1
|
Xu MH, Tang J, Liu CN, Zhang WQ, Li Q, Yang F, Liu DD. Genome-Wide Analysis of Tea FK506-Binding Proteins (FKBPs) Reveals That CsFKBP53 Enhances Cold-Stress Tolerance in Transgenic Arabidopsis thaliana. Int J Mol Sci 2025; 26:3575. [PMID: 40332082 PMCID: PMC12027416 DOI: 10.3390/ijms26083575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
FK506-binding proteins (FKBPs) belong to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily and are involved in a wide range of biological processes including protein folding, hormone signaling, plant growth, and stress responses. However, the FKBPs and their biological functions have not been identified in tea plants. In this study, 21 FKBP genes were identified using the conserved FK506-binding domain (PF00254) in the tea-plant genome. Their phylogeny, classification, structure, motifs, interactors, and expression patterns were analyzed. Comprehensive qRT-PCR analysis revealed distinct expression patterns of CsFKBPs in different tissues and in response to low temperature. Through a comprehensive genome-wide analysis, we characterized the low-temperature expression dynamics of the CsFKBP53 gene family and demonstrated that its overexpression significantly enhances cold tolerance in Arabidopsis. Notably, the transcript levels of CsFKBP53 exhibited pronounced variability across distinct tea (Camellia sinensis) cultivars under cold-stress conditions. These findings not only underscore the functional conservation of FKBP-type immunophilins across plant lineages but also highlight the biotechnological potential of CsFKBP53 as a genetic modulator of low-temperature resilience in crops. By integrating comparative genomics and functional validation, our study establishes a foundation for leveraging conserved stress-response mechanisms to engineer climate-resilient plants.
Collapse
Affiliation(s)
- Ming-Hui Xu
- School of Agriculture, Yunnan University, Kunming 650091, China; (M.-H.X.); (J.T.); (C.-N.L.); (W.-Q.Z.); (Q.L.)
| | - Jie Tang
- School of Agriculture, Yunnan University, Kunming 650091, China; (M.-H.X.); (J.T.); (C.-N.L.); (W.-Q.Z.); (Q.L.)
| | - Cai-Ning Liu
- School of Agriculture, Yunnan University, Kunming 650091, China; (M.-H.X.); (J.T.); (C.-N.L.); (W.-Q.Z.); (Q.L.)
| | - Wan-Qiao Zhang
- School of Agriculture, Yunnan University, Kunming 650091, China; (M.-H.X.); (J.T.); (C.-N.L.); (W.-Q.Z.); (Q.L.)
| | - Qian Li
- School of Agriculture, Yunnan University, Kunming 650091, China; (M.-H.X.); (J.T.); (C.-N.L.); (W.-Q.Z.); (Q.L.)
| | - Fan Yang
- Yunnan International Joint R&D Center for Intergrated Utilization of Ornamental Grass, College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China
| | - Dan-Dan Liu
- School of Agriculture, Yunnan University, Kunming 650091, China; (M.-H.X.); (J.T.); (C.-N.L.); (W.-Q.Z.); (Q.L.)
| |
Collapse
|
2
|
Jiang Z, Zhang M, Pan J, Wu J, Yuan M. Genome-wide identification and expression analyses of FKBP and CYP gene family under salt and heat stress in Setaria italica L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1871-1887. [PMID: 39687704 PMCID: PMC11646261 DOI: 10.1007/s12298-024-01530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 12/18/2024]
Abstract
As components of a family of proteins with peptidyl-prolyl isomerase activity family, FKBP (FK506-binding protein) and CYP (Cyclophilins) exert crucial roles in various physiological and biochemical processes such as cell signal transduction and stress resistance. The functions of the FKBP or CYP family have been extensively discussed in various organisms, while the comprehensive characterization of this family in Setaria italica remains unreported. In this study, a total of 22 SiFKBPs and 26 SiCYPs genes were identified in the genome of Setaria italica, with highly conserved functional domains observed within each member of these gene families. Phylogenetic analysis revealed that both FKBP and CYP proteins from Setaria italica and other plant species clustered into nine distinct groups. Furthermore, RT-qPCR results indicated that certain genes were induced specifically under salt stress while others were induced under heat stress, suggesting their involvement in stress response processes. The analysis of gene function revealed that SiFKBP16-3 exhibits some degree of functional conservation. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01530-w.
Collapse
Affiliation(s)
- Zhuanzhuan Jiang
- Key Lab. of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing, 246133 China
- Anqing Forestry Technology Innovation Research Institute, Anqing, China
- College of Life Sciences, Anqing Normal University, Anqing, 246133 China
| | - Meilin Zhang
- Key Lab. of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing, 246133 China
- Anqing Forestry Technology Innovation Research Institute, Anqing, China
- College of Life Sciences, Anqing Normal University, Anqing, 246133 China
| | - Jun Pan
- Key Lab. of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing, 246133 China
- Anqing Forestry Technology Innovation Research Institute, Anqing, China
- College of Life Sciences, Anqing Normal University, Anqing, 246133 China
| | - Juan Wu
- Key Lab. of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing, 246133 China
- Anqing Forestry Technology Innovation Research Institute, Anqing, China
- College of Life Sciences, Anqing Normal University, Anqing, 246133 China
| | - Mengqi Yuan
- Key Lab. of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing, 246133 China
- Anqing Forestry Technology Innovation Research Institute, Anqing, China
- College of Life Sciences, Anqing Normal University, Anqing, 246133 China
| |
Collapse
|
3
|
Nie F, Wang M, Liu L, Ma X, Zhao J. Genome-Wide Identification and Bioinformatics Analysis of the FK506 Binding Protein Family in Rice. Genes (Basel) 2024; 15:902. [PMID: 39062681 PMCID: PMC11276075 DOI: 10.3390/genes15070902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The FK506 Binding Protein (FKBP), ubiquitously present across diverse species, is characterized by its evolutionarily conserved FK506 binding domain (FKBd). In plants, evidence suggests that this gene family plays integral roles in regulating growth, development, and responses to environmental stresses. Notably, research on the identification and functionality of FKBP genes in rice remains limited. Therefore, this study utilized bioinformatic tools to identify 30 FKBP-encoding genes in rice. It provides a detailed analysis of their chromosomal locations, evolutionary relationships with the Arabidopsis thaliana FKBP family, and gene structures. Further analysis of the promoter elements of these rice FKBP genes revealed a high presence of stress-responsive elements. Quantitative PCR assays under drought and heat stress conditions demonstrated that genes OsFKBP15-2, OsFKBP15-3, OsFKBP16-3, OsFKBP18, and OsFKBP42b are inducible by these adverse conditions. These findings suggest a significant role for the rice FKBP gene family in stress adaptation. This research establishes a critical foundation for deeper explorations of the functional roles of the OsFKBP genes in rice.
Collapse
Affiliation(s)
| | | | | | | | - Juan Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (F.N.); (M.W.)
| |
Collapse
|
4
|
Yang D, Li Y, Zhu M, Cui R, Gao J, Shu Y, Lu X, Zhang H, Zhang K. Genome-Wide Identification and Expression Analysis of the Cucumber FKBP Gene Family in Response to Abiotic and Biotic Stresses. Genes (Basel) 2023; 14:2006. [PMID: 38002948 PMCID: PMC10671320 DOI: 10.3390/genes14112006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The FKBP (FK506-binding protein) gene family is an important member of the PPlase protease family and plays a vital role during the processes of plant growth and development. However, no studies of the FKBP gene family have been reported in cucumber. In this study, 19 FKBP genes were identified in cucumber, which were located on chromosomes 1, 3, 4, 6, and 7. Phylogenetic analysis divided the cucumber FKBP genes into three subgroups. The FKBP genes in the same subgroup exhibited similar structures and conserved motifs. The cis-acting elements analysis revealed that the promoters of cucumber FKBP genes contained hormone-, stress-, and development-related cis-acting elements. Synteny analysis of the FKBP genes among cucumber, Arabidopsis, and rice showed that 12 kinds of syntenic relationships were detected between cucumber and Arabidopsis FKBP genes, and 3 kinds of syntenic relationships were observed between cucumber and rice FKBP genes. The tissue-specific expression analysis showed that some FKBP genes were expressed in all tissues, while others were only highly expressed in part of the 10 types of tissues. The expression profile analysis of cucumber FKBP genes under 13 types of stresses showed that the CsaV3_1G007080 gene was differentially expressed under abiotic stresses (high temperature, NaCl, silicon, and photoperiod) and biotic stresses (downy mildew, green mottle mosaic virus, Fusarium wilt, phytophthora capsica, angular leaf spot, and root-knot nematode), which indicated that the CsaV3_1G007080 gene plays an important role in the growth and development of cucumber. The interaction protein analysis showed that most of the proteins in the FKBP gene family interacted with each other. The results of this study will lay the foundation for further research on the molecular biological functions of the cucumber FKBP gene family.
Collapse
Affiliation(s)
- Dekun Yang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Yahui Li
- School of Life Science, Huaibei Normal University, Huaibei 235000, China;
| | - Mengdi Zhu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Rongjing Cui
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Jiong Gao
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Yingjie Shu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Xiaomin Lu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei 235000, China;
| | - Kaijing Zhang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| |
Collapse
|
5
|
Suri A, Singh H, Kaur K, Kaachra A, Singh P. Genome-wide characterization of FK506-binding proteins, parvulins and phospho-tyrosyl phosphatase activators in wheat and their regulation by heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1053524. [PMID: 36589073 PMCID: PMC9797600 DOI: 10.3389/fpls.2022.1053524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Peptidyl-prolyl cis-trans isomerases (PPIases) are ubiquitous proteins which are essential for cis-trans isomerisation of peptide bonds preceding the proline residue. PPIases are categorized into four sub-families viz., cyclophilins, FK506-binding proteins (FKBPs), parvulins and protein phosphatase 2A phosphatase activators (PTPAs). Apart from catalysing the cis-trans isomerization, these proteins have also been implicated in diverse cellular functions. Though PPIases have been identified in several important crop plants, information on these proteins, except cyclophilins, is scanty in wheat. In order to understand the role of these genes in wheat, we carried out genome-wide identification using computational approaches. The present study resulted in identification of 71 FKBP (TaFKBP) 12 parvulin (TaPar) and 3 PTPA (TaPTPA) genes in hexaploid wheat genome, which are distributed on different chromosomes with uneven gene densities. The TaFKBP and TaPar proteins, besides PPIase domain, also contain additional domains, indicating functional diversification. In silico prediction also revealed that TaFKBPs are localized to ER, nucleus, chloroplast and cytoplasm, while the TaPars are confined to cytoplasm and nucleus. The TaPTPAs, on the contrary, appear to be present only in the cytoplasm. Evolutionary studies predicted that most of the TaFKBP, TaPar and TaPTPA genes in hexaploid wheat have been derived from their progenitor species, with some events of loss or gain. Syntenic analysis revealed the presence of many collinear blocks of TaFKBP genes in wheat and its sub-genome donors. qRT-PCR analysis demonstrated that expression of TaFKBP and TaPar genes is regulated differentially by heat stress, suggesting their likely involvement in thermotolerance. The findings of this study will provide basis for further functional characterization of these genes and their likely applications in crop improvement.
Collapse
Affiliation(s)
- Anantika Suri
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Kirandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Anish Kaachra
- Biotechnology Division, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, HP, India
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
6
|
Genome-Wide Identification and Analysis of FKBP Gene Family in Wheat ( Triticum asetivum). Int J Mol Sci 2022; 23:ijms232314501. [PMID: 36498828 PMCID: PMC9739119 DOI: 10.3390/ijms232314501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
FK506-binding protein (FKBP) genes have been found to play vital roles in plant development and abiotic stress responses. However, limited information is available about this gene family in wheat (Triticum aestivum L.). In this study, a total of 64 FKBP genes were identified in wheat via a genome-wide analysis involving a homologous search of the latest wheat genome data, which was unevenly distributed in 21 chromosomes, encoded 152 to 649 amino acids with molecular weights ranging from 16 kDa to 72 kDa, and was localized in the chloroplast, cytoplasm, nucleus, mitochondria, peroxisome and endoplasmic reticulum. Based on sequence alignment and phylogenetic analysis, 64 TaFKBPs were divided into four different groups or subfamilies, providing evidence of an evolutionary relationship with Aegilops tauschii, Brachypodium distachyon, Triticum dicoccoides, Arabidopsis thaliana and Oryza sativa. Hormone-related, abiotic stress-related and development-related cis-elements were preferentially presented in promoters of TaFKBPs. The expression levels of TaFKBP genes were investigated using transcriptome data from the WheatExp database, which exhibited tissue-specific expression patterns. Moreover, TaFKBPs responded to drought and heat stress, and nine of them were randomly selected for validation by qRT-PCR. Yeast cells expressing TaFKBP19-2B-2 or TaFKBP18-6B showed increased influence on drought stress, indicating their negative roles in drought tolerance. Collectively, our results provide valuable information about the FKBP gene family in wheat and contribute to further characterization of FKBPs during plant development and abiotic stress responses, especially in drought stress.
Collapse
|
7
|
Bioinformatics Analysis of WRKY Family Genes in Erianthus fulvus Ness. Genes (Basel) 2022; 13:genes13112102. [DOI: 10.3390/genes13112102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most prominent transcription factors in higher plants, the WRKY gene family, is crucial for secondary metabolism, phytohormone signaling, plant defense responses, and plant responses to abiotic stresses. It can control the expression of a wide range of target genes by coordinating with other DNA-binding or non-DNA-binding interacting proteins. In this study, we performed a genome-wide analysis of the EfWRKY genes and initially identified 89 members of the EfWRKY transcription factor family. Using some members of the OsWRKY transcription factor family, an evolutionary tree was built using the neighbor-joining (NJ) method to classify the 89 members of the EfWRKY transcription factor family into three major taxa and one unclassified group. Molecular weights ranged from 22,614.82 to 303,622.06 Da; hydrophilicity ranged from (−0.983)–(0.159); instability coefficients ranged from 40.97–81.30; lipid coefficients ranged from 38.54–91.89; amino acid numbers ranged from 213–2738 bp; isoelectric points ranged from 4.85–10.06. A signal peptide was present in EfWRKY41 but not in the other proteins, and EfWRK85 was subcellularly localized to the cell membrane. Chromosome localization revealed that the WRKY gene was present on each chromosome, proving that the conserved pattern WRKYGQK is the family’s central conserved motif. Conserved motif analysis showed that practically all members have this motif. Analysis of the cis-acting elements indicated that, in addition to the fundamental TATA-box, CAAT-box, and light-responsive features (GT1-box), there are response elements implicated in numerous hormones, growth regulation, secondary metabolism, and abiotic stressors. These results inform further studies on the function of EfWRKY genes and will lead to the improvement of sugarcane.
Collapse
|
8
|
Singh M, Kaur K, Sharma A, Kaur R, Joshi D, Chatterjee M, Dandapath I, Kaur A, Singh H, Singh P. Genome-wide characterization of peptidyl-prolyl cis-trans isomerases in Penicillium and their regulation by salt stress in a halotolerant P. oxalicum. Sci Rep 2021; 11:12292. [PMID: 34112860 PMCID: PMC8192932 DOI: 10.1038/s41598-021-91602-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Peptidyl-prolyl cis-trans isomerases (PPIases) are the only class of enzymes capable of cis-trans isomerization of the prolyl peptide bond. The PPIases, comprising of different families viz., cyclophilins, FK506-binding proteins (FKBPs), parvulins and protein phosphatase 2A phosphatase activators (PTPAs), play essential roles in different cellular processes. Though PPIase gene families have been characterized in different organisms, information regarding these proteins is lacking in Penicillium species, which are commercially an important fungi group. In this study, we carried out genome-wide analysis of PPIases in different Penicillium spp. and investigated their regulation by salt stress in a halotolerant strain of Penicillium oxalicum. These analyses revealed that the number of genes encoding cyclophilins, FKBPs, parvulins and PTPAs in Penicillium spp. varies between 7-11, 2-5, 1-2, and 1-2, respectively. The halotolerant P. oxalicum depicted significant enhancement in the mycelial PPIase activity in the presence of 15% NaCl, thus, highlighting the role of these enzymes in salt stress adaptation. The stress-induced increase in PPIase activity at 4 and 10 DAI in P. oxalicum was associated with higher expression of PoxCYP18. Characterization of PPIases in Penicillium spp. will provide an important database for understanding their cellular functions and might facilitate their applications in industrial processes through biotechnological interventions.
Collapse
Affiliation(s)
- Mangaljeet Singh
- grid.411894.10000 0001 0726 8286Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Kirandeep Kaur
- grid.411894.10000 0001 0726 8286Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Avinash Sharma
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Rajvir Kaur
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Dimple Joshi
- grid.411894.10000 0001 0726 8286Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Megha Chatterjee
- grid.411894.10000 0001 0726 8286Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Iman Dandapath
- grid.411894.10000 0001 0726 8286Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Amarjeet Kaur
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Harpreet Singh
- grid.506003.00000 0004 1778 5641Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab 144008 India
| | - Prabhjeet Singh
- grid.411894.10000 0001 0726 8286Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| |
Collapse
|
9
|
Yadav AK, Kumar A, Grover N, Ellur RK, Bollinedi H, Krishnan SG, Bhowmick PK, Vinod KK, Nagarajan M, Singh AK. Genome-Wide Association Study Reveals Marker-Trait Associations for Early Vegetative Stage Salinity Tolerance in Rice. PLANTS (BASEL, SWITZERLAND) 2021; 10:559. [PMID: 33809618 PMCID: PMC8000697 DOI: 10.3390/plants10030559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
Rice germplasm is a rich resource for discovering genes associated with salt tolerance. In the current study, a set of 96 accessions were evaluated for seedling stage salinity tolerance and its component traits. Significant phenotypic variation was observed among the genotypes for all the measured traits and eleven accessions with high level of salt tolerance at seedling stage were identified. The germplasm set comprised of three sub-populations and genome-wide association study (GWAS) identified a total of 23 marker-trait associations (MTAs) for traits studied. These MTAs were located on rice chromosomes 1, 2, 5, 6, 7, 9, and 12 and explained the trait phenotypic variances ranging from 13.98 to 29.88 %. Twenty-one MTAs identified in this study were located either in or near the previously reported quantitative trait loci (QTLs), while two MTAs namely, qSDW2.1 and qSNC5 were novel. A total of 18 and 13 putative annotated candidate genes were identified in a genomic region spanning ~200 kb around the MTAs qSDW2.1 and qSNC5, respectively. Some of the important genes underlying the novel MTAs were OsFBA1,OsFBL7, and mTERF which are known to be associated with salinity tolerance in crops. These MTAs pave way for combining salinity tolerance with high yield in rice genotypes through molecular breeding.
Collapse
Affiliation(s)
- Ashutosh Kumar Yadav
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.Y.); (N.G.); (R.K.E.); (H.B.); (S.G.K.); (P.K.B.); (K.K.V.)
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Aruna Kumar
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Nitasha Grover
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.Y.); (N.G.); (R.K.E.); (H.B.); (S.G.K.); (P.K.B.); (K.K.V.)
| | - Ranjith Kumar Ellur
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.Y.); (N.G.); (R.K.E.); (H.B.); (S.G.K.); (P.K.B.); (K.K.V.)
| | - Haritha Bollinedi
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.Y.); (N.G.); (R.K.E.); (H.B.); (S.G.K.); (P.K.B.); (K.K.V.)
| | - Subbaiyan Gopala Krishnan
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.Y.); (N.G.); (R.K.E.); (H.B.); (S.G.K.); (P.K.B.); (K.K.V.)
| | - Prolay Kumar Bhowmick
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.Y.); (N.G.); (R.K.E.); (H.B.); (S.G.K.); (P.K.B.); (K.K.V.)
| | - Kunnummal Kurungara Vinod
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.Y.); (N.G.); (R.K.E.); (H.B.); (S.G.K.); (P.K.B.); (K.K.V.)
| | - Mariappan Nagarajan
- Rice Breeding and Genetics Research Centre, ICAR—Indian Agricultural Research Institute, Aduthurai 612101, Tamil Nadu, India;
| | - Ashok Kumar Singh
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.Y.); (N.G.); (R.K.E.); (H.B.); (S.G.K.); (P.K.B.); (K.K.V.)
| |
Collapse
|
10
|
Cheung MY, Auyeung WK, Li KP, Lam HM. A Rice Immunophilin Homolog, OsFKBP12, Is a Negative Regulator of Both Biotic and Abiotic Stress Responses. Int J Mol Sci 2020; 21:ijms21228791. [PMID: 33233855 PMCID: PMC7699956 DOI: 10.3390/ijms21228791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 11/23/2022] Open
Abstract
A class of proteins that were discovered to bind the immunosuppressant drug FK506, called FK506-binding proteins (FKBPs), are members of a sub-family of immunophilins. Although they were first identified in human, FKBPs exist in all three domains of life. In this report, a rice FKBP12 homolog was first identified as a biotic stress-related gene through suppression subtractive hybridization screening. By ectopically expressing OsFKBP12 in the heterologous model plant system, Arabidopsis thaliana, for functional characterization, OsFKBP12 was found to increase susceptibility of the plant to the pathogen, Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). This negative regulatory role of FKBP12 in biotic stress responses was also demonstrated in the AtFKBP12-knockout mutant, which exhibited higher resistance towards Pst DC3000. Furthermore, this higher-plant FKBP12 homolog was also shown to be a negative regulator of salt tolerance. Using yeast two-hybrid tests, an ancient unconventional G-protein, OsYchF1, was identified as an interacting partner of OsFKBP12. OsYchF1 was previously reported as a negative regulator of both biotic and abiotic stresses. Therefore, OsFKBP12 probably also plays negative regulatory roles at the convergence of biotic and abiotic stress response pathways in higher plants.
Collapse
Affiliation(s)
- Ming-Yan Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR; (M.-Y.C.); (W.-K.A.); (K.-P.L.)
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Wan-Kin Auyeung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR; (M.-Y.C.); (W.-K.A.); (K.-P.L.)
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Kwan-Pok Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR; (M.-Y.C.); (W.-K.A.); (K.-P.L.)
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR; (M.-Y.C.); (W.-K.A.); (K.-P.L.)
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
- Correspondence:
| |
Collapse
|
11
|
Tiwari P, Indoliya Y, Singh PK, Singh PC, Chauhan PS, Pande V, Chakrabarty D. Role of dehydrin-FK506-binding protein complex in enhancing drought tolerance through the ABA-mediated signaling pathway. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2019; 158:136-149. [DOI: 10.1016/j.envexpbot.2018.10.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
12
|
Waseem M, Ahmad F, Habib S, Gao Y, Li Z. Genome-wide identification of FK506-binding domain protein gene family, its characterization, and expression analysis in tomato (Solanum lycopersicum L.). Gene 2018; 678:143-154. [DOI: 10.1016/j.gene.2018.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/16/2018] [Accepted: 08/04/2018] [Indexed: 11/26/2022]
|
13
|
Yan H, Zhou B, He W, Nie Y, Li Y. Expression characterisation of cyclophilin BrROC1 during light treatment and abiotic stresses response in Brassica rapa subsp. rapa 'Tsuda'. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:1223-1232. [PMID: 32291012 DOI: 10.1071/fp18029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/02/2018] [Indexed: 05/20/2023]
Abstract
ROC1 is a prototypic peptidyl prolyl cis/trans isomerase (PPIase) of the plant cytosol belonging to the large subfamily of cyclophilins that are associated with diverse functions through foldase, scaffolding, chaperoning or other unknown activities. Although many functions of plant cyclophilins have been reported, the molecular basis of stress-responsive expression of plant cyclophilins is still largely unknown. To characterise the roles of BrROC1 during light treatment and their responses in various abiotic stresses, we identified BrROC1 genes and characterised their expression patterns in Brassica rapa subsp. rapa 'Tsuda'. Our results showed that BrROC1 genes are multi-family genes. Transcript level analysis showed BrROC1-2 expressed higher than BrROC1-1 in 0 to 6-day-old seedlings under natural light. Moreover, BrROC1-2 genes were also induced to highly express in the cotyledon, upper hypocotyls and lower hypocotyls of seedlings under UV-A and blue-light treatment. In addition, the transcript level of BrROC1-1 was higher in pigment tissues than that in unpigment tissues (cotyledon and lower hypocotyl) under UV-A and blue-light treatment. Furthermore, when the unpigment epidermis (shaded light) of 2-month-old 'Tsuda' turnip roots was exposed to UV-A light, transcript levels of the BrROC1-1 and BrROC1-2 were significantly increased with time prolongation. These two BrROC1 genes might be involved in UV-A-induced anthocyanin synthesis in the root epidermis of 'Tsuda' turnip, which accumulates high levels of anthocyanin. These two BrROC1 genes were also induced to be regulated by abiotic stresses such as high or low temperature, dehydration, osmotic and salt stresses. Then, the results indicate that BrROC1 genes are involved in light induction response and may play important roles in adaptation of plants to various environmental stresses.
Collapse
Affiliation(s)
- Haifang Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Bo Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Wei He
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Yuzhe Nie
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Yuhua Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
14
|
Dong Q, Mao K, Duan D, Zhao S, Wang Y, Wang Q, Huang D, Li C, Liu C, Gong X, Ma F. Genome-wide analyses of genes encoding FK506-binding proteins reveal their involvement in abiotic stress responses in apple. BMC Genomics 2018; 19:707. [PMID: 30253753 PMCID: PMC6156878 DOI: 10.1186/s12864-018-5097-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/20/2018] [Indexed: 12/30/2022] Open
Abstract
Background The FK506-binding proteins (FKBPs) play diverse roles in numerous critical processes for plant growth, development, and abiotic stress responses. However, the FKBP gene family in the important fruit crop apple (Malus × domestica Borkh.) has not been studied as thoroughly as in other species. Our research objective was to investigate the mechanisms by which apple FKBPs enable apple plants to tolerate the effects of abiotic stresses. Results Using bioinformatics-based methods, RT-PCR, and qRT-PCR technologies, we identified 38 FKBP genes and cloned 16 of them in the apple genome. The phylogenetic analysis revealed three major groups within that family. The results from sequence alignments, 3-D structures, phylogenetics, and analyses of conserved domains indicated that apple FKBPs are highly and structurally conserved. Furthermore, genomics structure analysis showed that those genes are also highly and structurally conserved in several other species. Comprehensive qRT-PCR analysis found various expression patterns for MdFKBPs in different tissues and in plant responses to water-deficit and salt stresses. Based on the results from interaction network and co-expression analyses, we determined that the pairing in the MdFKBP62a/MdFKBP65a/b-mediated network is involved in water-deficit and salt-stress signaling, both of which are uniformly up-regulated through interactions with heat shock proteins in apple. Conclusions These results provide new insight for further study of FKBP genes and their functions in abiotic stress response and multiple metabolic and physiological processes in apple. Electronic supplementary material The online version of this article (10.1186/s12864-018-5097-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Dingyue Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yanpeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
15
|
Genome-wide analysis of the MYB-CC gene family of maize. Genetica 2018; 147:1-9. [DOI: 10.1007/s10709-018-0042-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/18/2018] [Indexed: 01/24/2023]
|
16
|
Ghartey-Kwansah G, Li Z, Feng R, Wang L, Zhou X, Chen FZ, Xu MM, Jones O, Mu Y, Chen S, Bryant J, Isaacs WB, Ma J, Xu X. Comparative analysis of FKBP family protein: evaluation, structure, and function in mammals and Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2018; 18:7. [PMID: 29587629 PMCID: PMC5870485 DOI: 10.1186/s12861-018-0167-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
Abstract
Background FK506-binding proteins (FKBPs) have become the subject of considerable interest in several fields, leading to the identification of several cellular and molecular pathways in which FKBPs impact prenatal development and pathogenesis of many human diseases. Main body This analysis revealed differences between how mammalian and Drosophila FKBPs mechanisms function in relation to the immunosuppressant drugs, FK506 and rapamycin. Differences that could be used to design insect-specific pesticides. (1) Molecular phylogenetic analysis of FKBP family proteins revealed that the eight known Drosophila FKBPs share homology with the human FKBP12. This indicates a close evolutionary relationship, and possible origination from a common ancestor. (2) The known FKBPs contain FK domains, that is, a prolyl cis/trans isomerase (PPIase) domain that mediates immune suppression through inhibition of calcineurin. The dFKBP59, CG4735/Shutdown, CG1847, and CG5482 have a Tetratricopeptide receptor domain at the C-terminus, which regulates transcription and protein transportation. (3) FKBP51 and FKBP52 (dFKBP59), along with Cyclophilin 40 and protein phosphatase 5, function as Hsp90 immunophilin co-chaperones within steroid receptor-Hsp90 heterocomplexes. These immunophilins are potential drug targets in pathways associated with normal physiology and may be used to treat a variety of steroid-based diseases by targeting exocytic/endocytic cycling and vesicular trafficking. (4) By associating with presinilin, a critical component of the Notch signaling pathway, FKBP14 is a downstream effector of Notch activation at the membrane. Meanwhile, Shutdown associates with transposons in the PIWI-interacting RNA pathway, playing a crucial role in both germ cells and ovarian somas. Mutations in or silencing of dFKBPs lead to early embryonic lethality in Drosophila. Therefore, further understanding the mechanisms of FK506 and rapamycin binding to immunophilin FKBPs in endocrine, cardiovascular, and neurological function in both mammals and Drosophila would provide prospects in generating unique, insect specific therapeutics targeting the above cellular signaling pathways. Conclusion This review will evaluate the functional roles of FKBP family proteins, and systematically summarize the similarities and differences between FKBP proteins in Drosophila and Mammals. Specific therapeutics targeting cellular signaling pathways will also be discussed.
Collapse
Affiliation(s)
- George Ghartey-Kwansah
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Zhongguang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Rui Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Liyang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Xin Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China.,Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Meng Meng Xu
- Department of Pharmacology, Duke University Medical Center, Durham, NC, USA
| | - Odell Jones
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yulian Mu
- State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Joseph Bryant
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Jianjie Ma
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Xuehong Xu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China. .,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China.
| |
Collapse
|
17
|
Alavilli H, Lee H, Park M, Yun DJ, Lee BH. Enhanced multiple stress tolerance in Arabidopsis by overexpression of the polar moss peptidyl prolyl isomerase FKBP12 gene. PLANT CELL REPORTS 2018; 37:453-465. [PMID: 29247292 DOI: 10.1007/s00299-017-2242-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
PaFKBP12 overexpression in Arabidopsis resulted in stress tolerance to heat, ABA, drought, and salt stress, in addition to growth promotion under normal conditions. Polytrichastrum alpinum (alpine haircap moss) is one of polar organisms that can withstand the severe conditions of the Antarctic. In this study, we report the isolation of a peptidyl prolyl isomerase FKBP12 gene (PaFKBP12) from P. alpinum collected in the Antarctic and its functional implications in development and stress responses in plants. In P. alpinum, PaFKBP12 expression was induced by heat and ABA. Overexpression of PaFKBP12 in Arabidopsis increased the plant size, which appeared to result from increased rates of cell cycle. Under heat stress conditions, PaFKBP12-overexpressing lines (PaFKBP12-OE) showed better growth and survival than the wild type. PaFKBP12-OE also showed higher root elongation rates, better shoot growth and enhanced survival at higher concentrations of ABA in comparison to the wild type. In addition, PaFKBP12-OE were more tolerant to drought and salt stress than the wild type. All these phenotypes were accompanied with higher induction of the stress responsive genes in PaFKBP12-OE than in the wild type. Taken together, our findings revealed important functions of PaFKBP12 in plant development and abiotic stress responses.
Collapse
Affiliation(s)
| | - Hyoungseok Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Mira Park
- Department of Life Science, Sogang University, Seoul, 04107, South Korea
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Byeong-Ha Lee
- Department of Life Science, Sogang University, Seoul, 04107, South Korea.
| |
Collapse
|
18
|
Geisler M, Bailly A, Ivanchenko M. Master and servant: Regulation of auxin transporters by FKBPs and cyclophilins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 245:1-10. [PMID: 26940487 DOI: 10.1016/j.plantsci.2015.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 05/27/2023]
Abstract
Plant development and architecture are greatly influenced by the polar distribution of the essential hormone auxin. The directional influx and efflux of auxin from plant cells depends primarily on AUX1/LAX, PIN, and ABCB/PGP/MDR families of auxin transport proteins. The functional analysis of these proteins has progressed rapidly within the last decade thanks to the establishment of heterologous auxin transport systems. Heterologous co-expression allowed also for the testing of protein-protein interactions involved in the regulation of transporters and identified relationships with members of the FK506-Binding Protein (FKBP) and cyclophilin protein families, which are best known in non-plant systems as cellular receptors for the immunosuppressant drugs, FK506 and cyclosporin A, respectively. Current evidence that such interactions affect membrane trafficking, and potentially the activity of auxin transporters is reviewed. We also propose that FKBPs andcyclophilins might integrate the action of auxin transport inhibitors, such as NPA, on members of the ABCB and PIN family, respectively. Finally, we outline open questions that might be useful for further elucidation of the role of immunophilins as regulators (servants) of auxin transporters (masters).
Collapse
Affiliation(s)
- Markus Geisler
- University of Fribourg, Department of Biology-Plant Biology, CH-1700 Fribourg, Switzerland.
| | - Aurélien Bailly
- University of Zurich, Institute of Plant Biology, CH-8008 Zurich, Switzerland
| | - Maria Ivanchenko
- Oregon State University, Department of Botany and Plant Pathology, 2082 Cordley Hall, Corvallis, OR 97331, USA.
| |
Collapse
|
19
|
Kang ZH, Wang GX. Redox regulation in the thylakoid lumen. JOURNAL OF PLANT PHYSIOLOGY 2016; 192:28-37. [PMID: 26812087 DOI: 10.1016/j.jplph.2015.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Higher plants need to balance the efficiency of light energy absorption and dissipative photo-protection when exposed to fluctuations in light quantity and quality. This aim is partially realized through redox regulation within the chloroplast, which occurs in all chloroplast compartments except the envelope intermembrane space. In contrast to the chloroplast stroma, less attention has been paid to the thylakoid lumen, an inner, continuous space enclosed by the thylakoid membrane in which redox regulation is also essential for photosystem biogenesis and function. This sub-organelle compartment contains at least 80 lumenal proteins, more than 30 of which are known to contain disulfide bonds. Thioredoxins (Trx) in the chloroplast stroma are photo-reduced in the light, transferring reducing power to the proteins in the thylakoid membrane and ultimately the lumen through a trans-thylakoid membrane-reduced, equivalent pathway. The discovery of lumenal thiol oxidoreductase highlights the importance of the redox regulation network in the lumen for controlling disulfide bond formation, which is responsible for protein activity and folding and even plays a role in photo-protection. In addition, many lumenal members involved in photosystem assembly and non-photochemical quenching are likely required for reduction and/or oxidation to maintain their proper efficiency upon changes in light intensity. In light of recent findings, this review summarizes the multiple redox processes that occur in the thylakoid lumen in great detail, highlighting the essential auxiliary roles of lumenal proteins under fluctuating light conditions.
Collapse
Affiliation(s)
- Zhen-Hui Kang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Gui-Xue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
20
|
Suzuki K, Aoki N, Matsumura H, Okamura M, Ohsugi R, Shimono H. Cooling water before panicle initiation increases chilling-induced male sterility and disables chilling-induced expression of genes encoding OsFKBP65 and heat shock proteins in rice spikelets. PLANT, CELL & ENVIRONMENT 2015; 38:1255-1274. [PMID: 25496090 DOI: 10.1111/pce.12498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 11/28/2014] [Indexed: 06/04/2023]
Abstract
In rice (Oryza sativa L.), chilling-induced male sterility increased when plants experienced low water temperature (Tw , 18 °C for 14 d) before panicle initiation. The number of mature pollen grains after chilling at the booting stage (12 °C for 5 d) was only 45% of total pollen grains in low-Tw plants, whereas it was 71% in normal-Tw plants (Tw not controlled; approximately 23 °C under air temperature of 26 °C/21 °C, day/night). Microarray and quantitative PCR analyses showed that many stress-responsive genes (including OsFKBP65 and genes encoding the large heat shock protein OsHSP90.1, heat-stress transcription factors and many small heat shock proteins) were strongly up-regulated by chilling in normal-Tw spikelets, but were unaffected or even down-regulated by chilling in low-Tw spikelets. OsAPX2 and genes encoding some other antioxidant enzymes were also significantly down-regulated by low Tw in chilled spikelets. The levels of lipid peroxidation products (malondialdehyde equivalents) were significantly increased in low-Tw spikelets by chilling. Ascorbate peroxidase activity in chilled spikelets was significantly lower in low-Tw plants than in normal-Tw plants. Our data suggest that an OsFKBP65-related chilling response, which protects proteins from oxidative damage, is indispensable for chilling tolerance but is lost in low-Tw spikelets.
Collapse
Affiliation(s)
- Kensaku Suzuki
- Plant Physiology Group, NARO Tohoku Agricultural Research Center, Morioka, Iwate, 020-0198, Japan
| | - Naohiro Aoki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hisakazu Matsumura
- Plant Physiology Group, NARO Tohoku Agricultural Research Center, Morioka, Iwate, 020-0198, Japan
| | - Masaki Okamura
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Ryu Ohsugi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiroyuki Shimono
- Crop Science Laboratory, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8850, Japan
| |
Collapse
|
21
|
Van Eck L, Davidson RM, Wu S, Zhao BY, Botha AM, Leach JE, Lapitan NLV. The transcriptional network of WRKY53 in cereals links oxidative responses to biotic and abiotic stress inputs. Funct Integr Genomics 2014; 14:351-62. [PMID: 24777609 PMCID: PMC4059961 DOI: 10.1007/s10142-014-0374-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 11/26/2022]
Abstract
The transcription factor WRKY53 is expressed during biotic and abiotic stress responses in cereals, but little is currently known about its regulation, structure and downstream targets. We sequenced the wheat ortholog TaWRKY53 and its promoter region, which revealed extensive similarity in gene architecture and cis-acting regulatory elements to the rice ortholog OsWRKY53, including the presence of stress-responsive abscisic acid-responsive elements (ABRE) motifs and GCC-boxes. Four proteins interacted with the WRKY53 promoter in yeast one-hybrid assays, suggesting that this gene can receive inputs from diverse stress-related pathways such as calcium signalling and senescence, and environmental cues such as drought and ultraviolet radiation. The Ser/Thr receptor kinase ORK10/LRK10 and the apoplastic peroxidase POC1 are two downstream targets for regulation by the WRKY53 transcription factor, predicted based on the presence of W-box motifs in their promoters and coregulation with WRKY53, and verified by electrophoretic mobility shift assay (EMSA). Both ORK10/LRK10 and POC1 are upregulated during cereal responses to pathogens and aphids and important components of the oxidative burst during the hypersensitive response. Taken with our yeast two-hybrid assay which identified a strong protein-protein interaction between microsomal glutathione S-transferase 3 and WRKY53, this implies that the WRKY53 transcriptional network regulates oxidative responses to a wide array of stresses.
Collapse
Affiliation(s)
- Leon Van Eck
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
- Department of Genetics, Stellenbosch University, Stellenbosch, Western Cape 7600 South Africa
| | - Rebecca M. Davidson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523 USA
- Integrated Center for Genes, Environment & Health, National Jewish Health, Denver, CO 80206 USA
| | - Shuchi Wu
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061 USA
| | - Bingyu Y. Zhao
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061 USA
| | - Anna-Maria Botha
- Department of Genetics, Stellenbosch University, Stellenbosch, Western Cape 7600 South Africa
| | - Jan E. Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523 USA
| | - Nora L. V. Lapitan
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
22
|
Zhang Y, Han J, Liu D, Wen X, Li Y, Tao R, Peng Y, Fang J, Wang C. Genome-wide identification and analysis of FK506-binding protein gene family in peach (Prunus persica). Gene 2014; 536:416-24. [PMID: 24342662 DOI: 10.1016/j.gene.2013.10.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/23/2013] [Accepted: 10/28/2013] [Indexed: 10/25/2022]
Abstract
The FKBP protein family has prolyl isomerase activity and is related in function to cyclophilins. FKBPs are known to be involved in many biological processes including hormone signaling, plant growth, and stress responses through a chaperone or an isomerization of proline residues during protein folding. The availability of complete peach genome sequences allowed the identification of 21 FKBP genes by HMMER and BLAST analyses. Scaffold locations of these FKBP genes in the peach genome were determined and the protein domain and motif organization of peach FKBPs were analyzed. The phylogenetic relationships between peach FKBPs were also assessed. The expression profiles of peach FKBP gene results revealed that most peach FKBPs were expressed in all tissues, while a few peach FKBPs were specifically expressed in some of the tissues. This data could contribute to better understanding of the complex regulation of the peach FKBP gene family, and also provide valuable information for further research in peach functional genomics.
Collapse
Affiliation(s)
- Yanping Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jan Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xicheng Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ran Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongbin Peng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
Shangguan L, Wang X, Leng X, Liu D, Ren G, Tao R, Zhang C, Fang J. Identification and bioinformatic analysis of signal responsive/calmodulin-binding transcription activators gene models in Vitis vinifera. Mol Biol Rep 2014; 41:2937-49. [PMID: 24458826 DOI: 10.1007/s11033-014-3150-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/13/2014] [Indexed: 12/17/2022]
Abstract
In this study, 10 grapevine (Vitis vinifera) SR/CAMTA (Signal Responsive/Calmodulin-binding Transcription Activators) gene models were identified from three grapevine genome protein datasets. They belong to four gene groups: VvCAMTA1, VvCAMTA3, VvCAMTA4 and VvCAMTA5, which were located on chromosome 5, 7_random, 1 and 5, respectively. Alternative splicing could explain the multiple gene models in one gene group. Subcellular localization using the WoLF tool showed that most of the VvCAMTAs were located in the nucleus, except for VvCAMTA3.1, VvCAMTA3.2 and VvCAMTA5.2, which were located in the chloroplast, chloroplast and cytosol, respectively. Subcellular localization using TargetP showed that most of the VvCAMTAs were not located in the chloroplast, mitochondrion and secretory pathway in cells. VvCAMTA1.1 and VvCAMTA1.2 were located in the mitochondria. The digital gene expression profile showed that VvCAMTAs play important roles in Ca2+ signal transduction. The gene expression patterns of VvCAMTAs were different; for example, VvCAMTA1 was expressed mainly in the bud, while VvCAMTA3 was expressed mainly in fruit and inflorescence, with low expression in the bud. The results of this study make a substantial contribution to our knowledge concerning genes, genome annotation, and cell signal transduction in grapevine.
Collapse
Affiliation(s)
- Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Leng X, Liu D, Zhao M, Sun X, Li Y, Mu Q, Zhu X, Li P, Fang J. Genome-wide identification and analysis of FK506-binding protein family gene family in strawberry (Fragaria × ananassa). Gene 2013; 534:390-9. [PMID: 24230972 DOI: 10.1016/j.gene.2013.08.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 01/03/2023]
Abstract
The FK506 binding proteins (FKBPs) are abundant and ubiquitous proteins belonging to the large peptidyl-prolylcis-trans isomerase superfamily. FKBPs are known to be involved in many biological processes including hormone signaling, plant growth, and stress responses through a chaperone or an isomerization of proline residues during protein folding. The availability of complete strawberry genome sequences allowed the identification of 23 FKBP genes by HMMER and blast analysis. Chromosome scaffold locations of these FKBP genes in the strawberry genome were determined and the protein domain and motif organization of FaFKBPs analyzed. The phylogenetic relationships between strawberry FKBPs were also assessed. The expression profiles of FaFKBPs genes results revealed that most FaFKBPs were expressed in all tissues, while a few FaFKBPs were specifically expressed in some of the tissues. These data not only contribute to some better understanding of the complex regulation of the strawberry FKBP gene family, but also provide valuable information for further research in strawberry functional genomics.
Collapse
Affiliation(s)
- Xiangpeng Leng
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR China
| | - Dan Liu
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR China
| | - Mizhen Zhao
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, Nanjing 210014, PR China
| | - Xin Sun
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR China
| | - Yu Li
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR China
| | - Qian Mu
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR China
| | - Pengyu Li
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR China.
| |
Collapse
|
25
|
Li MW, Qi X, Ni M, Lam HM. Silicon era of carbon-based life: application of genomics and bioinformatics in crop stress research. Int J Mol Sci 2013; 14:11444-83. [PMID: 23759993 PMCID: PMC3709742 DOI: 10.3390/ijms140611444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/07/2013] [Accepted: 05/17/2013] [Indexed: 01/25/2023] Open
Abstract
Abiotic and biotic stresses lead to massive reprogramming of different life processes and are the major limiting factors hampering crop productivity. Omics-based research platforms allow for a holistic and comprehensive survey on crop stress responses and hence may bring forth better crop improvement strategies. Since high-throughput approaches generate considerable amounts of data, bioinformatics tools will play an essential role in storing, retrieving, sharing, processing, and analyzing them. Genomic and functional genomic studies in crops still lag far behind similar studies in humans and other animals. In this review, we summarize some useful genomics and bioinformatics resources available to crop scientists. In addition, we also discuss the major challenges and advancements in the "-omics" studies, with an emphasis on their possible impacts on crop stress research and crop improvement.
Collapse
Affiliation(s)
- Man-Wah Li
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Xinpeng Qi
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Meng Ni
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Hon-Ming Lam
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| |
Collapse
|
26
|
Whole genome identification and analysis of FK506-binding protein family genes in grapevine (Vitis vinifera L.). Mol Biol Rep 2012; 40:4015-31. [PMID: 23269629 DOI: 10.1007/s11033-012-2480-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
In plant and animal species FK506-binding protein (FKBP) family genes are important conserved genes and it is defined as the receptors of FK506 and rapamycin, where they work as PPIase and protein folding chaperones. FKBP have been isolated from Arabidopsis thaliana, Oryza sativa, and Zea mays. In grape, twenty-three genes containing the FK506-binding domain (FKBP_C) were first time identified by HMMER and blast research, they were classified into three groups and 17 out of the 23 genes were located on 11 chromosomes (Chr1, 3, 5, 7, 8, 14, 15, 16, 17, 18, and 19). The predicted gene expression pattern and semi-quantitative RT-PCR results revealed that five VvFKBPs were expressed in all tissues, while seven VvFKBPs were expressed only in some of the tissues, and the remaining VvFKBPs were not expressed in leaf, stem, inflorescences, flowers, and a mixture of fruit tissues (small, medium and big-sized fruits). Most of the VvFKBPs in grapevine 'Summer Black' were similar to those predicted one in 'Pinot Noir' except for VvFKBP16-4 and VvFKBPa. VvFKBP12, FaFKBP12 and PpFKBP12 were cloned from 'Summer Black', 'Sweet Charlie' and 'Xiahui 6'. Protein structure analysis confirmed that homologous genes have some differences during the process of protein structure construction. In this study, we characterized and verified 23 FKBP family genes in grapevine (Vitis vinifera L.) as well as their sub-cellular and chromosome location. The successful cloning of CDS regions and protein structural analysis of VvFKBP12, FaFKBP12, and PpFKBP12 can provide useful information for further study.
Collapse
|
27
|
Karali D, Oxley D, Runions J, Ktistakis N, Farmaki T. The Arabidopsis thaliana immunophilin ROF1 directly interacts with PI(3)P and PI(3,5)P2 and affects germination under osmotic stress. PLoS One 2012; 7:e48241. [PMID: 23133621 PMCID: PMC3487907 DOI: 10.1371/journal.pone.0048241] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 09/21/2012] [Indexed: 01/03/2023] Open
Abstract
A direct interaction of the Arabidopsis thaliana immunophilin ROF1 with phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate was identified using a phosphatidylinositol-phosphate affinity chromatography of cell suspension extracts, combined with a mass spectrometry (nano LC ESI-MS/MS) analysis. The first FK506 binding domain was shown sufficient to bind to both phosphatidylinositol-phosphate stereoisomers. GFP-tagged ROF1 under the control of a 35S promoter was localised in the cytoplasm and the cell periphery of Nicotiana tabacum leaf explants. Immunofluorescence microscopy of Arabidopsis thaliana root tips verified its cytoplasmic localization and membrane association and showed ROF1 localization in the elongation zone which was expanded to the meristematic zone in plants grown on high salt media. Endogenous ROF1 was shown to accumulate in response to high salt treatment in Arabidopsis thaliana young leaves as well as in seedlings germinated on high salt media (0.15 and 0.2 M NaCl) at both an mRNA and protein level. Plants over-expressing ROF1, (WSROF1OE), exhibited enhanced germination under salinity stress which was significantly reduced in the rof1(-) knock out mutants and abolished in the double mutants of ROF1 and of its interacting homologue ROF2 (WSrof1(-)/2(-)). Our results show that ROF1 plays an important role in the osmotic/salt stress responses of germinating Arabidopsis thaliana seedlings and suggest its involvement in salinity stress responses through a phosphatidylinositol-phosphate related protein quality control pathway.
Collapse
Affiliation(s)
- Debora Karali
- Institute of Applied Biosciences, Centre for Research and Technology – Hellas, Thermi, Thessaloniki, Greece
| | - David Oxley
- The Mass Spectrometry Group, Babraham Institute, Cambridge, United Kingdom
| | - John Runions
- School of Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | | | - Theodora Farmaki
- Institute of Applied Biosciences, Centre for Research and Technology – Hellas, Thermi, Thessaloniki, Greece
| |
Collapse
|
28
|
Gollan PJ, Bhave M, Aro EM. The FKBP families of higher plants: Exploring the structures and functions of protein interaction specialists. FEBS Lett 2012; 586:3539-47. [PMID: 22982859 DOI: 10.1016/j.febslet.2012.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 08/31/2012] [Accepted: 09/03/2012] [Indexed: 01/24/2023]
Abstract
The FK506-binding proteins (FKBPs) are known both as the receptors for immunosuppressant drugs and as prolyl isomerase (PPIase) enzymes that catalyse rotation of prolyl bonds. FKBPs are characterised by the inclusion of at least one FK506-binding domain (FKBd), the receptor site for proline and the active site for PPIase catalysis. The FKBPs form large and diverse families in most organisms, with the largest FKBP families occurring in higher plants. Plant FKBPs are molecular chaperones that interact with specific protein partners to regulate a diversity of cellular processes. Recent studies have found that plant FKBPs operate in intricate and coordinated mechanisms for regulating stress response and development processes, and discoveries of new interaction partners expand their cellular influences to gene expression and photosynthetic adaptations. This review presents an examination of the molecular and structural features and functional roles of the higher plant FKBP family within the context of these recent findings, and discusses the significance of domain conservation and variation for the development of a diverse, versatile and complex chaperone family.
Collapse
Affiliation(s)
- Peter J Gollan
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia.
| | | | | |
Collapse
|
29
|
Preall JB, Czech B, Guzzardo PM, Muerdter F, Hannon GJ. shutdown is a component of the Drosophila piRNA biogenesis machinery. RNA (NEW YORK, N.Y.) 2012; 18:1446-57. [PMID: 22753781 PMCID: PMC3404366 DOI: 10.1261/rna.034405.112] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 05/03/2023]
Abstract
In animals, the piRNA pathway preserves the integrity of gametic genomes, guarding them against the activity of mobile genetic elements. This innate immune mechanism relies on distinct genomic loci, termed piRNA clusters, to provide a molecular definition of transposons, enabling their discrimination from genes. piRNA clusters give rise to long, single-stranded precursors, which are processed into primary piRNAs through an unknown mechanism. These can engage in an adaptive amplification loop, the ping-pong cycle, to optimize the content of small RNA populations via the generation of secondary piRNAs. Many proteins have been ascribed functions in either primary biogenesis or the ping-pong cycle, though for the most part the molecular functions of proteins implicated in these pathways remain obscure. Here, we link shutdown (shu), a gene previously shown to be required for fertility in Drosophila, to the piRNA pathway. Analysis of knockdown phenotypes in both the germline and somatic compartments of the ovary demonstrate important roles for shutdown in both primary biogenesis and the ping-pong cycle. shutdown is a member of the FKBP family of immunophilins. Shu contains domains implicated in peptidyl-prolyl cis-trans isomerase activity and in the binding of HSP90-family chaperones, though the relevance of these domains to piRNA biogenesis is unknown.
Collapse
Affiliation(s)
- Jonathan B. Preall
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Benjamin Czech
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Paloma M. Guzzardo
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Felix Muerdter
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Gregory J. Hannon
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
30
|
Yu Y, Zhang H, Li W, Mu C, Zhang F, Wang L, Meng Z. Genome-wide analysis and environmental response profiling of the FK506-binding protein gene family in maize (Zea mays L.). Gene 2012; 498:212-22. [PMID: 22366304 DOI: 10.1016/j.gene.2012.01.094] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
Abstract
The FK506-binding proteins (FKBPs) belong to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily, and have been implicated in a wide spectrum of biological processes, including protein folding, hormone signaling, plant growth, and stress responses. Genome-wide structural and evolutionary analyses of the entire FKBP gene family have been conducted in Arabidopsis and rice. In the present study, a genome-wide analysis was performed to identify all maize FKBP genes. The availability of complete maize genome sequences allowed for the identification of 24 FKBP genes. Chromosomal locations in the maize genome were determined and the protein domain and motif organization of ZmFKBPs analyzed. The phylogenetic relationships between maize FKBPs were also assessed. The expression profiles of ZmFKBP genes were measured under different environmental conditions and revealed distinct ZmFKBP gene expression patterns under heat, cold, salt, and drought stress. These data not only contribute to a better understanding of the complex regulation of the maize FKBP gene family, but also provide evidence supporting the role of FKBPs in multiple signaling pathways involved in stress responses. This investigation may provide valuable information for further research on stress tolerance in plants and potential strategies for enhancing maize survival under stressful conditions.
Collapse
Affiliation(s)
- Yanli Yu
- Maize Institute, Shandong Academy of Agricultural Sciences/National Maize Improvement Sub-Center, Jinan, Shandong 250100, PR China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Gollan PJ, Ziemann M, Bhave M. PPIase activities and interaction partners of FK506-binding proteins in the wheat thylakoid. PHYSIOLOGIA PLANTARUM 2011; 143:385-395. [PMID: 21848652 DOI: 10.1111/j.1399-3054.2011.01503.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
FK506-binding proteins (FKBPs) and cyclophilins, collectively called immunophilins, conserve peptidyl-prolyl cis/trans isomerase (PPIase) active sites, although many lack PPIase activity. The chloroplast thylakoid contains a large proportion of the plant immunophilin family, but their functions within this compartment are unclear. Some lumenal immunophilins are important for assembly of photosynthetic complexes, implicating them in the maintenance and turnover of the photosynthetic apparatus during acclimation processes. In this investigation into the functions of three FKBPs localized to the thylakoid of Triticum aestivum (wheat), we present the first evidence of PPIase activity in the thylakoid of a cereal plant, and also show that PPIase activity is not conserved in all lumenal FKBPs. Using yeast two-hybrid analysis we found that the PPIase-active FKBP13 interacts with the globular domain of the wheat Rieske protein, with potential impact on photosynthetic electron transfer. Specific interaction partners for PPIase-deficient FKBP16-1 and FKBP16-3 link these isoforms to photosystem assembly.
Collapse
Affiliation(s)
- Peter J Gollan
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia
| | | | | |
Collapse
|
32
|
Sangsuriya P, Senapin S, Huang WP, Lo CF, Flegel TW. Co-interactive DNA-binding between a novel, immunophilin-like shrimp protein and VP15 nucleocapsid protein of white spot syndrome virus. PLoS One 2011; 6:e25420. [PMID: 21980453 PMCID: PMC3183051 DOI: 10.1371/journal.pone.0025420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 09/05/2011] [Indexed: 01/11/2023] Open
Abstract
White spot syndrome virus (WSSV) is one of the most serious pathogens of penaeid shrimp. Although its genome has been completely characterized, the functions of most of its putative proteins are not yet known. It has been suggested that the major nucleocapsid protein VP15 is involved in packaging of the WSSV genome during virion formation. However, little is known in its relationship with shrimp host cells. Using the yeast two-hybrid approach to screen a shrimp lymphoid organ (LO) cDNA library for proteins that might interact with VP15, a protein named PmFKBP46 was identified. It had high sequence similarity to a 46 kDa-immunophilin called FKBP46 from the lepidopteran Spodoptera frugiperda (the fall armyworm). The full length PmFKBP46 consisted of a 1,257-nucleotide open reading frame with a deduced amino acid sequence of 418 residues containing a putative FKBP-PPIase domain in the C-terminal region. Results from a GST pull-down assay and histological co-localization revealed that VP15 physically interacted with PmFKBP46 and that both proteins shared the same subcellular location in the nucleus. An electrophoretic mobility shift assay indicated that PmFKBP46 possessed DNA-binding activity and functionally co-interacted with VP15 in DNA binding. The overall results suggested that host PmFKBP46 might be involved in genome packaging by viral VP15 during virion assembly.
Collapse
Affiliation(s)
- Pakkakul Sangsuriya
- Centex Shrimp, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Saengchan Senapin
- Centex Shrimp, Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Wei-Pang Huang
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Chu-Fang Lo
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Timothy W. Flegel
- Centex Shrimp, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
33
|
Ahn JC, Kim DW, You YN, Seok MS, Park JM, Hwang H, Kim BG, Luan S, Park HS, Cho HS. Classification of rice (Oryza sativa L. Japonica nipponbare) immunophilins (FKBPs, CYPs) and expression patterns under water stress. BMC PLANT BIOLOGY 2010; 10:253. [PMID: 21087465 PMCID: PMC3012604 DOI: 10.1186/1471-2229-10-253] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/18/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND FK506 binding proteins (FKBPs) and cyclophilins (CYPs) are abundant and ubiquitous proteins belonging to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily, which regulate much of metabolism through a chaperone or an isomerization of proline residues during protein folding. They are collectively referred to as immunophilin (IMM), being present in almost all cellular organs. In particular, a number of IMMs relate to environmental stresses. RESULTS FKBP and CYP proteins in rice (Oryza sativa cv. Japonica) were identified and classified, and given the appropriate name for each IMM, considering the ortholog-relation with Arabidopsis and Chlamydomonas or molecular weight of the proteins. 29 FKBP and 27 CYP genes can putatively be identified in rice; among them, a number of genes can be putatively classified as orthologs of Arabidopsis IMMs. However, some genes were novel, did not match with those of Arabidopsis and Chlamydomonas, and several genes were paralogs by genetic duplication. Among 56 IMMs in rice, a significant number are regulated by salt and/or desiccation stress. In addition, their expression levels responding to the water-stress have been analyzed in different tissues, and some subcellular IMMs located by means of tagging with GFP protein. CONCLUSION Like other green photosynthetic organisms such as Arabidopsis (23 FKBPs and 29 CYPs) and Chlamydomonas (23 FKBs and 26 CYNs), rice has the highest number of IMM genes among organisms reported so far, suggesting that the numbers relate closely to photosynthesis. Classification of the putative FKBPs and CYPs in rice provides the information about their evolutional/functional significance when comparisons are drawn with the relatively well studied genera, Arabidopsis and Chlamydomonas. In addition, many of the genes upregulated by water stress offer the possibility of manipulating the stress responses in rice.
Collapse
Affiliation(s)
- Jun Cheul Ahn
- Department of Biological Science, Seonam University, Namwon 590-711, Korea
| | - Dae-Won Kim
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-306, Korea
| | - Young Nim You
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-506, Korea
| | - Min Sook Seok
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-506, Korea
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-506, Korea
| | - Hyunsik Hwang
- Bio-crops Development Division, National Academy of Agricultural Science, RDA, Suwon, Korea
| | - Beom-Gi Kim
- Bio-crops Development Division, National Academy of Agricultural Science, RDA, Suwon, Korea
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Hong-Seog Park
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-306, Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-506, Korea
| |
Collapse
|
34
|
Gollan PJ, Bhave M. A thylakoid-localised FK506-binding protein in wheat may be linked to chloroplast biogenesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:655-662. [PMID: 20570161 DOI: 10.1016/j.plaphy.2010.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 04/21/2010] [Accepted: 05/03/2010] [Indexed: 05/29/2023]
Abstract
Plant chloroplasts contain a large proportion of immunophilins, comprising the FK506-binding proteins (FKBPs) and cyclophilins (CYPs), which are members of the peptidyl-prolyl cis/trans isomerase (PPIase) family of proline-folding enzymes. Some of the chloroplastic immunophilins are known to chaperone certain photosynthetic proteins, however the functions of a majority of these proteins are unknown. This work focussed on characterisation of genes encoding the chloroplast-localised FKBP16-1 from wheat and its progenitor species, and identification of its putative promoters, as well as investigations into the effects of light regulation and plant development on its expression. The work identified several alternatively spliced FKBP16-1 transcripts, indicating expression of FKBP16-1 may be post-transcriptionally regulated. FKBP16-1 was expressed in both green and etiolated tissues, and highest levels were detected in developing tissues, indicating a role in chloroplast biogenesis. We also report a novel transcription module, designated 'chloroplast biogenesis module' (CBM) in the FKBP16-1 promoter of cereals that also appears to be involved in the regulation of additional genes involved in chloroplast biogenesis or other aspects of plant development. The results point to considerable potential for a role for FKBP16-1 in early chloroplast development, architecture of photosynthetic apparatus and plant development.
Collapse
Affiliation(s)
- Peter J Gollan
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, P O Box 218, Hawthorn, Victoria 3122, Australia
| | | |
Collapse
|