response, and prospects for its application. It provides a theoretical basis for the future use of ME gene for molecular resistance breeding.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| | - Zhe Meng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| | - Lin Lin
- Water Research Institute of Shandong Province, Jinan, PR China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| |
Collapse
|
31
|
A Systematic View Exploring the Role of Chloroplasts in Plant Abiotic Stress Responses. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6534745. [PMID: 31396532 PMCID: PMC6668530 DOI: 10.1155/2019/6534745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 11/18/2022]
Abstract
Chloroplasts are intracellular semiautonomous organelles central to photosynthesis and are essential for plant growth and yield. The significance of the function of chloroplast-related genes in response to climate change has not been well studied in crops. In the present study, the initial focus was on genes that were predicted to be located in the chloroplast genome in rice, a model crop plant, with genes either preferentially expressed in the leaf or ubiquitously expressed in all organs. The characteristics were analyzed by Gene Ontology (GO) enrichment and MapMan functional classification tools. It was then identified that 110 GO terms (45 for leaf expression and 65 for ubiquitous expression) and 1,695 genes mapped to MapMan overviews were strongly associated with chloroplasts. In particular, the MapMan cellular response overview revealed a close association between heat stress response and chloroplast-related genes in rice. Moreover, features of these genes in response to abiotic stress were analyzed using a large-scale publicly available transcript dataset. Consequently, the expression of 215 genes was found to be upregulated in response to high temperature stress. Conversely, genes that responded to other stresses were extremely limited. In other words, chloroplast-related genes were found to affect abiotic stress response mainly through high temperature response, with little effect on response to drought and salinity stress. These results suggest that genes involved in diurnal rhythm in the leaves participate in the reaction to recognize temperature changes in the environment. Furthermore, the predicted protein–protein interaction network analysis associated with high temperature stress is expected to provide a very important basis for the study of molecular mechanisms by which chloroplasts will respond to future climate changes.
Collapse
|
32
|
Ye X, Wang H, Cao X, Jin X, Cui F, Bu Y, Liu H, Wu W, Takano T, Liu S. Transcriptome profiling of Puccinellia tenuiflora during seed germination under a long-term saline-alkali stress. BMC Genomics 2019; 20:589. [PMID: 31315555 PMCID: PMC6637651 DOI: 10.1186/s12864-019-5860-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/29/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Puccinellia tenuiflora is the most saline-alkali tolerant plant in the Songnen Plain, one of the three largest soda saline-alkali lands worldwide. Here, we investigated the physicochemical properties of saline-alkali soils from the Songnen Plain and sequenced the transcriptomes of germinated P. tenuiflora seedlings under long-term treatment (from seed soaking) with saline-alkali soil extracts. RESULTS We found that the soils from Songnen Plain were reasonably rich in salts and alkali; moreover, the soils were severely deficient in nitrogen [N], phosphorus [P], potassium [K] and several other mineral elements. This finding demonstrated that P. tenuiflora can survive from not only high saline-alkali stress but also a lack of essential mineral elements. To explore the saline-alkali tolerance mechanism, transcriptional analyses of P. tenuiflora plants treated with water extracts from the saline-alkali soils was performed. Interestingly, unigenes involved in the uptake of N, P, K and the micronutrients were found to be significantly upregulated, which indicated the existence of an efficient nutrition-uptake system in P. tenuiflora. Compared with P. tenuiflora, the rice Oryza sativa was hypersensitive to saline-alkali stress. The results obtained using a noninvasive microtest techniques confirmed that the uptake of NO3- and NH4+ and the regulatory flux of Na+ and H+ were significantly higher in the roots of P. tenuiflora than in those of O. sativa. In the corresponding physiological experiments, the application of additional nutrition elements significantly eliminated the sensitive symptoms of rice to saline-alkali soil extracts. CONCLUSIONS Our results imply that the survival of P. tenuiflora in saline-alkali soils is due to a combination of at least two regulatory mechanisms and the high nutrient uptake capacity of P. tenuiflora plays a pivotal role in its adaptation to those stress. Taken together, our results highlight the role of nutrition uptake in saline-alkali stress tolerance in plants.
Collapse
Affiliation(s)
- Xiaoxue Ye
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040 China
| | - Hao Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040 China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Yuanyuan Bu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040 China
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), the University of Tokyo, Nishitokyo-shi, Tokyo, 188-0002 Japan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| |
Collapse
|
33
|
Chen Q, Wang B, Ding H, Zhang J, Li S. Review: The role of NADP-malic enzyme in plants under stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:206-212. [PMID: 30824053 DOI: 10.1016/j.plantsci.2019.01.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 05/26/2023]
Abstract
Under natural conditions, plants constantly encounter various fluctuating environmental stresses, which potentially restrict plant growth, plant development and even limit crop productivity. In addition to carbon fixation activity in C4 photosynthesis, NADP-dependent malic enzyme (NADP-ME) has been suggested to play important roles in diverse stress responses in plants. NADP-ME is one of the essential enzymes metabolizing malate, which is important for stabilizing cytoplasmic pH, controlling stomatal aperture, increasing resistance to aluminum excess and pathogen. Pyruvate, another product of NADP-ME reaction, participates in the synthesis of defense compounds such as flavonoids and lignin, which are involved in stresses tolerance such as mechanical wounding and pathogen invasion. Moreover, NADP-ME provides essential reductive coenzyme NADPH in the biosynthesis of flavonoids and lignin. On the other hand, NADPH is crucial for reactive active species (ROS) metabolizing systems such as the ascorbate-glutathione pathway and NADPH-dependent thioredoxin reductase, and is also required by apoplastic oxidative burst in most plant-pathogen interactions. This mini-review is largely focus on the characteristics of gene expression and activity of NADP-ME, as well as its interaction with ROS signaling under a variety of biotic and abiotic stress responses, which will provide a theoretical foundation for breeding of stress resistant crops.
Collapse
Affiliation(s)
- Qiqi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Bipeng Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Haiyan Ding
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
34
|
Das PP, Chua GM, Lin Q, Wong SM. iTRAQ-based analysis of leaf proteome identifies important proteins in secondary metabolite biosynthesis and defence pathways crucial to cross-protection against TMV. J Proteomics 2019; 196:42-56. [PMID: 30726703 DOI: 10.1016/j.jprot.2019.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/23/2022]
Abstract
Cross-protection is a phenomenon in which infection with a mild virus strain protects host plants against subsequent infection with a closely related severe virus strain. This study showed that a mild strain mutant virus, Tobacco mosaic virus (TMV)-43A could cross protect Nicotiana benthamiana plants against wild-type TMV. Furthermore, we investigated the host responses at the proteome level to identify important host proteins involved in cross-protection. We used the isobaric tags for relative and absolute quantification (iTRAQ) technique to analyze the proteome profiles of TMV, TMV-43A and cross-protected plants at different time-points. Our results showed that TMV-43A can cross-protect N. benthamiana plants from TMV. In cross-protected plants, photosynthetic activities were augmented, as supported by the increased accumulation of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) and geranylgeranyl diphosphate synthase (GGPS) enzymes, which are crucial for chlorophyll biosynthesis. The increased abundance of ROS scavenging enzymes like thioredoxins and L-ascorbate peroxidase would prevent oxidative damage in cross-protected plants. Interestingly, the abundance of defence-related proteins (14-3-3 and NbSGT1) decreased, along with a reduction in virus accumulation during cross-protection. In conclusion, we have identified several important host proteins that are crucial in cross-protection to counter TMV infection in N. benthamiana plants. BIOLOGICAL SIGNIFICANCE: TMV is the most studied model for host-virus interaction in plants. It can infect wide varieties of plant species, causing significant economic losses. Cross protection is one of the methods to combat virus infection. A few cross-protection mechanisms have been proposed, including replicase/coat protein-mediated resistance, RNA silencing, and exclusion/spatial separation between virus strains. However, knowledge on host responses at the proteome level during cross protection is limited. To address this knowledge gap, we have leveraged on a global proteomics analysis approach to study cross protection. We discovered that TMV-43A (protector) protects N. benthamiana plants from TMV (challenger) infection through multiple host pathways: secondary metabolite biosynthesis, photosynthesis, defence, carbon metabolism, protein translation and processing and amino acid biosynthesis. In the secondary metabolite biosynthesis pathway, enzymes 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) and geranylgeranyl diphosphate synthase (GGPS) play crucial roles in chlorophyll biosynthesis during cross protection. In addition, accumulation of ROS scavenging enzymes was also found in cross-protected plants, providing rescues from excessive oxidative damage. Reduced abundance of plant defence proteins is correlated to reduced virus accumulation in host plants. These findings have increased our knowledge in host responses during cross-protection.
Collapse
Affiliation(s)
- Prem Prakash Das
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore.
| | - Gao Ming Chua
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore.
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
35
|
Muthusamy SK, Lenka SK, Katiyar A, Chinnusamy V, Singh AK, Bansal KC. Genome-Wide Identification and Analysis of Biotic and Abiotic Stress Regulation of C 4 Photosynthetic Pathway Genes in Rice. Appl Biochem Biotechnol 2018; 187:221-238. [PMID: 29915917 DOI: 10.1007/s12010-018-2809-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 06/04/2018] [Indexed: 11/30/2022]
Abstract
Photosynthetic fixation of CO2 is more efficient in C4 than in C3 plants. Rice is a C3 plant and a potential target for genetic engineering of the C4 pathway. It is known that genes encoding C4 enzymes are present in C3 plants. However, no systematic analysis has been conducted to determine if these C4 gene family members are expressed in diverse rice genotypes. In this study, we identified 15 genes belonging to the five C4 gene families in rice genome through BLAST search using known maize C4 photosynthetic pathway genes. Phylogenetic relationship of rice C4 photosynthetic pathway genes and their isoforms with other grass genomes (Brachypodium, maize, Sorghum and Setaria), showed that these genes were highly conserved across grass genomes. Spatiotemporal, hormone, and abiotic stress specific expression pattern of the identified genes revealed constitutive as well as inductive responses of the C4 photosynthetic pathway in different tissues and developmental stages of rice. Expression levels of C4 specific gene family members in flag leaf during tillering stage were quantitatively analyzed in five rice genotypes covering three species, viz. Oryza sativa, ssp. japonica (cv. Nipponbare), Oryza sativa, ssp. indica (cv IR64, Swarna), and two wild species Oryza barthii and Oryza australiensis. The results showed that all the identified genes expressed in rice and exhibited differential expression pattern during different growth stages, and in response to biotic and abiotic stress conditions and hormone treatments. Our study concludes that C4 photosynthetic pathway genes present in rice play a crucial role in stress regulation and might act as targets for C4 pathway engineering via CRISPR-mediated breeding.
Collapse
Affiliation(s)
- Senthilkumar K Muthusamy
- ICAR-National Research Centre on Plant Biotechnology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.,Division of Crop Improvement, ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, 695017, India
| | - Sangram K Lenka
- ICAR-National Research Centre on Plant Biotechnology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.,TERI-Deakin Nanobiotechnology Centre, Gurgaon, 122 001, India
| | - Amit Katiyar
- ICAR-National Research Centre on Plant Biotechnology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.,ICMR-All India Institute of Medical Science, Ansari Nagar, New Delhi, 110029, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ashok K Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Kailash C Bansal
- ICAR-National Research Centre on Plant Biotechnology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India. .,TERI-Deakin Nanobiotechnology Centre, Gurgaon, 122 001, India.
| |
Collapse
|
36
|
Singh S, Singh A, Srivastava PK, Prasad SM. Cadmium toxicity and its amelioration by kinetin in tomato seedlings vis-à-vis ascorbate-glutathione cycle. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:76-84. [DOI: 10.1016/j.jphotobiol.2017.10.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/02/2017] [Accepted: 10/26/2017] [Indexed: 01/12/2023]
|
37
|
Che-Othman MH, Millar AH, Taylor NL. Connecting salt stress signalling pathways with salinity-induced changes in mitochondrial metabolic processes in C3 plants. PLANT, CELL & ENVIRONMENT 2017; 40:2875-2905. [PMID: 28741669 DOI: 10.1111/pce.13034] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 05/12/2023]
Abstract
Salinity exerts a severe detrimental effect on crop yields globally. Growth of plants in saline soils results in physiological stress, which disrupts the essential biochemical processes of respiration, photosynthesis, and transpiration. Understanding the molecular responses of plants exposed to salinity stress can inform future strategies to reduce agricultural losses due to salinity; however, it is imperative that signalling and functional response processes are connected to tailor these strategies. Previous research has revealed the important role that plant mitochondria play in the salinity response of plants. Review of this literature shows that 2 biochemical processes required for respiratory function are affected under salinity stress: the tricarboxylic acid cycle and the transport of metabolites across the inner mitochondrial membrane. However, the mechanisms by which components of these processes are affected or react to salinity stress are still far from understood. Here, we examine recent findings on the signal transduction pathways that lead to adaptive responses of plants to salinity and discuss how they can be involved in and be affected by modulation of the machinery of energy metabolism with attention to the role of the tricarboxylic acid cycle enzymes and mitochondrial membrane transporters in this process.
Collapse
Affiliation(s)
- M Hafiz Che-Othman
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
- School of Bioscience and Biotechnology, Faculty of Science and Technology, National University of Malaysia, Bangi, Selangor, 43600, Malaysia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
| | - Nicolas L Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
- Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
| |
Collapse
|
38
|
Yu Y, Duan X, Ding X, Chen C, Zhu D, Yin K, Cao L, Song X, Zhu P, Li Q, Nisa ZU, Yu J, Du J, Song Y, Li H, Liu B, Zhu Y. A novel AP2/ERF family transcription factor from Glycine soja, GsERF71, is a DNA binding protein that positively regulates alkaline stress tolerance in Arabidopsis. PLANT MOLECULAR BIOLOGY 2017; 94:509-530. [PMID: 28681139 DOI: 10.1007/s11103-017-0623-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/08/2017] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Here we first found that GsERF71, an ERF factor from wild soybean could increase plant alkaline stress tolerance by up-regulating H+-ATPase and by modifing the accumulation of Auxin. Alkaline soils are widely distributed all over the world and greatly limit plant growth and development. In our previous transcriptome analyses, we have identified several ERF (ethylene-responsive factor) genes that responded strongly to bicarbonate stress in the roots of wild soybean G07256 (Glycine soja). In this study, we cloned and functionally characterized one of the genes, GsERF71. When expressed in epidermal cells of onion, GsERF71 localized to the nucleus. It can activate the reporters in yeast cells, and the C-terminus of 170 amino acids is essential for its transactivation activity. Yeast one-hybrid and EMSA assays indicated that GsERF71 specifically binds to the cis-acting elements of the GCC-box, suggesting that GsERF71 may participate in the regulation of transcription of the relevant biotic and abiotic stress-related genes. Furthermore, transgenic Arabidopsis plants overexpressing GsERF71 showed significantly higher tolerance to bicarbonate stress generated by NaHCO3 or KHCO3 than the wild type (WT) plants, i.e., the transgenic plants had greener leaves, longer roots, higher total chlorophyll contents and lower MDA contents. qRT-PCR and rhizosphere acidification assays indicated that the expression level and activity of H+-ATPase (AHA2) were enhanced in the transgenic plants under alkaline stress. Further analysis indicated that the expression of auxin biosynthetic genes and IAA contents were altered to a lower extent in the roots of transgenic plants than WT plants under alkaline stress in a short-term. Together, our data suggest that GsERF71 enhances the tolerance to alkaline stress by up-regulating the expression levels of H+-ATPase and by modifying auxin accumulation in transgenic plants.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangbo Duan
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Dan Zhu
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kuide Yin
- School of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xuewei Song
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Pinghui Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Zaib Un Nisa
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Jiyang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Jianying Du
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Song
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Huiqing Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 413, Sweden
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
39
|
Identifying the Genes Regulated by AtWRKY6 Using Comparative Transcript and Proteomic Analysis under Phosphorus Deficiency. Int J Mol Sci 2017; 18:ijms18051046. [PMID: 28498313 PMCID: PMC5454958 DOI: 10.3390/ijms18051046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 01/06/2023] Open
Abstract
Phosphorus (P) is an important mineral nutrient for plant growth and development. Overexpressing AtWRKY6 (35S:WRKY6-9) was more sensitive and wrky6 (wrky6-1) was more resistant under low Pi conditions. To better understand the function of AtWRKY6 under low phosphate stress conditions, we applied two-dimensional gel electrophoresis (2-DE) to analyse differentially expressed proteins in the shoots and roots between wild type, 35S:WRKY6-9 and wrky6-1 after phosphorus deficiency treatment for three days. The results showed 88 differentially abundant protein spots, which were identified between the shoots and roots of 35S:WRKY6-9 and wrky6-1 plants. In addition, 59 differentially expressed proteins were identified in the leaves and roots of 35S:WRKY6-9 plants. After analysis, 9 genes with W-box elements in their promoter sequences were identified in the leaves, while 6 genes with W-box elements in their promoter sequences were identified in the roots. A total of 8 genes were identified as potential target genes according to the quantitative PCR (QPCR) and two dimension difference gel electrophoresis, (2D-DIGE) results, including ATP synthase, gln synthetase, nitrilase, 14-3-3 protein, carbonic anhydrases 2, and tryptophan synthase. These results provide important information concerning the AtWRKY6 regulation network and reveal potential vital target genes of AtWRKY6 under low phosphorus stress. two dimension difference gel electrophoresis, 2D-DIGE.
Collapse
|
40
|
Shaw AK, Bhardwaj PK, Ghosh S, Azahar I, Adhikari S, Adhikari A, Sherpa AR, Saha SK, Hossain Z. Profiling of BABA-induced differentially expressed genes of Zea mays using suppression subtractive hybridization. RSC Adv 2017. [DOI: 10.1039/c7ra06220f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This study aims to identify differentially expressed transcripts in BABA-primed maize leaves using suppression subtractive hybridization (SSH) strategy. Findings shed new light on the BABA potentiated defense mechanisms in plants.
Collapse
Affiliation(s)
- Arun K. Shaw
- Department of Botany
- West Bengal State University
- Kolkata – 700126
- India
| | - Pardeep K. Bhardwaj
- Plant Bioresources Division
- Institute of Bioresources and Sustainable Development
- Sikkim Centre
- India
| | - Supriya Ghosh
- Department of Botany
- University of Kalyani
- Kalyani 741235
- India
| | - Ikbal Azahar
- Department of Botany
- University of Kalyani
- Kalyani 741235
- India
| | | | - Ayan Adhikari
- Department of Botany
- University of Kalyani
- Kalyani 741235
- India
| | - Ang R. Sherpa
- Department of Botany
- West Bengal State University
- Kolkata – 700126
- India
| | - Samir K. Saha
- Department of Zoology
- West Bengal State University
- Kolkata – 700126
- India
| | - Zahed Hossain
- Department of Botany
- University of Kalyani
- Kalyani 741235
- India
| |
Collapse
|
41
|
Dworak A, Nykiel M, Walczak B, Miazek A, Szworst-Łupina D, Zagdańska B, Kiełkiewicz M. Maize proteomic responses to separate or overlapping soil drought and two-spotted spider mite stresses. PLANTA 2016; 244:939-60. [PMID: 27334025 PMCID: PMC5018026 DOI: 10.1007/s00425-016-2559-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/13/2016] [Indexed: 05/20/2023]
Abstract
In maize, leaf proteome responses evoked by soil drought applied separately differ from those evoked by mite feeding or both types of stresses occurring simultaneously. This study focuses on the involvement of proteomic changes in defence responses of a conventional maize cultivar (Bosman) to the two-spotted spider mite infestation, soil drought and both stresses coexisting for 6 days. Under watering cessation or mite feeding applied separately, the protein carbonylation was not directly linked to the antioxidant enzymes' activities. Protein carbonylation increased at higher and lower SOD, APX, GR, POX, PPO activities following soil drought and mite feeding, respectively. Combination of these stresses resulted in protein carbonylation decrease despite the increased activity of all antioxidant enzymes (except the CAT). However, maize protein network modification remains unknown upon biotic/abiotic stresses overlapping. Here, using multivariate chemometric methods, 94 leaf protein spots (out of 358 considered; 2-DE) were identified (LC-MS/MS) as differentiating the studied treatments. Only 43 of them had individual discrimination power. The soil drought increased abundance of leaf proteins related mainly to photosynthesis, carbohydrate metabolism, defence (molecular chaperons) and protection. On the contrary, mite feeding decreased the abundance of photosynthesis related proteins and enhanced the abundance of proteins protecting the mite-infested leaf against photoinhibition. The drought and mites occurring simultaneously increased abundance of proteins that may improve the efficiency of carbon fixation, as well as carbohydrate and amino acid metabolism. Furthermore, increased abundance of the Rubisco large subunit-binding protein (subunit β), fructose-bisphosphate aldolase and mitochondrial precursor of Mn-SOD and decreased abundance of the glycolysis-related enzymes in the mite-free leaf (in the vicinity of mite-infested leaf) illustrate the involvement of these proteins in systemic maize response to mite feeding.
Collapse
Affiliation(s)
- Anna Dworak
- Section of Applied Entomology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Małgorzata Nykiel
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Beata Walczak
- Institute of Chemistry, Silesian University, 9 Szkolna, 40-006, Katowice, Poland
| | - Anna Miazek
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Dagmara Szworst-Łupina
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Barbara Zagdańska
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Małgorzata Kiełkiewicz
- Section of Applied Entomology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland.
| |
Collapse
|
42
|
Na2CO3-responsive mechanisms in halophyte Puccinellia tenuiflora roots revealed by physiological and proteomic analyses. Sci Rep 2016; 6:32717. [PMID: 27596441 PMCID: PMC5011731 DOI: 10.1038/srep32717] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/15/2016] [Indexed: 11/16/2022] Open
Abstract
Soil alkalization severely affects crop growth and agricultural productivity. Alkali salts impose ionic, osmotic, and high pH stresses on plants. The alkali tolerance molecular mechanism in roots from halophyte Puccinellia tenuiflora is still unclear. Here, the changes associated with Na2CO3 tolerance in P. tenuiflora roots were assessed using physiological and iTRAQ-based quantitative proteomic analyses. We set up the first protein dataset in P. tenuiflora roots containing 2,671 non-redundant proteins. Our results showed that Na2CO3 slightly inhibited root growth, caused ROS accumulation, cell membrane damage, and ion imbalance, as well as reduction of transport and protein synthesis/turnover. The Na2CO3-responsive patterns of 72 proteins highlighted specific signaling and metabolic pathways in roots. Ca2+ signaling was activated to transmit alkali stress signals as inferred by the accumulation of calcium-binding proteins. Additionally, the activities of peroxidase and glutathione peroxidase, and the peroxiredoxin abundance were increased for ROS scavenging. Furthermore, ion toxicity was relieved through Na+ influx restriction and compartmentalization, and osmotic homeostasis reestablishment due to glycine betaine accumulation. Importantly, two transcription factors were increased for regulating specific alkali-responsive gene expression. Carbohydrate metabolism-related enzymes were increased for providing energy and carbon skeletons for cellular metabolism. All these provide new insights into alkali-tolerant mechanisms in roots.
Collapse
|
43
|
Yu Y, Liu A, Duan X, Wang S, Sun X, Duanmu H, Zhu D, Chen C, Cao L, Xiao J, Li Q, Nisa ZU, Zhu Y, Ding X. GsERF6, an ethylene-responsive factor from Glycine soja, mediates the regulation of plant bicarbonate tolerance in Arabidopsis. PLANTA 2016; 244:681-98. [PMID: 27125386 DOI: 10.1007/s00425-016-2532-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/12/2016] [Indexed: 05/07/2023]
Abstract
MAIN CONCLUSION This is an original study focus on ERF gene response to alkaline stress. GsERF6 functions as transcription factor and significantly enhanced plant tolerance to bicarbonate (HCO 3 (-) ) in transgenic Arabidopsis . Alkaline stress is one of the most harmful, but little studied environmental factors, which negatively affects plant growth, development and yield. The cause of alkaline stress is mainly due to the damaging consequence of high concentration of the bicarbonate ion, high-pH, and osmotic shock to plants. The AP2/ERF family genes encode plant-specific transcription factors involved in diverse environmental stresses. However, little is known about their physiological functions, especially in alkaline stress responses. In this study, we functionally characterized a novel ERF subfamily gene, GsERF6 from alkaline-tolerant wild soybean (Glycine soja). In wild soybean, GsERF6 was rapidly induced by NaHCO3 treatment, and its overexpression in Arabidopsis enhanced transgenic plant tolerance to NaHCO3 challenge. Interestingly, GsERF6 transgenic lines also displayed increased tolerance to KHCO3 treatment, but not to high pH stress, implicating that GsERF6 may participate specifically in bicarbonate stress responses. We also found that GsERF6 overexpression up-regulated the transcription levels of bicarbonate-stress-inducible genes such as NADP-ME, H (+)-Ppase and H (+)-ATPase, as well as downstream stress-tolerant genes such as RD29A, COR47 and KINI. GsERF6 overexpression and NaHCO3 stress also altered the expression patterns of plant hormone synthesis and hormone-responsive genes. Conjointly, our results suggested that GsERF6 is a positive regulator of plant alkaline stress by increasing bicarbonate ionic resistance specifically, providing a new insight into the regulation of gene expression under alkaline conditions.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Ailin Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangbo Duan
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Sunting Wang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoli Sun
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Huizi Duanmu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Dan Zhu
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Zaib Un Nisa
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
44
|
Comparative genome analysis of the oleaginous yeast Trichosporon fermentans reveals its potential applications in lipid accumulation. Microbiol Res 2016; 192:203-210. [PMID: 27664738 DOI: 10.1016/j.micres.2016.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 11/22/2022]
Abstract
In this work, Trichosporon fermentans CICC 1368, which has been shown to accumulate cellular lipids efficiently using industry-agricultural wastes, was subjected to preliminary genome analysis, yielding a genome size of 31.3 million bases and 12,702 predicted protein-coding genes. Our analysis also showed a high degree of gene duplications and unique genes compared with those observed in other oleaginous yeasts, with 3-4-fold more genes related to fatty acid elongation and degradation compared with those in Rhodosporidium toruloides NP11 and Yarrowia lipolytica CLIB122. Phylogenetic analysis with other oleaginous microbes suggested that the lipogenic capacity of T. fermentans was obtained during evolution after the divergence of genera. Thus, our study provided the first draft genome and comparative analysis of T. fermentans, laying the foundation for its genetic improvement to facilitate cost-effective lipid production.
Collapse
|
45
|
Genome-wide identification, classification, and analysis of NADP-ME family members from 12 crucifer species. Mol Genet Genomics 2016; 291:1167-80. [PMID: 26839002 DOI: 10.1007/s00438-016-1174-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/20/2016] [Indexed: 01/06/2023]
Abstract
NADP-dependent malic enzymes (NADP-MEs) play essential roles in both normal development and stress responses in plants. Here, genome-wide analysis was performed to identify 65 putative NADP-ME genes from 12 crucifer species. These NADP-ME genes were grouped into five categories of syntenic orthologous genes and were divided into three clades of a phylogenic tree. Promoter motif analysis showed that NADP-ME1 genes in Group IV were more conserved with each other than the other NADP-ME genes in Groups I and II. A nucleotide motif involved in ABA responses, desiccation and seed development was found in the promoters of most NADP-ME1 genes. Generally, the NADP-ME genes of Brassica rapa, B. oleracea and B. napus had less introns than their corresponding Arabidopsis orthologs. In these three Brassica species, the NADP-ME genes derived from the least fractionated subgenome have lost less introns than those from the medium fractionated and most fractionated subgenomes. BrNADP-ME1 showed the highest expression in petals and mature embryos. Two paralogous NADP-ME2 genes (BrNADP-ME2a and BrNADP-ME2b) shared similar expression profiles and differential expression levels. BrNADP-ME3 showed down-regulation during embryogenesis and reached its lowest expression in early cotyledonary embryos. BrNADP-ME4 was expressed widely in multiple organs and showed high expression during the whole embryogenesis process. Different NADP-ME genes of B. rapa showed differential gene expression profiles in young leaves after ABA treatment or cold stress. Our genome-wide identification and characterization of NADP-ME genes extend our understanding of the evolution or function of this family in Brassicaceae.
Collapse
|
46
|
Badia MB, Arias CL, Tronconi MA, Maurino VG, Andreo CS, Drincovich MF, Wheeler MCG. Enhanced cytosolic NADP-ME2 activity in A. thaliana affects plant development, stress tolerance and specific diurnal and nocturnal cellular processes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:193-203. [PMID: 26475199 DOI: 10.1016/j.plantsci.2015.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/11/2015] [Accepted: 09/19/2015] [Indexed: 05/06/2023]
Abstract
Arabidopsis thaliana has four NADP-dependent malic enzymes (NADP-ME 1-4) for reversible malate decarboxylation, with NADP-ME2 being the only cytosolic isoform ubiquitously expressed and responsible for most of the total activity. In this work, we further investigated its physiological function by characterizing Arabidopsis plants over-expressing NADP-ME2 constitutively. In comparison to wild type, these plants exhibited reduced rosette and root sizes, delayed flowering time and increased sensitivity to mannitol and polyethylene glycol. The increased NADP-ME2 activity led to a decreased expression of other ME and malate dehydrogenase isoforms and generated a redox imbalance with opposite characteristics depending on the time point of the day analyzed. The over-expressing plants also presented a higher content of C4 organic acids and sugars under normal growth conditions. However, the accumulation of these metabolites in the over-expressing plants was substantially less pronounced after osmotic stress exposure compared to wild type. Also, a lower level of several amino acids and osmoprotector compounds was observed in transgenic plants. Thus, the gain of NADP-ME2 expression has profound consequences in the modulation of primary metabolism in A. thaliana, which reflect the relevance of this enzyme and its substrates and products in plant homeostasis.
Collapse
Affiliation(s)
- Mariana B Badia
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Cintia L Arias
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Marcos A Tronconi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Verónica G Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, Universitätsstr. 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - Carlos S Andreo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - María F Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Mariel C Gerrard Wheeler
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
47
|
Sui N, Yang Z, Liu M, Wang B. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genomics 2015; 16:534. [PMID: 26186930 PMCID: PMC4506618 DOI: 10.1186/s12864-015-1760-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/07/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sweet sorghum is an annual C4 crop considered to be one of the most promising bio-energy crops due to its high sugar content in stem, yet it is poorly understood how this plant increases its sugar content in response to salt stress. In response to high NaCl, many of its major processes, such as photosynthesis, protein synthesis, energy and lipid metabolism, are inhibited. Interestingly, sugar content in sweet sorghum stems remains constant or even increases in several salt-tolerant species. RESULTS In this study, the transcript profiles of two sweet sorghum inbred lines (salt-tolerant M-81E and salt-sensitive Roma) were analyzed in the presence of 0 mM or 150 mM NaCl in order to elucidate the molecular mechanisms that lead to higher sugar content during salt stress. We identified 864 and 930 differentially expressed genes between control plants and those subjected to salt stress in both M-81E and Roma strains. We determined that the majority of these genes are involved in photosynthesis, carbon fixation, and starch and sucrose metabolism. Genes important for maintaining photosystem structure and for regulating electron transport were less affected by salt stress in the M-81E line compared to the salt-sensitive Roma line. In addition, expression of genes encoding NADP(+)-malate enzyme and sucrose synthetase was up-regulated and expression of genes encoding invertase was down-regulated under salt stress in M-81E. In contrast, the expression of these genes showed the opposite trend in Roma under salt stress. CONCLUSIONS The results we obtained revealed that the salt-tolerant genotype M-81E leads to increased sugar content under salt stress by protecting important structures of photosystems, by enhancing the accumulation of photosynthetic products, by increasing the production of sucrose synthetase and by inhibiting sucrose decomposition.
Collapse
Affiliation(s)
- Na Sui
- Key Laboratory of Plant Stress Research, College of life science, Shandong Normal University, Jinan, Shandong, 250014, PR China.
| | - Zhen Yang
- Key Laboratory of Plant Stress Research, College of life science, Shandong Normal University, Jinan, Shandong, 250014, PR China.
| | - Mingli Liu
- Key Laboratory of Plant Stress Research, College of life science, Shandong Normal University, Jinan, Shandong, 250014, PR China.
| | - Baoshan Wang
- Key Laboratory of Plant Stress Research, College of life science, Shandong Normal University, Jinan, Shandong, 250014, PR China.
| |
Collapse
|
48
|
Jakubowska D, Janicka-Russak M, Kabała K, Migocka M, Reda M. Modification of plasma membrane NADPH oxidase activity in cucumber seedling roots in response to cadmium stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:50-9. [PMID: 25804809 DOI: 10.1016/j.plantsci.2015.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/16/2015] [Accepted: 02/11/2015] [Indexed: 05/21/2023]
Abstract
The aim of this study was to investigate the effect of cadmium on plasma membrane (PM) NADPH oxidase activity in cucumber roots. Plants were treated with cadmium for 1, 3 or 6 days. Some of the plants after 3-day exposure to cadmium were transferred to a medium without the heavy metal for the next 3 days. Treatment of plants with cadmium for 6 days stimulated the activity of NADPH oxidase. The highest stimulation of O2(•-) production by NADPH oxidase was observed in post-stressed plants, which was correlated with the stimulation of activity of PM H(+)-ATPase in the same conditions. In order to examine the effects of cadmium stresses on the expression level of genes encoding NADPH oxidase, putative cucumber homologs encoding RBOH proteins were selected and a real-time PCR assay was performed. NADPH is a substrate for oxidase; thus alterations in the activity of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, NADP-isocitrate dehydrogenase and NADP-malic enzyme under cadmium stress were studied. The activity of NADPH dehydrogenases was increased under cadmium stress. The results indicate that PM NADPH oxidase could be involved in plants' response to cadmium stress by affecting the activity of PM H(+)-ATPase, and NADPH-generating enzymes could play important roles in this process.
Collapse
Affiliation(s)
- Dagmara Jakubowska
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia Street 6/8, 50-328 Wrocław, Poland.
| | - Małgorzata Janicka-Russak
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia Street 6/8, 50-328 Wrocław, Poland.
| | - Katarzyna Kabała
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia Street 6/8, 50-328 Wrocław, Poland.
| | - Magdalena Migocka
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia Street 6/8, 50-328 Wrocław, Poland.
| | - Małgorzata Reda
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia Street 6/8, 50-328 Wrocław, Poland.
| |
Collapse
|
49
|
Guan Q, Wang Z, Wang X, Takano T, Liu S. A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation. JOURNAL OF PLANT PHYSIOLOGY 2015; 175:183-91. [PMID: 25644292 DOI: 10.1016/j.jplph.2014.10.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 05/21/2023]
Abstract
Ascorbate peroxidase (APX, EC 1.11.1.11) is one of the major members of the ROS scavenging system that plays an important role in improving saline-alkali tolerance. Puccinellia tenuiflora, as a perennial wild grass, is able to grow in extreme saline-alkali soil environments. In this study, we investigated the relationship between the P. tenuiflora ascorbate peroxidase (PutAPX) gene and saline-alkali tolerance. A phylogenetic analysis indicated that PutAPX is closely related to AtAPX3 and OsAPX4 and that these genes are on the same branch. The PutAPX-GFP fusion protein is located in the peroxisome in onion epidermal cells. The transcriptional expression of PutAPX increased with prolonged exposure to NaCl, NaHCO3, PEG6000 and H2O2 stresses in P. tenuiflora. The overexpression of PutAPX in Arabidopsis thaliana significantly increased the tolerance of plants treated with 150 and 175mM NaCl and decreased the extent of lipid peroxidation. The transgenic seedlings presented higher chlorophyll content than wild type (WT) seedlings treated with 1, 3, and 5mM NaHCO3 and 3mM H2O2. The DAB staining results revealed that the H2O2 content in transgenic seedlings was significantly lower than that in WT plants under both normal conditions and 200mM NaCl stress. Moreover, the expression of APX proteins and enzyme activity in the transgenic seedlings increased to level that were greater than twofold higher than those found in WT plants exposed to 200mM NaCl. The saline-alkali tolerance conferred by the PutAPX gene may provide a reliable basis for the use of molecular breeding techniques to improve plant tolerance and obtain a better understanding of the physiological mechanism of anti-oxidative and ROS stresses.
Collapse
Affiliation(s)
- Qingjie Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, No. 26 Hexing Road, Nangang District, Harbin 150040, China; Laboratory of Soybean Molecular Biology and Molecular Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 138 Haping Road, Nangang District, Harbin 150081, China
| | - Zhenjuan Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, No. 26 Hexing Road, Nangang District, Harbin 150040, China
| | - Xuhui Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, No. 26 Hexing Road, Nangang District, Harbin 150040, China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo, Tokyo 188-0002, Japan
| | - Shenkui Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, No. 26 Hexing Road, Nangang District, Harbin 150040, China.
| |
Collapse
|
50
|
Paz RC, Rocco RA, Jiménez-Bremont JF, Rodríguez-Kessler M, Becerra-Flora A, Menéndez AB, Ruíz OA. Identification of differentially expressed genes potentially involved in the tolerance of Lotus tenuis to long-term alkaline stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:279-288. [PMID: 25025825 DOI: 10.1016/j.plaphy.2014.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/17/2014] [Indexed: 06/03/2023]
Abstract
Soil alkalinity is one of the most serious agricultural problems limiting crop yields. The legume Lotus tenuis is an important forage acknowledged by its ability to naturally grow in alkaline soils. To gain insight into the molecular responses that are activated by alkalinity in L. tenuis plants, subtractive cDNA libraries were generated from leaves and roots of these plants. Total RNAs of non-stressed plants (pH 5.8; E.C. 1.2), and plants stressed by the addition of 10 mM of NaHCO3 (pH 9.0; E.C. 1.9), were used as source of the driver and the tester samples, respectively. RNA samples were collected after 14 and 28 days of treatment. A total of 158 unigenes from leaves and 92 unigenes from roots were obtained and classified into 11 functional categories. Unigenes from these categories (4 for leaves and 8 for roots), that were related with nutrient metabolism and oxidative stress relief were selected, and their differential expression analyzed by qRT-PCR. These genes were found to be differentially expressed in a time dependent manner in L. tenuis during the alkaline stress application. Data generated from this study will contribute to the understanding of the general molecular mechanisms associated to plant tolerance under long-term alkaline stress in plants.
Collapse
Affiliation(s)
- Rosalía Cristina Paz
- Grupo INTERBIODES (Interacciones Biológicas del Desierto/Biological Interactions of Desert), CIGEOBIO (FCEFyN, UNSJ/CONICET), Dpto. de Biología, Av. Ignacio de la Roza 590 (Oeste), J5402DCS Rivadavia, San Juan, Argentina.
| | - Rubén Anibal Rocco
- Unidad de Biotecnología 1, IIB-IINTECH/UNSAM-CONICET, Chascomús, Buenos Aires, Argentina.
| | - Juan Francisco Jiménez-Bremont
- Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa de San José No. 2055, Lomas 4a Sección, CP 78216 San Luis Potosí, SLP, México.
| | - Margarita Rodríguez-Kessler
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava s/n, Zona Universitaria, C.P. 78290 San Luis Potosí, SLP, México.
| | - Alicia Becerra-Flora
- Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa de San José No. 2055, Lomas 4a Sección, CP 78216 San Luis Potosí, SLP, México.
| | - Ana Bernardina Menéndez
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina; PROPLAME-PRHIDEB (CONICET), Argentina.
| | - Oscar Adolfo Ruíz
- Unidad de Biotecnología 1, IIB-IINTECH/UNSAM-CONICET, Chascomús, Buenos Aires, Argentina.
| |
Collapse
|