1
|
Ossetek KL, Müller AT, Mithöfer A. Robotic mechanical wounding is sufficient to induce phenylacetaldoxime accumulation in Tococa quadrialata. PLANT SIGNALING & BEHAVIOR 2024; 19:2360298. [PMID: 38813798 PMCID: PMC11141477 DOI: 10.1080/15592324.2024.2360298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
This study investigated the accumulation of phenlyacetaldoxime (PAOx) and PAOx-Glc in Tococa quadrialata leaves in response to herbivore infestation and mechanical wounding. Results show that PAOx levels peaked at 24 h post-infestation, while PAOx-Glc remained present for several days. The accumulation of PAOx began as early as 3 h after herbivory, with PAOx-Glc significantly increased after 6 h. Mechanical wounding induced similar responses in PAOx and PAOx-Glc accumulation as herbivory, suggesting that continuous tissue damage triggers the production of these compounds. Interestingly, SpitWorm-treated leaves showed the highest levels of both PAOx and PAOx-Glc, indicating that herbivore-derived oral secretions (OS) play a role in the induction of these compounds. Additionally, JA-independent PAOx production was found to be associated with tissue damage rather than specific known signaling compounds. Emission of benzyl cyanide and 2-phenylethanol, PAOx-derived plant volatiles, was observed in response to herbivory and SpitWorm treatment providing plant-derived OS, further highlighting the role of herbivore cues in plant defense responses.
Collapse
Affiliation(s)
- Kilian Lucas Ossetek
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Andrea Teresa Müller
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
2
|
Chen F, Zang J, Wang Z, Wang J, Shi L, Xiu Y, Lin S, Lin W. Mandelonitrile lyase MDL2-mediated regulation of seed amygdalin and oil accumulation of Prunus Sibirica. BMC PLANT BIOLOGY 2024; 24:590. [PMID: 38902595 PMCID: PMC11191352 DOI: 10.1186/s12870-024-05300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The Prunus sibirica seeds with rich oils has great utilization, but contain amygdalin that can be hydrolyzed to release toxic HCN. Thus, how to effectively reduce seed amygdalin content of P. sibirica is an interesting question. Mandelonitrile is known as one key intermediate of amygdalin metabolism, but which mandelonitrile lyase (MDL) family member essential for its dissociation destined to low amygdalin accumulation in P. sibirica seeds still remains enigmatic. An integration of our recent 454 RNA-seq data, amygdalin and mandelonitrile content detection, qRT-PCR analysis and function determination is described as a critical attempt to determine key MDL and to highlight its function in governing mandelonitrile catabolism with low amygdalin accumulation in Prunus sibirica seeds for better developing edible oil and biodiesel in China. RESULTS To identify key MDL and to unravel its function in governing seed mandelonitrile catabolism with low amygdalin accumulation in P. sibirica. Global identification of mandelonitrile catabolism-associated MDLs, integrated with the across-accessions/developing stages association of accumulative amount of amygdalin and mandelonitrile with transcriptional level of MDLs was performed on P. sibirica seeds of 5 accessions to determine crucial MDL2 for seed mandelonitrile catabolism of P. sibirica. MDL2 gene was cloned from the seeds of P. sibirica, and yeast eukaryotic expression revealed an ability of MDL2 to specifically catalyze the dissociation of mandelonitrile with the ideal values of Km (0.22 mM) and Vmax (178.57 U/mg). A combination of overexpression and mutation was conducted in Arabidopsis. Overexpression of PsMDL2 decreased seed mandelonitrile content with an increase of oil accumulation, upregulated transcript of mandelonitrile metabolic enzymes and oil synthesis enzymes (involving FA biosynthesis and TAG assembly), but exhibited an opposite situation in mdl2 mutant, revealing a role of PsMDL2-mediated regulation in seed amygdalin and oil biosynthesis. The PsMDL2 gene has shown as key molecular target for bioengineering high seed oil production with low amygdalin in oilseed plants. CONCLUSIONS This work presents the first integrated assay of genome-wide identification of mandelonitrile catabolism-related MDLs and the comparative association of transcriptional level of MDLs with accumulative amount of amygdalin and mandelonitrile in the seeds across different germplasms and developmental periods of P. sibirica to determine MDL2 for mandelonitrile dissociation, and an effective combination of PsMDL2 expression and mutation, oil and mandelonitrile content detection and qRT-PCR assay was performed to unravel a mechanism of PsMDL2 for controlling amygdalin and oil production in P. sibirica seeds. These findings could offer new bioengineering strategy for high oil production with low amygdalin in oil plants.
Collapse
Affiliation(s)
- Feng Chen
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Junxin Zang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Zirui Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Jing Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Lingling Shi
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Yu Xiu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Weijun Lin
- West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China.
| |
Collapse
|
3
|
Liu M, Li S. Nitrile biosynthesis in nature: how and why? Nat Prod Rep 2024; 41:649-671. [PMID: 38193577 DOI: 10.1039/d3np00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Covering: up to the end of 2023Natural nitriles comprise a small set of secondary metabolites which however show intriguing chemical and functional diversity. Various patterns of nitrile biosynthesis can be seen in animals, plants, and microorganisms with the characteristics of both evolutionary divergence and convergence. These specialized compounds play important roles in nitrogen metabolism, chemical defense against herbivores, predators and pathogens, and inter- and/or intraspecies communications. Here we review the naturally occurring nitrile-forming pathways from a biochemical perspective and discuss the biological and ecological functions conferred by diversified nitrile biosyntheses in different organisms. Elucidation of the mechanisms and evolutionary trajectories of nitrile biosynthesis underpins better understandings of nitrile-related biology, chemistry, and ecology and will ultimately benefit the development of desirable nitrile-forming biocatalysts for practical applications.
Collapse
Affiliation(s)
- Mingyu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
4
|
Coupel-Ledru A, Westgeest AJ, Albasha R, Millan M, Pallas B, Doligez A, Flutre T, Segura V, This P, Torregrosa L, Simonneau T, Pantin F. Clusters of grapevine genes for a burning world. THE NEW PHYTOLOGIST 2024; 242:10-18. [PMID: 38320579 DOI: 10.1111/nph.19540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024]
Affiliation(s)
| | | | - Rami Albasha
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
- ITK, 45 Allée Yves Stourdze, F-34830, Clapiers, France
| | - Mathilde Millan
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Benoît Pallas
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Agnès Doligez
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398, Montpellier, France
| | - Timothée Flutre
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398, Montpellier, France
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, 91190, Gif-sur-Yvette, France
| | - Vincent Segura
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398, Montpellier, France
| | - Patrice This
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398, Montpellier, France
| | - Laurent Torregrosa
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398, Montpellier, France
| | | | - Florent Pantin
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| |
Collapse
|
5
|
Yamaguchi T, Asano Y. Nitrile-synthesizing enzymes and biocatalytic synthesis of volatile nitrile compounds: A review. J Biotechnol 2024; 384:20-28. [PMID: 38395363 DOI: 10.1016/j.jbiotec.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Nitriles (R-CN) comprise a broad group of chemicals industrially produced and used in fine chemicals, pharmaceuticals, and bulk applications, polymer chemistry, solvents, etc. Nitriles are important starting materials for producing carboxylic acids, amides, amines, and several other compounds. In addition, some volatile nitriles have been evaluated for their potential as ingredients in fragrance and flavor formulations. However, many nitrile synthesis methods have drawbacks, such as drastic reaction conditions, limited substrate scope, lack of readily available reagents, poor yields, and long reaction times. In contrast to chemical synthesis, biocatalytic approaches using enzymes can produce nitriles without harsh conditions, such as high temperatures and pressures, or toxic compounds. In this review, we summarize the nitrile-synthesizing enzymes from microorganisms, plants, and animals. Furthermore, we introduce several examples of biocatalytic synthesis of volatile nitrile compounds, particularly those using aldoxime dehydratase.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
6
|
Zhang Y, Bao W, Wuyun TN, Huang M, Chen C, Ao D, Yang R, Huang H, Wang L. Transcriptome analysis reveals genes associated with the bitter-sweet trait of apricot kernels. FORESTRY RESEARCH 2024; 4:e007. [PMID: 39524411 PMCID: PMC11524293 DOI: 10.48130/forres-0024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 11/16/2024]
Abstract
Prunasin and amygdalin are important factors that influence the kernel taste of apricots, however, the regulatory mechanisms underlying this are unclear. In this study, we analyzed the phenotype and transcriptome of kernels during development in Prunus sibirica (bitter kernels) and Prunus armeniaca × Prunus sibirica (kernel consumption apricot, sweet kernels). Prunasin and amygdalin content was significantly higher in bitter kernels compared with that in sweet kernels. Prunasin content exhibited a decreasing trend in both bitter and sweet kernels. The fastest decline was observed in bitter and sweet kernels during S3-S4 (82.21%) and S2-S3 (59.65%), respectively. The amygdalin content in the bitter kernels exhibited the fastest increase between 45-60 d after flowering, and reached a peak at 6.22% on 60 d after flowering. In contrast, the peak in sweet kernels occurred at 60 d after flowering, with a much lower content of 0.18%. Transcriptome analysis revealed 6,942 differentially expressed genes (DEGs), with a subset of 38 DEGs specifically enriched in the cyanoamino acid metabolic pathway. Among these, the ten candidate genes, including CYP79, CYP71, UGT1, AH, and PH, were identified as crucial in regulating prunasin and amygdalin metabolism. Furthermore, a weighted gene co-expression network analysis (WGCNA) unveiled two modules that exhibited significant correlation with prunasin and amygdalin content. Five DEGs were located at the center of the co-expression network, and were identified as hub genes, with four positively regulating prunasin content and one negatively regulating amygdalin content. Our results provide novel insights into the molecular-level regulation of the apricot kernel taste.
Collapse
Affiliation(s)
- Yu Zhang
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenquan Bao
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ta-na Wuyun
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Mengzhen Huang
- College of Resources and Environmental Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Chen Chen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Dun Ao
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rong Yang
- Inner Mongolia Academy of Forestry, Hohhot 010010, China
| | - Haiguang Huang
- Inner Mongolia Academy of Forestry, Hohhot 010010, China
| | - Lin Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| |
Collapse
|
7
|
Yamaguchi T. Exploration and utilization of novel aldoxime, nitrile, and nitro compounds metabolizing enzymes from plants and arthropods. Biosci Biotechnol Biochem 2024; 88:138-146. [PMID: 38017623 DOI: 10.1093/bbb/zbad168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Aldoxime (R1R2C=NOH) and nitrile (R-C≡N) are nitrogen-containing compounds that are found in species representing all kingdoms of life. The enzymes discovered from the microbial "aldoxime-nitrile" pathway (aldoxime dehydratase, nitrile hydratase, amidase, and nitrilase) have been thoroughly studied because of their industrial importance. Although plants utilize cytochrome P450 monooxygenases to produce aldoxime and nitrile, many biosynthetic pathways are yet to be studied. Cyanogenic millipedes accumulate various nitrile compounds, such as mandelonitrile. However, no such aldoxime- and nitrile-metabolizing enzymes have been identified in millipedes. Here, I review the exploration of novel enzymes from plants and millipedes with characteristics distinct from those of microbial enzymes, the catalysis of industrially useful reactions, and applications of these enzymes for nitrile compound production.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University , Imizu, Toyama, Japan
| |
Collapse
|
8
|
Müller AT, Nakamura Y, Reichelt M, Luck K, Cosio E, Lackus ND, Gershenzon J, Mithöfer A, Köllner TG. Biosynthesis, herbivore induction, and defensive role of phenylacetaldoxime glucoside. PLANT PHYSIOLOGY 2023; 194:329-346. [PMID: 37584327 PMCID: PMC10756763 DOI: 10.1093/plphys/kiad448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 08/17/2023]
Abstract
Aldoximes are well-known metabolic precursors for plant defense compounds such as cyanogenic glycosides, glucosinolates, and volatile nitriles. They are also defenses themselves produced in response to herbivory; however, it is unclear whether aldoximes can be stored over a longer term as defense compounds and how plants protect themselves against the potential autotoxic effects of aldoximes. Here, we show that the Neotropical myrmecophyte tococa (Tococa quadrialata, recently renamed Miconia microphysca) accumulates phenylacetaldoxime glucoside (PAOx-Glc) in response to leaf herbivory. Sequence comparison, transcriptomic analysis, and heterologous expression revealed that 2 cytochrome P450 enzymes, CYP79A206 and CYP79A207, and the UDP-glucosyltransferase UGT85A123 are involved in the formation of PAOx-Glc in tococa. Another P450, CYP71E76, was shown to convert PAOx to the volatile defense compound benzyl cyanide. The formation of PAOx-Glc and PAOx in leaves is a very local response to herbivory but does not appear to be regulated by jasmonic acid signaling. In contrast to PAOx, which was only detectable during herbivory, PAOx-Glc levels remained high for at least 3 d after insect feeding. This, together with the fact that gut protein extracts of 3 insect herbivore species exhibited hydrolytic activity toward PAOx-Glc, suggests that the glucoside is a stable storage form of a defense compound that may provide rapid protection against future herbivory. Moreover, the finding that herbivory or pathogen elicitor treatment also led to the accumulation of PAOx-Glc in 3 other phylogenetically distant plant species suggests that the formation and storage of aldoxime glucosides may represent a widespread plant defense response.
Collapse
Affiliation(s)
- Andrea T Müller
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
- Pontifical Catholic University of Peru, Institute for Nature Earth and Energy (INTE-PUCP), San Miguel 15088, Lima, Peru
| | - Yoko Nakamura
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
- Department of Natural Product Research, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Katrin Luck
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Eric Cosio
- Pontifical Catholic University of Peru, Institute for Nature Earth and Energy (INTE-PUCP), San Miguel 15088, Lima, Peru
| | - Nathalie D Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Tobias G Köllner
- Department of Natural Product Research, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| |
Collapse
|
9
|
Chen C, Zhang K, Liu F, Wang X, Yao Y, Niu X, He Y, Hong J, Liu F, Gao Q, Zhang Y, Li Y, Wang M, Lin J, Fan Y, Ren K, Shen L, Gao B, Ren X, Yang W, Georgiev MI, Zhang X, Zhou M. Resequencing of global Lotus corniculatus accessions reveals population distribution and genetic loci, associated with cyanogenic glycosides accumulation and growth traits. BMC Biol 2023; 21:176. [PMID: 37592232 PMCID: PMC10433565 DOI: 10.1186/s12915-023-01670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Lotus corniculatus is a widely distributed perennial legume whose great adaptability to different environments and resistance to barrenness make it an excellent forage and ecological restoration plant. However, its molecular genetics and genomic relationships among populations are yet to be uncovered. RESULT Here we report on a genomic variation map from worldwide 272 L. corniculatus accessions by genome resequencing. Our analysis suggests that L. corniculatus accessions have high genetic diversity and could be further divided into three subgroups, with the genetic diversity centers were located in Transcaucasia. Several candidate genes and SNP site associated with CNglcs content and growth traits were identified by genome-wide associated study (GWAS). A non-synonymous in LjMTR was responsible for the decreased expression of CNglcs synthesis genes and LjZCD was verified to positively regulate CNglcs synthesis gene CYP79D3. The LjZCB and an SNP in LjZCA promoter were confirmed to be involved in plant growth. CONCLUSION This study provided a large number of genomic resources and described genetic relationship and population structure among different accessions. Moreover, we attempt to provide insights into the molecular studies and breeding of CNglcs and growth traits in L. corniculatus.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fu Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xia Wang
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing, 100177, China
| | - Yang Yao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaolei Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Hong
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Fang Liu
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Qiu Gao
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Yi Zhang
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Yurong Li
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Meijuan Wang
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Jizhen Lin
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kui Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lunhao Shen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bin Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xue Ren
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weifei Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| |
Collapse
|
10
|
Guo L, Xie F, Huang X, Luo Z. A Chromosome-Level Genome of 'Xiaobaixing' ( Prunus armeniaca L.) Provides Clues to Its Domestication and Identification of Key bHLH Genes in Amygdalin Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2756. [PMID: 37570910 PMCID: PMC10421183 DOI: 10.3390/plants12152756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
Apricot is a widely cultivated fruit tree of the drupe family, and its sweet/bitter kernel traits are important indicators of the quality and merchantability of apricots. The sweetness/bitterness traits were mainly determined by amygdalin content. However, the lack of high-quality genomes has limited insight into the traits. In this study, a high-quality genome of 'Xiaobaixing' was obtained by using single-molecule sequencing and chromosome-conformation capture techniques, with eight chromosomes of 0.21 Gb in length and 52.80% repetitive sequences. A total of 29,157 protein-coding genes were predicted with contigs N50 = 3.56 Mb and scaffold N50 = 26.73 Mb. Construction of phylogenetic trees of 15 species of Rosaceae fruit trees, with 'Xiaobaixing' differentiated by 5.3 Ma as the closest relative to 'Yinxiangbai'. GO functional annotation and KEGG enrichment analysis identified 227 specific gene families to 'Xiaobaixing', with 569 expansion-gene families and 1316 contraction-gene families, including the significant expansion of phenylalanine N-monooxygenase and β-glucosidase genes associated with amygdalin synthesis, significant contraction of wild black cherry glucoside β-glucosidase genes, amygdalin β-glucosidase genes, and β-glucosidase genes, and significant enrichment of positively selected genes in the cyanogenic amino acid metabolic pathway. The 88 bHLH genes were identified in the genome of 'Xiaobaixing', and ParbHLH66 (rna-Par24659.1) was found to be a key gene for the identification of sweet/bitter kernels of apricots. The amino acid sequence encoded by its gene is highly conserved in the species of Prunus mume, Prunus dulcis, Prunus persica, and Prunus avium and may be participating in the regulation of amygdalin biosynthesis, which provides a theoretical foundation for the molecular identification of sweet/bitter kernels of apricots.
Collapse
Affiliation(s)
- Ling Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China;
- College of Horticulture and Forestry, Tarim University, Alar 843300, China; (F.X.); (X.H.)
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Fangjie Xie
- College of Horticulture and Forestry, Tarim University, Alar 843300, China; (F.X.); (X.H.)
| | - Xue Huang
- College of Horticulture and Forestry, Tarim University, Alar 843300, China; (F.X.); (X.H.)
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Zhengrong Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
11
|
Yamaguchi T, Nomura T, Asano Y. Identification and characterization of cytochrome P450 CYP77A59 of loquat (Rhaphiolepis bibas) responsible for biosynthesis of phenylacetonitrile, a floral nitrile compound. PLANTA 2023; 257:114. [PMID: 37166515 DOI: 10.1007/s00425-023-04151-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
MAIN CONCLUSION Cytochrome P450 CYP77A59 is responsible for the biosynthesis of phenylacetonitrile in loquat flowers. Flowers of some plants emit volatile nitrile compounds, but the biosynthesis of these compounds is unclear. Loquat (Rhaphiolepis bibas) flowers emit characteristic N-containing volatiles, such as phenylacetonitrile (PAN), (E/Z)-phenylacetaldoxime (PAOx), and (2-nitroethyl)benzene (NEB). These volatiles likely play a defense role against pathogens and insects. PAN and NEB are commonly biosynthesized from L-phenylalanine via (E/Z)-PAOx. Two cytochrome P450s-CYP79D80 and "promiscuous fatty acid ω-hydroxylase" CYP94A90, which catalyze the formation of (E/Z)-PAOx from L-phenylalanine and NEB from (E/Z)-PAOx, respectively-are involved in NEB biosynthesis. However, the enzymes catalyzing the formation of PAN from (E/Z)-PAOx in loquat have not been identified. In this study, we aimed to identify candidate cytochrome P450s catalyzing PAN formation in loquat flowers. Yeast whole-cell biocatalyst assays showed that among nine candidate cytochrome P450s, CYP77A58 and CYP77A59 produced PAN from (E/Z)-PAOx. CYP77As catalyzed the dehydration of aldoximes, which is atypical of cytochrome P450; the reaction was NADPH-dependent, with an optimum temperature and pH of 40 °C and 8.0, respectively. CYP77As acted on (E/Z)-PAOx, (E/Z)-4-hydroxyphenylacetaldoxime, and (E/Z)-indole-3-acetaldoxime. Previously characterized CYP77As are known to hydroxylate fatty acids; loquat CYP77As did not act on tested fatty acids. We observed higher expression of CYP77A59 in flowers than in buds; expression of CYP77A58 was remarkably reduced in the flowers. Because the flowers, but not buds, emit PAN, CYP77A59 is likely responsible for the biosynthesis of PAN in loquat flowers. This study will help us understand the biosynthesis of floral nitrile compounds.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| | - Takuya Nomura
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
12
|
Li Y, He L, Song Y, Zhang P, Chen D, Guan L, Liu S. Comprehensive study of volatile compounds and transcriptome data providing genes for grape aroma. BMC PLANT BIOLOGY 2023; 23:171. [PMID: 37003985 PMCID: PMC10064686 DOI: 10.1186/s12870-023-04191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Fruit aroma is an important quality with respect to consumer preference, but the most important aroma compounds and their genetic regulatory mechanisms remain elusive. RESULTS In this study, we qualitatively analysed volatile compounds in the pulp and skin of five table grape cultivars with three aroma types (muscat, strawberry, and neutral) using solid-phase microextraction gas chromatography/mass spectrometry. We identified 215 aroma compounds, including 88 esters, 64 terpenes, and 29 alcohols, and found significant differences in the number of compounds between the pulp and skin, especially for terpenes. Skin transcriptome data for the five grape cultivars were generated and subjected to aroma compound-gene correlation analysis. The combined transcriptomic analysis and terpene profiling data revealed 20 candidate genes, which were assessed in terms of their involvement in aroma biosynthetic regulation, including 1 VvCYP (VIT_08s0007g07730), 2 VvCCR (VIT_13s0067g00620, VIT_13s0047g00940), 3 VvADH (VIT_00s0615g00010, VIT_00s0615g00030, VIT_ 00s0615g00020), and 1 VvSDR (VIT_08s0040g01200) in the phenylpropanoids synthesis pathway, and 1 VvDXS (VIT_05s0020g02130) and 6 VvTPS (VIT_13s0067g00370, Vitis_vinifera_newGene_3216, VIT_13s0067g00380, VIT_13s0084g00010, VIT_00s0271g00010, and VIT_13s0067g00050) in the methylerythritol phosphate pathway (involved in the production and accumulation of aromatic compounds). Additionally, 2 VvMYB (VIT_17s0000g07950, VIT_03s0063g02620) and 1 VvGATA (VIT_15s0024g00980) transcription factor played important regulatory roles in the accumulation of key biosynthetic precursors of these compounds in grapes. Our results indicated that downstream genes, specifically 1 VvBGLU (VIT_03s0063g02490) and 2 VvUGT (VIT_17s0000g07070, VIT_17s0000g07060) are involved in regulating the formation and volatilization of bound compounds in grapes. CONCLUSIONS The results of this study shed light on the volatile compounds and "anchor points" of synthetic pathways in the pulp and skin of muscat and strawberry grapes, and provide new insight into the regulation of different aromas in grapes.
Collapse
Affiliation(s)
- Yongzhou Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Liangliang He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Yinhua Song
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Peng Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Doudou Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Liping Guan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Sanjun Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China.
| |
Collapse
|
13
|
Hansen CC, Sørensen M, Bellucci M, Brandt W, Olsen CE, Goodger JQD, Woodrow IE, Lindberg Møller B, Neilson EHJ. Recruitment of distinct UDP-glycosyltransferase families demonstrates dynamic evolution of chemical defense within Eucalyptus L'Hér. THE NEW PHYTOLOGIST 2023; 237:999-1013. [PMID: 36305250 PMCID: PMC10107851 DOI: 10.1111/nph.18581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The economic and ecologically important genus Eucalyptus is rich in structurally diverse specialized metabolites. While some specialized metabolite classes are highly prevalent across the genus, the cyanogenic glucoside prunasin is only produced by c. 3% of species. To investigate the evolutionary mechanisms behind prunasin biosynthesis in Eucalyptus, we compared de novo assembled transcriptomes, together with online resources between cyanogenic and acyanogenic species. Identified genes were characterized in vivo and in vitro. Pathway characterization of cyanogenic Eucalyptus camphora and Eucalyptus yarraensis showed for the first time that the final glucosylation step from mandelonitrile to prunasin is catalyzed by a novel UDP-glucosyltransferase UGT87. This step is typically catalyzed by a member of the UGT85 family, including in Eucalyptus cladocalyx. The upstream conversion of phenylalanine to mandelonitrile is catalyzed by three cytochrome P450 (CYP) enzymes from the CYP79, CYP706, and CYP71 families, as previously shown. Analysis of acyanogenic Eucalyptus species revealed the loss of different ortholog prunasin biosynthetic genes. The recruitment of UGTs from different families for prunasin biosynthesis in Eucalyptus demonstrates important pathway heterogeneities and unprecedented dynamic pathway evolution of chemical defense within a single genus. Overall, this study provides relevant insights into the tremendous adaptability of these long-lived trees.
Collapse
Affiliation(s)
- Cecilie Cetti Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | - Mette Sørensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | - Matteo Bellucci
- Novo Nordisk Foundation Center for Protein Research, Protein Production and Characterization PlatformUniversity of Copenhagen2200CopenhagenDenmark
| | - Wolfgang Brandt
- Department of Bioorganic ChemistryLeibniz‐Institute of Plant BiochemistryHalle06120Germany
| | - Carl Erik Olsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | | | - Ian E. Woodrow
- School of Ecosystem and Forest SciencesThe University of MelbourneParkvilleVic.3052Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | - Elizabeth H. J. Neilson
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| |
Collapse
|
14
|
Perez VC, Dai R, Tomiczek B, Mendoza J, Wolf ESA, Grenning A, Vermerris W, Block AK, Kim J. Metabolic link between auxin production and specialized metabolites in Sorghum bicolor. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:364-376. [PMID: 36300527 PMCID: PMC9786853 DOI: 10.1093/jxb/erac421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Aldoximes are amino acid derivatives that serve as intermediates for numerous specialized metabolites including cyanogenic glycosides, glucosinolates, and auxins. Aldoxime formation is mainly catalyzed by cytochrome P450 monooxygenases of the 79 family (CYP79s) that can have broad or narrow substrate specificity. Except for SbCYP79A1, aldoxime biosynthetic enzymes in the cereal sorghum (Sorghum bicolor) have not been characterized. This study identified nine CYP79-encoding genes in the genome of sorghum. A phylogenetic analysis of CYP79 showed that SbCYP79A61 formed a subclade with maize ZmCYP79A61, previously characterized to be involved in aldoxime biosynthesis. Functional characterization of this sorghum enzyme using transient expression in Nicotiana benthamiana and stable overexpression in Arabidopsis thaliana revealed that SbCYP79A61 catalyzes the production of phenylacetaldoxime (PAOx) from phenylalanine but, unlike the maize enzyme, displays no detectable activity against tryptophan. Additionally, targeted metabolite analysis after stable isotope feeding assays revealed that PAOx can serve as a precursor of phenylacetic acid (PAA) in sorghum and identified benzyl cyanide as an intermediate of PAOx-derived PAA biosynthesis in both sorghum and maize. Taken together, our results demonstrate that SbCYP79A61 produces PAOx in sorghum and may serve in the biosynthesis of other nitrogen-containing phenylalanine-derived metabolites involved in mediating biotic and abiotic stresses.
Collapse
Affiliation(s)
- Veronica C Perez
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Ru Dai
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Breanna Tomiczek
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Jorrel Mendoza
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL 32608, USA
| | - Emily S A Wolf
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Alexander Grenning
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Wilfred Vermerris
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
- Department of Microbiology & Cell Science, Gainesville, FL 32611, USA
- UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Florida Center for Renewable Chemicals and Fuels, University of Florida, Gainesville, FL 32611, USA
| | - Anna K Block
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL 32608, USA
| | - Jeongim Kim
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
15
|
Le Boulch P, Poëssel JL, Roux D, Lugan R. Molecular mechanisms of resistance to Myzus persicae conferred by the peach Rm2 gene: A multi-omics view. FRONTIERS IN PLANT SCIENCE 2022; 13:992544. [PMID: 36275570 PMCID: PMC9581297 DOI: 10.3389/fpls.2022.992544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The transcriptomic and metabolomic responses of peach to Myzus persicae infestation were studied in Rubira, an accession carrying the major resistance gene Rm2 causing antixenosis, and GF305, a susceptible accession. Transcriptome and metabolome showed both a massive reconfiguration in Rubira 48 hours after infestation while GF305 displayed very limited changes. The Rubira immune system was massively stimulated, with simultaneous activation of genes encoding cell surface receptors involved in pattern-triggered immunity and cytoplasmic NLRs (nucleotide-binding domain, leucine-rich repeat containing proteins) involved in effector-triggered immunity. Hypersensitive reaction featured by necrotic lesions surrounding stylet punctures was supported by the induction of cell death stimulating NLRs/helpers couples, as well as the activation of H2O2-generating metabolic pathways: photorespiratory glyoxylate synthesis and activation of the futile P5C/proline cycle. The triggering of systemic acquired resistance was suggested by the activation of pipecolate pathway and accumulation of this defense hormone together with salicylate. Important reduction in carbon, nitrogen and sulphur metabolic pools and the repression of many genes related to cell division and growth, consistent with reduced apices elongation, suggested a decline in the nutritional value of apices. Finally, the accumulation of caffeic acid conjugates pointed toward their contribution as deterrent and/or toxic compounds in the mechanisms of resistance.
Collapse
Affiliation(s)
| | | | - David Roux
- UMR Qualisud, Avignon Université, Avignon, France
| | | |
Collapse
|
16
|
Ha W, Yamaguchi T, Iwakami S, Sunohara Y, Matsumoto H. Comparison of herbicide specificity of CYP81A cytochrome P450s from rice and a multiple-herbicide resistant weed, Echinochloa phyllopogon. PEST MANAGEMENT SCIENCE 2022; 78:4207-4216. [PMID: 35705850 DOI: 10.1002/ps.7038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND CYP81A cytochrome P450s (CYP81As) play a key role in herbicide detoxification in Poaceae plants. Crop CYP81As confer natural tolerance to multiple herbicides, whereas CYP81As in weeds disrupt herbicide action. Identifying differences in CYP81A herbicide specificity between crops and weeds could provide valuable information for controlling weeds. In this study, we quantitatively compared herbicide specificity between CYP81A6 from rice (Oryza sativa) and CYP81A12 and CYP81A21 from a weed, Echinochloa phyllopogon, using transgenic Escherichia coli and Arabidopsis. RESULTS All three CYP81As metabolized the five tested herbicides and formed similar metabolites, with the highest relative activities of 400 to 580% toward bentazone compared to their activity on bensulfuron-methyl (defined as 100%). However, they showed differing activity toward propyrisulfuron. The relative activities of Echinochloa phyllopogon CYP81A12 (12.2%) and CYP81A21 (34.4%) toward propyrisulfuron were lower than that of rice CYP81A6 (98.5%). Additionally, rice CYP81A6 produced O-demethylated propyrisulfuron and hydroxylated products, whereas Echinochloa phyllopogon CYP81As produced only hydroxylated products. Arabidopsis expressing CYP81A12 and CYP81A21 exhibited lower levels of resistance against propyrisulfuron compared to that in Arabidopsis expressing CYP81A6. Homology modeling and in silico docking revealed that bensulfuron-methyl docked well into the active centers of all three CYP81As, whereas propyrisulfuron docked into rice CYP81A6 but not into Echinochloa phyllopogon CYP81As. CONCLUSION The differing herbicide specificity displayed by rice CYP81A6 and Echinochloa phyllopogon CYP81A12 and CYP81A21 will help design inhibitors (synergists) of weed CYP81As, as well as develop novel herbicide ingredients that are selectively metabolized by crop CYP81As, to overcome the problem of herbicide resistance. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Woosuk Ha
- School of Life and Environmental Science, University of Tsukuba, Ibaraki, Japan
| | - Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| | - Satoshi Iwakami
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yukari Sunohara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Hiroshi Matsumoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
17
|
Xiujun W, Zhenqi S, Yujing T, Kaifeng M, Qingwei L. Comparative transcriptome analysis linked to key volatiles reveals molecular mechanisms of aroma compound biosynthesis in Prunus mume. BMC PLANT BIOLOGY 2022; 22:395. [PMID: 35945501 PMCID: PMC9361687 DOI: 10.1186/s12870-022-03779-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/27/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Mei (Prunus mume) is the only woody plant in the genus Prunus with a floral fragrance, but the underlying mechanisms of aroma compound biosynthesis are unclear despite being a matter of considerable interest. RESULTS The volatile contents of the petals of two cultivars with significantly different aromas, Prunus mume 'Xiao Lve' and Prunus mume 'Xiangxue Gongfen', were characterised by GC-MS at different flowering periods, and a total of 44 volatile compounds were detected. Among these, the main substances forming the typical aroma of P. mume were identified as eugenol, cinnamyl acetate, hexyl acetate and benzyl acetate, with variations in their relative concentrations leading to sensory differences in the aroma of the two cultivars. We compiled a transcriptome database at key stages of floral fragrance formation in the two cultivars and used it in combination with differential analysis of floral volatiles to construct a regulatory network for the biosynthesis of key aroma compounds. The results indicated that PmPAL enzymes and PmMYB4 transcription factors play important roles in regulating the accumulation of key biosynthetic precursors to these compounds. Cytochrome P450s and short-chain dehydrogenases/reductases might also influence the biosynthesis of benzyl acetate by regulating production of key precursors such as benzaldehyde and benzyl alcohol. Furthermore, by analogy to genes with verified functions in Arabidopsis, we predicted that three PmCAD genes, two 4CL genes, three CCR genes and two IGS genes all make important contributions to the synthesis of cinnamyl acetate and eugenol in P. mume. This analysis also suggested that the downstream genes PmBGLU18-like, PmUGT71A16 and PmUGT73C6 participate in regulation of the matrix-bound and volatile states of P. mume aroma compounds. CONCLUSIONS These findings present potential new anchor points for further exploration of floral aroma compound biosynthesis pathways in P. mume, and provide new insights into aroma induction and regulation mechanisms in woody plants.
Collapse
Affiliation(s)
- Wang Xiujun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Song Zhenqi
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Ti Yujing
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Ma Kaifeng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Li Qingwei
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| |
Collapse
|
18
|
Shoji T, Umemoto N, Saito K. Genetic divergence in transcriptional regulators of defense metabolism: insight into plant domestication and improvement. PLANT MOLECULAR BIOLOGY 2022; 109:401-411. [PMID: 34114167 DOI: 10.1007/s11103-021-01159-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/29/2021] [Indexed: 05/23/2023]
Abstract
A number of mutational changes in transcriptional regulators of defense metabolism have occurred during plant domestication and improvement. Plant domestication and improvement entail genetic changes that underlie divergence in development and metabolism, providing a tremendous model of biological evolution. Plant metabolism produces numerous specialized alkaloids, terpenoids, phenolics, and cyanogenic glucosides with indispensable roles in defense against herbivory and microbial infection. Many compounds toxic or deterrent to predators have been eliminated through domestication and breeding. Series of genes involved in defense metabolism are coordinately regulated by transcription factors that specifically recognize cis-regulatory elements in promoter regions of downstream target genes. Recent developments in DNA sequencing technologies and genomic approaches have facilitated studies of the metabolic and genetic changes in chemical defense that have occurred via human-mediated selection, many of which result from mutations in transcriptional regulators of defense metabolism. In this article, we review such examples in almond (Prunus dulcis), cucumber (Cucumis sativus), pepper (Capsicum spp.), potato (Solanum tuberosum), quinoa (Chenopodium quinoa), sorghum (Sorghum bicolor), and related species and discuss insights into the evolution and regulation of metabolic pathways for specialized defense compounds.
Collapse
Affiliation(s)
- Tsubasa Shoji
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Molecular Science Center, Chiba University, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
19
|
Rapid quantitative typing spectra model for distinguishing sweet and bitter apricot kernels. Food Sci Biotechnol 2022; 31:1123-1131. [DOI: 10.1007/s10068-022-01095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 11/04/2022] Open
|
20
|
Ballesta P, Ahmar S, Lobos GA, Mieres-Castro D, Jiménez-Aspee F, Mora-Poblete F. Heritable Variation of Foliar Spectral Reflectance Enhances Genomic Prediction of Hydrogen Cyanide in a Genetically Structured Population of Eucalyptus. FRONTIERS IN PLANT SCIENCE 2022; 13:871943. [PMID: 35432412 PMCID: PMC9008590 DOI: 10.3389/fpls.2022.871943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Plants produce a wide diversity of specialized metabolites, which fulfill a wide range of biological functions, helping plants to interact with biotic and abiotic factors. In this study, an integrated approach based on high-throughput plant phenotyping, genome-wide haplotypes, and pedigree information was performed to examine the extent of heritable variation of foliar spectral reflectance and to predict the leaf hydrogen cyanide content in a genetically structured population of a cyanogenic eucalyptus (Eucalyptus cladocalyx F. Muell). In addition, the heritable variation (based on pedigree and genomic data) of more of 100 common spectral reflectance indices was examined. The first profile of heritable variation along the spectral reflectance curve indicated the highest estimate of genomic heritability ( h g 2 =0.41) within the visible region of the spectrum, suggesting that several physiological and biological responses of trees to environmental stimuli (ex., light) are under moderate genetic control. The spectral reflectance index with the highest genomic-based heritability was leaf rust disease severity index 1 ( h g 2 =0.58), followed by the anthocyanin reflectance index and the Browning reflectance index ( h g 2 =0.54). Among the Bayesian prediction models based on spectral reflectance data, Bayes B had a better goodness of fit than the Bayes-C and Bayesian ridge regression models (in terms of the deviance information criterion). All models that included spectral reflectance data outperformed conventional genomic prediction models in their predictive ability and goodness-of-fit measures. Finally, we confirmed the proposed hypothesis that high-throughput phenotyping indirectly capture endophenotypic variants related to specialized metabolites (defense chemistry), and therefore, generally more accurate predictions can be made integrating phenomics and genomics.
Collapse
Affiliation(s)
- Paulina Ballesta
- The National Fund for Scientific and Technological Development, Talca, Chile
| | - Sunny Ahmar
- The National Fund for Scientific and Technological Development, Talca, Chile
| | - Gustavo A. Lobos
- Plant Breeding and Phenomic Center, Faculty of Agricultural Sciences, Universidad de Talca, Talca, Chile
| | | | - Felipe Jiménez-Aspee
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | | |
Collapse
|
21
|
Properties and Mechanisms of Flavin-Dependent Monooxygenases and Their Applications in Natural Product Synthesis. Int J Mol Sci 2022; 23:ijms23052622. [PMID: 35269764 PMCID: PMC8910399 DOI: 10.3390/ijms23052622] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products are usually highly complicated organic molecules with special scaffolds, and they are an important resource in medicine. Natural products with complicated structures are produced by enzymes, and this is still a challenging research field, its mechanisms requiring detailed methods for elucidation. Flavin adenine dinucleotide (FAD)-dependent monooxygenases (FMOs) catalyze many oxidation reactions with chemo-, regio-, and stereo-selectivity, and they are involved in the synthesis of many natural products. In this review, we introduce the mechanisms for different FMOs, with the classical FAD (C4a)-hydroperoxide as the major oxidant. We also summarize the difference between FMOs and cytochrome P450 (CYP450) monooxygenases emphasizing the advantages of FMOs and their specificity for substrates. Finally, we present examples of FMO-catalyzed synthesis of natural products. Based on these explanations, this review will expand our knowledge of FMOs as powerful enzymes, as well as implementation of the FMOs as effective tools for biosynthesis.
Collapse
|
22
|
Yamaguchi T, Asano Y. Construction of the UDP-Glucose Biosynthetic Enzyme Gene Coexpression Plasmid for Prunasin Production in Escherichia coli. Methods Mol Biol 2022; 2469:19-28. [PMID: 35508826 DOI: 10.1007/978-1-0716-2185-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microbial production of bioactive glucosides using uridine diphosphate glucosyltransferase (UGT) is an efficient glucoside production method. Here, we describe a detailed method for the construction of a UDP-glucose biosynthetic enzyme gene coexpression plasmid, that is, pCDF-PGP and the microbial production of prunasin from racemic mandelonitrile using Escherichia coli possessing UGT85A47 obtained from Japanese apricot. Furthermore, this constructed vector can find application in the production of various other glucosides that utilize other UGTs and aglycons.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.
| |
Collapse
|
23
|
Chen K, Wang Z, Ding K, Chen Y, Asano Y. Recent progress on discovery and research of aldoxime dehydratases. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Liu J, Wang Z, Zhao J, Zhao L, Wang L, Su Z, Wei J. HrCYP90B1 modulating brassinosteroid biosynthesis in sea buckthorn (Hippophae rhamnoides L.) against fruit fly (Rhagoletis batava obseuriosa Kol.) infection. TREE PHYSIOLOGY 2021; 41:444-459. [PMID: 33238299 DOI: 10.1093/treephys/tpaa164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Sea buckthorn is an important ecological and economic tree species, and its berries have been severely damaged by sea buckthorn fruit fly, Rhagoletis batava obseuriosa Kol. (Diptera: Tephritidae) (RBO). Brassinosteroid (BR) is widely involved in stress tolerance of plant. However, limited knowledge exists regarding the molecular mechanisms underlying insect resistance. Here, we found that BR content was much higher in sea buckthorn fruits with RBO infection than non-infection, and the damage rates of fruit with BR treatment were significantly lower than that of non-treatment. It indicated that BR could enhance RBO resistance in sea buckthorn. Several BR biosynthesis-related HrCYPs genes (CYP85A1/85A2/90A1/90B1/90C1/90D1/92A6/724B/734A1) were obtained and identified based on transcriptome analysis, of which the most up-regulated gene in fruits was HrCYP90B1 under RBO and mechanical damage. Overexpression of HrCYP90B1 in Arabidopsis thaliana showed BR and salicylic acid (SA) content was significantly increased, and the substrate campesterol (CR) of HrCYP90B1 content decreased. Further studies revealed that silencing HrCYP90B1 by virus-induced gene silencing resulted in decrease of BR, SA and defense-related enzymes contents, and increase of CR content. Silencing HrCYP90B1 also caused suppression of SA and activation of jasmonic acid pathways, enabling enhanced RBO susceptibility and more damage of fruits. Taken together, we obtained evidence that HrCYP90B1 was a positive regulator in RBO resistance improvement in sea buckthorn, which will provide comprehensive insights into the tree defense system of sea buckthorn to pest infection.
Collapse
Affiliation(s)
- Jianfeng Liu
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Zhaoyu Wang
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jie Zhao
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Lin Zhao
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Lei Wang
- Hebei Research Center for Geoanalysis, Baoding 071051, China
| | - Zhi Su
- Desert Forest Experimental Center, Chinese Academy of Forestry, Dengkou 015200, China
| | - Jianrong Wei
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
25
|
Hinzmann A, Betke T, Asano Y, Gröger H. Synthetic Processes toward Nitriles without the Use of Cyanide: A Biocatalytic Concept Based on Dehydration of Aldoximes in Water. Chemistry 2021; 27:5313-5321. [PMID: 33112445 PMCID: PMC8049032 DOI: 10.1002/chem.202001647] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/22/2020] [Indexed: 11/29/2022]
Abstract
While belonging to the most fundamental functional groups, nitriles represent a class of compound that still raises challenges in terms of an efficient, cost‐effective, general and, at the same time, sustainable way for their synthesis. Complementing existing chemical routes, recently a cyanide‐free enzymatic process technology based on the use of an aldoxime dehydratase (Oxd) as a biocatalyst component has been developed and successfully applied for the synthesis of a range of nitrile products. In these biotransformations, the Oxd enzymes catalyze the dehydration of aldoximes as readily available substrates to the nitrile products. Herein, these developments with such enzymes are summarized, with a strong focus on synthetic applications. It is demonstrated that this biocatalytic technology has the potential to “cross the bridge” between the production of fine chemicals and pharmaceuticals, on one hand, and bulk and commodity chemicals, on the other.
Collapse
Affiliation(s)
- Alessa Hinzmann
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Tobias Betke
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Yasuhisa Asano
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
26
|
Thodberg S, Sørensen M, Bellucci M, Crocoll C, Bendtsen AK, Nelson DR, Motawia MS, Møller BL, Neilson EHJ. A flavin-dependent monooxygenase catalyzes the initial step in cyanogenic glycoside synthesis in ferns. Commun Biol 2020; 3:507. [PMID: 32917937 PMCID: PMC7486406 DOI: 10.1038/s42003-020-01224-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
Cyanogenic glycosides form part of a binary plant defense system that, upon catabolism, detonates a toxic hydrogen cyanide bomb. In seed plants, the initial step of cyanogenic glycoside biosynthesis-the conversion of an amino acid to the corresponding aldoxime-is catalyzed by a cytochrome P450 from the CYP79 family. An evolutionary conundrum arises, as no CYP79s have been identified in ferns, despite cyanogenic glycoside occurrence in several fern species. Here, we report that a flavin-dependent monooxygenase (fern oxime synthase; FOS1), catalyzes the first step of cyanogenic glycoside biosynthesis in two fern species (Phlebodium aureum and Pteridium aquilinum), demonstrating convergent evolution of biosynthesis across the plant kingdom. The FOS1 sequence from the two species is near identical (98%), despite diversifying 140 MYA. Recombinant FOS1 was isolated as a catalytic active dimer, and in planta, catalyzes formation of an N-hydroxylated primary amino acid; a class of metabolite not previously observed in plants.
Collapse
Affiliation(s)
- Sara Thodberg
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Mette Sørensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Matteo Bellucci
- Novo Nordisk Foundation Center for Protein Research, Protein Production and Characterization Platform, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| | - Christoph Crocoll
- Section for Plant Molecular Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Amalie Kofoed Bendtsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - David Ralph Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, 858 Madison Ave. Suite G01, Memphis, TN, 38163, USA
| | - Mohammed Saddik Motawia
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Elizabeth Heather Jakobsen Neilson
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark.
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
27
|
Lara MV, Bonghi C, Famiani F, Vizzotto G, Walker RP, Drincovich MF. Stone Fruit as Biofactories of Phytochemicals With Potential Roles in Human Nutrition and Health. FRONTIERS IN PLANT SCIENCE 2020; 11:562252. [PMID: 32983215 PMCID: PMC7492728 DOI: 10.3389/fpls.2020.562252] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 05/07/2023]
Abstract
Phytochemicals or secondary metabolites present in fruit are key components contributing to sensory attributes like aroma, taste, and color. In addition, these compounds improve human nutrition and health. Stone fruits are an important source of an array of secondary metabolites that may reduce the risk of different diseases. The first part of this review is dedicated to the description of the main secondary organic compounds found in plants which include (a) phenolic compounds, (b) terpenoids/isoprenoids, and (c) nitrogen or sulfur containing compounds, and their principal biosynthetic pathways and their regulation in stone fruit. Then, the type and levels of bioactive compounds in different stone fruits of the Rosaceae family such as peach (Prunus persica), plum (P. domestica, P. salicina and P. cerasifera), sweet cherries (P. avium), almond kernels (P. dulcis, syn. P. amygdalus), and apricot (P. armeniaca) are presented. The last part of this review encompasses pre- and postharvest treatments affecting the phytochemical composition in stone fruit. Appropriate management of these factors during pre- and postharvest handling, along with further characterization of phytochemicals and the regulation of their synthesis in different cultivars, could help to increase the levels of these compounds, leading to the future improvement of stone fruit not only to enhance organoleptic characteristics but also to benefit human health.
Collapse
Affiliation(s)
- María Valeria Lara
- Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Giannina Vizzotto
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
| | - Robert P. Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - María Fabiana Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
28
|
Lai D, Maimann AB, Macea E, Ocampo CH, Cardona G, Pičmanová M, Darbani B, Olsen CE, Debouck D, Raatz B, Møller BL, Rook F. Biosynthesis of cyanogenic glucosides in Phaseolus lunatus and the evolution of oxime-based defenses. PLANT DIRECT 2020; 4:e00244. [PMID: 32775954 PMCID: PMC7402084 DOI: 10.1002/pld3.244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/22/2020] [Accepted: 07/01/2020] [Indexed: 05/13/2023]
Abstract
Lima bean, Phaseolus lunatus, is a crop legume that produces the cyanogenic glucosides linamarin and lotaustralin. In the legumes Lotus japonicus and Trifolium repens, the biosynthesis of these two α-hydroxynitrile glucosides involves cytochrome P450 enzymes of the CYP79 and CYP736 families and a UDP-glucosyltransferase. Here, we identify CYP79D71 as the first enzyme of the pathway in P. lunatus, producing oximes from valine and isoleucine. A second CYP79 family member, CYP79D72, was shown to catalyze the formation of leucine-derived oximes, which act as volatile defense compounds in Phaseolus spp. The organization of the biosynthetic genes for cyanogenic glucosides in a gene cluster aided their identification in L. japonicus. In the available genome sequence of P. vulgaris, the gene orthologous to CYP79D71 is adjacent to a member of the CYP83 family. Although P. vulgaris is not cyanogenic, it does produce oximes as volatile defense compounds. We cloned the genes encoding two CYP83s (CYP83E46 and CYP83E47) and a UDP-glucosyltransferase (UGT85K31) from P. lunatus, and these genes combined form a complete biosynthetic pathway for linamarin and lotaustralin in Lima bean. Within the genus Phaseolus, the occurrence of linamarin and lotaustralin as functional chemical defense compounds appears restricted to species belonging to the closely related Polystachios and Lunatus groups. A preexisting ability to produce volatile oximes and nitriles likely facilitated evolution of cyanogenesis within the Phaseolus genus.
Collapse
Affiliation(s)
- Daniela Lai
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
- VILLUM Center for Plant PlasticityUniversity of CopenhagenFrederiksbergDenmark
| | - Alexandra B. Maimann
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
- VILLUM Center for Plant PlasticityUniversity of CopenhagenFrederiksbergDenmark
| | - Eliana Macea
- International Center for Tropical AgricultureCaliColombia
| | | | | | - Martina Pičmanová
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
- VILLUM Center for Plant PlasticityUniversity of CopenhagenFrederiksbergDenmark
| | - Behrooz Darbani
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
- VILLUM Center for Plant PlasticityUniversity of CopenhagenFrederiksbergDenmark
- Present address:
The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Carl Erik Olsen
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
- VILLUM Center for Plant PlasticityUniversity of CopenhagenFrederiksbergDenmark
| | - Daniel Debouck
- International Center for Tropical AgricultureCaliColombia
| | - Bodo Raatz
- International Center for Tropical AgricultureCaliColombia
| | - Birger Lindberg Møller
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
- VILLUM Center for Plant PlasticityUniversity of CopenhagenFrederiksbergDenmark
| | - Fred Rook
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
- VILLUM Center for Plant PlasticityUniversity of CopenhagenFrederiksbergDenmark
| |
Collapse
|
29
|
Abdellaoui K, Miladi M, Mkhinini M, Boughattas I, Ben Hamouda A, Hajji-Hedfi L, Tlili H, Acheuk F. The aggregation pheromone phenylacetonitrile: Joint action with the entomopathogenic fungus Metarhizium anisopliae var. acridum and physiological and transcriptomic effects on Schistocerca gregaria nymphs. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104594. [PMID: 32527433 DOI: 10.1016/j.pestbp.2020.104594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The combined use of entomopathogenic fungi and sublethal rate of chemical insecticides or other biological control agents have been proposed as an environmentally and sustainable strategy in the control of locust pests. In this paper, the quarter and the half of the recommended dose of Metarhizium anisopliae var. acridum (¼ and ½ Ma) and the aggregation pheromone (Phenylacetonitrile: PAN) were applied simultaneously and sequentially to Schistocerca gregaria fifth-instar nymphs. In addition, the physiological effects of PAN on locusts were assessed at the behavior, immune response, and biochemical level by evaluating for glutathione-S-transferase (GST), acetylcholinesterase inhibition (AChE), and malondialdehyde accumulation (MDA). Results showed that simultaneous application of PAN and the entomopathogenic fungus exhibited additive interaction. Synergistic interaction was also demonstrated when nymphs were exposed to PAN first, then treated with M. anisopliae var. acridum. Behavioral bioassay revealed that fifth-instar nymphs avoided the PAN odour and tended to remain away from the stimulus cup. In the choice assay, the pheromone significantly repelled the locusts at 2, 4, and 6 h of exposure which selected the PAN-free arena chamber. Moreover, treated nymphs become hyperactive and disoriented as evidenced by the cumulative distance travelled and the trajectory of locusts during the experiment. Immunological studies showed that PAN significantly decreased the differential haemocyte counts (prohemocytes and plasmatocytes) with a dose-response relationship. Data of biochemical analyzes showed that the PAN exposure reduced the activity of acetylcholinesterase and induced significantly the glutathione S-transferases and MDA concentration in the desert locust fifth-instar nymphs. Moreover, transcriptomic responses to the PAN exposure were evaluated using gene expression levels of CYP540 and GST. The transcript levels showed an up-regulation in GST expression level particularly in nymphs exposed for 4 and 6 h. A significant increase in CYP450 transcript level was also observed after 2 h of exposure, which decreased significantly after 4 and 6 h.
Collapse
Affiliation(s)
- Khemais Abdellaoui
- Department of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott Mariem, Sousse University, Tunisia.
| | - Meriam Miladi
- Department of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott Mariem, Sousse University, Tunisia
| | - Marouane Mkhinini
- Laboratory of Biochemistry and Environmental Toxicology, Higher Agronomic Institute of Chott Mariem, Sousse University, Tunisia
| | - Iteb Boughattas
- Laboratory of Biochemistry and Environmental Toxicology, Higher Agronomic Institute of Chott Mariem, Sousse University, Tunisia
| | - Amel Ben Hamouda
- Department of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott Mariem, Sousse University, Tunisia
| | - Lobna Hajji-Hedfi
- Department of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott Mariem, Sousse University, Tunisia
| | - Haithem Tlili
- Department of Biological Sciences, Faculty of Science of Tunis, University of Tunis El Manar, Tunisia
| | - Fatma Acheuk
- Laboratory of Valorization and Conservation of Biological Resources "Valcore" Department of Biology, Faculty of Sciences, University of Boumerdes, Algeria
| |
Collapse
|
30
|
Sánchez-Pérez R, Pavan S, Mazzeo R, Moldovan C, Aiese Cigliano R, Del Cueto J, Ricciardi F, Lotti C, Ricciardi L, Dicenta F, López-Marqués RL, Møller BL. Mutation of a bHLH transcription factor allowed almond domestication. Science 2020; 364:1095-1098. [PMID: 31197015 DOI: 10.1126/science.aav8197] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/23/2019] [Indexed: 11/02/2022]
Abstract
Wild almond species accumulate the bitter and toxic cyanogenic diglucoside amygdalin. Almond domestication was enabled by the selection of genotypes harboring sweet kernels. We report the completion of the almond reference genome. Map-based cloning using an F1 population segregating for kernel taste led to the identification of a 46-kilobase gene cluster encoding five basic helix-loop-helix transcription factors, bHLH1 to bHLH5. Functional characterization demonstrated that bHLH2 controls transcription of the P450 monooxygenase-encoding genes PdCYP79D16 and PdCYP71AN24, which are involved in the amygdalin biosynthetic pathway. A nonsynonymous point mutation (Leu to Phe) in the dimerization domain of bHLH2 prevents transcription of the two cytochrome P450 genes, resulting in the sweet kernel trait.
Collapse
Affiliation(s)
- R Sánchez-Pérez
- Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Espinardo, Spain. .,Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.,VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - S Pavan
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro," 70126 Bari, Italy. .,Institute of Biomedical Technologies, National Research Council (CNR), 70126 Bari, Italy
| | - R Mazzeo
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.,VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.,Department of Soil, Plant and Food Science, University of Bari "Aldo Moro," 70126 Bari, Italy
| | - C Moldovan
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.,VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - R Aiese Cigliano
- Sequentia Biotech SL, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - J Del Cueto
- Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Espinardo, Spain.,Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.,VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.,Arboriculture Research Group, Agroscope, Conthey, Switzerland
| | - F Ricciardi
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.,VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.,Department of the Sciences of Agriculture, Food and Environment, University of Foggia, 71100 Foggia, Italy
| | - C Lotti
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, 71100 Foggia, Italy
| | - L Ricciardi
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro," 70126 Bari, Italy
| | - F Dicenta
- Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Espinardo, Spain
| | - R L López-Marqués
- Transport Biology Section, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - B Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.,VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
31
|
Liao Y, Zeng L, Tan H, Cheng S, Dong F, Yang Z. Biochemical Pathway of Benzyl Nitrile Derived from l-Phenylalanine in Tea ( Camellia sinensis) and Its Formation in Response to Postharvest Stresses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1397-1404. [PMID: 31917559 DOI: 10.1021/acs.jafc.9b06436] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Volatiles affect tea (Camellia sinensis) aroma quality and have roles in tea plant defense against stresses. Some volatiles defend against stresses through their toxicity, which might affect tea safety. Benzyl nitrile is a defense-related toxic volatile compound that accumulates in tea under stresses, but its formation mechanism in tea remains unknown. In this study, l-[2H8]phenylalanine feeding experiments and enzyme reactions showed that benzyl nitrile was generated from l-phenylalanine via phenylacetaldoxime in tea. CsCYP79D73 showed activity for converting l-phenylalanine into phenylacetaldoxime, while CsCYP71AT96s showed activity for converting phenylacetaldoxime into benzyl nitrile. Continuous wounding in the oolong tea process significantly enhanced the CsCYP79D73 expression level and phenylacetaldoxime and benzyl nitrile contents. Benzyl nitrile accumulation under continuous wounding stress was attributed to an increase in jasmonic acid, which activated CsCYP79D73 expression. This represents the first elucidation of the formation mechanism of benzyl nitrile in tea.
Collapse
Affiliation(s)
- Yinyin Liao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement , South China Botanical Garden, Chinese Academy of Sciences , Xingke Road 723, Tianhe District , Guangzhou 510650 , China
- University of Chinese Academy of Sciences , No.19A Yuquan Road , Beijing 100049 , China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement , South China Botanical Garden, Chinese Academy of Sciences , Xingke Road 723, Tianhe District , Guangzhou 510650 , China
- Center of Economic Botany , Core Botanical Gardens, Chinese Academy of Sciences , Xingke Road 723, Tianhe District , Guangzhou 510650 , China
| | - Haibo Tan
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement , South China Botanical Garden, Chinese Academy of Sciences , Xingke Road 723, Tianhe District , Guangzhou 510650 , China
| | - Sihua Cheng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement , South China Botanical Garden, Chinese Academy of Sciences , Xingke Road 723, Tianhe District , Guangzhou 510650 , China
- University of Chinese Academy of Sciences , No.19A Yuquan Road , Beijing 100049 , China
| | - Fang Dong
- Guangdong Food and Drug Vocational College , Longdongbei Road 321, Tianhe District , Guangzhou 510520 , China
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement , South China Botanical Garden, Chinese Academy of Sciences , Xingke Road 723, Tianhe District , Guangzhou 510650 , China
- University of Chinese Academy of Sciences , No.19A Yuquan Road , Beijing 100049 , China
- Center of Economic Botany , Core Botanical Gardens, Chinese Academy of Sciences , Xingke Road 723, Tianhe District , Guangzhou 510650 , China
| |
Collapse
|
32
|
Busch H, Hagedoorn PL, Hanefeld U. Rhodococcus as A Versatile Biocatalyst in Organic Synthesis. Int J Mol Sci 2019; 20:E4787. [PMID: 31561555 PMCID: PMC6801914 DOI: 10.3390/ijms20194787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
The application of purified enzymes as well as whole-cell biocatalysts in synthetic organic chemistry is becoming more and more popular, and both academia and industry are keen on finding and developing novel enzymes capable of performing otherwise impossible or challenging reactions. The diverse genus Rhodococcus offers a multitude of promising enzymes, which therefore makes it one of the key bacterial hosts in many areas of research. This review focused on the broad utilization potential of the genus Rhodococcus in organic chemistry, thereby particularly highlighting the specific enzyme classes exploited and the reactions they catalyze. Additionally, close attention was paid to the substrate scope that each enzyme class covers. Overall, a comprehensive overview of the applicability of the genus Rhodococcus is provided, which puts this versatile microorganism in the spotlight of further research.
Collapse
Affiliation(s)
- Hanna Busch
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
33
|
Production of the cyanogenic glycoside dhurrin in yeast. Metab Eng Commun 2019; 9:e00092. [PMID: 31110942 PMCID: PMC6512747 DOI: 10.1016/j.mec.2019.e00092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 12/26/2022] Open
Abstract
Cyanogenic glycosides are defense compounds found in a wide range of plant species, including many crops. We demonstrate that the cyanogenic glucoside dhurrin, naturally found in sorghum, can be produced at high titers in Saccharomyces cerevisiae, constituting the first report of cyanogenic glycoside production in a microbe. Genetic modifications to increase the supply of the dhurrin precursor tyrosine enabled dhurrin production in excess of 80 mg/L. The dhurrin-producing yeast strain was used as a chassis to investigate previously uncharacterized enzymes identified close to the biosynthetic gene cluster containing the dhurrin pathway enzymes. This work shows the potential of heterologous expression in yeast to facilitate investigations of plant cyanogenic glycoside pathways. First production of cyanogenic glycosides in a microbe. Strategies for optimizing production of cyanogenic glycosides. Platform for rapidly characterizing the enzymes which constitute cyanogenic glycoside biosynthetic pathways.
Collapse
|
34
|
Barco B, Clay NK. Evolution of Glucosinolate Diversity via Whole-Genome Duplications, Gene Rearrangements, and Substrate Promiscuity. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:585-604. [PMID: 31035830 DOI: 10.1146/annurev-arplant-050718-100152] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Over several decades, glucosinolates have become a model system for the study of specialized metabolic diversity in plants. The near-complete identification of biosynthetic enzymes, regulators, and transporters has provided support for the role of gene duplication and subsequent changes in gene expression, protein function, and substrate specificity as the evolutionary bases of glucosinolate diversity. Here, we provide examples of how whole-genome duplications, gene rearrangements, and substrate promiscuity potentiated the evolution of glucosinolate biosynthetic enzymes, regulators, and transporters by natural selection. This in turn may have led to the repeated evolution of glucosinolate metabolism and diversity in higher plants.
Collapse
Affiliation(s)
- Brenden Barco
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, Connecticut 06511, USA; ,
| | - Nicole K Clay
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, Connecticut 06511, USA; ,
| |
Collapse
|
35
|
Wei J, Shao W, Cao M, Ge J, Yang P, Chen L, Wang X, Kang L. Phenylacetonitrile in locusts facilitates an antipredator defense by acting as an olfactory aposematic signal and cyanide precursor. SCIENCE ADVANCES 2019; 5:eaav5495. [PMID: 30746481 PMCID: PMC6357733 DOI: 10.1126/sciadv.aav5495] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/11/2018] [Indexed: 05/22/2023]
Abstract
Many aggregating animals use aposematic signals to advertise their toxicity to predators. However, the coordination between aposematic signals and toxins is poorly understood. Here, we reveal that phenylacetonitrile (PAN) acts as an olfactory aposematic signal and precursor of hypertoxic hydrogen cyanide (HCN) to protect gregarious locusts from predation. We found that PAN biosynthesis from phenylalanine is catalyzed by CYP305M2, a novel gene encoding a cytochrome P450 enzyme in gregarious locusts. The RNA interference (RNAi) knockdown of CYP305M2 increases the vulnerability of gregarious locusts to bird predation. By contrast, the elevation of PAN levels through supplementation with synthetic PAN increases the resistance of solitary locusts to predation. When locusts are attacked by birds, PAN is converted to HCN, which causes food poisoning in birds. Our results indicate that locusts develop a defense mechanism wherein an aposematic compound is converted to hypertoxic cyanide in resistance to predation by natural enemies.
Collapse
Affiliation(s)
- Jianing Wei
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Wenbo Shao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, P. R. China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Minmin Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jin Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengcheng Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, P. R. China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Li Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, P. R. China
- Corresponding author. (L.K.); (X.W.)
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, P. R. China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Corresponding author. (L.K.); (X.W.)
| |
Collapse
|
36
|
Yamaguchi T, Asano Y. Prunasin production using engineered Escherichia coli expressing UGT85A47 from Japanese apricot and UDP-glucose biosynthetic enzyme genes. Biosci Biotechnol Biochem 2018; 82:2021-2029. [PMID: 30027801 DOI: 10.1080/09168451.2018.1497942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Japanese apricot, Prunus mume Sieb. et Zucc., biosynthesizes the l-phenylalanine-derived cyanogenic glucosides prunasin and amygdalin. Prunasin has biological properties such as anti-inflammation, but plant extraction and chemical synthesis are impractical. In this study, we identified and characterized UGT85A47 from Japanese apricot. Further, UGT85A47 was utilized for prunasin microbial production. Full-length cDNA encoding UGT85A47 was isolated from Japanese apricot after 5'- and 3'-RACE. Recombinant UGT85A47 stoichiometrically catalyzed UDP-glucose consumption and synthesis of prunasin and UDP from mandelonitrile. Escherichia coli C41(DE3) cells expressing UGT85A47 produced prunasin (0.64 g/L) from racemic mandelonitrile and glucose. In addition, co-expression of genes encoding UDP-glucose biosynthetic enzymes (phosphoglucomutase and UTP-glucose 1-phosphate uridiltransferase) and polyphosphate kinase clearly improved prunasin production up to 2.3 g/L. These results showed that our whole-cell biocatalytic system is significantly more efficient than the existing prunasin production systems, such as chemical synthesis.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Toyama Japan.,b Asano Active Enzyme Molecule Project , JST ERATO , Toyama , Japan.,c Faculty of Life and Environmental Sciences , University of Tsukuba , Ibaraki , Japan
| | - Yasuhisa Asano
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Toyama Japan.,b Asano Active Enzyme Molecule Project , JST ERATO , Toyama , Japan
| |
Collapse
|
37
|
Betke T, Higuchi J, Rommelmann P, Oike K, Nomura T, Kato Y, Asano Y, Gröger H. Biocatalytic Synthesis of Nitriles through Dehydration of Aldoximes: The Substrate Scope of Aldoxime Dehydratases. Chembiochem 2018; 19:768-779. [PMID: 29333684 DOI: 10.1002/cbic.201700571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Indexed: 11/05/2022]
Abstract
Nitriles, which are mostly needed and produced by the chemical industry, play a major role in various industry segments, ranging from high-volume, low-price sectors, such as polymers, to low-volume, high-price sectors, such as chiral pharma drugs. A common industrial technology for nitrile production is ammoxidation as a gas-phase reaction at high temperature. Further popular approaches are substitution or addition reactions with hydrogen cyanide or derivatives thereof. A major drawback, however, is the very high toxicity of cyanide. Recently, as a synthetic alternative, a novel enzymatic approach towards nitriles has been developed with aldoxime dehydratases, which are capable of converting an aldoxime in one step through dehydration into nitriles. Because the aldoxime substrates are easily accessible, this route is of high interest for synthetic purposes. However, whenever a novel method is developed for organic synthesis, it raises the question of substrate scope as one of the key criteria for application as a "synthetic platform technology". Thus, the scope of this review is to give an overview of the current state of the substrate scope of this enzymatic method for synthesizing nitriles with aldoxime dehydratases. As a recently emerging enzyme class, a range of substrates has already been studied so far, comprising nonchiral and chiral aldoximes. This enzyme class of aldoxime dehydratases shows a broad substrate tolerance and accepts aliphatic and aromatic aldoximes, as well as arylaliphatic aldoximes. Furthermore, aldoximes with a stereogenic center are also recognized and high enantioselectivities are found for 2-arylpropylaldoximes, in particular. It is further noteworthy that the enantiopreference depends on the E and Z isomers. Thus, opposite enantiomers are accessible from the same racemic aldehyde and the same enzyme.
Collapse
Affiliation(s)
- Tobias Betke
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany.,Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Jun Higuchi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Philipp Rommelmann
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Keiko Oike
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Taiji Nomura
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuo Kato
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Harald Gröger
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
38
|
Sørensen M, Neilson EHJ, Møller BL. Oximes: Unrecognized Chameleons in General and Specialized Plant Metabolism. MOLECULAR PLANT 2018; 11:95-117. [PMID: 29275165 DOI: 10.1016/j.molp.2017.12.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 05/19/2023]
Abstract
Oximes (R1R2C=NOH) are nitrogen-containing chemical constituents that are formed in species representing all kingdoms of life. In plants, oximes are positioned at important metabolic bifurcation points between general and specialized metabolism. The majority of plant oximes are amino acid-derived metabolites formed by the action of a cytochrome P450 from the CYP79 family. Auxin, cyanogenic glucosides, glucosinolates, and a number of other bioactive specialized metabolites including volatiles are produced from oximes. Oximes with the E configuration have high biological activity compared with Z-oximes. Oximes or their derivatives have been demonstrated or proposed to play roles in growth regulation, plant defense, pollinator attraction, and plant communication with the surrounding environment. In addition, oxime-derived products may serve as quenchers of reactive oxygen species and storage compounds for reduced nitrogen that may be released on demand by the activation of endogenous turnover pathways. As highly bioactive molecules, chemically synthesized oximes have found versatile uses in many sectors of society, especially in the agro- and medical sectors. This review provides an update on the structural diversity, occurrence, and biosynthesis of oximes in plants and discusses their role as key players in plant general and specialized metabolism.
Collapse
Affiliation(s)
- Mette Sørensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark; VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark
| | - Elizabeth H J Neilson
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark; VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark; VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark; Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
39
|
Ionescu IA, López-Ortega G, Burow M, Bayo-Canha A, Junge A, Gericke O, Møller BL, Sánchez-Pérez R. Transcriptome and Metabolite Changes during Hydrogen Cyanamide-Induced Floral Bud Break in Sweet Cherry. FRONTIERS IN PLANT SCIENCE 2017; 8:1233. [PMID: 28769948 PMCID: PMC5511853 DOI: 10.3389/fpls.2017.01233] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/29/2017] [Indexed: 05/04/2023]
Abstract
Release of bud dormancy in perennial woody plants is a temperature-dependent process and thus flowering in these species is heavily affected by climate change. The lack of cold winters in temperate growing regions often results in reduced flowering and low fruit yields. This is likely to decrease the availability of fruits and nuts of the Prunus spp. in the near future. In order to maintain high yields, it is crucial to gain detailed knowledge on the molecular mechanisms controlling the release of bud dormancy. Here, we studied these mechanisms using sweet cherry (Prunus avium L.), a crop where the agrochemical hydrogen cyanamide (HC) is routinely used to compensate for the lack of cold winter temperatures and to induce flower opening. In this work, dormant flower buds were sprayed with hydrogen cyanamide followed by deep RNA sequencing, identifying three main expression patterns in response to HC. These transcript level results were validated by quantitative real time polymerase chain reaction and supported further by phytohormone profiling (ABA, SA, IAA, CK, ethylene, JA). Using these approaches, we identified the most up-regulated pathways: the cytokinin pathway, as well as the jasmonate and the hydrogen cyanide pathway. Our results strongly suggest an inductive effect of these metabolites in bud dormancy release and provide a stepping stone for the characterization of key genes in bud dormancy release.
Collapse
Affiliation(s)
- Irina A. Ionescu
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | | | - Meike Burow
- DynaMo Center, University of CopenhagenFrederiksberg, Denmark
| | | | - Alexander Junge
- Center for Non-coding RNA in Technology and Health, Department of Veterinary Clinical and Animal Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Oliver Gericke
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Birger L. Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Raquel Sánchez-Pérez
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| |
Collapse
|
40
|
Kolesárová A, Pivko J, Halenár M, Zbyňovská K, Chrastinová Ľ, Ondruška Ľ, Jurčík R, Kopčeková J, Valuch J, Kolesárová A. Effect of apricot seeds on renal structure of rabbits. POTRAVINARSTVO 2017. [DOI: 10.5219/751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Del Cueto J, Ionescu IA, Pičmanová M, Gericke O, Motawia MS, Olsen CE, Campoy JA, Dicenta F, Møller BL, Sánchez-Pérez R. Cyanogenic Glucosides and Derivatives in Almond and Sweet Cherry Flower Buds from Dormancy to Flowering. FRONTIERS IN PLANT SCIENCE 2017; 8:800. [PMID: 28579996 PMCID: PMC5437698 DOI: 10.3389/fpls.2017.00800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/28/2017] [Indexed: 05/07/2023]
Abstract
Almond and sweet cherry are two economically important species of the Prunus genus. They both produce the cyanogenic glucosides prunasin and amygdalin. As part of a two-component defense system, prunasin and amygdalin release toxic hydrogen cyanide upon cell disruption. In this study, we investigated the potential role within prunasin and amygdalin and some of its derivatives in endodormancy release of these two Prunus species. The content of prunasin and of endogenous prunasin turnover products in the course of flower development was examined in five almond cultivars - differing from very early to extra-late in flowering time - and in one sweet early cherry cultivar. In all cultivars, prunasin began to accumulate in the flower buds shortly after dormancy release and the levels dropped again just before flowering time. In almond and sweet cherry, the turnover of prunasin coincided with increased levels of prunasin amide whereas prunasin anitrile pentoside and β-D-glucose-1-benzoate were abundant in almond and cherry flower buds at certain developmental stages. These findings indicate a role for the turnover of cyanogenic glucosides in controlling flower development in Prunus species.
Collapse
Affiliation(s)
- Jorge Del Cueto
- Department of Plant Breeding, CEBAS-CSICMurcia, Spain
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Irina A. Ionescu
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Martina Pičmanová
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Oliver Gericke
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Mohammed S. Motawia
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Carl E. Olsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - José A. Campoy
- UMR 1332 BFP, INRA, University of BordeauxVillenave d’Ornon, France
| | | | - Birger L. Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Raquel Sánchez-Pérez
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| |
Collapse
|
42
|
Yamaguchi T, Kuwahara Y, Asano Y. A novel cytochrome P450, CYP3201B1, is involved in ( R)-mandelonitrile biosynthesis in a cyanogenic millipede. FEBS Open Bio 2017; 7:335-347. [PMID: 28286729 PMCID: PMC5337904 DOI: 10.1002/2211-5463.12170] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022] Open
Abstract
Specialized arthropods and more than 2500 plant species biosynthesize hydroxynitriles and release hydrogen cyanide as a defensive mechanism. The millipede Chamberlinius hualienensis accumulates (R)-mandelonitrile as a cyanide precursor. Although biosynthesis of hydroxynitriles in cyanogenic plants and in an insect are extensively studied, (R)-mandelonitrile biosynthesis in cyanogenic millipedes has remained unclear. In this study, we identified the biosynthetic precursors of (R)-mandelonitrile and an enzyme involved in (R)-mandelonitrile biosynthesis. Using deuterium-labelled compounds, we revealed that (E/Z)-phenylacetaldoxime and phenylacetonitrile are the biosynthetic precursors of (R)-mandelonitrile in the millipede as well as other cyanogenic organisms. To identify the enzymes involved in (R)-mandelonitrile biosynthesis, 50 cDNAs encoding cytochrome P450s were cloned and coexpressed with yeast cytochrome P450 reductase in yeast, as cytochrome P450s are involved in the biosynthesis of hydroxynitriles in other cyanogenic organisms. Among the 50 cytochrome P450s from the millipede, CYP3201B1 produced (R)-mandelonitrile from phenylacetonitrile but not from (E/Z)-phenylacetaldoxime, whereas plant and insect cytochrome P450s catalysed the dehydration of aldoximes and hydroxylation of nitriles. CYP3201B1 is not phylogenetically related to cytochrome P450s from other cyanogenic organisms, indicating that hydroxynitrile biosynthetic cytochrome P450s have independently evolved in distant species. Our study will shed light on the evolution of cyanogenesis among plants, insects and millipedes. DATABASE Nucleotide sequence data are available in the DDBJ/EMBL/GenBank databases under the accession numbers LC125356-LC125405.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Biotechnology Research Center and Department of BiotechnologyToyama Prefectural UniversityImizuJapan
- JSTERATOAsano Active Enzyme Molecule ProjectImizuJapan
| | - Yasumasa Kuwahara
- Biotechnology Research Center and Department of BiotechnologyToyama Prefectural UniversityImizuJapan
- JSTERATOAsano Active Enzyme Molecule ProjectImizuJapan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of BiotechnologyToyama Prefectural UniversityImizuJapan
- JSTERATOAsano Active Enzyme Molecule ProjectImizuJapan
| |
Collapse
|
43
|
Zhao K, Yang W, Zhou Y, Zhang J, Li Y, Ahmad S, Zhang Q. Comparative Transcriptome Reveals Benzenoid Biosynthesis Regulation as Inducer of Floral Scent in the Woody Plant Prunus mume. FRONTIERS IN PLANT SCIENCE 2017; 8:319. [PMID: 28344586 PMCID: PMC5345196 DOI: 10.3389/fpls.2017.00319] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/22/2017] [Indexed: 05/08/2023]
Abstract
Mei (Prunus mume) is a peculiar woody ornamental plant famous for its inviting fragrance in winter. However, in this valuable plant, the mechanism behind floral volatile development remains poorly defined. Therefore, to explore the floral scent formation, a comparative transcriptome was conducted in order to identify the global transcripts specifying flower buds and blooming flowers of P. mume. Differentially expressed genes were identified between the two different stages showing great discrepancy in floral volatile production. Moreover, according to the expression specificity among the organs (stem, root, fruit, leaf), we summarized one gene cluster regulating the benzenoid floral scent. Significant gene changes were observed in accordance with the formation of benzenoid, thus pointing the pivotal roles of genes as well as cytochrome-P450s and short chain dehydrogenases in the benzenoid biosynthetic process. Further, transcription factors like EMISSION OF BENZENOID I and ODORANT I performed the same expression pattern suggesting key roles in the management of the downstream genes. Taken together, these data provide potential novel anchors for the benzenoid pathway, and the insight for the floral scent induction and regulation mechanism in woody plants.
Collapse
|
44
|
Ishida Y, Kuwahara Y, Dadashipour M, Ina A, Yamaguchi T, Morita M, Ichiki Y, Asano Y. A sacrificial millipede altruistically protects its swarm using a drone blood enzyme, mandelonitrile oxidase. Sci Rep 2016; 6:26998. [PMID: 27265180 PMCID: PMC4893617 DOI: 10.1038/srep26998] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/29/2016] [Indexed: 01/20/2023] Open
Abstract
Soldiers of some eusocial insects exhibit an altruistic self-destructive defense behavior in emergency situations when attacked by large enemies. The swarm-forming invasive millipede, Chamberlinius hualienensis, which is not classified as eusocial animal, exudes irritant chemicals such as benzoyl cyanide as a defensive secretion. Although it has been thought that this defensive chemical was converted from mandelonitrile, identification of the biocatalyst has remained unidentified for 40 years. Here, we identify the novel blood enzyme, mandelonitrile oxidase (ChuaMOX), which stoichiometrically catalyzes oxygen consumption and synthesis of benzoyl cyanide and hydrogen peroxide from mandelonitrile. Interestingly the enzymatic activity is suppressed at a blood pH of 7, and the enzyme is segregated by membranes of defensive sacs from mandelonitrile which has a pH of 4.6, the optimum pH for ChuaMOX activity. In addition, strong body muscle contractions are necessary for de novo synthesis of benzoyl cyanide. We propose that, to protect its swarm, the sacrificial millipede also applies a self-destructive defense strategy—the endogenous rupturing of the defensive sacs to mix ChuaMOX and mandelonitrile at an optimum pH. Further study of defensive systems in primitive arthropods will pave the way to elucidate the evolution of altruistic defenses in the animal kingdom.
Collapse
Affiliation(s)
- Yuko Ishida
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasumasa Kuwahara
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Mohammad Dadashipour
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Atsutoshi Ina
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masashi Morita
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yayoi Ichiki
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
45
|
Yamaguchi T, Noge K, Asano Y. Cytochrome P450 CYP71AT96 catalyses the final step of herbivore-induced phenylacetonitrile biosynthesis in the giant knotweed, Fallopia sachalinensis. PLANT MOLECULAR BIOLOGY 2016; 91:229-239. [PMID: 26928800 DOI: 10.1007/s11103-016-0459-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
The giant knotweed Fallopia sachalinensis (Polygonaceae) synthesizes phenylacetonitrile (PAN) from L-phenylalanine when infested by the Japanese beetle Popillia japonica or treated with methyl jasmonate (MeJA). Here we identified (E/Z)-phenylacetaldoxime (PAOx) as the biosynthetic precursor of PAN and identified a cytochrome P450 that catalysed the conversion of (E/Z)-PAOx to PAN. Incorporation of deuterium-labelled (E/Z)-PAOx into PAN emitted from the leaves of F. sachalinensis was detected using gas chromatography-mass spectrometry. Further, using liquid chromatography-tandem mass spectrometry, we detected the accumulation of (E/Z)-PAOx in MeJA-treated leaves. These results showed that (E/Z)-PAOx is the biosynthetic precursor of PAN. MeJA-induced mRNAs were analysed by differential expression analysis using a next-generation sequencer. Of the 74,329 contigs obtained from RNA-seq and de novo assembly, 252 contigs were induced by MeJA treatment. Full-length cDNAs encoding MeJA-induced cytochrome P450s CYP71AT96, CYP82AN1, CYP82D125 and CYP715A35 were cloned using 5'- and 3'-RACE and were expressed using a baculovirus expression system. Among these cytochrome P450s, CYP71AT96 catalysed the conversion of (E/Z)-PAOx to PAN in the presence of NADPH and a cytochrome P450 reductase. It also acted on (E/Z)-4-hydroxyphenylacetaldoxime and (E/Z)-indole-3-acetaldoxime. The broad substrate specificity of CYP71AT96 was similar to that of aldoxime metabolizing cytochrome P450s. Quantitative RT-PCR analysis showed that CYP71AT96 expression was highly induced because of treatment with MeJA as well as feeding by the Japanese beetle. These results indicate that CYP71AT96 likely contributes the herbivore-induced PAN biosynthesis in F. sachalinensis.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Koji Noge
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
- Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
46
|
Asano Y, Kawahara N. A New S-Hydroxynitrile Lyase from Baliospermum montanum—Its Structure, Molecular Dynamics Simulation, and Improvement by Protein Engineering. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1089/ind.2015.0029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
- Japan Science and Technology Agency, Exploratory Research for Advanced Technology, Asano Active Enzyme Molecule Project, Toyama, Japan
| | - Nobuhiro Kawahara
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
- Japan Science and Technology Agency, Exploratory Research for Advanced Technology, Asano Active Enzyme Molecule Project, Toyama, Japan
| |
Collapse
|
47
|
Irmisch S, Zeltner P, Handrick V, Gershenzon J, Köllner TG. The maize cytochrome P450 CYP79A61 produces phenylacetaldoxime and indole-3-acetaldoxime in heterologous systems and might contribute to plant defense and auxin formation. BMC PLANT BIOLOGY 2015; 15:128. [PMID: 26017568 PMCID: PMC4446944 DOI: 10.1186/s12870-015-0526-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/18/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plants produce a group of aldoxime metabolites that are well known as volatiles and as intermediates in cyanogenic glycoside and glucosinolate biosynthesis in particular plant families. Recently it has been demonstrated that aldoximes can also accumulate as part of direct plant defense in poplar. Cytochrome P450 enzymes of the CYP79 family were shown to be responsible for the formation of aldoximes from their amino acid precursors. RESULTS Here we describe the identification and characterization of maize CYP79A61 which was heterologously expressed in yeast and Nicotiana benthamiana and shown to catalyze the formation of (E/Z)-phenylacetaldoxime and (E/Z)-indole-3-acetaldoxime from L-phenylalanine and L-tryptophan, respectively. Simulated herbivory on maize leaves resulted in an increased CYP79A61 transcript accumulation and in elevated levels of L-phenylalanine and (E/Z)-phenylacetaldoxime. Although L-tryptophan levels were also increased after the treatment, (E/Z)-indole-3-acetaldoxime could not be detected in the damaged leaves. However, simulated herbivory caused a significant increase in auxin concentration. CONCLUSIONS Our data suggest that CYP79A61 might contribute to the formation of (E/Z)-phenylacetaldoxime in maize. Since aldoximes have been described as toxic compounds for insect herbivores and pathogens, the increased accumulation of (E/Z)-phenylacetaldoxime after simulated herbivory indicates that this compound plays a role in plant defense. In addition, it is conceivable that (E/Z)-indole-3-acetaldoxime produced by recombinant CYP79A61 could be further converted into the plant hormone indole-3-acetic acid after herbivore feeding in maize.
Collapse
Affiliation(s)
- Sandra Irmisch
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, 07745, Jena, Germany.
| | - Philipp Zeltner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, 07745, Jena, Germany.
| | - Vinzenz Handrick
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, 07745, Jena, Germany.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, 07745, Jena, Germany.
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, 07745, Jena, Germany.
| |
Collapse
|
48
|
Complete Genome Sequence of an Aldoxime Degrader, Bacillus sp. OxB-1. GENOME ANNOUNCEMENTS 2015; 3:3/1/e00025-15. [PMID: 25720679 PMCID: PMC4342420 DOI: 10.1128/genomea.00025-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bacillus sp. OxB-1 has been characterized as a strain that produces a new enzyme, aldoxime dehydratase, which catalyzes the dehydration of aldoxime to form nitrile. Here, its complete genome sequence (3,594,618 bp, with a GC content of 47.85%), comprising a circular chromosome, is announced.
Collapse
|
49
|
Biosynthetic pathway for the cyanide-free production of phenylacetonitrile in Escherichia coli by utilizing plant cytochrome P450 79A2 and bacterial aldoxime dehydratase. Appl Environ Microbiol 2014; 80:6828-36. [PMID: 25172862 DOI: 10.1128/aem.01623-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The biosynthetic pathway for the production of phenylacetonitrile (PAN), which has a wide variety of uses in chemical and pharmaceutical industries, was constructed in Escherichia coli utilizing enzymes from the plant glucosinolate-biosynthetic and bacterial aldoxime-nitrile pathways. First, the single-step reaction to produce E,Z-phenylacetaldoxime (PAOx) from l-Phe was constructed in E. coli by introducing the genes encoding cytochrome P450 (CYP) 79A2 and CYP reductase from Arabidopsis thaliana, yielding the E,Z-PAOx-producing transformant. Second, this step was expanded to the production of PAN by further introducing the aldoxime dehydratase (Oxd) gene from Bacillus sp. strain OxB-1, yielding the PAN-producing transformant. The E,Z-PAOx-producing transformant also produced phenethyl alcohol and PAN as by-products, which were suggested to be the metabolites of E,Z-PAOx produced by E. coli enzymes, while the PAN-producing transformant accumulated only PAN in the culture broth, which suggested that the CYP79A2 reaction (the conversion of l-Phe to E,Z-PAOx) was a potential bottleneck in the PAN production pathway. Expression of active CYP79A2 and concentration of biomass were improved by the combination of the autoinduction method, coexpression of groE, encoding the heat shock protein GroEL/GroES, N-terminal truncation of CYP79A2, and optimization of the culture conditions, yielding a >60-fold concentration of E,Z-PAOx (up to 2.9 mM). The concentration of PAN was 4.9 mM under the optimized conditions. These achievements show the potential of this bioprocess to produce nitriles and nitrile derivatives in the absence of toxic chemicals.
Collapse
|