1
|
Jiang M, Li P. Unraveling the evolution of the ATB2 subgroup basic leucine zipper transcription factors in plants and decoding the positive effects of BdibZIP44 and BdibZIP53 on heat stress in Brachypodium distachyon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109708. [PMID: 40024148 DOI: 10.1016/j.plaphy.2025.109708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
In plants, basic region/leucine zipper motif (bZIP) transcription factors (TFs) stand as pivotal regulators in a broad spectrum of developmental mechanisms and adaptive strategies against environmental pressures. However, the ancestral origins and the evolutionary progression of their functional diversity across plant species have yet to be thoroughly illuminated. This study delved into the ATB2 subgroup bZIP homologs, tracing them back to the ancestral charophyte lineage predating land plant emergence, and categorized them into four distinct phylogenetic clusters (Clades A to D). Of particular note, our findings highlighted bZIP44_GBF6 and bZIP53 orthologs as angiosperm-specific innovations, distinguished by the acquisition of novel protein motifs and an intensified regime of purifying selection, reflecting their specialized evolutionary trajectories. Through synteny analysis, we uncovered that whole-genome duplication (WGD) events, post-monocot/dicot split, have played independent yet pivotal roles in shaping the bZIP44_GBF6 and bZIP53 lineages. Furthermore, an assessment of codon usage patterns disclosed a conspicuous bias in monocots favoring G3s, C3s, Gc3s, and GC content, while demonstrating a relative avoidance of T3s, A3s, and Nc usage frequencies. Functionally, we demonstrated that BdibZIP44 and BdibZIP53, localized to the nucleus, possessed the capability to dimerize, both homotypically and heterotypically. These proteins exhibited inducible expression under heat stress conditions in Brachypodium distachyon, implicating them in thermotolerance mechanisms. Overexpression studies reinforced their positive regulatory influence on heat stress resilience by augmenting the enzymatic activity of antioxidants, including catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), which collectively enhance the clearance of deleterious reactive oxygen species (ROS). Taken together, this research significantly advanced our understanding of the origins and the adaptive evolutionary journey of ATB2 subgroup bZIP homologs in the plant kingdom. Moreover, it elucidated the vital roles of BdibZIP44 and BdibZIP53 in orchestrating a robust defense against high-temperature stress, thereby contributing to the broader discourse on plant adaptation and survival strategies under changing climatic conditions.
Collapse
Affiliation(s)
- Min Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| |
Collapse
|
2
|
Parres-Gold J, Levine M, Emert B, Stuart A, Elowitz MB. Contextual computation by competitive protein dimerization networks. Cell 2025; 188:1984-2002.e17. [PMID: 39978343 PMCID: PMC11973712 DOI: 10.1016/j.cell.2025.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 12/03/2024] [Accepted: 01/27/2025] [Indexed: 02/22/2025]
Abstract
Many biological signaling pathways employ proteins that competitively dimerize in diverse combinations. These dimerization networks can perform biochemical computations in which the concentrations of monomer inputs determine the concentrations of dimer outputs. Despite their prevalence, little is known about the range of input-output computations that dimerization networks can perform and how it depends on network size and connectivity. Using a systematic computational approach, we demonstrate that even small dimerization networks of 3-6 monomers are expressive, performing diverse multi-input computations. Further, dimerization networks are versatile, performing different computations when their protein components are expressed at different levels, such as in different cell types. Remarkably, individual networks with random interaction affinities, when large enough, can perform nearly all potential one-input network computations merely by tuning their monomer expression levels. Thus, even the simple process of competitive dimerization provides a powerful architecture for multi-input, cell-type-specific signal processing.
Collapse
Affiliation(s)
- Jacob Parres-Gold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Matthew Levine
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin Emert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrew Stuart
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
3
|
Wu J, Deng S, Wang Y, Jia C, Wei J, Zhou M, Zhu D, Li Z, Fayyaz P, Luo ZB, Zhou J, Shi W. The PtobZIP55-PtoMYB170 module regulates the wood anatomical and chemical properties of Populus tomentosa in acclimation to low nitrogen availability. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:117-134. [PMID: 39540795 DOI: 10.1111/jipb.13804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Poplar plantations are often established on nitrogen-poor land, and poplar growth and wood formation are constrained by low nitrogen (LN) availability. However, the molecular mechanisms by which specific genes regulate wood formation in acclimation to LN availability remain unclear. Here, we report a previously unrecognized module, basic region/leucine zipper 55 (PtobZIP55)-PtoMYB170, which regulates the wood formation of Populus tomentosa in acclimation to LN availability. PtobZIP55 was highly expressed in poplar wood and induced by LN. Altered wood anatomical properties and increased lignification were detected in PtobZIP55-overexpressing poplars, whereas the opposite results were detected in PtobZIP55-knockout poplars. Molecular and transgenic analyses revealed that PtobZIP55 directly binds to the promoter sequence of PtoMYB170 to activate its transcription. The phenotypes of PtoMYB170 transgenic poplars were similar to those of PtobZIP55 transgenic poplars under LN conditions. Further molecular analyses revealed that PtoMYB170 directly bound the promoter sequences of lignin biosynthetic genes to activate their transcription to increase lignin concentrations in LN-treated poplar wood. These results suggest that PtobZIP55 activates PtoMYB170 transcription, which in turn positively regulates lignin biosynthetic genes, increasing lignin deposition in the wood of P. tomentosa in the context of acclimation to LN availability.
Collapse
Affiliation(s)
- Jiangting Wu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yang Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Chenlin Jia
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jia Wei
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Mengyan Zhou
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Dongyue Zhu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhuorong Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Payam Fayyaz
- Forest, Range and Watershed Management Department, Agriculture and Natural Resources Faculty, Yasouj University, Yasuj, 75919 63179, Iran
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, 100091, China
- Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying, 257000, Shandong, China
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wenguang Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
4
|
Zhang M, Liu Y, Li J, Zhou B, Chen Y, Tang H, Cui Y, Liu J, Tang J. Evolutionary and Expression Analyses of the bZIP Family in Tea Plants ( Camellia sinensis) and Functional Characterization of CsbZIP3/42/6 in Response to Environmental Stresses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24989-25000. [PMID: 39425658 DOI: 10.1021/acs.jafc.4c06725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Basic leucine zipper (bZIP) transcription factors play crucial roles in various biological processes and responses to environmental stresses. However, the functions of the bZIP family in tea plants remain largely unexplored. Here, we identified 74 bZIP genes in tea plants (Camellia sinensis) and classified them into 12 phylogenetic groups, supported by analyses of conserved motifs and gene structures. Cis-element analysis provided insights into the potential roles of CsbZIP genes in phytohormone signaling and stress responses. Tissue-specific expression analysis demonstrated differential expression profiles of CsbZIP genes, suggesting their tissue- and stage-specific functions. Additionally, varying expression levels under different abiotic stresses indicated functional divergence of the CsbZIP family during the long-term evolution. Notably, CsbZIP3/42/6 were identified as positive regulators of drought and salt stress responses but negative regulators in response to pathogen infection, and CsbZIP42 could interact with CsbZIP3 and CsbZIP6 in regulating these environmental stresses. This study provides valuable information on potential applications for improving stress tolerance and overall plant health of tea plants.
Collapse
Affiliation(s)
- Man Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Yanhui Liu
- College of Life Sciences, Longyan University, Longyan 361000, China
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Bo Zhou
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Yiyong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Hao Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Yingying Cui
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Jiayu Liu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| |
Collapse
|
5
|
Rahman S, Ikram AR, AlHusnain L, Fiaz S, Rafique MU, Ali MA, AlKahtani MDF, Attia KA, Azeem F. Genome-wide profiling of bZIP transcription factors in Camelina sativa: implications for development and stress response. BMC Genom Data 2024; 25:88. [PMID: 39402491 PMCID: PMC11479404 DOI: 10.1186/s12863-024-01270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The bZIP transcription factor family, characterized by a bZIP domain, plays vital roles in plant stress responses and development. While this family has been extensively studied in various plant species, its specific functions in Camelina sativa (False Flax) remain underexplored. METHODS AND RESULTS This study identified 71 bZIP transcription factors in C. sativa, classified into nine distinct groups based on phylogenetic analysis. Subcellular localization predicted a nucleus-specific expression for these bZIPs. Analysis of GRAVY scores revealed a range from 0.469 to -1.256, indicating a spectrum from hydrophobic to hydrophilic properties. Motif analysis uncovered 10 distinct motifs, with one motif being universally present in all CsbZIPs. Conserved domain analysis highlighted several domains beyond the core bZIP domain. Protein-protein interaction predictions suggested a robust network involving CsbZIPs. Moreover, promoter analysis revealed over 60 types of cis-elements, including those responsive to stress. Expression studies through RNA-seq and Real-time RT-qPCR demonstrated high expression of CsbZIPs in roots, leaves, flowers, and stems. Specifically, CsbZIP01, CsbZIP02, CsbZIP44, and CsbZIP60 were consistently up-regulated under cold, salt, and drought stresses, whereas CsbZIP34 and CsbZIP35 were down-regulated. CONCLUSION This study presents the first comprehensive genome-wide profiling of bZIP transcription factors in Camelina sativa, providing novel insights into their roles in plant development and stress response mechanisms. By identifying and characterizing the bZIP gene family in C. sativa, this research offers new opportunities for improving stress tolerance and crop resilience through targeted genetic approaches, addressing key challenges in agriculture under changing environmental conditions.
Collapse
Affiliation(s)
- Shahroz Rahman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Abdul Rehman Ikram
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Latifa AlHusnain
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Sajid Fiaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan.
| | - Muhammad Umar Rafique
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muneera D F AlKahtani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Kotb A Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
6
|
Yu L, Dittrich ACN, Zhang X, Brock JR, Thirumalaikumar VP, Melandri G, Skirycz A, Edger PP, Thorp KR, Hinze L, Pauli D, Nelson AD. Regulation of a single inositol 1-phosphate synthase homeologue by HSFA6B contributes to fibre yield maintenance under drought conditions in upland cotton. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2756-2772. [PMID: 39031479 PMCID: PMC11536448 DOI: 10.1111/pbi.14402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 07/22/2024]
Abstract
Drought stress substantially impacts crop physiology resulting in alteration of growth and productivity. Understanding the genetic and molecular crosstalk between stress responses and agronomically important traits such as fibre yield is particularly complicated in the allopolyploid species, upland cotton (Gossypium hirsutum), due to reduced sequence variability between A and D subgenomes. To better understand how drought stress impacts yield, the transcriptomes of 22 genetically and phenotypically diverse upland cotton accessions grown under well-watered and water-limited conditions in the Arizona low desert were sequenced. Gene co-expression analyses were performed, uncovering a group of stress response genes, in particular transcription factors GhDREB2A-A and GhHSFA6B-D, associated with improved yield under water-limited conditions in an ABA-independent manner. DNA affinity purification sequencing (DAP-seq), as well as public cistrome data from Arabidopsis, were used to identify targets of these two TFs. Among these targets were two lint yield-associated genes previously identified through genome-wide association studies (GWAS)-based approaches, GhABP-D and GhIPS1-A. Biochemical and phylogenetic approaches were used to determine that GhIPS1-A is positively regulated by GhHSFA6B-D, and that this regulatory mechanism is specific to Gossypium spp. containing the A (old world) genome. Finally, an SNP was identified within the GhHSFA6B-D binding site in GhIPS1-A that is positively associated with yield under water-limiting conditions. These data lay out a regulatory connection between abiotic stress and fibre yield in cotton that appears conserved in other systems such as Arabidopsis.
Collapse
Affiliation(s)
- Li'ang Yu
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | | | - Xiaodan Zhang
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Jordan R. Brock
- Department of HorticultureMichigan State UniversityEast LansingMIUSA
| | - Venkatesh P. Thirumalaikumar
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
- Present address:
Purdue Proteomics FacilityBindley biosciences, Purdue UniversityWest LafayetteINUSA
| | | | - Aleksandra Skirycz
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
- Present address:
Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Patrick P. Edger
- Department of HorticultureMichigan State UniversityEast LansingMIUSA
| | - Kelly R. Thorp
- United States Department of Agriculture‐Agricultural Research Service, Arid Land Agricultural Research CenterMaricopaAZUSA
| | - Lori Hinze
- United States Department of Agriculture‐Agricultural Research Service, Southern Plains Agricultural Research CenterCollege StationTXUSA
| | - Duke Pauli
- School of Plant SciencesUniversity of ArizonaTucsonAZUSA
- Agroecosystem Research in the Desert (ARID)University of ArizonaTucsonAZUSA
| | | |
Collapse
|
7
|
Gao H, Xue J, Yuan L, Sun Y, Song Y, Zhang C, Li R, Jia X. Systematic characterization of CsbZIP transcription factors in Camelina sativa and functional analysis of CsbZIP-A12 mediating regulation of unsaturated fatty acid-enriched oil biosynthesis. Int J Biol Macromol 2024; 270:132273. [PMID: 38734348 DOI: 10.1016/j.ijbiomac.2024.132273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The basic leucine zipper (bZIP) transcription factors (TFs) function importantly in numerous life processes in plants. However, bZIP members and their biological roles remain unknown in Camelina sativa, a worldwide promising oil crop. Here, 220 CsbZIP proteins were identified in camelina and classified into thirteen groups. Two and 347 pairs of tandem and segmental duplication genes were detected to be underwent purification selection, with segmental duplication as the main driven-force of CsbZIP gene family expansion. Most CsbZIP genes displayed a tissue-specific expression pattern. Particularly, CsbZIP-A12 significantly positively correlated with many FA/oil biosynthesis-related genes, indicating CsbZIP-A12 may regulate lipid biosynthesis. Notably, yeast one-hybrid (Y1H), β-Glucuronidase (GUS), dual-luciferase (LUC) and EMSA assays evidenced that CsbZIP-A12 located in nucleus interacted with the promoters of CsSAD2-3 and CsFAD3-3 genes responsible for unsaturated fatty acid (UFA) synthesis, thus activating their transcriptions. Overexpression of CsbZIP-A12 led to an increase of total lipid by 3.275 % compared to the control, followed with oleic and α-linolenic acid levels enhanced by 3.4 % and 5.195 %, and up-regulated the expressions of CsSAD2-3, CsFAD3-3 and CsPDAT2-3 in camelina seeds. Furthermore, heterogeneous expression of CsbZIP-A12 significantly up-regulated the expressions of NtSAD2, NtFAD3 and NtPDAT genes in tobacco plants, thereby improving the levels of total lipids and UFAs in both leaves and seeds without negative effects on other agronomic traits. Together, our findings suggest that CsbZIP-A12 upregulates FA/oil biosynthesis by activating CsSAD2-3 and CsFAD3-3 as well as possible other related genes. These data lay a foundation for further functional analyses of CsbZIPs, providing new insights into the TF-based lipid metabolic engineering to increase vegetable oil yield and health-beneficial quality in oilseeds.
Collapse
Affiliation(s)
- Huiling Gao
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Jinai Xue
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Lixia Yuan
- College of Biological Science and Technology, Jinzhong University, Jinzhong, Shanxi, China
| | - Yan Sun
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Yanan Song
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Chunhui Zhang
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Runzhi Li
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China.
| | - Xiaoyun Jia
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China.
| |
Collapse
|
8
|
Wang Z, Wang P, Cao H, Liu M, Kong L, Wang H, Ren W, Fu Q, Ma W. Genome-wide identification of bZIP transcription factors and their expression analysis in Platycodon grandiflorus under abiotic stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1403220. [PMID: 38863542 PMCID: PMC11165138 DOI: 10.3389/fpls.2024.1403220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
The Basic Leucine Zipper (bZIP) transcription factors (TFs) family is among of the largest and most diverse gene families found in plant species, and members of the bZIP TFs family perform important functions in plant developmental processes and stress response. To date, bZIP genes in Platycodon grandiflorus have not been characterized. In this work, a number of 47 PgbZIP genes were identified from the genome of P. grandiflorus, divided into 11 subfamilies. The distribution of these PgbZIP genes on the chromosome and gene replication events were analyzed. The motif, gene structure, cis-elements, and collinearity relationships of the PgbZIP genes were simultaneously analyzed. In addition, gene expression pattern analysis identified ten candidate genes involved in the developmental process of different tissue parts of P. grandiflorus. Among them, Four genes (PgbZIP5, PgbZIP21, PgbZIP25 and PgbZIP28) responded to drought and salt stress, which may have potential biological roles in P. grandiflorus development under salt and drought stress. Four hub genes (PgbZIP13, PgbZIP30, PgbZIP32 and PgbZIP45) mined in correlation network analysis, suggesting that these PgbZIP genes may form a regulatory network with other transcription factors to participate in regulating the growth and development of P. grandiflorus. This study provides new insights regarding the understanding of the comprehensive characterization of the PgbZIP TFs for further exploration of the functions of growth and developmental regulation in P. grandiflorus and the mechanisms for coping with abiotic stress response.
Collapse
Affiliation(s)
- Zhen Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Panpan Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Huiyan Cao
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiqi Liu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lingyang Kong
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Honggang Wang
- Research Office of Development and Utilization of Medicinal Plants, Heilongjiang Academy of Forestry, Yichun, China
| | - Weichao Ren
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qifeng Fu
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Ma
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Wu J, Zhou M, Cheng Y, Chen X, Yan S, Deng S. Genome-Wide Analysis of C/S1-bZIP Subfamilies in Populus tomentosa and Unraveling the Role of PtobZIP55/21 in Response to Low Energy. Int J Mol Sci 2024; 25:5163. [PMID: 38791204 PMCID: PMC11120861 DOI: 10.3390/ijms25105163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
C/S1 basic leucine zipper (bZIP) transcription factors are essential for plant survival under energy deficiency. However, studies on the responses of C/S1-bZIPs to low energy in woody plants have not yet been reported. In this study, members of C/S1-bZIP subfamilies in Populus tomentosa were systematically analyzed using bioinformatic approaches. Four C-bZIPs and 10 S1-bZIPs were identified, and their protein properties, phylogenetic relationships, gene structures, conserved motifs, and uORFs were systematically investigated. In yeast two-hybrid assays, direct physical interactions between C-bZIP and S1-bZIP members were observed, highlighting their potential functional synergy. Moreover, expression profile analyses revealed that low energy induced transcription levels of most C/S1-bZIP members, with bZIP55 and bZIP21 (a homolog of bZIP55) exhibiting particularly significant upregulation. When the expression of bZIP55 and bZIP21 was co-suppressed using artificial microRNA mediated gene silencing in transgenic poplars, root growth was promoted. Further analyses revealed that bZIP55/21 negatively regulated the root development of P. tomentosa in response to low energy. These findings provide insights into the molecular mechanisms by which C/S1-bZIPs regulate poplar growth and development in response to energy deprivation.
Collapse
Affiliation(s)
| | | | | | | | | | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (J.W.); (M.Z.); (Y.C.); (X.C.); (S.Y.)
| |
Collapse
|
10
|
Shen B, Li W, Zheng Y, Zhou X, Zhang Y, Qu M, Wang Y, Yuan Y, Pang K, Feng Y, Wu J, Zeng B. Morphological and molecular response mechanisms of the root system of different Hemarthria compressa species to submergence stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1342814. [PMID: 38638357 PMCID: PMC11024365 DOI: 10.3389/fpls.2024.1342814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Introduction The severity of flood disasters is increasing due to climate change, resulting in a significant reduction in the yield and quality of forage crops worldwide. This poses a serious threat to the development of agriculture and livestock. Hemarthria compressa is an important high-quality forage grass in southern China. In recent years, frequent flooding has caused varying degrees of impacts on H. compressa and their ecological environment. Methods In this study, we evaluated differences in flooding tolerance between the root systems of the experimental materials GY (Guang Yi, flood-tolerant) and N1291 (N201801291, flood-sensitive). We measured their morphological indexes after 7 d, 14 d, and 21 d of submergence stress and sequenced their transcriptomes at 8 h and 24 h, with 0 h as the control. Results During submergence stress, the number of adventitious roots and root length of both GY and N1291 tended to increase, but the overall growth of GY was significantly higher than that of N1291. RNA-seq analysis revealed that 6046 and 7493 DEGs were identified in GY-8h and GY-24h, respectively, and 9198 and 4236 DEGs in N1291-8h and N1291-24h, respectively, compared with the control. The GO and KEGG enrichment analysis results indicated the GO terms mainly enriched among the DEGs were oxidation-reduction process, obsolete peroxidase reaction, and other antioxidant-related terms. The KEGG pathways that were most significantly enriched were phenylpropanoid biosynthesis, plant hormone signal transduction etc. The genes of transcription factor families, such as C2H2, bHLH and bZIP, were highly expressed in the H. compressa after submergence, which might be closely related to the submergence adaptive response mechanisms of H. compressa. Discussion This study provides basic data for analyzing the molecular and morphological mechanisms of H. compressa in response to submergence stress, and also provides theoretical support for the subsequent improvement of submergence tolerance traits of H. compressa.
Collapse
Affiliation(s)
- Bingna Shen
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wenwen Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuqian Zheng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoli Zhou
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yinuo Zhang
- College of Grassland Agriculture, Northwest Agriculture and Forestry University, Shanxi, China
| | - Minghao Qu
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Institute of Prataculture, Chongqing Academy of Animal Science, Chongqing, China
| | - Yinchen Wang
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Provincial Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou, China
| | - Yang Yuan
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Provincial Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou, China
| | - Kaiyue Pang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yanlong Feng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jiahai Wu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Provincial Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
- College of Animal Science and Technology, Southwest University, Chongqing University Herbivore Engineering Research Center, Chongqing, China
| |
Collapse
|
11
|
Sun Q, He Z, Wei R, Zhang Y, Ye J, Chai L, Xie Z, Guo W, Xu J, Cheng Y, Xu Q, Deng X. The transcriptional regulatory module CsHB5-CsbZIP44 positively regulates abscisic acid-mediated carotenoid biosynthesis in citrus (Citrus spp.). PLANT BIOTECHNOLOGY JOURNAL 2024; 22:722-737. [PMID: 37915111 PMCID: PMC10893943 DOI: 10.1111/pbi.14219] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Carotenoids contribute to fruit coloration and are valuable sources of provitamin A in the human diet. Abscisic acid (ABA) plays an essential role in fruit coloration during citrus fruit ripening, but little is known about the underlying mechanisms. Here, we identified a novel bZIP transcription activator called CsbZIP44, which serves as a central regulator of ABA-mediated citrus carotenoid biosynthesis. CsbZIP44 directly binds to the promoters of four carotenoid metabolism-related genes (CsDXR, CsGGPPs, CsBCH1 and CsNCED2) and activates their expression. Furthermore, our research indicates that CsHB5, a positive regulator of ABA and carotenoid-driven processes, activates the expression of CsbZIP44 by binding to its promoter. Additionally, CsHB5 interacts with CsbZIP44 to form a transcriptional regulatory module CsHB5-CsbZIP44, which is responsive to ABA induction and promotes carotenoid accumulation in citrus. Interestingly, we also discover a positive feedback regulation loop between the ABA signal and carotenoid biosynthesis mediated by the CsHB5-CsbZIP44 transcriptional regulatory module. Our findings show that CsHB5-CsbZIP44 precisely modulates ABA signal-mediated carotenoid metabolism, providing an effective strategy for quality improvement of citrus fruit and other crops.
Collapse
Affiliation(s)
- Quan Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTaianChina
| | - Zhengchen He
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Ranran Wei
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yin Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Zongzhou Xie
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Wenwu Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| |
Collapse
|
12
|
Kreisz P, Hellens AM, Fröschel C, Krischke M, Maag D, Feil R, Wildenhain T, Draken J, Braune G, Erdelitsch L, Cecchino L, Wagner TC, Ache P, Mueller MJ, Becker D, Lunn JE, Hanson J, Beveridge CA, Fichtner F, Barbier FF, Weiste C. S 1 basic leucine zipper transcription factors shape plant architecture by controlling C/N partitioning to apical and lateral organs. Proc Natl Acad Sci U S A 2024; 121:e2313343121. [PMID: 38315839 PMCID: PMC10873608 DOI: 10.1073/pnas.2313343121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Plants tightly control growth of their lateral organs, which led to the concept of apical dominance. However, outgrowth of the dormant lateral primordia is sensitive to the plant's nutritional status, resulting in an immense plasticity in plant architecture. While the impact of hormonal regulation on apical dominance is well characterized, the prime importance of sugar signaling to unleash lateral organ formation has just recently emerged. Here, we aimed to identify transcriptional regulators, which control the trade-off between growth of apical versus lateral organs. Making use of locally inducible gain-of-function as well as single and higher-order loss-of-function approaches of the sugar-responsive S1-basic-leucine-zipper (S1-bZIP) transcription factors, we disclosed their largely redundant function in establishing apical growth dominance. Consistently, comprehensive phenotypical and analytical studies of S1-bZIP mutants show a clear shift of sugar and organic nitrogen (N) allocation from apical to lateral organs, coinciding with strong lateral organ outgrowth. Tissue-specific transcriptomics reveal specific clade III SWEET sugar transporters, crucial for long-distance sugar transport to apical sinks and the glutaminase GLUTAMINE AMIDO-TRANSFERASE 1_2.1, involved in N homeostasis, as direct S1-bZIP targets, linking the architectural and metabolic mutant phenotypes to downstream gene regulation. Based on these results, we propose that S1-bZIPs control carbohydrate (C) partitioning from source leaves to apical organs and tune systemic N supply to restrict lateral organ formation by C/N depletion. Knowledge of the underlying mechanisms controlling plant C/N partitioning is of pivotal importance for breeding strategies to generate plants with desired architectural and nutritional characteristics.
Collapse
Affiliation(s)
- Philipp Kreisz
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Alicia M. Hellens
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Christian Fröschel
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Markus Krischke
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Daniel Maag
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Regina Feil
- Group System Regulation, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm14476, Germany
| | - Theresa Wildenhain
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Jan Draken
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Gabriel Braune
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Leon Erdelitsch
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Laura Cecchino
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Tobias C. Wagner
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Peter Ache
- Department of Molecular Plant Physiology and Biophysics, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Martin J. Mueller
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - John E. Lunn
- Group System Regulation, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm14476, Germany
| | - Johannes Hanson
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, UmeåSE-901 87, Sweden
| | - Christine A. Beveridge
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Franziska Fichtner
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- Department of Plant Biochemistry, Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Francois F. Barbier
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- Institute for Plant Sciences of Montpellier, University of Montpellier, CNRS, INRAe, Institut Agro, Montpellier34060, France
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| |
Collapse
|
13
|
Zhang H, Ding X, Wang H, Chen H, Dong W, Zhu J, Wang J, Peng S, Dai H, Mei W. Systematic evolution of bZIP transcription factors in Malvales and functional exploration of AsbZIP14 and AsbZIP41 in Aquilaria sinensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1243323. [PMID: 37719219 PMCID: PMC10499555 DOI: 10.3389/fpls.2023.1243323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 09/19/2023]
Abstract
Introduction Agarwood, the dark-brown resin produced by Aquilaria trees, has been widely used as incense, spice, perfume or traditional medicine and 2-(2-phenethyl) chromones (PECs) are the key markers responsible for agarwood formation. But the biosynthesis and regulatory mechanism of PECs were still not illuminated. The transcription factor of basic leucine zipper (bZIP) presented the pivotal regulatory roles in various secondary metabolites biosynthesis in plants, which might also contribute to regulate PECs biosynthesis. However, molecular evolution and function of bZIP are rarely reported in Malvales plants, especially in Aquilaria trees. Methods and results Here, 1,150 bZIPs were comprehensively identified from twelve Malvales and model species genomes and the evolutionary process were subsequently analyzed. Duplication types and collinearity indicated that bZIP is an ancient or conserved TF family and recent whole genome duplication drove its evolution. Interesting is that fewer bZIPs in A. sinensis than that species also experienced two genome duplication events in Malvales. 62 AsbZIPs were divided into 13 subfamilies and gene structures, conservative domains, motifs, cis-elements, and nearby genes of AsbZIPs were further characterized. Seven AsbZIPs in subfamily D were significantly regulated by ethylene and agarwood inducer. As the typical representation of subfamily D, AsbZIP14 and AsbZIP41 were localized in nuclear and potentially regulated PECs biosynthesis by activating or suppressing type III polyketide synthases (PKSs) genes expression via interaction with the AsPKS promoters. Discussion Our results provide a basis for molecular evolution of bZIP gene family in Malvales and facilitate the understanding the potential functions of AsbZIP in regulating 2-(2-phenethyl) chromone biosynthesis and agarwood formation.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xupo Ding
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hao Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Huiqin Chen
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenhua Dong
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiahong Zhu
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jian Wang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, College of Forestry, Hainan University, Haikou, China
| | - Shiqing Peng
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenli Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
14
|
Wang H, Peng J, Li Y, Xu L, Dai W, Zhao S. The role of walnut bZIP genes in explant browning. BMC Genomics 2023; 24:377. [PMID: 37407925 DOI: 10.1186/s12864-023-09492-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Basic leucine zipper (bZIP) proteins are important transcription factors in plants. To study the role of bZIP transcription factors in walnut explant browning, this study used bioinformatics software to analyze walnut bZIP gene family members, along with their transcript levels in different walnut tissues, to evaluate the transcriptional expression of this gene family during the primary culture of walnut explants and to reveal the mechanism of action of walnut bZIP genes in walnut explant browning. RESULTS The results identified 65 JrbZIP genes in the walnut genome, which were divided into 8 subfamilies and distributed on 16 chromosomes. The results of transcriptome data analysis showed that there were significant differences in the expression of four genes, namely, JrbZIP55, JrbZIP70, JrbZIP72, and JrbZIP88, under both vermiculite and agar culture conditions. There were multiple hormone (salicylic acid, abscisic acid, auxin, and gibberellin) signaling and regulatory elements that are responsive to stress (low temperature, stress, and defense) located in the promoter regions of JrbZIP55, JrbZIP70, JrbZIP72, and JrbZIP88. The walnut JrbZIP55 protein and Arabidopsis bZIP42 protein are highly homologous, and the proteins interacting with Arabidopsis bZIP42 include the AT2G19940 oxidoreductases, which act on aldehyde or oxygen-containing donors. CONCLUSION It is speculated that JrbZIP55 may participate in the regulation of browning in walnut explants.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Jiali Peng
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Yaoling Li
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Lishan Xu
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Wenqiang Dai
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Shugang Zhao
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
15
|
Wang L, Zheng X, Ye Z, Su M, Zhang X, Du J, Li X, Zhou H, Huan C. Transcriptome Co-Expression Network Analysis of Peach Fruit with Different Sugar Concentrations Reveals Key Regulators in Sugar Metabolism Involved in Cold Tolerance. Foods 2023; 12:foods12112244. [PMID: 37297487 DOI: 10.3390/foods12112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Peach fruits are known to be highly susceptible to chilling injury (CI) during low-temperature storage, which has been linked to the level of sugar concentration in the fruit. In order to better understand the relationship between sugar metabolism and CI, we conducted a study examining the concentration of sucrose, fructose, and glucose in peach fruit with different sugar concentrations and examined their relationship with CI. Through transcriptome sequencing, we screened the functional genes and transcription factors (TFs) involved in the sugar metabolism pathway that may cause CI in peach fruit. Our results identified five key functional genes (PpSS, PpINV, PpMGAM, PpFRK, and PpHXK) and eight TFs (PpMYB1/3, PpMYB-related1, PpWRKY4, PpbZIP1/2/3, and PpbHLH2) that are associated with sugar metabolism and CI development. The analysis of co-expression network mapping and binding site prediction identified the most likely associations between these TFs and functional genes. This study provides insights into the metabolic and molecular mechanisms regulating sugar changes in peach fruit with different sugar concentrations and presents potential targets for breeding high-sugar and cold-tolerant peach varieties.
Collapse
Affiliation(s)
- Lufan Wang
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiaolin Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhengwen Ye
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210000, China
| | - Mingshen Su
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xianan Zhang
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jihong Du
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiongwei Li
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Huijuan Zhou
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210000, China
| | - Chen Huan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210000, China
| |
Collapse
|
16
|
Ji C, Liang Z, Cao H, Chen Z, Kong X, Xin Z, He M, Wang J, Wei Z, Xing J, Li C, Zhang Y, Zhang H, Sun F, Li J, Li K. Transcriptome-based analysis of the effects of compound microbial agents on gene expression in wheat roots and leaves under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1109077. [PMID: 37235031 PMCID: PMC10206238 DOI: 10.3389/fpls.2023.1109077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Introduction Salt stress inhibits the beneficial effects of most plant growth-promoting rhizobacteria. The synergistic relationship between beneficial rhizosphere microorganisms and plants helps achieve more stable growth-promoting effects. This study aimed 1) to elucidate changes in gene expression profiles in the roots and leaves of wheat after inoculation with compound microbial agents and 2) to determine the mechanisms by which plant growth-promoting rhizobacteria mediate plant responses to microorganisms. Methods Following inoculation with compound bacteria, transcriptome characteristics of gene expression profiles of wheat, roots, and leaves at the flowering stage were investigated using Illumina high-throughput sequencing technology. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the genes that were significantly differentially expressed. Results The expression of 231 genes in the roots of bacterial preparations (BIO) -inoculated wheat changed significantly (including 35 upregulated and 196 downregulated genes) compared with that of non-inoculated wheat. The expression of 16,321 genes in leaves changed significantly, including 9651 upregulated genes and 6670 downregulated genes. The differentially expressed genes were involved in the metabolism of carbohydrates, amino acids, and secondary compounds as well as signal transduction pathways. The ethylene receptor 1 gene in wheat leaves was significantly downregulated, and genes related to ethylene-responsive transcription factor were significantly upregulated. GO enrichment analysis showed that metabolic and cellular processes were the main functions affected in the roots and leaves. The main molecular functions altered were binding and catalytic activities, among which the cellular oxidant detoxification enrichment rate was highly expressed in the roots. The expression of peroxisome size regulation was the highest in the leaves. KEGG enrichment analysis showed that linoleic acid metabolism expression was highest in the roots, and the expression of photosynthesis-antenna proteins was the highest in leaves. After inoculation with a complex biosynthesis agent, the phenylalanine ammonia lyase (PAL) gene of the phenylpropanoid biosynthesis pathway was upregulated in wheat leaf cells while 4CL, CCR, and CYP73A were downregulated. Additionally, CYP98A and REF1 genes involved in the flavonoid biosynthesis pathway were upregulated, while F5H, HCT, CCR, E2.1.1.104, and TOGT1-related genes were downregulated. Discussion Differentially expressed genes may play key roles in improving salt tolerance in wheat. Compound microbial inoculants promoted the growth of wheat under salt stress and improved disease resistance by regulating the expression of metabolism-related genes in wheat roots and leaves and activating immune pathway-related genes.
Collapse
Affiliation(s)
- Chao Ji
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
- Taishan Forest Ecosystem Research Station, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, Shandong, China
| | - Zengwen Liang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
- Shandong Yongsheng Agricultural Development Co., Ltd., Yongsheng (Shouguang) Vegetable Technology Research Institute Co., Ltd, Weifang, China
| | - Hui Cao
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Zhizhang Chen
- College of Foreign Languages, Weifang University, Weifang, Shandong, China
| | - Xuehua Kong
- Weifang Hanting Vestibule School, Weifang Education Bureau, Weifang, Shandong, China
| | - Zhiwen Xin
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Mingchao He
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Jie Wang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Zichao Wei
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Jiahao Xing
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Chunyu Li
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Yingxiang Zhang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Hua Zhang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Fujin Sun
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Runxin Fruit and Vegetable Cultivation Cooperative of Weifang Economic Development Zone, Weifang Agricultural Bureau, Weifang, Shandong, China
| | - Jianlin Li
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Weifang Nuode Biotechnology Co., LTD, Weifang Agricultural Bureau, Weifang, Shandong, China
| | - Kun Li
- Taishan Forest Ecosystem Research Station, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, Shandong, China
- College of Forestry, Shandong Agriculture University, Taian, Shandong, China
| |
Collapse
|
17
|
Li M, Yao T, Lin W, Hinckley WE, Galli M, Muchero W, Gallavotti A, Chen JG, Huang SSC. Double DAP-seq uncovered synergistic DNA binding of interacting bZIP transcription factors. Nat Commun 2023; 14:2600. [PMID: 37147307 PMCID: PMC10163045 DOI: 10.1038/s41467-023-38096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
Many eukaryotic transcription factors (TF) form homodimer or heterodimer complexes to regulate gene expression. Dimerization of BASIC LEUCINE ZIPPER (bZIP) TFs are critical for their functions, but the molecular mechanism underlying the DNA binding and functional specificity of homo- versus heterodimers remains elusive. To address this gap, we present the double DNA Affinity Purification-sequencing (dDAP-seq) technique that maps heterodimer binding sites on endogenous genomic DNA. Using dDAP-seq we profile twenty pairs of C/S1 bZIP heterodimers and S1 homodimers in Arabidopsis and show that heterodimerization significantly expands the DNA binding preferences of these TFs. Analysis of dDAP-seq binding sites reveals the function of bZIP9 in abscisic acid response and the role of bZIP53 heterodimer-specific binding in seed maturation. The C/S1 heterodimers show distinct preferences for the ACGT elements recognized by plant bZIPs and motifs resembling the yeast GCN4 cis-elements. This study demonstrates the potential of dDAP-seq in deciphering the DNA binding specificities of interacting TFs that are key for combinatorial gene regulation.
Collapse
Affiliation(s)
- Miaomiao Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wanru Lin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Will E Hinckley
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shao-Shan Carol Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
18
|
Guan M, Shi X, Chen S, Wan Y, Tang Y, Zhao T, Gao L, Sun F, Yin N, Zhao H, Lu K, Li J, Qu C. Comparative transcriptome analysis identifies candidate genes related to seed coat color in rapeseed. FRONTIERS IN PLANT SCIENCE 2023; 14:1154208. [PMID: 36993847 PMCID: PMC10042178 DOI: 10.3389/fpls.2023.1154208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Yellow seed coat in rapeseed (Brassica napus) is a desirable trait that can be targeted to improve the quality of this oilseed crop. To better understand the inheritance mechanism of the yellow-seeded trait, we performed transcriptome profiling of developing seeds in yellow- and black-seeded rapeseed with different backgrounds. The differentially expressed genes (DEGs) during seed development showed significant characteristics, these genes were mainly enriched for the Gene Ontology (GO) terms carbohydrate metabolic process, lipid metabolic process, photosynthesis, and embryo development. Moreover, 1206 and 276 DEGs, which represent candidates to be involved in seed coat color, were identified between yellow- and black-seeded rapeseed during the middle and late stages of seed development, respectively. Based on gene annotation, GO enrichment analysis, and protein-protein interaction network analysis, the downregulated DEGs were primarily enriched for the phenylpropanoid and flavonoid biosynthesis pathways. Notably, 25 transcription factors (TFs) involved in regulating flavonoid biosynthesis pathway, including known (e.g., KNAT7, NAC2, TTG2 and STK) and predicted TFs (e.g., C2H2-like, bZIP44, SHP1, and GBF6), were identified using integrated gene regulatory network (iGRN) and weight gene co-expression networks analysis (WGCNA). These candidate TF genes had differential expression profiles between yellow- and black-seeded rapeseed, suggesting they might function in seed color formation by regulating genes in the flavonoid biosynthesis pathway. Thus, our results provide in-depth insights that facilitate the exploration of candidate gene function in seed development. In addition, our data lay the foundation for revealing the roles of genes involved in the yellow-seeded trait in rapeseed.
Collapse
Affiliation(s)
- Mingwei Guan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Xiangtian Shi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Si Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yuanyuan Wan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yunshan Tang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Tian Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Lei Gao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Fujun Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Nengwen Yin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Huiyan Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
19
|
Li Q, Zargar O, Park S, Pharr M, Muliana A, Finlayson SA. Mechanical stimulation reprograms the sorghum internode transcriptome and broadly alters hormone homeostasis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111555. [PMID: 36481363 DOI: 10.1016/j.plantsci.2022.111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Stem structural failure, or lodging, affects many crops including sorghum, and can cause large yield losses. Lodging is typically caused by mechanical forces associated with severe weather like high winds, but exposure to sub-catastrophic forces may strengthen stems and improve lodging resistance. The responses of sorghum internodes at different developmental stages were examined at 2 and 26 h after initiating moderate mechanical stimulation with an automated apparatus. Transcriptome profiling revealed that mechanical stimulation altered the expression of over 900 genes, including transcription factors, cell wall-related and hormone signaling-related genes. IAA, GA1 and ABA abundances generally declined following mechanical stimulation, while JA increased. Weighted Gene Co-expression Network Analysis (WGCNA) identified three modules significantly enriched in GO terms associated with cell wall biology, hormone signaling and general stress responses, which were highly correlated with mechanical stimulation and with biomechanical and geometrical traits documented in a separate study. Additionally, mechanical stimulation-triggered responses were dependent on the developmental stage of the internode and the duration of stimulation. This study provides insights into the underlying mechanisms of plant hormone-regulated thigmomorphogenesis in sorghum stems. The critical biological processes and hub genes described here may offer opportunities to improve lodging resistance in sorghum and other crops.
Collapse
Affiliation(s)
- Qing Li
- Department of Soil and Crop Sciences, Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Omid Zargar
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Sungkyu Park
- Department of Soil and Crop Sciences, Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Matt Pharr
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Anastasia Muliana
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Scott A Finlayson
- Department of Soil and Crop Sciences, Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843 USA.
| |
Collapse
|
20
|
Wang K, Zhao C, Xiang S, Duan K, Chen X, Guo X, Sahu SK. An optimized FACS-free single-nucleus RNA sequencing (snRNA-seq) method for plant science research. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111535. [PMID: 36400127 DOI: 10.1016/j.plantsci.2022.111535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Recently, single-cell RNA sequencing (scRNA-seq) provides unprecedented power for accurately understanding gene expression regulatory mechanisms. However, scRNA-seq studies have limitations in plants, due to difficulty in protoplast isolation that requires enzymatic digestion of the cell walls from various plant tissues. Therefore, to overcome this problem, we developed a nuclei isolation approach that does not rely on Fluorescence Activated Cell Sorting (FACS). We validated the robustness of the FACS-free single-nucleus RNA sequencing (snRNA-seq) methodology in mature Arabidopsis plant tissue by comparing it to scRNA-seq results based on protoplasts extracted from the same batch of leaf materials. Sequencing results demonstrated the high quality of snRNA-seq data, as well as its utility in cell type classification and marker gene identification. This approach also showed several advantages, including the ability to use frozen samples, taking less suspension preparation time, and reducing biased cellular coverage and dissociation-induced transcriptional artifacts. Surprisingly, snRNA-seq detected two epidermal pavement cell clusters, while scRNA-seq only had one. Furthermore, we hypothesized that these two epidermal cells represent the top and lower epidermis based on differences in expression patterns of cluster-specific expressed genes. In summary, this study has advanced the application of snRNA-seq in Arabidopsis leaves and confirmed the advantages of snRNA-seq in plant research.
Collapse
Affiliation(s)
- Kaimeng Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Caiyao Zhao
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Sunhuan Xiang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kunyu Duan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaoli Chen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xing Guo
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
21
|
Guo R, Yu X, Gregory BD. The identification of conserved sequence features of co-translationally decayed mRNAs and upstream open reading frames in angiosperm transcriptomes. PLANT DIRECT 2023; 7:e479. [PMID: 36643787 PMCID: PMC9831718 DOI: 10.1002/pld3.479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
RNA turnover is essential in maintaining messenger RNA (mRNA) homeostasis during various developmental stages and stress responses. Co-translational mRNA decay (CTRD), a process in which mRNAs are degraded while still associated with translating ribosomes, has recently been discovered to function in yeast and three angiosperm transcriptomes. However, it is still unclear how prevalent CTRD across the plant lineage. Moreover, the sequence features of co-translationally decayed mRNAs have not been well-studied. Here, utilizing a collection of publicly available degradome sequencing datasets for another seven angiosperm transcriptomes, we have confirmed that CTRD is functioning in at least 10 angiosperms and likely throughout the plant lineage. Additionally, we have identified sequence features shared by the co-translationally decayed mRNAs in these species, implying a possible conserved triggering mechanism for this pathway. Given that degradome sequencing datasets can also be used to identify actively translating upstream open reading frames (uORFs), which are quite understudied in plants, we have identified numerous actively translating uORFs in the same 10 angiosperms. These findings reveal that actively translating uORFs are prevalent in plant transcriptomes, some of which are conserved across this lineage. We have also observed conserved sequence features in the regions flanking these uORFs' stop codons that might contribute to ribosome stalling at these sequences. Finally, we discovered that there were very few overlaps between the mRNAs harboring actively translating uORFs and those sorted into the co-translational decay pathway in the majority of the studied angiosperms, suggesting that these two processes might be nearly mutually exclusive in those species. In total, our findings provide the identification of CTRD and actively translating uORFs across a broad collection of plants and provide novel insights into the important sequence features associated with these collections of mRNAs and regulatory elements, respectively.
Collapse
Affiliation(s)
- Rong Guo
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Xiang Yu
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Present address:
School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Brian D. Gregory
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
22
|
Yue L, Pei X, Kong F, Zhao L, Lin X. Divergence of functions and expression patterns of soybean bZIP transcription factors. FRONTIERS IN PLANT SCIENCE 2023; 14:1150363. [PMID: 37123868 PMCID: PMC10146240 DOI: 10.3389/fpls.2023.1150363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Soybean (Glycine max) is a major protein and oil crop. Soybean basic region/leucine zipper (bZIP) transcription factors are involved in many regulatory pathways, including yield, stress responses, environmental signaling, and carbon-nitrogen balance. Here, we discuss the members of the soybean bZIP family and their classification: 161 members have been identified and clustered into 13 groups. Our review of the transcriptional regulation and functions of soybean bZIP members provides important information for future study of bZIP transcription factors and genetic resources for soybean breeding.
Collapse
Affiliation(s)
- Lin Yue
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xinxin Pei
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, China
- *Correspondence: Xiaoya Lin, ; Lin Zhao,
| | - Xiaoya Lin
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
- *Correspondence: Xiaoya Lin, ; Lin Zhao,
| |
Collapse
|
23
|
Fu Q, Zeng T, Xu Y. Molecular Cloning and Expression Profiling of CncC in Bactrocera dorsalis Hendel. INSECTS 2022; 13:785. [PMID: 36135487 PMCID: PMC9503647 DOI: 10.3390/insects13090785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
The cap 'n' collar isoform C (CncC) transcription factor is thought to be a regulator associated with antioxidant and detoxification genes that can enhance pest resistance by regulating the expression of detoxification enzyme genes. However, this transcription factor has not been well studied in the important agricultural pest Bactrocera dorsalis. In this study, the cDNA sequence of CncC in B. dorsalis was cloned, and the complete ORF sequence was obtained; it had a sequence length of 3378 bp, encoding a total of 1125 amino acids. Phylogenetic tree analysis showed that B. dorsalis CncC belonged to the CNC family and that its amino acid sequence showed the closest relationship with B. tryoni. The conserved structural region of BdCncC was analyzed and was found to include a conserved bZIP superfamily structural domain. Spatiotemporal expression analysis revealed that BdCncC was most highly expressed in the adult Malpighian tubules, followed by the antennae, foregut, and midgut, and then the brain, hemolymph, hindgut, and fat body. BdCncC was expressed at every developmental stage, and the highest expression was found in mature males. This study provides a theoretical basis for an in-depth investigation of the function of BdCncC in regulating pesticide resistance in B. dorsalis.
Collapse
|
24
|
Nam JW, Lee HG, Do H, Kim HU, Seo PJ. Transcriptional regulation of triacylglycerol accumulation in plants under environmental stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2905-2917. [PMID: 35560201 DOI: 10.1093/jxb/erab554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 06/15/2023]
Abstract
Triacylglycerol (TAG), a major energy reserve in lipid form, accumulates mainly in seeds. Although TAG concentrations are usually low in vegetative tissues because of the repression of seed maturation programs, these programs are derepressed upon the exposure of vegetative tissues to environmental stresses. Metabolic reprogramming of TAG accumulation is driven primarily by transcriptional regulation. A substantial proportion of transcription factors regulating seed TAG biosynthesis also participates in stress-induced TAG accumulation in vegetative tissues. TAG accumulation leads to the formation of lipid droplets and plastoglobules, which play important roles in plant tolerance to environmental stresses. Toxic lipid intermediates generated from environmental-stress-induced lipid membrane degradation are captured by TAG-containing lipid droplets and plastoglobules. This review summarizes recent advances in the transcriptional control of metabolic reprogramming underlying stress-induced TAG accumulation, and provides biological insight into the plant adaptive strategy, linking TAG biosynthesis with plant survival.
Collapse
Affiliation(s)
- Jeong-Won Nam
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Hyungju Do
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
25
|
Liu L, Zhang Y, Wang Q, Tao X, Fang J, Zheng W, Zhu L, Jia B, Heng W, Li S. Identification of bZIP transcription factors and their responses to brown spot in pear. Genet Mol Biol 2022; 45:e20210175. [PMID: 35099498 PMCID: PMC8802300 DOI: 10.1590/1678-4685-gmb-2021-0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Basic leucine zipper (bZIP) is a conserved transcription factor (TF) widely
present in eukaryotes, and it plays an important role in regulating plant growth
and stress responses. To better understand the white pear bZIP
gene family, comprehensive bioinformatics analysis of the pear genome was
performed. A total of 84 PbbZIP genes were identified, which
were divided into 13 subfamilies by phylogenetic analysis. The 84
PbbZIP genes were all located in the nucleus, and 77 of
those genes were unevenly distributed across the 17 chromosomes of white pear.
The other 7 PbbZIP genes were located on the scaffold.
Subsequent expression profile analysis showed that PbbZIP genes
in exocarp were significantly upregulated or downregulated in ‘Huangguan’ pear
with brown spot (BS) compared with healthy pear and in response to hormonal
treatment with gibberellin A3 (GA3). These results provide
helpful insights into the characteristics of PbbZIP genes and
their responses to BS in ‘Huangguan’ pear.
Collapse
Affiliation(s)
- Li Liu
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Yuxin Zhang
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Qi Wang
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Xingyu Tao
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Jing Fang
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Wenjuan Zheng
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Liwu Zhu
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Bing Jia
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Wei Heng
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Shaowen Li
- Anhui Agriculture University, School of Information and Computer Science, Hefei, Anhui, P. R. China
| |
Collapse
|
26
|
Henninger M, Pedrotti L, Krischke M, Draken J, Wildenhain T, Fekete A, Rolland F, Müller MJ, Fröschel C, Weiste C, Dröge-Laser W. The evolutionarily conserved kinase SnRK1 orchestrates resource mobilization during Arabidopsis seedling establishment. THE PLANT CELL 2022; 34:616-632. [PMID: 34755865 PMCID: PMC8774017 DOI: 10.1093/plcell/koab270] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/28/2021] [Indexed: 05/02/2023]
Abstract
The onset of plant life is characterized by a major phase transition. During early heterotrophic seedling establishment, seed storage reserves fuel metabolic demands, allowing the plant to switch to autotrophic metabolism. Although metabolic pathways leading to storage compound mobilization are well-described, the regulatory circuits remain largely unresolved. Using an inducible knockdown approach of the evolutionarily conserved energy master regulator Snf1-RELATED-PROTEIN-KINASE1 (SnRK1), phenotypic studies reveal its crucial function in Arabidopsis thaliana seedling establishment. Importantly, glucose feeding largely restores growth defects of the kinase mutant, supporting its major impact in resource mobilization. Detailed metabolite studies reveal sucrose as a primary resource early in seedling establishment, in a SnRK1-independent manner. Later, SnRK1 orchestrates catabolism of triacylglycerols and amino acids. Concurrent transcriptomic studies highlight SnRK1 functions in controlling metabolic hubs fuelling gluconeogenesis, as exemplified by cytosolic PYRUVATE ORTHOPHOSPHATE DIKINASE (cyPPDK). Here, SnRK1 establishes its function via phosphorylation of the transcription factor BASIC LEUCINE ZIPPER63 (bZIP63), which directly targets and activates the cyPPDK promoter. Taken together, our results disclose developmental and catabolic functions of SnRK1 in seed storage mobilization and describe a prototypic gene regulatory mechanism. As seedling establishment is important for plant vigor and crop yield, our findings are of agronomical importance.
Collapse
Affiliation(s)
- Markus Henninger
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Lorenzo Pedrotti
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Markus Krischke
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Jan Draken
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Theresa Wildenhain
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Agnes Fekete
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, B-3001 Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium
| | - Martin J Müller
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Christian Fröschel
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| |
Collapse
|
27
|
Wang H, Zhang Y, Norris A, Jiang CZ. S1-bZIP Transcription Factors Play Important Roles in the Regulation of Fruit Quality and Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 12:802802. [PMID: 35095974 PMCID: PMC8795868 DOI: 10.3389/fpls.2021.802802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Sugar metabolism not only determines fruit sweetness and quality but also acts as signaling molecules to substantially connect with other primary metabolic processes and, therefore, modulates plant growth and development, fruit ripening, and stress response. The basic region/leucine zipper motif (bZIP) transcription factor family is ubiquitous in eukaryotes and plays a diverse array of biological functions in plants. Among the bZIP family members, the smallest bZIP subgroup, S1-bZIP, is a unique one, due to the conserved upstream open reading frames (uORFs) in the 5' leader region of their mRNA. The translated small peptides from these uORFs are suggested to mediate Sucrose-Induced Repression of Translation (SIRT), an important mechanism to maintain sucrose homeostasis in plants. Here, we review recent research on the evolution, sequence features, and biological functions of this bZIP subgroup. S1-bZIPs play important roles in fruit quality, abiotic and biotic stress responses, plant growth and development, and other metabolite biosynthesis by acting as signaling hubs through dimerization with the subgroup C-bZIPs and other cofactors like SnRK1 to coordinate the expression of downstream genes. Direction for further research and genetic engineering of S1-bZIPs in plants is suggested for the improvement of quality and safety traits of fruit.
Collapse
Affiliation(s)
- Hong Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States
| | - Yunting Zhang
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ayla Norris
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, United States
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, United States
| |
Collapse
|
28
|
IFP35 Is a Relevant Factor in Innate Immunity, Multiple Sclerosis, and Other Chronic Inflammatory Diseases: A Review. BIOLOGY 2021; 10:biology10121325. [PMID: 34943240 PMCID: PMC8698480 DOI: 10.3390/biology10121325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
Simple Summary In this review, we focused on the emerging role of IFP35, a highly conserved leucine zipper protein from fish to humans, with a still unknown biological function. The considered literature indicates this protein as a key-pleiotropic factor reflecting JAK-STAT and DAMPs pathways activation in innate immunity-dependent inflammation, as well as in the physiology and general pathology of a wide range of phylogenetically distant organisms. These findings also indicate IFP35 as a biologically relevant molecule in human demyelinating diseases of the central nervous system, including Multiple Sclerosis, and other organ-specific chronic inflammatory disorders. Abstract Discovered in 1993 by Bange et al., the 35-kDa interferon-induced protein (IFP35) is a highly conserved cytosolic interferon-induced leucine zipper protein with a 17q12-21 coding gene and unknown function. Belonging to interferon stimulated genes (ISG), the IFP35 reflects the type I interferon (IFN) activity induced through the JAK-STAT phosphorylation, and it can homodimerize with N-myc-interactor (NMI) and basic leucine zipper transcription factor (BATF), resulting in nuclear translocation and a functional expression. Casein kinase 2-interacting protein-1 (CKIP-1), retinoic acid-inducible gene I (RIG-I), and laboratory of genetics and physiology 2 Epinephelus coioides (EcLGP2) are thought to regulate IFP35, via the innate immunity pathway. Several in vitro and in vivo studies on fish and mammals have confirmed the IFP35 as an ISG factor with antiviral and antiproliferative functions. However, in a mice model of sepsis, IFP35 was found working as a damage associated molecular pattern (DAMP) molecule, which enhances inflammation by acting in the innate immune-mediated way. In human pathology, the IFP35 expression level predicts disease outcome and response to therapy in Multiple Sclerosis (MS), reflecting IFN activity. Specifically, IFP35 was upregulated in Lupus Nephritis (LN), Rheumatoid Arthritis (RA), and untreated MS. However, it normalized in the MS patients undergoing therapy. The considered data indicate IFP35 as a pleiotropic factor, suggesting it as biologically relevant in the innate immunity, general pathology, and human demyelinating diseases of the central nervous system.
Collapse
|
29
|
Manzoor MA, Manzoor MM, Li G, Abdullah M, Han W, Wenlong H, Shakoor A, Riaz MW, Rehman S, Cai Y. Genome-wide identification and characterization of bZIP transcription factors and their expression profile under abiotic stresses in Chinese pear (Pyrus bretschneideri). BMC PLANT BIOLOGY 2021; 21:413. [PMID: 34503442 PMCID: PMC8427902 DOI: 10.1186/s12870-021-03191-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/28/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND In plants, basic leucine zipper transcription factors (TFs) play important roles in multiple biological processes such as anthesis, fruit growth & development and stress responses. However, systematic investigation and characterization of bZIP-TFs remain unclear in Chinese white pear. Chinese white pear is a fruit crop that has important nutritional and medicinal values. RESULTS In this study, 62 bZIP genes were comprehensively identified from Chinese Pear, and 54 genes were distributed among 17 chromosomes. Frequent whole-genome duplication (WGD) and dispersed duplication (DSD) were the major driving forces underlying the bZIP gene family in Chinese white pear. bZIP-TFs are classified into 13 subfamilies according to the phylogenetic tree. Subsequently, purifying selection plays an important role in the evolution process of PbbZIPs. Synteny analysis of bZIP genes revealed that 196 orthologous gene pairs were identified between Pyrus bretschneideri, Fragaria vesca, Prunus mume, and Prunus persica. Moreover, cis-elements that respond to various stresses and hormones were found on the promoter regions of PbbZIP, which were induced by stimuli. Gene structure (intron/exon) and different compositions of motifs revealed that functional divergence among subfamilies. Expression pattern of PbbZIP genes differential expressed under hormonal treatment abscisic acid, salicylic acid, and methyl jasmonate in pear fruits by real-time qRT-PCR. CONCLUSIONS Collectively, a systematic analysis of gene structure, motif composition, subcellular localization, synteny analysis, and calculation of synonymous (Ks) and non-synonymous (Ka) was performed in Chinese white pear. Sixty-two bZIP-TFs in Chinese pear were identified, and their expression profiles were comprehensively analyzed under ABA, SA, and MeJa hormones, which respond to multiple abiotic stresses and fruit growth and development. PbbZIP gene occurred through Whole-genome duplication and dispersed duplication events. These results provide a basic framework for further elucidating the biological function characterizations under multiple developmental stages and abiotic stress responses.
Collapse
Affiliation(s)
| | | | - Guohui Li
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Muhammad Abdullah
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Wang Han
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Han Wenlong
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | | | - Shamsur Rehman
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
30
|
Viana AJC, Matiolli CC, Newman DW, Vieira JGP, Duarte GT, Martins MCM, Gilbault E, Hotta CT, Caldana C, Vincentz M. The sugar-responsive circadian clock regulator bZIP63 modulates plant growth. THE NEW PHYTOLOGIST 2021; 231:1875-1889. [PMID: 34053087 PMCID: PMC9292441 DOI: 10.1111/nph.17518] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/18/2021] [Indexed: 05/02/2023]
Abstract
Adjustment to energy starvation is crucial to ensure growth and survival. In Arabidopsis thaliana (Arabidopsis), this process relies in part on the phosphorylation of the circadian clock regulator bZIP63 by SUCROSE non-fermenting RELATED KINASE1 (SnRK1), a key mediator of responses to low energy. We investigated the effects of mutations in bZIP63 on plant carbon (C) metabolism and growth. Results from phenotypic, transcriptomic and metabolomic analysis of bZIP63 mutants prompted us to investigate the starch accumulation pattern and the expression of genes involved in starch degradation and in the circadian oscillator. bZIP63 mutation impairs growth under light-dark cycles, but not under constant light. The reduced growth likely results from the accentuated C depletion towards the end of the night, which is caused by the accelerated starch degradation of bZIP63 mutants. The diel expression pattern of bZIP63 is dictated by both the circadian clock and energy levels, which could determine the changes in the circadian expression of clock and starch metabolic genes observed in bZIP63 mutants. We conclude that bZIP63 composes a regulatory interface between the metabolic and circadian control of starch breakdown to optimize C usage and plant growth.
Collapse
Affiliation(s)
- Américo J. C. Viana
- Centro de Biologia Molecular e Engenharia GenéticaDepartamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCEP 13083‐875, CP 6010CampinasSPBrazil
| | - Cleverson C. Matiolli
- Centro de Biologia Molecular e Engenharia GenéticaDepartamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCEP 13083‐875, CP 6010CampinasSPBrazil
| | - David W. Newman
- Centro de Biologia Molecular e Engenharia GenéticaDepartamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCEP 13083‐875, CP 6010CampinasSPBrazil
| | - João G. P. Vieira
- Centro de Biologia Molecular e Engenharia GenéticaDepartamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCEP 13083‐875, CP 6010CampinasSPBrazil
| | - Gustavo T. Duarte
- Centro de Biologia Molecular e Engenharia GenéticaDepartamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCEP 13083‐875, CP 6010CampinasSPBrazil
| | - Marina C. M. Martins
- Brazilian Bioethanol Science and Technology Laboratory (CTBE/CNPEM)Rua Giuseppe Máximo Scolfaro 10000CampinasSPCEP 13083‐970Brazil
- Max‐Planck Partner GroupBrazilian Bioethanol Science and Technology Laboratory (CTBE/CNPEM)Campinas, SPBrazil
- Laboratory of Plant Physiological EcologyDepartment of BotanyInstitute of BiosciencesUniversity of São PauloSão Paulo, SPCEP 05508‐090Brazil
| | - Elodie Gilbault
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersailles78000France
| | - Carlos T. Hotta
- Departamento de BioquímicaInstituto de QuímicaUniversidade de São PauloSão Paulo, SPCEP 05508‐000Brazil
| | - Camila Caldana
- Brazilian Bioethanol Science and Technology Laboratory (CTBE/CNPEM)Rua Giuseppe Máximo Scolfaro 10000CampinasSPCEP 13083‐970Brazil
- Max‐Planck Partner GroupBrazilian Bioethanol Science and Technology Laboratory (CTBE/CNPEM)Campinas, SPBrazil
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476 PotsdamGolmGermany
| | - Michel Vincentz
- Centro de Biologia Molecular e Engenharia GenéticaDepartamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCEP 13083‐875, CP 6010CampinasSPBrazil
| |
Collapse
|
31
|
Wang Z, Zhu J, Yuan W, Wang Y, Hu P, Jiao C, Xia H, Wang D, Cai Q, Li J, Wang C, Zhang X, Chen Y, Wang Z, Ou Z, Xu Z, Shi J, Chen J. Genome-wide characterization of bZIP transcription factors and their expression patterns in response to drought and salinity stress in Jatropha curcas. Int J Biol Macromol 2021; 181:1207-1223. [PMID: 33971233 DOI: 10.1016/j.ijbiomac.2021.05.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 11/18/2022]
Abstract
The basic leucine zipper (bZIP) family is one of the largest families of transcription factors (TFs) in plants and is responsible for various functions, including regulating development and responses to abiotic/biotic stresses. However, the roles of bZIPs in the regulation of responses to drought stress and salinity stress remain poorly understood in Jatropha curcas L., a biodiesel crop. In the present study, 50 JcbZIP genes were identified and classified into ten groups. Cis-element analysis indicated that JcbZIP genes are associated with abiotic stress. Gene expression patterns and quantitative real-time PCR (qRT-PCR) showed that four JcbZIP genes (JcbZIPs 34, 36, 49 and 50) are key resistance-related genes under both drought and salinity stress conditions. On the basis of the results of cis-element and phylogenetic analyses, JcbZIP49 and JcbZIP50 are likely involved in responses to drought and salinity stress; moreover, JcbZIP34 and JcbZIP36 might also play important roles in seed development and response to abiotic stress. These findings advance our understanding of the comprehensive characteristics of JcbZIP genes and provide new insights for functional validation in the further.
Collapse
Affiliation(s)
- Zhanjun Wang
- College of Life Sciences, Hefei Normal University, Hefei 230601, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jin Zhu
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Wenya Yuan
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Ying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Peipei Hu
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Chunyan Jiao
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Haimeng Xia
- School of Biosciences, University of Nottingham, Sutton Bonington 999020, UK
| | - Dandan Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qianwen Cai
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Jie Li
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Chenchen Wang
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Xie Zhang
- Institute of Botany, Hunan Academy of Forestry, Changsha 410004, China
| | - Yansong Chen
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Zhaoxia Wang
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Zulan Ou
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Zhongdong Xu
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Jisen Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
32
|
Hussain S, Hussain S, Ali B, Ren X, Chen X, Li Q, Saqib M, Ahmad N. Recent progress in understanding salinity tolerance in plants: Story of Na +/K + balance and beyond. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:239-256. [PMID: 33524921 DOI: 10.1016/j.plaphy.2021.01.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/18/2021] [Indexed: 05/07/2023]
Abstract
High salt concentrations in the growing medium can severely affect the growth and development of plants. It is imperative to understand the different components of salt-tolerant network in plants in order to produce the salt-tolerant cultivars. High-affinity potassium transporter- and myelocytomatosis proteins have been shown to play a critical role for salinity tolerance through exclusion of sodium (Na+) ions from sensitive shoot tissues in plants. Numerous genes, that limit the uptake of salts from soil and their transport throughout the plant body, adjust the ionic and osmotic balance of cells in roots and shoots. In the present review, we have tried to provide a comprehensive report of major research advances on different mechanisms regulating plant tolerance to salinity stress at proteomics, metabolomics, genomics and transcriptomics levels. Along with the role of ionic homeostasis, a major focus was given on other salinity tolerance mechanisms in plants including osmoregulation and osmo-protection, cell wall remodeling and integrity, and plant antioxidative defense. Major proteins and genes expressed under salt-stressed conditions and their role in enhancing salinity tolerance in plants are discussed as well. Moreover, this manuscript identifies and highlights the key questions on plant salinity tolerance that remain to be discussed in the future.
Collapse
Affiliation(s)
- Sadam Hussain
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China; Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan; Shanghai Center for Plant Stress Biology, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Xiaolong Ren
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianqian Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Muhammad Saqib
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Naeem Ahmad
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
33
|
Insight into the bZIP Gene Family in Solanum tuberosum: Genome and Transcriptome Analysis to Understand the Roles of Gene Diversification in Spatiotemporal Gene Expression and Function. Int J Mol Sci 2020; 22:ijms22010253. [PMID: 33383823 PMCID: PMC7796262 DOI: 10.3390/ijms22010253] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
The basic region-leucine zipper (bZIP) transcription factors (TFs) form homodimers and heterodimers via the coil–coil region. The bZIP dimerization network influences gene expression across plant development and in response to a range of environmental stresses. The recent release of the most comprehensive potato reference genome was used to identify 80 StbZIP genes and to characterize their gene structure, phylogenetic relationships, and gene expression profiles. The StbZIP genes have undergone 22 segmental and one tandem duplication events. Ka/Ks analysis suggested that most duplications experienced purifying selection. Amino acid sequence alignments and phylogenetic comparisons made with the Arabidopsis bZIP family were used to assign the StbZIP genes to functional groups based on the Arabidopsis orthologs. The patterns of introns and exons were conserved within the assigned functional groups which are supportive of the phylogeny and evidence of a common progenitor. Inspection of the leucine repeat heptads within the bZIP domains identified a pattern of attractive pairs favoring homodimerization, and repulsive pairs favoring heterodimerization. These patterns of attractive and repulsive heptads were similar within each functional group for Arabidopsis and S. tuberosum orthologs. High-throughput RNA-seq data indicated the most highly expressed and repressed genes that might play significant roles in tissue growth and development, abiotic stress response, and response to pathogens including Potato virus X. These data provide useful information for further functional analysis of the StbZIP gene family and their potential applications in crop improvement.
Collapse
|
34
|
Lu B, Wang Y, Zhang G, Feng Y, Yan Z, Wu J, Chen X. Genome-Wide Identification and Expression Analysis of the Strawberry FvbZIP Gene Family and the Role of Key Gene FabZIP46 in Fruit Resistance to Gray Mold. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1199. [PMID: 32937812 PMCID: PMC7569810 DOI: 10.3390/plants9091199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
A total of 54 FvbZIP genes were identified from the strawberry genome. These genes were found to be unevenly distributed on seven different chromosomes, and two of the genes had no matching chromosomal localization. FvbZIP genes were divided into 10 subfamilies according to protein sequence, and the structures of these genes were found to be highly conserved. Based on the bioinformatics analysis of FvbZIP genes, the expression of FabZIP genes changed during different stages of its growth and of its infection with gray mold disease. FabZIP46 was substantially upregulated, and its expression remained relatively high. FabZIP46 was cloned from cultivated strawberries by homologous cloning. The results of a transient transgenic assay revealed that the damage to the fruit tissue was markedly alleviated in strawberries overexpressing FabZIP46, with the incidence rate being substantially lower than that in the control group. By contrast, a brief silencing of FabZIP46 had the opposite effect. The results revealed that FabZIP46 played a positive role in the resistance of strawberries to Botrytis cinerea. The study findings provide valuable insights into the role of bZIP transcription factors as well as a theoretical reference for the regulation of resistance to gray mold disease in strawberry fruit.
Collapse
Affiliation(s)
- Bei Lu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225000, China;
| | - Yuanhua Wang
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (Y.W.); (G.Z.); (Y.F.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Nanjing 210000, China
| | - Geng Zhang
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (Y.W.); (G.Z.); (Y.F.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Nanjing 210000, China
| | - Yingna Feng
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (Y.W.); (G.Z.); (Y.F.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Nanjing 210000, China
| | - Zhiming Yan
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (Y.W.); (G.Z.); (Y.F.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Nanjing 210000, China
| | - Jianhua Wu
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (Y.W.); (G.Z.); (Y.F.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Nanjing 210000, China
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225000, China;
| |
Collapse
|
35
|
Dever TE, Ivanov IP, Sachs MS. Conserved Upstream Open Reading Frame Nascent Peptides That Control Translation. Annu Rev Genet 2020; 54:237-264. [PMID: 32870728 DOI: 10.1146/annurev-genet-112618-043822] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells utilize transcriptional and posttranscriptional mechanisms to alter gene expression in response to environmental cues. Gene-specific controls, including changing the translation of specific messenger RNAs (mRNAs), provide a rapid means to respond precisely to different conditions. Upstream open reading frames (uORFs) are known to control the translation of mRNAs. Recent studies in bacteria and eukaryotes have revealed the functions of evolutionarily conserved uORF-encoded peptides. Some of these uORF-encoded nascent peptides enable responses to specific metabolites to modulate the translation of their mRNAs by stalling ribosomes and through ribosome stalling may also modulate the level of their mRNAs. In this review, we highlight several examples of conserved uORF nascent peptides that stall ribosomes to regulate gene expression in response to specific metabolites in bacteria, fungi, mammals, and plants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Ivaylo P Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA;
| |
Collapse
|
36
|
Feng X, Feng P, Yu H, Yu X, Sun Q, Liu S, Minh TN, Chen J, Wang D, Zhang Q, Cao L, Zhou C, Li Q, Xiao J, Zhong S, Wang A, Wang L, Pan H, Ding X. GsSnRK1 interplays with transcription factor GsERF7 from wild soybean to regulate soybean stress resistance. PLANT, CELL & ENVIRONMENT 2020; 43:1192-1211. [PMID: 31990078 DOI: 10.1111/pce.13726] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 12/18/2019] [Accepted: 01/12/2020] [Indexed: 05/07/2023]
Abstract
Although the function and regulation of SnRK1 have been studied in various plants, its molecular mechanisms in response to abiotic stresses are still elusive. In this work, we identified an AP2/ERF domain-containing protein (designated GsERF7) interacting with GsSnRK1 from a wild soybean cDNA library. GsERF7 gene expressed dominantly in wild soybean roots and was responsive to ethylene, salt, and alkaline. GsERF7 bound GCC cis-acting element and could be phosphorylated on S36 by GsSnRK1. GsERF7 phosphorylation facilitated its translocation from cytoplasm to nucleus and enhanced its transactivation activity. When coexpressed in the hairy roots of soybean seedlings, GsSnRK1(wt) and GsERF7(wt) promoted plants to generate higher tolerance to salt and alkaline stresses than their mutated species, suggesting that GsSnRK1 may function as a biochemical and genetic upstream kinase of GsERF7 to regulate plant adaptation to environmental stresses. Furthermore, the altered expression patterns of representative abiotic stress-responsive and hormone-synthetic genes were determined in transgenic soybean hairy roots after stress treatments. These results will aid our understanding of molecular mechanism of how SnRK1 kinase plays a cardinal role in regulating plant stress resistances through activating the biological functions of downstream factors.
Collapse
Affiliation(s)
- Xu Feng
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Peng Feng
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Huilin Yu
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Xingyu Yu
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Qi Sun
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Siyu Liu
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Thuy Nguyen Minh
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jun Chen
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Di Wang
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Qing Zhang
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Changmei Zhou
- College of Agronomy, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shihua Zhong
- Department of Biochemistry, the University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Aoxue Wang
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Lijuan Wang
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
37
|
van der Horst S, Filipovska T, Hanson J, Smeekens S. Metabolite Control of Translation by Conserved Peptide uORFs: The Ribosome as a Metabolite Multisensor. PLANT PHYSIOLOGY 2020; 182:110-122. [PMID: 31451550 PMCID: PMC6945846 DOI: 10.1104/pp.19.00940] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/16/2019] [Indexed: 05/19/2023]
Abstract
Ribosomes translate the mRNA code into protein, and this process can be controlled by metabolites that bind to the translating ribosome in interaction with the nascent protein.
Collapse
Affiliation(s)
- Sjors van der Horst
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Teodora Filipovska
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Johannes Hanson
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87 Umea, Sweden
| | - Sjef Smeekens
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| |
Collapse
|
38
|
Garg A, Kirchler T, Fillinger S, Wanke F, Stadelhofer B, Stahl M, Chaban C. Targeted manipulation of bZIP53 DNA-binding properties influences Arabidopsis metabolism and growth. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5659-5671. [PMID: 31257431 PMCID: PMC6812703 DOI: 10.1093/jxb/erz309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/24/2019] [Indexed: 05/21/2023]
Abstract
bZIP transcription factors regulate diverse processes in eukaryotic cells. Arabidopsis bZIP members of the C and S1 groups form heterodimers and synergistically control metabolic reprogramming during stress responses. However, their functional characterization is complicated due to an overlapping heterodimerization network and high redundancy. In this study, we develop a simple but powerful approach for generating dominant negative mutants of bZIP factors with high specificity. By applying in vitro DNA-binding, reporter gene and protoplast two-hybrid assays, and plant mutant analysis, we show that phosphorylation-mimicking substitution of conserved serines in the DNA-binding domain of bZIP monomeric subunits suffices for the disruption of the interaction of both bZIP homo- and heterodimers with cognate DNA. This results in the transcriptional inactivation of target genes. The dominant-negative effect is achieved by the unaltered function of the intrinsic nuclear localization signal and dimerization properties of the mutated bZIP protein. Our findings not only reveal an additional regulatory mechanism of bZIP10 intracellular localization, but also provide evidence of the involvement of bZIP53 in the diurnal adjustments of amino acid metabolism. Our data demonstrate the advantages and the suitability of this new approach for the artificial inactivation of bZIP transcription factors in plants, and it may also be of use for other organisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark Stahl
- ZMBP, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
39
|
Cao L, Lu X, Zhang P, Wang G, Wei L, Wang T. Systematic Analysis of Differentially Expressed Maize ZmbZIP Genes between Drought and Rewatering Transcriptome Reveals bZIP Family Members Involved in Abiotic Stress Responses. Int J Mol Sci 2019; 20:ijms20174103. [PMID: 31443483 PMCID: PMC6747360 DOI: 10.3390/ijms20174103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/04/2022] Open
Abstract
The basic leucine zipper (bZIP) family of transcription factors (TFs) regulate diverse phenomena during plant growth and development and are involved in stress responses and hormone signaling. However, only a few bZIPs have been functionally characterized. In this paper, 54 maize bZIP genes were screened from previously published drought and rewatering transcriptomes. These genes were divided into nine groups in a phylogenetic analysis, supported by motif and intron/exon analyses. The 54 genes were unevenly distributed on 10 chromosomes and contained 18 segmental duplications, suggesting that segmental duplication events have contributed to the expansion of the maize bZIP family. Spatio-temporal expression analyses showed that bZIP genes are widely expressed during maize development. We identified 10 core ZmbZIPs involved in protein transport, transcriptional regulation, and cellular metabolism by principal component analysis, gene co-expression network analysis, and Gene Ontology enrichment analysis. In addition, 15 potential stress-responsive ZmbZIPs were identified by expression analyses. Localization analyses showed that ZmbZIP17, -33, -42, and -45 are nuclear proteins. These results provide the basis for future functional genomic studies on bZIP TFs in maize and identify candidate genes with potential applications in breeding/genetic engineering for increased stress resistance. These data represent a high-quality molecular resource for selecting resistant breeding materials.
Collapse
Affiliation(s)
- Liru Cao
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaomin Lu
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Pengyu Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Guorui Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Li Wei
- National Engineering Research Centre for Wheat, Zhengzhou 450002, China.
| | - Tongchao Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
40
|
van der Horst S, Snel B, Hanson J, Smeekens S. Novel pipeline identifies new upstream ORFs and non-AUG initiating main ORFs with conserved amino acid sequences in the 5' leader of mRNAs in Arabidopsis thaliana. RNA (NEW YORK, N.Y.) 2019; 25:292-304. [PMID: 30567971 PMCID: PMC6380273 DOI: 10.1261/rna.067983.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/10/2018] [Indexed: 05/10/2023]
Abstract
Eukaryotic mRNAs contain a 5' leader sequence preceding the main open reading frame (mORF) and, depending on the species, 20%-50% of eukaryotic mRNAs harbor an upstream ORF (uORF) in the 5' leader. An unknown fraction of these uORFs encode sequence conserved peptides (conserved peptide uORFs, CPuORFs). Experimentally validated CPuORFs demonstrated to regulate the translation of downstream mORFs often do so in a metabolite concentration-dependent manner. Previous research has shown that most CPuORFs possess a start codon context suboptimal for translation initiation, which turns out to be favorable for translational regulation. The suboptimal initiation context may even include non-AUG start codons, which makes CPuORFs hard to predict. For this reason, we developed a novel pipeline to identify CPuORFs unbiased of start codon using well-annotated sequence data from 31 eudicot plant species and rice. Our new pipeline was able to identify 29 novel Arabidopsis thaliana (Arabidopsis) CPuORFs, conserved across a wide variety of eudicot species of which 15 do not initiate with an AUG start codon. In addition to CPuORFs, the pipeline was able to find 14 conserved coding regions directly upstream and in frame with the mORF, which likely initiate translation on a non-AUG start codon. Altogether, our pipeline identified highly conserved coding regions in the 5' leaders of Arabidopsis transcripts, including in genes with proven functional importance such as LHY, a key regulator of the circadian clock, and the RAPTOR1 subunit of the target of rapamycin (TOR) kinase.
Collapse
Affiliation(s)
- Sjors van der Horst
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Johannes Hanson
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Sjef Smeekens
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
41
|
Yang X, Liu J, Xu J, Duan S, Wang Q, Li G, Jin L. Transcriptome Profiling Reveals Effects of Drought Stress on Gene Expression in Diploid Potato Genotype P3-198. Int J Mol Sci 2019; 20:ijms20040852. [PMID: 30781424 PMCID: PMC6413097 DOI: 10.3390/ijms20040852] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 01/09/2023] Open
Abstract
Potato (Solanum tuberosum L.) is one of the three most important food crops worldwide; however, it is strongly affected by drought stress. The precise molecular mechanisms of drought stress response in potato are not very well understood. The diploid potato genotype P3-198 has been verified to be highly resistant to drought stress. Here, a time-course experiment was performed to identify drought resistance response genes in P3-198 under polyethylene glycol (PEG)-induced stress using RNA-sequencing. A total of 1665 differentially expressed genes (DEGs) were specifically identified, and based on gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the transcription factor activity, protein kinase activity, and the plant hormone signal transduction process were significantly enriched. Annotation revealed that these DEGs mainly encode transcription factors, protein kinases, and proteins related to redox regulation, carbohydrate metabolism, and osmotic adjustment. In particular, genes encoding abscisic acid (ABA)-dependent signaling molecules were significantly differentially expressed, which revealed the important roles of the ABA-dependent signaling pathway in the early response of P3-198 to drought stress. Quantitative real-time PCR experimental verification confirmed the differential expression of genes in the drought resistance signaling pathway. Our results provide valuable information for understanding potato drought-resistance mechanisms, and also enrich the gene resources available for drought-resistant potato breeding.
Collapse
Affiliation(s)
- Xiaohui Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences/Molecular Biology Key Laboratory of Shandong Facility Vegetable, Jinan 250100, China.
- National Vegetable Improvement Center Shandong Sub-Center/Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Jinan 250100, China.
| | - Jie Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Jianfei Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Shaoguang Duan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Qianru Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Guangcun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Liping Jin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
42
|
Li Y, Wang W, Feng Y, Tu M, Wittich PE, Bate NJ, Messing J. Transcriptome and metabolome reveal distinct carbon allocation patterns during internode sugar accumulation in different sorghum genotypes. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:472-487. [PMID: 30051585 PMCID: PMC6335075 DOI: 10.1111/pbi.12991] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 05/03/2023]
Abstract
Sweet sorghum accumulates large amounts of soluble sugar in its stem. However, a system-based understanding of this carbohydrate allocation process is lacking. Here, we compared the dynamic transcriptome and metabolome between the conversion line R9188 and its two parents, sweet sorghum RIO and grain sorghum BTx406 that have contrasting sugar-accumulating phenotypes. We identified two features of sucrose metabolism, stable concentrations of sugar phosphates in RIO and opposite trend of trehalose-6-phosphate (T6P) between RIO vs R9188/BTx406. Integration of transcriptome and metabolome revealed R9188 is partially active in starch metabolism together with medium sucrose level, whereas sweet sorghum had the highest sucrose concentration and remained highly active in sucrose, starch, and cell wall metabolism post-anthesis. Similar expression pattern of genes involved in sucrose degradation decreased the pool of sugar phosphates for precursors of starch and cell wall synthesis in R9188 and BTx406. Differential T6P signal between RIO vs R9188/BTx406 is associated with introgression of T6P regulators from BTx406 into R9188, including C-group bZIP and trehalose 6-phosphate phosphatase (TPP). The inverted T6P signalling in R9188 appears to down-regulate sucrose and starch metabolism partly through transcriptome reprogramming, whereas introgressed metabolic genes could be related to reduced cell wall metabolism. Our results show that coordinated primary metabolic pathways lead to high sucrose demand and accumulation in sweet sorghum, providing us with targets for genetic improvements of carbohydrate allocation in bioenergy crops.
Collapse
Affiliation(s)
- Yin Li
- Waksman Institute of MicrobiologyRutgers, The State University of New JerseyPiscatawayNJUSA
| | - Wenqin Wang
- Waksman Institute of MicrobiologyRutgers, The State University of New JerseyPiscatawayNJUSA
- Present address:
School of Agriculture and BiologyShanghai Jiaotong UniversityShanghaiChina
| | - Yaping Feng
- Waksman Institute of MicrobiologyRutgers, The State University of New JerseyPiscatawayNJUSA
| | - Min Tu
- Waksman Institute of MicrobiologyRutgers, The State University of New JerseyPiscatawayNJUSA
| | | | | | - Joachim Messing
- Waksman Institute of MicrobiologyRutgers, The State University of New JerseyPiscatawayNJUSA
| |
Collapse
|
43
|
Genome-wide systematic characterization of bZIP transcription factors and their expression profiles during seed development and in response to salt stress in peanut. BMC Genomics 2019; 20:51. [PMID: 30651065 PMCID: PMC6335788 DOI: 10.1186/s12864-019-5434-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Plant basic leucine zipper (bZIP) transcription factors play crucial roles in plant growth, development, and abiotic stress responses. However, systematic investigation and analyses of the bZIP gene family in peanut are lacking in spite of the availability of the peanut genome sequence. RESULTS In this study, we identified 50 and 45 bZIP genes from Arachis duranensis and A. ipaensis genomes, respectively. Phylogenetic analysis showed that Arachis bZIP genes were classified into nine groups, and these clusters were supported by several group-specific features, including exon/intron structure, intron phases, MEME motifs, and predicted binding site structure. We also identified possible variations in DNA-binding-site specificity and dimerization properties among different Arachis bZIPs by inspecting the amino acid residues at some key sites. Our analysis of the evolutionary history analysis indicated that segmental duplication, rather than tandem duplication, contributed greatly to the expansion of this gene family, and that most Arachis bZIPs underwent strong purifying selection. Through RNA-seq and quantitative real-time PCR (qRT-PCR) analyses, the co-expressed, differentially expressed and several well-studied homologous bZIPs were identified during seed development stages in peanut. We also used qRT-PCR to explore changes in bZIP gene expression in response to salt-treatment, and many candidate bZIPs in groups A, B, and S were proven to be associated with the salt-stress response. CONCLUSIONS This study have conducted a genome-wide identification, characterization and expression analysis of bZIP genes in Arachis genomes. Our results provide insights into the evolutionary history of the bZIP gene family in peanut and the funcntion of Arachis bZIP genes during seed development and in response to salt stress.
Collapse
|
44
|
Legeay M, Aubourg S, Renou JP, Duval B. Large scale study of anti-sense regulation by differential network analysis. BMC SYSTEMS BIOLOGY 2018; 12:95. [PMID: 30458828 PMCID: PMC6245689 DOI: 10.1186/s12918-018-0613-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Systems biology aims to analyse regulation mechanisms into the cell. By mapping interactions observed in different situations, differential network analysis has shown its power to reveal specific cellular responses or specific dysfunctional regulations. In this work, we propose to explore on a large scale the role of natural anti-sense transcription on gene regulation mechanisms, and we focus our study on apple (Malus domestica) in the context of fruit ripening in cold storage. Results We present a differential functional analysis of the sense and anti-sense transcriptomic data that reveals functional terms linked to the ripening process. To develop our differential network analysis, we introduce our inference method of an Extended Core Network; this method is inspired by C3NET, but extends the notion of significant interactions. By comparing two extended core networks, one inferred with sense data and the other one inferred with sense and anti-sense data, our differential analysis is first performed on a local view and reveals AS-impacted genes, genes that have important interactions impacted by anti-sense transcription. The motifs surrounding AS-impacted genes gather transcripts with functions mostly consistent with the biological context of the data used and the method allows us to identify new actors involved in ripening and cold acclimation pathways and to decipher their interactions. Then from a more global view, we compute minimal sub-networks that connect the AS-impacted genes using Steiner trees. Those Steiner trees allow us to study the rewiring of the AS-impacted genes in the network with anti-sense actors. Conclusion Anti-sense transcription is usually ignored in transcriptomic studies. The large-scale differential analysis of apple data that we propose reveals that anti-sense regulation may have an important impact in several cellular stress response mechanisms. Our data mining process enables to highlight specific interactions that deserve further experimental investigations. Electronic supplementary material The online version of this article (10.1186/s12918-018-0613-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marc Legeay
- LERIA, Université d'Angers, 2 bd Lavoisier, Angers, 49045, France.,IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, 49071, France
| | - Sébastien Aubourg
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, 49071, France
| | - Jean-Pierre Renou
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, 49071, France
| | - Béatrice Duval
- LERIA, Université d'Angers, 2 bd Lavoisier, Angers, 49045, France.
| |
Collapse
|
45
|
Wu S, Zhu P, Jia B, Yang J, Shen Y, Cai X, Sun X, Zhu Y, Sun M. A Glycine soja group S2 bZIP transcription factor GsbZIP67 conferred bicarbonate alkaline tolerance in Medicago sativa. BMC PLANT BIOLOGY 2018; 18:234. [PMID: 30316294 PMCID: PMC6186066 DOI: 10.1186/s12870-018-1466-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/03/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Even though bicarbonate alkaline stress is a serious threat to crop growth and yields, it attracts much fewer researches than high salinity stress. The basic leucine zipper (bZIP) transcription factors have been well demonstrated to function in diverse abiotic stresses; however, their biological role in alkaline tolerance still remains elusive. In this study, we functionally characterized a bZIP gene from Glycine soja GsbZIP67 in bicarbonate alkaline stress responses. RESULTS GsbZIP67 was initially identified as a putative bicarbonate responsive gene, on the basis of previous RNA-seq data of 50 mM NaHCO3-treated Glycine soja roots. GsbZIP67 protein possessed a conserved bZIP domain, and belonged to the group S2 bZIP, which is yet less well-studied. Our studies showed that GsbZIP67 targeted to nucleus in Arabidopsis protoplasts, and displayed transcriptional activation activity in yeast cells. The quantitative real-time PCR analyses unraveled the bicarbonate stress responsive expression and tissue specific expression of GsbZIP67 in wild soybean. Further phenotypic analysis illustrated that GsbZIP67 overexpression in alfalfa promoted plant growth under bicarbonate alkaline stress, as evidenced by longer roots and shoots. Furthermore, GsbZIP67 overexpression also modified the physiological indices of transgenic alfalfa under bicarbonate alkaline stress. In addition, the expression levels of several stress responsive genes were also augmented by GsbZIP67 overexpression. CONCLUSIONS Collectively, in this study, we demonstrated that GsbZIP67 acted as a positive regulator of plant tolerance to bicarbonate alkaline stress. These results provide direct genetic evidence of group S2 bZIPs in bicarbonate alkaline stress, and will facilitate further studies concerning the cis-elements and/or downstream genes targeted by GsbZIP67 in stress responses.
Collapse
Affiliation(s)
- Shengyang Wu
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Pinhui Zhu
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Junkai Yang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Yanming Zhu
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Mingzhe Sun
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| |
Collapse
|
46
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 19:ijms19092506. [PMID: 30149541 PMCID: PMC6165531 DOI: 10.3390/ijms19092506] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
47
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 57:2367-2379. [PMID: 30149541 DOI: 10.1093/pcp/pcw157] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2018] [Accepted: 09/05/2016] [Indexed: 05/25/2023] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
48
|
Frank A, Matiolli CC, Viana AJC, Hearn TJ, Kusakina J, Belbin FE, Wells Newman D, Yochikawa A, Cano-Ramirez DL, Chembath A, Cragg-Barber K, Haydon MJ, Hotta CT, Vincentz M, Webb AAR, Dodd AN. Circadian Entrainment in Arabidopsis by the Sugar-Responsive Transcription Factor bZIP63. Curr Biol 2018; 28:2597-2606.e6. [PMID: 30078562 PMCID: PMC6108399 DOI: 10.1016/j.cub.2018.05.092] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/28/2018] [Accepted: 05/31/2018] [Indexed: 02/08/2023]
Abstract
Synchronization of circadian clocks to the day-night cycle ensures the correct timing of biological events. This entrainment process is essential to ensure that the phase of the circadian oscillator is synchronized with daily events within the environment [1], to permit accurate anticipation of environmental changes [2, 3]. Entrainment in plants requires phase changes in the circadian oscillator, through unidentified pathways, which alter circadian oscillator gene expression in response to light, temperature, and sugars [4, 5, 6]. To determine how circadian clocks respond to metabolic rhythms, we investigated the mechanisms by which sugars adjust the circadian phase in Arabidopsis [5]. We focused upon metabolic regulation because interactions occur between circadian oscillators and metabolism in several experimental systems [5, 7, 8, 9], but the molecular mechanisms are unidentified. Here, we demonstrate that the transcription factor BASIC LEUCINE ZIPPER63 (bZIP63) regulates the circadian oscillator gene PSEUDO RESPONSE REGULATOR7 (PRR7) to change the circadian phase in response to sugars. We find that SnRK1, a sugar-sensing kinase that regulates bZIP63 activity and circadian period [10, 11, 12, 13, 14] is required for sucrose-induced changes in circadian phase. Furthermore, TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1), which synthesizes the signaling sugar trehalose-6-phosphate, is required for circadian phase adjustment in response to sucrose. We demonstrate that daily rhythms of energy availability can entrain the circadian oscillator through the function of bZIP63, TPS1, and the KIN10 subunit of the SnRK1 energy sensor. This identifies a molecular mechanism that adjusts the circadian phase in response to sugars. The transcription factor bZIP63 binds and regulates the circadian clock gene PRR7 bZIP63 is required for adjustment of circadian period by sugars Trehalose-6-phosphate metabolism and KIN10 signaling regulate circadian period Sugar signals establish the correct circadian phase in light and dark cycles
Collapse
Affiliation(s)
- Alexander Frank
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Cleverson C Matiolli
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083-875, CP 6010, Campinas, São Paulo, Brazil
| | - Américo J C Viana
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083-875, CP 6010, Campinas, São Paulo, Brazil
| | - Timothy J Hearn
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Jelena Kusakina
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK; Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Fiona E Belbin
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - David Wells Newman
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083-875, CP 6010, Campinas, São Paulo, Brazil
| | - Aline Yochikawa
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK; Universidade Estadual de Campinas, Barão Geraldo, Campinas, São Paulo, Brazil
| | | | - Anupama Chembath
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK; School of Life & Health Sciences, Aston University, Birmingham B4 7ET, UK
| | | | - Michael J Haydon
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK; School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Carlos T Hotta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Michel Vincentz
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083-875, CP 6010, Campinas, São Paulo, Brazil
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| | - Antony N Dodd
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
49
|
Dröge-Laser W, Weiste C. The C/S 1 bZIP Network: A Regulatory Hub Orchestrating Plant Energy Homeostasis. TRENDS IN PLANT SCIENCE 2018. [PMID: 29525129 DOI: 10.1016/j.tplants.2018.02.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Sustaining energy homeostasis is crucial to every living being. To balance energy supply and demand, plants make use of an evolutionarily conserved management system consisting of two counteracting kinases, TOR (TARGET OF RAPAMYCIN) and SnRK1 (Snf1-RELATED PROTEIN KINASE 1). SnRK1 is involved in reorganizing enzymatic and transcriptional responses to survive energy-limiting conditions. Recently, members of the bZIP (basic leucine zipper) transcription factor family have been established as SnRK1 downstream mediators. We review here current knowledge on the functional impact of these group C and S1 bZIPs, and analyze their regulation by environmental and endogenous cues. Given their specific homo- and heterodimerization, the so-called C/S1 bZIP network is proposed to act as a signaling hub that coordinates plant development and stress responses.
Collapse
Affiliation(s)
- Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany.
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany
| |
Collapse
|
50
|
Curtis TY, Bo V, Tucker A, Halford NG. Construction of a network describing asparagine metabolism in plants and its application to the identification of genes affecting asparagine metabolism in wheat under drought and nutritional stress. Food Energy Secur 2018; 7:e00126. [PMID: 29938110 PMCID: PMC5993343 DOI: 10.1002/fes3.126] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/04/2018] [Accepted: 01/07/2018] [Indexed: 01/01/2023] Open
Abstract
A detailed network describing asparagine metabolism in plants was constructed using published data from Arabidopsis (Arabidopsis thaliana) maize (Zea mays), wheat (Triticum aestivum), pea (Pisum sativum), soybean (Glycine max), lupin (Lupus albus), and other species, including animals. Asparagine synthesis and degradation is a major part of amino acid and nitrogen metabolism in plants. The complexity of its metabolism, including limiting and regulatory factors, was represented in a logical sequence in a pathway diagram built using yED graph editor software. The network was used with a Unique Network Identification Pipeline in the analysis of data from 18 publicly available transcriptomic data studies. This identified links between genes involved in asparagine metabolism in wheat roots under drought stress, wheat leaves under drought stress, and wheat leaves under conditions of sulfur and nitrogen deficiency. The network represents a powerful aid for interpreting the interactions not only between the genes in the pathway but also among enzymes, metabolites and smaller molecules. It provides a concise, clear understanding of the complexity of asparagine metabolism that could aid the interpretation of data relating to wider amino acid metabolism and other metabolic processes.
Collapse
Affiliation(s)
- Tanya Y Curtis
- Plant Sciences Department Rothamsted Research Harpenden Hertfordshire UK
| | - Valeria Bo
- College of Engineering, Design and Physical Sciences Brunel University London Uxbridge Middlesex UK.,Present address: Cancer Research UK Cambridge Institute University of Cambridge Li Ka Shing Centre Robinson Way Cambridge UK
| | - Allan Tucker
- College of Engineering, Design and Physical Sciences Brunel University London Uxbridge Middlesex UK
| | - Nigel G Halford
- Plant Sciences Department Rothamsted Research Harpenden Hertfordshire UK
| |
Collapse
|