1
|
Sohail A, Shah L, Shah SMA, Abbas A, Ali S, Manzoor. Integrated transcriptomic, transcriptional factors, and protein interaction reveal the regulatory mechanisms of flowering time in rice (Oryza sativa L.). Transgenic Res 2025; 34:21. [PMID: 40246762 DOI: 10.1007/s11248-025-00439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/20/2025] [Indexed: 04/19/2025]
Abstract
Appropriate flowering time is important for rice regional adaptation and optimum rice production, but little is known about the omics of heading date in rice. Here, we studied omics including transcriptome, proteome and transcriptional factors to identify regulatory genes related to flowering time. A total of 1402 differentially expressed genes (DEGs, 721 up-regulated and 681 down-regulated) were detected in wild and mutant. These transcripts are classified according to biological processes, cellular components, and molecular functions. Among these differentially expressed genes, many transcription factor genes demonstrated multiple regulatory pathways involved in flowering time. Gene expression analysis showed that Os03g0122600 (OsMADS50), Os08g0105000 (Ehd3), Os06g0275000 (Hd1) were expressed higher and Os06g0199500 (OsHAL3), Os06g0498800 (OsMFT1), Os08g0105000 (Ehd3), Os06g0157700 (Hd3a), and Os02g0731700 (Ghd2), were expressed lower in wild compared to mutant, which are the key genes that regulate the flowering in rice. In addition, Ghd7 interacted with Os10g30860 and Os12g08260 using yeast two-hybrid assay. We identified 28 potential Ghd7 transcriptional regulators using the transcription factor-centered yeast one hybrid (TF-Centered Y1H) assay. Taken together, this study developed a new set of genomic resources to identify and characterize genes, proteins, and motifs associated with flowering time.
Collapse
Affiliation(s)
- Amir Sohail
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China.
- Department of Plant Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan.
| | - Liaqat Shah
- Department of Agriculture, Mir Chakar Khan Rind University, Sibi, 82000, Pakistan
| | - Syed Mehar Ali Shah
- Department of Plant Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Adil Abbas
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Punjab, Pakistan
| | - Shahzad Ali
- Department of Agriculture, Hazara University, Mansehra, 21120, Pakistan
| | - Manzoor
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, 666303, China
| |
Collapse
|
2
|
Zhou X, Ren R, Sun H, Wang L, He W, Guo H. BpMYB06 acts as a positive regulatory factor in saline-alkaline stress resistance by binding to two novel elements. PLANT & CELL PHYSIOLOGY 2025; 66:318-332. [PMID: 39786441 DOI: 10.1093/pcp/pcae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Saline-alkaline salinity is recognized as one of the most severe abiotic stress factors, limiting plant growth and resulting in significant yield losses. MYB transcription factors (TFs) are crucial for plant tolerance to abiotic stress. However, the roles and regulatory mechanism of MYB TFs underlying saline-alkaline stress tolerance have not yet been investigated in Betula platyphylla. In this report, BpMYB06, an R2R3-MYB TF, is induced in response to saline-alkaline stress in B. platyphylla. This protein functions as a nuclear-localized transcriptional activator. Both gain- and loss-of-function analyses indicate that the transcript level of BpMYB06 is positively correlated with saline-alkaline stress tolerance, primarily through the enhancement of reactive oxygen species scavenging and the regulation of osmotic and ionic balance. Additionally, BpMYB06 is implicated in the control of stomatal aperture. Quantitative real-time PCR results show that BpMYB06 regulates the expression of genes associated with stress tolerance. Furthermore, TF-centered Y1H and chromatin immunoprecipitation assays reveal that BpMYB06 binds to two novel core sequences ([A/C]CGG and TAG[C/A]), thereby inducing the expression of stress-related genes. Our findings provide new insights into the role of BpMYB06 in B. platyphylla under soda saline-alkaline stress and suggest that it could serve as a potential target gene for developing saline-alkaline stress-tolerant B. platyphylla plants.
Collapse
Affiliation(s)
- Xuemei Zhou
- Department of Life Science and Technology, Mudanjiang Normal University, Aimin Distric, Mudanjiang 157011, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenhe District, Shenyang, Liaoning 110866, China
| | - Ruyi Ren
- Department of Life Science and Technology, Mudanjiang Normal University, Aimin Distric, Mudanjiang 157011, China
| | - Hu Sun
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenhe District, Shenyang, Liaoning 110866, China
| | - Luyao Wang
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenhe District, Shenyang, Liaoning 110866, China
| | - Wenjie He
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenhe District, Shenyang, Liaoning 110866, China
| | - Huiyan Guo
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenhe District, Shenyang, Liaoning 110866, China
| |
Collapse
|
3
|
Yan M, Li X, Ji X, Gang B, Li Y, Li Z, Wang Y, Guo H. An R2R3-MYB transcription factor PdbMYB6 enhances drought tolerance by mediating reactive oxygen species scavenging, osmotic balance, and stomatal opening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109536. [PMID: 39884149 DOI: 10.1016/j.plaphy.2025.109536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Drought is a major environmental challenge that hinders the growth and development of plants. R2R3-MYB transcription factors (TFs) play a vital role in mediating responses to abiotic stress; however, their specific functions in Populus davidiana × Populus bolleana hybrid poplar plants remain underexplored. This study focused on PdbMYB6, a novel R2R3-MYB TF identified in P. davidiana × P. bolleana plants. We found that PdbMYB6 acts as a transcriptional activator. By conducting functional analyses of both overexpression and knockout models, we demonstrated that PdbMYB6 enhances drought tolerance in plants by improving reactive oxygen species scavenging and modulating osmotic balance. Additionally, PdbMYB6 plays a role in regulating stomatal openings to minimize water loss. The qRT-PCR and RNA sequencing results revealed that PdbMYB6 influences the expression of genes related to stress tolerance. TF-centered Yeast One-Hybrid (Y1H) and chromatin immunoprecipitation (ChIP) assays indicated that PdbMYB6 binds to two novel core sequences (C [A/G/C]TG and [T/A/G]GTA) as well as GT-1 (GGAAA) and MYBCORE (AACGG) elements, which are associated with light responses and stress resistance, thereby promoting the expression of stress-resistant genes. Furthermore, Y1H and ChIP assays identified four upstream factors that regulate PdbMYB6 expression by interacting with specific elements in its promoter. Notably, the overexpression of these four factors enhances plant drought resistance and affects the expression of stress-response genes. Our findings highlight the role of the PdbMYB6 TF in the drought regulatory mechanism and provide potential gene sources for the molecular breeding of drought-resistant plants through genetic engineering.
Collapse
Affiliation(s)
- Minglong Yan
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Xinxin Li
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Xiaoyu Ji
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Biyao Gang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Ying Li
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Zhuoran Li
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Huiyan Guo
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
4
|
Bai J, Yang P, Bi M, Xu L, Ming J. Identification of cis-acting elements recognized by transcription factor LlWOX11 in Lilium lancifolium. PHYSIOLOGIA PLANTARUM 2025; 177:e70224. [PMID: 40264389 DOI: 10.1111/ppl.70224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
WOX transcription factors play important roles in plant developmental processes and mainly bind to the WOX-binding element to regulate gene expression. Previously, we characterized a WOX gene from Lilium lancifolium, LlWOX11, positively regulating bulbil formation, and showed that it bound to the motif of TTAATGAG. However, whether LlWOX11 could bind to other motifs is unclear. In this study, Transcription Factor-Centered Yeast One Hybrid (TF-Centered Y1H) was utilized to study the motifs recognized by LlWOX11, and five motifs with seven bases were obtained. In addition to three motifs containing known cis-acting elements: TCAACTC (CAREOSREP1), AGAAAGA (DOFCOREZM/POLLENILELAT52), ACAGTAT (CACTFTPPCA1), we identified that LlWOX11 could bind to two new motifs: TGCGAAA, TCCATCA. We further searched for the core sequences of these motifs by Y1H. Dual-luciferase assays (LUC), Electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) were performed to further determine that these motifs were bound by LlWOX11 in the plant. In addition, we found that LlWOX11 inhibited the transcription of LlRR9 by binding to the screened motifs in the promoter and further promoted bulbil formation. These findings will help to further reveal the functions of the WOX protein and the molecular mechanism of bulbil formation regulated by LlWOX11.
Collapse
Affiliation(s)
- Jingyi Bai
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, Yunnan, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Panpan Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengmeng Bi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leifeng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Ming
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, Yunnan, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Guo Y, Shi YX, Song S, Zhao YQ, Lu MZ. PagNAC2a promotes phloem fiber development by regulating PagATL2 in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112283. [PMID: 39396620 DOI: 10.1016/j.plantsci.2024.112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Phloem fiber is a key component of phloem tissue and is involved in supporting its structural integrity. NAC domain transcription factors are master switches that regulate secondary cell wall (SCW) biosynthesis in xylem fibers, but the mechanism by which NACs regulate phloem fiber development remains unexplored. Here, a NAC2-like gene in poplar, PagNAC2a, was shown to be involved in phloem fiber differentiation. qRT-PCR and GUS staining revealed that PagNAC2a was specifically expressed in the phloem zone of poplar stems. The overexpression of PagNAC2a in poplar increased plant biomass by increasing plant height, stem diameter, and leaf area. Stem anatomy analysis revealed that overexpression of PagNAC2a resulted in enhanced phloem fiber differentiation and cell wall deposition. In addition, PagNAC2a directly upregulated the expression of PagATL2, a gene involved in phloem development, as revealed by yeast one hybrid (Y1H) and electrophoretic mobility shift assay (EMSA) assays. Overall, we proposed that the PagNAC2a was a positive regulator of phloem fiber development in poplar, and these results provided insights into the molecular mechanisms involved in the differentiation of phloem fibers.
Collapse
Affiliation(s)
- Yu Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China.
| | - Yang-Xin Shi
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Shuo Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China.
| | - Yan-Qiu Zhao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; State Key Laboratory of Subtropical Silviculture, Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
6
|
Zheng Y, Ou X, Li Q, Wu Z, Wu L, Li X, Zhang B, Sun Y. Genome-wide epigenetic dynamics of tea leaves under mechanical wounding stress during oolong tea postharvest processing. Food Res Int 2024; 194:114939. [PMID: 39232552 DOI: 10.1016/j.foodres.2024.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Understanding the epigenetic responses to mechanical wounding stress during the postharvest processing of oolong tea provides insight into the reprogramming of the tea genome and its impact on tea quality. Here, we characterized the 5mC DNA methylation and chromatin accessibility landscapes of tea leaves subjected to mechanical wounding stress during the postharvest processing of oolong tea. Analysis of the differentially methylated regions and preferentially accessible promoters revealed many overrepresented TF-binding motifs, highlighting sets of TFs that are likely important for the quality of oolong tea. Within these sets, we constructed a chromatin accessibility-mediated gene regulatory network specific to mechanical wounding stress. In combination with the results of the TF-centred yeast one-hybrid assay, we identified potential binding sites of CsMYC2 and constructed a gene regulatory network centred on CsMYC2, clarifying the potential regulatory role of CsMYC2 in the postharvest processing of oolong tea. Interestingly, highly accessible chromatin and hypomethylated cytosine were found to coexist in the promoter region of the indole biosynthesis gene (tryptophan synthase β-subunit, CsTSB) under wounding stress, which indicates that these two important epigenetic regulatory mechanisms are jointly involved in regulating the synthesis of indole during the postharvest processing of oolong tea. These findings improve our understanding of the epigenetic regulatory mechanisms involved in quality formation during the postharvest processing of oolong tea.
Collapse
Affiliation(s)
- Yucheng Zheng
- College of Tea and Food Sciences, Wuyi University, Tea Engineering Research Center of Fujian Higher Education, Tea Science Research Institute of Wuyi University, Wuyishan 354300, China; Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Xiaoxi Ou
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Qiuming Li
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Zongjie Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Liangyu Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Xinlei Li
- Tea Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Bo Zhang
- College of Tea and Food Sciences, Wuyi University, Tea Engineering Research Center of Fujian Higher Education, Tea Science Research Institute of Wuyi University, Wuyishan 354300, China.
| | - Yun Sun
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China.
| |
Collapse
|
7
|
Liu J, Li H, Hong C, Lu W, Zhang W, Gao H. Quantitative RUBY reporter assay for gene regulation analysis. PLANT, CELL & ENVIRONMENT 2024; 47:3701-3711. [PMID: 38757792 DOI: 10.1111/pce.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Various reporter genes have been developed to study gene expression pattern and gene regulation. The RUBY reporter gene was recently developed and widely used, because of its visible and noninvasive advantages. However, quantitative analysis of RUBY gene expression levels was lacking. In this study, we introduce a novel betalain quantification method in combination with the tobacco transient expression system. The betalain produced in tobacco leaves was extracted and purified, and its concentration was quantitatively measured. We successfully applied this approach in studying the transcriptional regulation of ARC5 gene by transcription factors CPD25 and CPD45. Furthermore, with this method, we showed that the gene expression of RCA and Rbcs1A gene were regulated by light, transcription factors HY5 and PIFs through G-box and I-box elements. The development of this betalain quantification approach with the tobacco transient expression system offers a cost-effective and intuitive strategy for studying the regulatory mechanism of gene expression.
Collapse
Affiliation(s)
- Jia Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hao Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Conghao Hong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wanqing Lu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wei Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
8
|
Wang P, Wang D, Li Y, Li J, Liu B, Wang Y, Gao C. The transcription factor ThDOF8 binds to a novel cis-element and mediates molecular responses to salt stress in Tamarix hispida. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3171-3187. [PMID: 38400756 DOI: 10.1093/jxb/erae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
Salt stress is a common abiotic factor that restricts plant growth and development. As a halophyte, Tamarix hispida is a good model plant for exploring salt-tolerance genes and regulatory mechanisms. DNA-binding with one finger (DOF) is an important transcription factor (TF) that influences and controls various signaling substances involved in diverse biological processes related to plant growth and development, but the regulatory mechanisms of DOF TFs in response to salt stress are largely unknown in T. hispida. In the present study, a newly identified Dof gene, ThDOF8, was cloned from T. hispida, and its expression was found to be induced by salt stress. Transient overexpression of ThDOF8 enhanced T. hispida salt tolerance by enhancing proline levels, and increasing the activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD). These results were also verified in stably transformed Arabidopsis. Results from TF-centered yeast one-hybrid (Y1H) assays and EMSAs showed that ThDOF8 binds to a newly identified cis-element (TGCG). Expression profiling by gene chip analysis identified four potential direct targets of ThDOF8, namely the cysteine-rich receptor-like kinases genes, CRK10 and CRK26, and two glutamate decarboxylase genes, GAD41, and GAD42, and these were further verified by ChIP-quantitative-PCR, EMSAs, Y1H assays, and β-glucuronidase enzyme activity assays. ThDOF8 can bind to the TGCG element in the promoter regions of its target genes, and transient overexpression of ThCRK10 also enhanced T. hispida salt tolerance. On the basis of our results, we propose a new regulatory mechanism model, in which ThDOF8 binds to the TGCG cis-element in the promoter of the target gene CRK10 to regulate its expression and improve salt tolerance in T. hispida. This study provides a basis for furthering our understanding the role of DOF TFs and identifying other downstream candidate genes that have the potential for improving plant salt tolerance via molecular breeding.
Collapse
Affiliation(s)
- Peilong Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325000, China
| | - Danni Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Yongxi Li
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Jinghang Li
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Baichao Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Yuanyuan Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| |
Collapse
|
9
|
Duan S, Guan S, Fei R, Sun T, Kang X, Xin R, Song W, Sun X. Unraveling the role of PlARF2 in regulating deed formancy in Paeonia lactiflora. PLANTA 2024; 259:133. [PMID: 38668881 DOI: 10.1007/s00425-024-04411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
MAIN CONCLUSION PlARF2 can positively regulate the seed dormancy in Paeonia lactiflora Pall. and bind the RY cis-element. Auxin, a significant phytohormone influencing seed dormancy, has been demonstrated to be regulated by auxin response factors (ARFs), key transcriptional modulators in the auxin signaling pathway. However, the role of this class of transcription factors (TFs) in perennials with complex seed dormancy mechanisms remains largely unexplored. Here, we cloned and characterized an ARF gene from Paeonia lactiflora, named PlARF2, which exhibited differential expression levels in the seeds during the process of seed dormancy release. The deduced amino acid sequence of PlARF2 had high homology with those of other plants and contained typical conserved Auxin_resp domain of the ARF family. Phylogenetic analysis revealed that PlARF2 was closely related to VvARF3 in Vitis vinifera. The subcellular localization and transcriptional activation assay showed that PlARF2 is a nuclear protein possessing transcriptional activation activity. The expression levels of dormancy-related genes in transgenic callus indicated that PlARF2 was positively correlated with the contents of PlABI3 and PlDOG1. The germination assay showed that PlARF2 promoted seed dormancy. Moreover, TF Centered Yeast one-hybrid assay (TF-Centered Y1H), electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter assay analysis (Dual-Luciferase) provided evidence that PlARF2 can bind to the 'CATGCATG' motif. Collectively, our findings suggest that PlARF2, as TF, could be involved in the regulation of seed dormancy and may act as a repressor of germination.
Collapse
Affiliation(s)
- Siyang Duan
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Shixin Guan
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Riwen Fei
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Tianyi Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Xuening Kang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Rujie Xin
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Wenhui Song
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Xiaomei Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China.
| |
Collapse
|
10
|
Lei X, Fang J, Lv J, Li Z, Liu Z, Wang Y, Wang C, Gao C. Overexpression of ThSCL32 confers salt stress tolerance by enhancing ThPHD3 gene expression in Tamarix hispida. TREE PHYSIOLOGY 2023; 43:1444-1453. [PMID: 37104646 DOI: 10.1093/treephys/tpad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
GRAS transcription factors belong to the plant-specific protein family. They are not only involved in plant growth and development but also in plant responses to a variety of abiotic stresses. However, to date, the SCL32(SCARECROW-like 32) gene conferring the desired resistance to salt stresses has not been reported in plants. Here, ThSCL32, a homologous gene of ArabidopsisthalianaAtSCL32, was identified. ThSCL32 was highly induced by salt stress in Tamarix hispida. ThSCL32 overexpression in T. hispida gave rise to improved salt tolerance. ThSCL32-silenced T. hispida plants were more sensitive to salt stress. RNA-seq analysis of transient transgenic T. hispida overexpressing ThSCL32 revealed significantly enhanced ThPHD3 (prolyl-4-hydroxylase domain 3 protein) gene expression. ChIP-PCR further verified that ThSCL32 probably binds to the novel cis-element SBS (ACGTTG) in the promoter of ThPHD3 to activate its expression. In brief, our results suggest that the ThSCL32 transcription factor is involved in salt tolerance in T. hispida by enhancing ThPHD3 expression.
Collapse
Affiliation(s)
- Xiaojin Lei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Jiaru Fang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - JiaXin Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Zhengyang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Zhongyuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| |
Collapse
|
11
|
Han H, Dong L, Zhang W, Liao Y, Wang L, Wang Q, Ye J, Xu F. Ginkgo biloba GbbZIP08 transcription factor is involved in the regulation of flavonoid biosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154054. [PMID: 37487356 DOI: 10.1016/j.jplph.2023.154054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Ginkgo biloba is the oldest relict plant on Earth and an economic plant resource derived from China. Flavonoids extracted from G. biloba are beneficial to the prevention and treatment of cardiovascular and cerebrovascular diseases. Basic leucine zipper (bZIP) transcription factors (TFs) have been recognized to play important roles in plant secondary metabolism. In this study, GbbZIP08 was isolated and characterized. It encodes a protein containing 154 amino acids, which belongs to hypocotyl 5 in group H of the bZIP family. Tobacco transient expression assay indicated that GbbZIP08 was localized in the plant nucleus. GbbZIP08 overexpression showed that the contents of total flavonoids, kaempferol, and anthocyanin in transgenic tobacco were significantly higher than those in the wild type. Transcriptome sequencing analysis revealed significant upregulation of structural genes in the flavonoid biosynthesis pathway. In addition, phytohormone signal transduction pathways, such as the abscisic acid, salicylic acid, auxin, and jasmonic acid pathways, were enriched with a large number of differentially expressed genes. TFs such as MYB, AP2, WRKY, NAC, bZIP, and bHLH, were also differentially expressed. The above results indicated that GbbZIP08 overexpression promoted flavonoid accumulation and increased the transcription levels of flavonoid-synthesis-related genes in plants.
Collapse
Affiliation(s)
- Huan Han
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Liwei Dong
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Lina Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Qijian Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
12
|
Han H, Wang C, Yang X, Wang L, Ye J, Xu F, Liao Y, Zhang W. Role of bZIP transcription factors in the regulation of plant secondary metabolism. PLANTA 2023; 258:13. [PMID: 37300575 DOI: 10.1007/s00425-023-04174-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION This study provides an overview of the structure, classification, regulatory mechanisms, and biological functions of the basic (region) leucine zipper transcription factors and their molecular mechanisms in flavonoid, terpenoid, alkaloid, phenolic acid, and lignin biosynthesis. Basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors (TFs) in eukaryotic organisms. The bZIP TFs are widely distributed in plants and play important roles in plant growth and development, photomorphogenesis, signal transduction, resistance to pathogenic microbes, biotic and abiotic stress, and secondary metabolism. Moreover, the expression of bZIP TFs not only promotes or inhibits the accumulation of secondary metabolites in medicinal plants, but also affects the stress response of plants to the external adverse environment. This paper describes the structure, classification, biological function, and regulatory mechanisms of bZIP TFs. In addition, the molecular mechanism of bZIP TFs regulating the biosynthesis of flavonoids, terpenoids, alkaloids, phenolic acids, and lignin are also elaborated. This review provides a summary for in-depth study of the molecular mechanism of bZIP TFs regulating the synthesis pathway of secondary metabolites and plant molecular breeding, which is of significance for the generation of beneficial secondary metabolites and the improvement of plant varieties.
Collapse
Affiliation(s)
- Huan Han
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Caini Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Lina Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| |
Collapse
|
13
|
Jingwen W, Jingxin W, Ye Z, Yan Z, Caozhi L, Yanyu C, Fanli Z, Su C, Yucheng W. Building an improved transcription factor-centered yeast one hybrid system to identify DNA motifs bound by protein comprehensively. BMC PLANT BIOLOGY 2023; 23:236. [PMID: 37142946 PMCID: PMC10158250 DOI: 10.1186/s12870-023-04241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Identification of the motifs bound by a transcription factor (TF) is important to reveal the function of TF. Previously, we built a transcription factor centered yeast one hybrid (TF-Centered Y1H) that could identify the motifs bound by a target TF. However, that method was difficult to comprehensively identify all the motifs bound by a TF. RESULTS Here, we build an improved TF-Centered Y1H to comprehensively determine the motifs bound by a target TF. Recombination-mediated cloning in yeast was performed to construct a saturated prey library that contains 7 random base insertions. After TF-Centered Y1H screening, all the positive clones were pooled together to isolate pHIS2 vector. The insertion regions of pHIS2 were PCR amplified and the PCR product was subjected to high-throughput sequencing. The insertion sequences were then retrieved and analyzed using MEME program to identify the potential motifs bound by the TF. Using this technology, we studied the motifs bound by an ethylene-responsive factor (BpERF2) from birch. In total, 22 conserved motifs were identified, and most of them are novel cis-acting elements. Both the yeast one hybrid and electrophoretic mobility shift assay verified that the obtained motifs could be bound by BpERF2. In addition, chromatin immunoprecipitation (ChIP) study further suggested that the identified motifs can be bound by BpERF2 in cells of birch. These results together suggested that this technology is reliable and has biological significance. CONCLUSION This method will have wide application in DNA-protein interaction studies.
Collapse
Affiliation(s)
- Wang Jingwen
- Key Laboratory Forest Tree Genetics & Breeding of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wang Jingxin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Zhu Ye
- Nanjing Ruiyuan Biotechnology Company Limited, Nanking, 210000, China
| | - Zhu Yan
- Key Laboratory Forest Tree Genetics & Breeding of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Liu Caozhi
- Nanjing Ruiyuan Biotechnology Company Limited, Nanking, 210000, China
| | - Chen Yanyu
- Nanjing Ruiyuan Biotechnology Company Limited, Nanking, 210000, China
| | - Zeng Fanli
- Nanjing Ruiyuan Biotechnology Company Limited, Nanking, 210000, China
| | - Chen Su
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| | - Wang Yucheng
- Key Laboratory Forest Tree Genetics & Breeding of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
14
|
Liang JH, Li JR, Liu C, Pan WQ, Wu WJ, Shi WJ, Wang LJ, Yi MF, Wu J. GhbZIP30-GhCCCH17 module accelerates corm dormancy release by reducing endogenous ABA under cold storage in Gladiolus. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37128741 DOI: 10.1111/pce.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Gladiolus hybridus is one of the most popular flowers worldwide. However, its corm dormancy characteristic largely limits its off-season production. Long-term cold treatment (LT), which increases sugar content and reduces abscisic acid (ABA), is an efficient approach to accelerate corm dormancy release (CDR). Here, we identified a GhbZIP30-GhCCCH17 module that mediates the antagonism between sugars and ABA during CDR. We showed that sugars promoted CDR by reducing ABA levels in Gladiolus. Our data demonstrated that GhbZIP30 transcription factor directly binds the GhCCCH17 zinc finger promoter and activates its transcription, confirmed by yeast one-hybrid, dual-luciferase (Dual-LUC), chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assay (EMSA). GhCCCH17 is a transcriptional activator, and its nuclear localisation is altered by glucose and cytokinin treatments. Both GhbZIP30 and GhCCCH17 positively respond to LT, sugars, and cytokinin treatments. Silencing GhbZIP30 or GhCCCH17 resulted in delayed CDR by regulating ABA metabolic genes, while their overexpression promoted CDR. Taken together, we propose that the GhbZIP30-GhCCCH17 module is involved in cold- and glucose-induced CDR by regulating ABA metabolic genes.
Collapse
Affiliation(s)
- Jia-Hui Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing-Ru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Chang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Wen-Qiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Wen-Jing Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Wen-Jing Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Lu-Jia Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Ming-Fang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Han P, Hua Z, Zhao Y, Huang L, Yuan Y. PuCRZ1, an C2H2 transcription factor from Polyporus umbellatus, positively regulates mycelium response to osmotic stress. Front Microbiol 2023; 14:1131605. [PMID: 37089566 PMCID: PMC10115967 DOI: 10.3389/fmicb.2023.1131605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
Polyporus umbellatus is an edible and medicinal mushroom with the capacity to produce sclerotia. However, the mechanism of P. umbellatus sclerotia formation is unclear. CRZ1 is a C2H2 family transcription factor involved in the Ca2+-calcineurin signaling pathway, which has the function of regulating sclerotia formation, maintaining ion homeostasis, and responding to stress. In this study, we identified 28 C2H2 transcription factors in P. umbellatus genome, 13 of which are differentially expressed between mycelium and sclerotia, including PuCRZ1. Combining DNA affinity purification and sequencing (DAP-seq) and quantitative real-time PCR (qRT-PCR), three genes (PuG10, PuG11, PuG12) were identified as putative PuCRZ1 target genes containing a putative binding motif (GTGGCG) within their promoter. Yeast single hybridization (Y1H) and EMSA further confirmed that PuCRZ1 can bind to the promoter region of PuG10, PuG11, and PuG12. PuCRZ1 gene could reduce the sensitivity of NaCl in yeast cells. Furthermore, overexpression of the PuCRZ1 target gene, especially the FVLY domain containing gene PuG11, could improve the mycelia growth rate and mannitol tolerance in P. umbellatus. These results demonstrate that PuCRZ1 in the Ca2+-calcineurin signaling pathway plays an important role in mycelia growth, as well as osmotic stress tolerance.
Collapse
Affiliation(s)
- Pengjie Han
- School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyi Hua
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Luqi Huang,
| | - Yuan Yuan
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yuan Yuan,
| |
Collapse
|
16
|
Wang Y, Wu J, Li J, Liu B, Wang D, Gao C. The R2R3-MYB transcription factor ThRAX2 recognized a new element MYB-T (CTTCCA) to enhance cadmium tolerance in Tamarix hispida. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111574. [PMID: 36565937 DOI: 10.1016/j.plantsci.2022.111574] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
R2R3-MYB transcription factors play an important role in plant development and response to various environmental stresses. In this study, a new R2R3-MYB gene, named ThRAX2, was isolated from T. hispida. ThRAX2 has an open reading frame (ORF) of 1191 bp and encodes a protein of 396 amino acids. ThRAX2 was localized in the nucleus. The overexpression of ThRAX2 in Arabidopsis and T. hispida significantly increased Cadmium (Cd) tolerance. Moreover, the accumulation of cadmium in roots and leaves was significantly reduced. The TF-centred Y1H and Y1H results showed that ThRAX2 was able to specifically bind a new cis-element (MYB-T, CTTCCA). The promoters of some Cd-responsive genes, such as ThSOS1, ThCKX3, ThCAX3A, ThMYB78, ThMIP2, ThTPS4, and ThSOD2, all contained 1-3 MYB-T sequences. Furthermore, chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR) and ChIPquantitative (q)PCR showed that the ThRAX2 gene can bind to ThSOS1, ThCKX3, ThCAX3A and ThMYB78 promoter fragments, including the MYB-T motif. Meanwhile, the qRTPCR results also showed that the expression trends of ThSOS1, ThCKX3, ThCAX3A and ThMYB78 were similar to that of ThRAX2. This finding suggests that Cd tolerance of the ThRAX2 gene may regulate the expression of some downstream genes through specific recognition of the MYB-T motif and participate in regulating intracellular ion homeostasis, transport, and protein activity or enhance antioxidant enzyme activity. This study found a novel cis-acting element that binds ThRAX2 to regulate Cd tolerance, which lays the foundation for the ThRAX2 regulatory mechanism of Cd stress. This study provides a genetic and theoretical basis for the bioremediation of Cd-contaminated land by cultivating transgenic plants in the future.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jing Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jinghang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Baichao Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Danni Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
17
|
Luo J, Tang Y, Chu Z, Peng Y, Chen J, Yu H, Shi C, Jafar J, Chen R, Tang Y, Lu Y, Ye Z, Li Y, Ouyang B. SlZF3 regulates tomato plant height by directly repressing SlGA20ox4 in the gibberellic acid biosynthesis pathway. HORTICULTURE RESEARCH 2023; 10:uhad025. [PMID: 37090098 PMCID: PMC10116951 DOI: 10.1093/hr/uhad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/15/2023] [Indexed: 05/03/2023]
Abstract
Plant height is an important target trait for crop genetic improvement. Our previous work has identified a salt-tolerant C2H2 zinc finger, SlZF3, and its overexpression lines also showed a semi-dwarf phenotype, but the molecular mechanism remains to be elucidated. Here, we characterized the dwarf phenotype in detail. The dwarfism is caused by a decrease in stem internode cell elongation and deficiency of bioactive gibberellic acids (GAs), and can be rescued by exogenous GA3 treatment. Gene expression assays detected reduced expression of genes in the GA biosynthesis pathway of the overexpression lines, including SlGA20ox4. Several protein-DNA interaction methods confirmed that SlZF3 can directly bind to the SlGA20ox4 promoter and inhibit its expression, and the interaction can also occur for SlKS and SlKO. Overexpression of SlGA20ox4 in the SlZF3-overexpressing line can recover the dwarf phenotype. Therefore, SlZF3 regulates plant height by directly repressing genes in the tomato GA biosynthesis pathway.
Collapse
Affiliation(s)
- Jinying Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunfei Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuannan Chu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxin Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawei Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiyang Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jahanzeb Jafar
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaping Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongen Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Li
- Corresponding authors. E-mail: ;
| | | |
Collapse
|
18
|
Chen Z, Teng S, Liu D, Chang Y, Zhang L, Cui X, Wu J, Ai P, Sun X, Lu T, Zhang Z. RLM1, Encoding an R2R3 MYB Transcription Factor, Regulates the Development of Secondary Cell Wall in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:905111. [PMID: 35712587 PMCID: PMC9194675 DOI: 10.3389/fpls.2022.905111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Leaf morphology is an important component of rice ideal plant type. To date, many regulatory genes influencing leaf morphology in rice have been cloned, and their underlying molecular regulatory mechanism has been preliminarily clarified. However, the fine regulation relationship of leaf morphogenesis and plant type remains largely elusive. In this study, a rolling-leaf mutant, named rlm1-D, was obtained and controlled by a pair of dominant nuclear genes. Cytological observations revealed that the rlm1 was mainly caused by abnormal deposition of secondary cell walls. Molecular evidence showed ectopic expression of a MYB-type transcription factor LOC_Os05g46610 was responsible for the phenotype of rlm1-D. A series of experiments, including the transcription factor-centered technology, DNA-binding assay, and electrophoretic mobility shift assay, verified that RLM1 can bind to the promoter of OsCAD2, a key gene responsible for lignin biosynthesis in rice. An interacting partner of RLM1, OsMAPK10, was identified. Multiple biochemical assays confirmed that OsMAPK10 interacted with RLM1. OsMAPK10 positively regulated the lignin content in the leaves and stems of rice. Moreover, OsMAPK10 contributes to RLM1 activation of downstream target genes. In particular, RLM1 is exclusively expressed in the stems at the mature plant stage. The yield of RLM1 knockdown lines increased by over 11% without other adverse agricultural trait penalties, indicating great practical application value. A MAPK-MYB-OsCAD2 genetic regulatory network controlling SCW was proposed, providing a theoretical significance and practical value for shaping the ideal plant type and improving rice yield.
Collapse
Affiliation(s)
- Zhenhua Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shouzhen Teng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Di Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Chang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liying Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuean Cui
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pengfei Ai
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xuehui Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Zhao Y, Zhang Y, Zhang W, Shi Y, Jiang C, Song X, Tuskan GA, Zeng W, Zhang J, Lu M. The PagKNAT2/6b-PagBOP1/2a Regulatory Module Controls Leaf Morphogenesis in Populus. Int J Mol Sci 2022; 23:ijms23105581. [PMID: 35628391 PMCID: PMC9145908 DOI: 10.3390/ijms23105581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 12/04/2022] Open
Abstract
Leaf morphogenesis requires precise regulation of gene expression to achieve organ separation and flat-leaf form. The poplar KNOTTED-like homeobox gene PagKNAT2/6b could change plant architecture, especially leaf shape, in response to drought stress. However, its regulatory mechanism in leaf development remains unclear. In this work, gene expression analyses of PagKNAT2/6b suggested that PagKNAT2/6b was highly expressed during leaf development. Moreover, the leaf shape changes along the adaxial-abaxial, medial-lateral, and proximal-distal axes caused by the mis-expression of PagKNAT2/6b demonstrated that its overexpression (PagKNAT2/6b OE) and SRDX dominant repression (PagKNAT2/6b SRDX) poplars had an impact on the leaf axial development. The crinkle leaf of PagKNAT2/6b OE was consistent with the differential expression gene PagBOP1/2a (BLADE-ON-PETIOLE), which was the critical gene for regulating leaf development. Further study showed that PagBOP1/2a was directly activated by PagKNAT2/6b through a novel cis-acting element "CTCTT". Together, the PagKNAT2/6b-PagBOP1/2a module regulates poplar leaf morphology by affecting axial development, which provides insights aimed at leaf shape modification for further improving the drought tolerance of woody plants.
Collapse
Affiliation(s)
- Yanqiu Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
| | - Yifan Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
| | - Weilin Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
| | - Yangxin Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
| | - Xueqin Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
| | - Gerald A. Tuskan
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA;
| | - Wei Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
- Correspondence: (J.Z.); (M.L.)
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
- Correspondence: (J.Z.); (M.L.)
| |
Collapse
|
20
|
He Z, Wang Z, Nie X, Qu M, Zhao H, Ji X, Wang Y. UNFERTILIZED EMBRYO SAC 12 phosphorylation plays a crucial role in conferring salt tolerance. PLANT PHYSIOLOGY 2022; 188:1385-1401. [PMID: 34904673 PMCID: PMC8825338 DOI: 10.1093/plphys/kiab549] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) UNFERTILIZED EMBRYO SAC 12 (AtUNE12) belongs to the basic helix-loop-helix DNA-binding superfamily of proteins. However, its function is not well known. Here, we found that AtUNE12 plays an important role in mediating salt tolerance. AtUNE12 is a transcriptional activator located in the nucleus whose expression is induced by NaCl, mannitol, and abscisic acid. In addition to binding to the G-box "CACGTG", AtUNE12 also binds to the low temperature responsive element 15 (LTRE15) "CCGAC". Furthermore, the serine residue at position 108 of AtUNE12 is phosphorylated during the salt stress response, enabling AtUNE12 to trigger gene expression by binding to G-box and/or LTRE15 motifs. Phosphorylated AtUNE12 regulates the expression of the genes involved in ion transport leading to reduced Na+ accumulation and K+ loss. At the same time, phosphorylation of AtUNE12 also induces the expression of AtMYB61 to decrease stomatal aperture, leading to a reduced transpiration rate. Overall, AtUNE12 serves as a transcriptional activator that is induced and phosphorylated upon salt stress, and the induction and phosphorylation of AtUNE12 in turn activate the salt-overly-sensitive pathway and decrease the stomatal aperture, enabling improved salt tolerance.
Collapse
Affiliation(s)
- Zihang He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xianguang Nie
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ming Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Huimin Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiaoyu Ji
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
21
|
Hu P, Zhang K, Yang C. Functional roles of the birch BpRAV1 transcription factor in salt and osmotic stress response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111131. [PMID: 35067301 DOI: 10.1016/j.plantsci.2021.111131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
RAV (Related to ABI3/VP1) transcription factors play vital roles in regulating plant response to abiotic stresses; however, the regulatory mechanisms underlying stress response are still poorly understood for most of the RAVgenes. In this study, a novel gene BpRAV1 was cloned from white birch (Betula platyphylla). BpRAV1 protein is localized in the nucleus and serves as a transcriptional activator. The expression of BpRAV1 was induced by salt and osmotic stress treatments. BpRAV1-overexpression birch seedlings exhibited dramatically less ROS accumulation and reduced cell death in response to salt and osmotic stresses. BpRAV1 can specifically bind to the known RAV1A element. In addition, a novel cis-acting element (termed RBS1) bound by BpRAV1 was identified by transcription factor (TF)- centered Y1H assay. BpRAV1 activated the RAV1A and RBS1 elements to induce the expression of SOD and POD genes, resulting in increased SOD and POD activities to enhance ROS scavenging ability, thus improving salt and osmotic stress tolerance. These results indicate that BpRAV1 is a positive regulator governing abiotic stress response.
Collapse
Affiliation(s)
- Ping Hu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Kaimin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
22
|
Wang YM, Zhang YM, Zhang X, Zhao X, Zhang Y, Wang C, Wang YC, Wang LQ. Poplar PsnICE1 enhances cold tolerance by binding to different cis-acting elements to improve reactive oxygen species-scavenging capability. TREE PHYSIOLOGY 2021; 41:2424-2437. [PMID: 34185092 DOI: 10.1093/treephys/tpab084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Low temperature is a major stress that severely affects plant growth and development. Inducer of CBF expression 1 (ICE1) plays a key role in plant cold tolerance by regulating the expression of cold stress-responsive genes. In the present study, we characterized the function and underlying regulatory mechanism of PsnICE1 from Xiaohei poplar (Populus simonii × Populus nigra). PsnICE1 was significantly induced in response to cold stress in the roots, stems and leaves. PsnICE1 proteins were found to localize to the nucleus and exert transactivation activity via their N-terminal transactivation domain. Compared with non-transgenic poplar, transgenic poplar overexpressing PsnICE1 showed substantially enhanced tolerance to cold stress, with higher survival rates and antioxidant enzyme activity levels and reduced reactive oxygen species (ROS) accumulation. In contrast, plants with RNA inhibition-mediated silencing of PsnICE1 showed the opposite phenotype. PsnICE1 can bind to H-box element and abscisic acid-responsive element (ABRE), and more importantly, it mainly binds to IBS1 (a newly discovered cis-acting element) and E-box elements to regulate stress-related genes involved in ROS scavenging. Overall, these results indicated that PsnICE1 functions as a positive regulator of cold tolerance and serves as a potential candidate gene for plant cold tolerance improvement via molecular breeding.
Collapse
Affiliation(s)
- Yan-Min Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Dongxiaofu 1, Xiangshan Road, Beijing 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
- Key Laboratory of Fast-Growing Tree Cultivating of Heilongjiang Province, Forestry Science Research Institute of Heilongjiang Province, 134 haping Road, Harbin 150081, China
| | - Yi-Ming Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Xin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Xin Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Dongxiaofu 1, Xiangshan Road, Beijing 100091, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Yu-Cheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 Beijingnan Road, Urumqi 830011, China
| | - Liu-Qiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Dongxiaofu 1, Xiangshan Road, Beijing 100091, China
| |
Collapse
|
23
|
Lv K, Wu W, Wei H, Liu G. A systems biology approach identifies a regulator, BplERF1, of cold tolerance in Betula platyphylla. FORESTRY RESEARCH 2021; 1:11. [PMID: 39524503 PMCID: PMC11524244 DOI: 10.48130/fr-2021-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2024]
Abstract
Cold is an abiotic stress that can greatly affect the growth and survival of plants. Here, we reported that an AP2/ERF family gene, BplERF1, isolated from Betula platyphylla played a contributing role in cold stress tolerance. Overexpression of BplERF1 in B. platyphylla transgenic lines enhanced cold stress tolerance by increasing the scavenging capability and reducing H2O2 and malondialdehyde (MDA) content in transgenic plants. Construction of BplERF-mediated multilayered hierarchical gene regulatory network (ML-hGRN), using Top-down GGM algorithm and the transcriptomic data of BplERF1 overexpression lines, led to the identification of five candidate target genes of BplERF1 which include MPK20, ERF9, WRKY53, WRKY70, and GIA1. All of them were then verified to be the true target genes of BplERF1 by chromatin-immunoprecipitation PCR (ChIP-PCR) assay. Our results indicate that BplERF1 is a positive regulator of cold tolerance and is capable of exerting regulation on the expression of cold signaling and regulatory genes, causing mitigation of reactive oxygen species.
Collapse
Affiliation(s)
- Kaiwen Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wenqi Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
24
|
Lv K, Wei H, Liu G. A R2R3-MYB Transcription Factor Gene, BpMYB123, Regulates BpLEA14 to Improve Drought Tolerance in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2021; 12:791390. [PMID: 34956289 PMCID: PMC8702527 DOI: 10.3389/fpls.2021.791390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 05/07/2023]
Abstract
Drought stress causes various negative impacts on plant growth and crop production. R2R3-MYB transcription factors (TFs) play crucial roles in the response to abiotic stress. However, their functions in Betula platyphylla haven't been fully investigated. In this study, a R2R3 MYB transcription factor gene, BpMYB123, was identified from Betula platyphylla and reveals its significant role in drought stress. Overexpression of BpMYB123 enhances tolerance to drought stress in contrast to repression of BpMYB123 by RNA interference (RNAi) in transgenic experiment. The overexpression lines increased peroxidase (POD) and superoxide dismatase (SOD) activities, while decreased hydrogen peroxide (H2O2), superoxide radicals (O2 -), electrolyte leakage (EL) and malondialdehyde (MDA) contents. Our study showed that overexpression of BpMYB123 increased BpLEA14 gene expression up to 20-fold due to BpMYB123 directly binding to the MYB1AT element of BpLEA14 promoter. These results indicate that BpMYB123 acts as a regulator via regulating BpLEA14 to improve drought tolerance in birch.
Collapse
Affiliation(s)
- Kaiwen Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- *Correspondence: Guifeng Liu,
| |
Collapse
|
25
|
Lv K, Li J, Zhao K, Chen S, Nie J, Zhang W, Liu G, Wei H. Overexpression of an AP2/ERF family gene, BpERF13, in birch enhances cold tolerance through upregulating CBF genes and mitigating reactive oxygen species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110375. [PMID: 32005381 DOI: 10.1016/j.plantsci.2019.110375] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/27/2019] [Accepted: 12/07/2019] [Indexed: 05/20/2023]
Abstract
The AP2/ERF (APETALA2/ethylene-responsive factor) family of transcription factors (TF) is involved in regulating biotic and abiotic stress responses in plants. To explore the role of AP2/ERFs in cold tolerance in woody plants, BpERF13 was cloned and characterized in Betula platyphylla (white birch), a species primarily found in Asia in temperate and boreal climates. Based on phylogenetic analysis, BpERF13 is a member of the IXb subfamily of ERFs. Using qRT-PCR, we found that BpERF13 was differentially expressed in different tissues, and its expression could be induced by cold treatment (4 °C). BpERF13 protein, fused with GFP, was exclusively localized to nuclei. To further assess the role of BpERF13 in cold tolerance, BpERF13 overexpression (OE) transgenic lines were generated in B. platyphylla and used for cold stress treatment and biochemical/physiological studies. BpERF13 overexpression lines had significantly increased tolerance to subfreezing treatment and reduced reactive oxygen species. Using a TF-centered yeast one-hybrid (Y1H) experimental system, we showed that BpERF13 could bind to LTRECOREATCOR15 and MYBCORE cis-elements to activate a reporter gene. ChIP-seq and ChIP-PCR experiments further demonstrated that BpERF13 bound to these cis-elements when present in the 5' proximal regions of superoxide dismutase (SOD), peroxidase (POD), and C-repeat-binding factor (CBF) genes. qRT-PCR was employed to examine the expression levels of these genes in response to cold stress; SOD, POD, and CBF genes were significantly upregulated in BpERF13 transgenic lines compared to wild-type plants in response to cold stress. These results indicate that the transcription factor BpERF13 regulates physiological processes underlying cold tolerance in woody plants.
Collapse
Affiliation(s)
- Kaiwen Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, PR China
| | - Jiang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, PR China
| | - Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, PR China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, PR China
| | - Jeff Nie
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, PR China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, PR China.
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, United States.
| |
Collapse
|
26
|
Liu C, Xu H, Han R, Wang S, Liu G, Chen S, Chen J, Bian X, Jiang J. Overexpression of BpCUC2 Influences Leaf Shape and Internode Development in Betula pendula. Int J Mol Sci 2019; 20:E4722. [PMID: 31548512 PMCID: PMC6801603 DOI: 10.3390/ijms20194722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022] Open
Abstract
The CUP-SHAPED COTYLEDON 2 (CUC2) gene, which is negatively regulated by microRNA164 (miR164), has been specifically linked to the regulation of leaf margin serration and the maintenance of phyllotaxy in model plants. However, few studies have investigated these effects in woody plants. In this study, we integrated genomic, transcriptomic, and physiology approaches to explore the function of BpCUC2 gene in Betula pendula growth and development. Our results showed that Betula pendula plants overexpressing BpCUC2, which is targeted by BpmiR164, exhibit shortened internodes and abnormal leaf shapes. Subsequent analysis indicated that the short internodes of BpCUC2 overexpressed transgenic lines and were due to decreased epidermal cell size. Moreover, transcriptome analysis, yeast one-hybrid assays, and ChIP-PCR suggested that BpCUC2 directly binds to the LTRECOREATCOR15 (CCGAC), CAREOSREP1 (CAACTC), and BIHD1OS (TGTCA) motifs of a series of IAA-related and cyclin-related genes to regulate expression. These results may be useful to our understanding of the functional role and genetic regulation of BpCUC2.
Collapse
Affiliation(s)
- Chaoyi Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Huanwen Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Rui Han
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Shuo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jiying Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xiuyan Bian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
27
|
Screening Arrayed Libraries with DNA and Protein Baits to Identify Interacting Proteins. Methods Mol Biol 2019; 1794:131-149. [PMID: 29855955 DOI: 10.1007/978-1-4939-7871-7_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Molecular interactions are an integral part of the regulatory mechanisms controlling gene expression. The yeast one- and two-hybrid systems (Y1H/Y2H) have been widely used by many laboratories to detect DNA-protein (Y1H) and protein-protein interactions (Y2H). The development of efficient cloning systems have promoted the generation of large open reading frame (ORF) clone collections (libraries) for several organisms. Functional analyses of such large collections require the establishment of adequate protocols. Here, we describe a simple straightforward procedure for high-throughput screenings of arrayed libraries with DNA or protein baits that can be carried out by one person with minimal labor and not requiring robotics. The protocol can also be scaled up or down and is compatible with several library formats. Procedures to make yeast stocks for long-term storage (tube and microplate formats) are also provided.
Collapse
|
28
|
Transcription Factor ANAC074 Binds to NRS1, NRS2, or MybSt1 Element in Addition to the NACRS to Regulate Gene Expression. Int J Mol Sci 2018; 19:ijms19103271. [PMID: 30347890 PMCID: PMC6214087 DOI: 10.3390/ijms19103271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors play important roles in many biological processes, and mainly bind to the NACRS with core sequences "CACG" or "CATGTG" to regulate gene expression. However, whether NAC proteins can bind to other motifs without these core sequences remains unknown. In this study, we employed a Transcription Factor-Centered Yeast one Hybrid (TF-Centered Y1H) screen to study the motifs recognized by ANAC074. In addition to the NACRS core cis-element, we identified that ANAC074 could bind to MybSt1, NRS1, and NRS2. Y1H and GUS assays showed that ANAC074 could bind the promoters of ethylene responsive genes and stress responsive genes via the NRS1, NRS2, or MybSt1 element. ChIP study further confirmed that the bindings of ANAC074 to MybSt1, NRS1, and NRS2 actually occurred in Arabidopsis. Furthermore, ten NAC proteins from different NAC subfamilies in Arabidopsis thaliana were selected and confirmed to bind to the MybSt1, NRS1, and NRS2 motifs, indicating that they are recognized commonly by NACs. These findings will help us to further reveal the functions of NAC proteins.
Collapse
|
29
|
Guo H, Wang L, Yang C, Zhang Y, Zhang C, Wang C. Identification of novel cis-elements bound by BplMYB46 involved in abiotic stress responses and secondary wall deposition. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1000-1014. [PMID: 29877625 DOI: 10.1111/jipb.12671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/01/2018] [Indexed: 05/03/2023]
Abstract
Transcription factors (TFs) play vital roles in various biological processes by binding to cis-acting elements to control expressions of their target genes. The MYB TF BplMYB46, from Betula platyphylla, is involved in abiotic stress responses and secondary wall deposition. In the present study, we used a TF-centered yeast one-hybrid technology (TF-centered Y1H) to identify the cis-acting elements bound by BplMYB46. We screened a short-insert random library and identified three cis-elements bound by BplMYB46: an E-box (CA(A/T/C)(A/G/C)TG) and two novel motifs, a TC-box (T(G/A)TCG(C/G)) and a GT-box (A(G/T)T(A/C)GT(T/G)C). Chromatin immunoprecipitation (ChIP) and effector-reporter coexpression assays in Nicotiana tabacum confirmed binding of BplMYB46 to the TC-box, GT-box, and E-box motifs in the promoters of the phenylalanine ammonia lyase (PAL), peroxidase (POD), and superoxide dismutase (SOD) genes, which function in abiotic stress tolerance and secondary wall biosynthesis. This finding improves our understanding of potential regulatory mechanisms in the response to abiotic stress and secondary wall deposition of BplMYB46 in B. platyphylla.
Collapse
Affiliation(s)
- Huiyan Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Liuqiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yiming Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chunrui Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
30
|
Abstract
The interaction between a protein and DNA is involved in almost all cellular functions, and is vitally important in transcriptional regulation. There are two complementary approaches used to detect the interactions between a transcription factor (TF) and DNA, i.e., the TF-centered or protein-DNA approach, and the gene-centered or DNA-protein approach. The yeast one-hybrid (Y1H) is a powerful and widely used gene-centered system to identify DNA-protein interactions. However, a powerful and simple TF-centered method to study protein-DNA interactions like Y1H is lacking. Here, we provide a TF-centered method based on the Y1H system to identify the motifs recognized by a defined TF, termed TF-centered Y1H. In this system, a random short DNA sequence insertion library is generated as the prey DNA sequences to interact with a defined TF as the bait. TF-centered Y1H could identify quickly the motifs bound by a defined TF, representing a reliable and efficient approach with the advantages of Y1H. Therefore, this TF-centered Y1H may have a wide application in protein-DNA interaction studies.
Collapse
|
31
|
Xu H, Shi X, Wang Z, Gao C, Wang C, Wang Y. Transcription factor ThWRKY4 binds to a novel WLS motif and a RAV1A element in addition to the W-box to regulate gene expression. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 261:38-49. [PMID: 28554692 DOI: 10.1016/j.plantsci.2017.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
WRKY transcription factors play important roles in many biological processes, and mainly bind to the W-box element to regulate gene expression. Previously, we characterized a WRKY gene from Tamarix hispida, ThWRKY4, in response to abiotic stress, and showed that it bound to the W-box motif. However, whether ThWRKY4 could bind to other motifs remains unknown. In this study, we employed a Transcription Factor-Centered Yeast one Hybrid (TF-Centered Y1H) screen to study the motifs recognized by ThWRKY4. In addition to the W-box core cis-element (termed W-box), we identified that ThWRKY4 could bind to two other motifs: the RAV1A element (CAACA) and a novel motif with sequence of GTCTA (W-box like sequence, WLS). The distributions of these motifs were screened in the promoter regions of genes regulated by some WRKYs. The results showed that the W-box, RAV1A, and WLS motifs were all present in high numbers, suggesting that they play key roles in gene expression mediated by WRKYs. Furthermore, five WRKY proteins from different WRKY subfamilies in Arabidopsis thaliana were selected and confirmed to bind to the RAV1A and WLS motifs, indicating that they are recognized commonly by WRKYs. These findings will help to further reveal the functions of WRKY proteins.
Collapse
Affiliation(s)
- Hongyun Xu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Xinxin Shi
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
32
|
Sánchez-Montesino R, Oñate-Sánchez L. Yeast One- and Two-Hybrid High-Throughput Screenings Using Arrayed Libraries. Methods Mol Biol 2017. [PMID: 28623579 DOI: 10.1007/978-1-4939-7125-1_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Since their original description more than 25 years ago, the yeast one- and two-hybrid systems (Y1H/Y2H) have been used by many laboratories to detect DNA-protein (Y1H) and protein-protein interactions (Y2H). These systems use yeast cells (Saccharomyces cerevisiae) as a eukaryotic "test tube" and are amenable for most labs in the world. The development of highly efficient cloning methods has fostered the generation of large collections of open reading frames (ORFs) for several organisms that have been used for yeast screenings. Here, we describe a simple mating based method for high-throughput screenings of arrayed ORF libraries with DNA (Y1H) or protein (Y2H) baits not requiring robotics. One person can easily carry out this protocol in approximately 10 h of labor spread over 5 days. It can also be scaled down to test one-to-one (few) interactions, scaled up (i.e., robotization) and is compatible with several library formats (i.e., 96, 384-well microtiter plates).
Collapse
Affiliation(s)
- Rocío Sánchez-Montesino
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain.
| |
Collapse
|
33
|
Zhou C, Li C. A Novel R2R3-MYB Transcription Factor BpMYB106 of Birch (Betula platyphylla) Confers Increased Photosynthesis and Growth Rate through Up-regulating Photosynthetic Gene Expression. FRONTIERS IN PLANT SCIENCE 2016; 7:315. [PMID: 27047502 PMCID: PMC4801893 DOI: 10.3389/fpls.2016.00315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/29/2016] [Indexed: 06/01/2023]
Abstract
We isolated a R2R3-MYB transcription factor BpMYB106, which regulates photosynthesis in birch (Betula platyphylla Suk.). BpMYB106 mainly expresses in the leaf and shoot tip of birch, and its protein is localized in the nucleus. We further fused isolated a 1588 bp promoter of BpMYB106 and analyzed it by PLACE, which showed some cis-acting elements related to photosynthesis. BpMYB106 promoter β-glucuronidase (GUS) reporter fusion studies gene, the result, showed the GUS reporter gene in transgenic birch with BpMYB106 promoter showed strong activities in shoot tip, cotyledon margins, and mature leaf trichomes. The overexpression of BpMYB106 in birch resulted in significantly increased trichome density, net photosynthetic rate, and growth rate as compared with the wild-type birch. RNA-Seq profiling revealed the upregulation of several photosynthesis-related genes in the photosynthesis and oxidative phosphorylation pathways in the leaves of transgenic plants. Yeast one-hybrid analysis, coupled with transient assay in tobacco, revealed that BpMYB106 binds a MYB binding site MYB2 in differentially expressed gene promoters. Thus, BpMYB106 may directly activate the expression of a range of photosynthesis related genes through interacting with the MYB2 element in their promoters. Our study demonstrating the overexpression of BpMYB106-a R2R3-MYB transcription factor-upregulates the genes of the photosynthesis and oxidative phosphorylation pathways to improve photosynthesis.
Collapse
|