1
|
Zhang F, Gao Y, Ma M, Li L, Wei Y, Fan L, Xie Z, Qi K, Wu J, Tao S, Zhang S, Huang X. PbNAC3 coordinates AsA generation and ABA biosynthesis to improve salt tolerance in pear. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70171. [PMID: 40265652 DOI: 10.1111/tpj.70171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025]
Abstract
In plants, dehydroascorbate reductase (DHAR) is one of the key enzymes in AsA generation during the AsA-GSH cycle, which helps maintain the normal metabolic level of AsA. However, the molecular mechanism of DHAR's response to salt stress is still unknown. Our experiments show a ping-pong mechanism, in which DHA is combined with free reductase DHAR, and free reductase DHAR is combined with GSH in the form of sulfenylation to promote AsA generation in response to salt stress. This mechanism is inhibited by H2O2-mediated sulfenylation modification. The overexpression of PbDHAR3 in pear callus and Arabidopsis plants alleviated salt-induced damage, while its silencing decreased salt tolerance in Pyrus betulaefolia. PbNAC3 can activate the expression of PbDHAR3 by directly binding to the promoter. The overexpression of PbNAC3 in pear callus improved salt tolerance, while silencing it reduced tolerance in P. betulaefolia. Overexpression of PbNAC3 in Arabidopsis plants is able to adjust the trade-off between plant growth and salt stress. Higher expression levels of NCEDs or PYLs, and higher ABA content were observed under salt treatment. Further experiments demonstrate that PbNAC3 activates PbNCED5 through interaction with cis-regulatory elements. Overall, our results show that PbNAC3 plays a critical role in salt stress response by targeting the promoters of PbDHAR3 and PbNCED5, promoting AsA generation and ABA biosynthesis. This study will deepen our understanding of the mechanisms underlying the trade-offs between plant growth and stress tolerance and assist the development of stress-resistant, high-yield crops.
Collapse
Affiliation(s)
- Feng Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanyan Gao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingyuan Ma
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lun Li
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuchen Wei
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lemin Fan
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juyou Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shutian Tao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaosan Huang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
Chen S, Zhang W, Zhang Q, Li B, Zhang M, Qin J, Shi W, Jia C. SlNAC12, a novel NAC-type transcription factor, confers salt stress tolerance in tomato. PLANT CELL REPORTS 2024; 44:5. [PMID: 39674815 DOI: 10.1007/s00299-024-03400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
KEY MESSAGE SlNAC12 enhances salt stress tolerance of transgenic tomato by regulating ion homeostasis, antioxidant activity and flavonoids biosynthesis Soil salinization is a major environmental factor that adversely affects plant growth and development. NAC (NAM, ATAF1/2, and CUC2) is a large family of plant-specific transcription factors that play crucial roles in stress response. Here, we investigated the role of a novel NAC transcription factor, SlNAC12, in conferring salt stress tolerance in tomato (Solanum lycopersicum). Subcellular localization and yeast assays studies revealed that SlNAC12 is localized in the nucleus with weak transcriptional activity. SlNAC12 transcript was induced by salt stress in the leaves and roots of tomato seedlings. Overexpression of SlNAC12 in tomato led to significantly reduced plant height and root length. Transgenic tomato lines overexpressing of SlNAC12 (OE#1 and OE#3) exhibited enhanced tolerance to salinity, as evidenced by reduced the inhibitory effect of growth parameters under salt stress compared to wild type (WT). Overexpression of SlNAC12 in tomato affected Na+ and K+ homeostasis, leading to reduced Na+/K+ ratio, enhanced activity of antioxidant enzymes and decreased reactive oxygen species (ROS) accumulation under salt stress. Furthermore, the transcript levels of several genes involved in flavonoids metabolism and the levels of flavonoids accumulation were increased in SlNAC12-overexpressing tomato lines. Collectively, this study suggests that SlNAC12 transcription factor enhances salt stress tolerance in tomato is correlated with ion homeostasis, antioxidant enzyme systems, and flavonoids accumulation.
Collapse
Affiliation(s)
- Siqi Chen
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Wenxin Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Qi Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Bin Li
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Mingzhe Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Jianchun Qin
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Wuliang Shi
- College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
3
|
Yu S, Wu M, Wang X, Li M, Gao X, Xu X, Zhang Y, Liu X, Yu L, Zhang Y. Common Bean ( Phaseolus vulgaris L.) NAC Transcriptional Factor PvNAC52 Enhances Transgenic Arabidopsis Resistance to Salt, Alkali, Osmotic, and ABA Stress by Upregulating Stress-Responsive Genes. Int J Mol Sci 2024; 25:5818. [PMID: 38892008 PMCID: PMC11172058 DOI: 10.3390/ijms25115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The NAC family of transcription factors includes no apical meristem (NAM), Arabidopsis thaliana transcription activator 1/2 (ATAF1/2), and cup-shaped cotyledon (CUC2) proteins, which are unique to plants, contributing significantly to their adaptation to environmental challenges. In the present study, we observed that the PvNAC52 protein is predominantly expressed in the cell membrane, cytoplasm, and nucleus. Overexpression of PvNAC52 in Arabidopsis strengthened plant resilience to salt, alkali, osmotic, and ABA stresses. PvNAC52 significantly (p < 0.05) reduced the degree of oxidative damage to cell membranes, proline content, and plant water loss by increasing the expression of MSD1, FSD1, CSD1, POD, PRX69, CAT, and P5CS2. Moreover, the expression of genes associated with abiotic stress responses, such as SOS1, P5S1, RD29A, NCED3, ABIs, LEAs, and DREBs, was enhanced by PvNAC52 overexpression. A yeast one-hybrid assay showed that PvNAC52 specifically binds to the cis-acting elements ABRE (abscisic acid-responsive elements, ACGTG) within the promoter. This further suggests that PvNAC52 is responsible for the transcriptional modulation of abiotic stress response genes by identifying the core sequence, ACGTG. These findings provide a theoretical foundation for the further analysis of the targeted cis-acting elements and genes downstream of PvNAC52 in the common bean.
Collapse
Affiliation(s)
- Song Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Mingxu Wu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Xiaoqin Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Mukai Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Xinhan Gao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Xiangru Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Yutao Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Xinran Liu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Lihe Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Yifei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, China
| |
Collapse
|
4
|
Wang Z, He Z, Gao C, Wang C, Song X, Wang Y. Phosphorylation of birch BpNAC90 improves the activation of gene expression to confer drought tolerance. HORTICULTURE RESEARCH 2024; 11:uhae061. [PMID: 38659443 PMCID: PMC11040210 DOI: 10.1093/hr/uhae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/18/2024] [Indexed: 04/26/2024]
Abstract
The NAC transcription factors (TFs) play important roles in mediating abiotic stress tolerance; however, the mechanism is still not fully known. Here, an NAC gene (BpNAC90) from a gene regulatory network of Betula platyphylla (birch) that responded to drought was characterized. Overexpression and knockout of BpNAC90 displayed increased and reduced drought tolerance, respectively, relative to wild-type (WT) birch. BpNAC90 binds to different DNA motifs to regulate target genes in conferring drought tolerance, such as Eomes2, ABRE and Tgif2. BpNAC90 is phosphorylated by drought stress at Ser 205 by birch SNF1-related protein kinase 2 (BpSRK2A). Mutated BpNAC90 (termed S205A) with abolished phosphorylation, was transformed into birch for overexpression. The transgenic S205A plants displayed significantly reduced drought tolerance compared with plants overexpressing BpNAC90, but still showed increased drought tolerance relative to WT birch. At the same time, S205A showed a decreased capability to bind to motifs and reduced activation of target gene expression, which contributed to the reduced drought tolerance. Additionally, BpSRK2A and BpNAC90 can be induced by drought stress and form a complex to phosphorylate BpNAC90. The results together indicated that phosphorylation of BpNAC90 is necessary in conferring drought tolerance in birch.
Collapse
Affiliation(s)
- Zhibo Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Zihang He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xingshun Song
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
5
|
Huang Y, Du B, Yu M, Cao Y, Liang K, Zhang L. Picea wilsonii NAC31 and DREB2A Cooperatively Activate ERD1 to Modulate Drought Resistance in Transgenic Arabidopsis. Int J Mol Sci 2024; 25:2037. [PMID: 38396714 PMCID: PMC10888420 DOI: 10.3390/ijms25042037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The NAC family of transcription factors (TFs) regulate plant development and abiotic stress. However, the specific function and response mechanism of NAC TFs that increase drought resistance in Picea wilsonii remain largely unknown. In this study, we functionally characterized a member of the PwNAC family known as PwNAC31. PwNAC31 is a nuclear-localized protein with transcriptional activation activity and contains an NAC domain that shows extensive homology with ANAC072 in Arabidopsis. The expression level of PwNAC31 is significantly upregulated under drought and ABA treatments. The heterologous expression of PwNAC31 in atnac072 Arabidopsis mutants enhances the seed vigor and germination rates and restores the hypersensitive phenotype of atnac072 under drought stress, accompanied by the up-regulated expression of drought-responsive genes such as DREB2A (DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN 2A) and ERD1 (EARLY RESPONSIVE TO DEHYDRATION STRESS 1). Yeast two-hybrid and bimolecular fluorescence complementation assays confirmed that PwNAC31 interacts with DREB2A and ABF3 (ABSCISIC ACID-RESPONSIVE ELEMENT-BINDING FACTOR 3). Yeast one-hybrid and dual-luciferase assays showed that PwNAC31, together with its interaction protein DREB2A, directly regulated the expression of ERD1 by binding to the DRE element of the ERD1 promoter. Collectively, our study provides evidence that PwNAC31 activates ERD1 by interacting with DREB2A to enhance drought tolerance in transgenic Arabidopsis.
Collapse
Affiliation(s)
- Yiming Huang
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Bingshuai Du
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Mingxin Yu
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Yibo Cao
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Kehao Liang
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Lingyun Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Liu X, Zhou G, Chen S, Jia Z, Zhang S, He F, Ren M. Genome-wide analysis of the Tritipyrum NAC gene family and the response of TtNAC477 in salt tolerance. BMC PLANT BIOLOGY 2024; 24:40. [PMID: 38195389 PMCID: PMC10775630 DOI: 10.1186/s12870-023-04629-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/23/2023] [Indexed: 01/11/2024]
Abstract
NAC transcription factors are widely distributed in the plant kingdom and play an important role in the response to various abiotic stresses in plant species. Tritipyrum, an octoploid derived from hybridization of Triticum aestivum (AABBDD) and Thinopyrum elongatum (EE), is an important genetic resource for integrating the desirable traits of Th. elongatum into wheat. In this study, we investigated the tissue distribution and expression of Tritipyrum NAC genes in the whole genomes of T. aestivum and Th. elongatum after obtaining their complete genome sequences. Based on phylogenetic relationships, conserved motifs, gene synthesis, evolutionary analysis, and expression patterns, we identified and characterized 732 Tritipyrum NAC genes. These genes were divided into six main groups (A, B, C, D, E, and G) based on phylogenetic relationships and evolutionary studies, with members of these groups sharing the same motif composition. The 732 TtNAC genes are widely distributed across 28 chromosomes and include 110 duplicated genes. Gene synthesis analysis indicated that the NAC gene family may have a common ancestor. Transcriptome data and quantitative polymerase chain reaction (qPCR) expression profiles showed 68 TtNAC genes to be highly expressed in response to various salt stress and recovery treatments. Tel3E01T644900 (TtNAC477) was particularly sensitive to salt stress and belongs to the same clade as the salt tolerance genes ANAC019 and ANAC055 in Arabidopsis. Pearson correlation analysis identified 751 genes that correlated positively with expression of TtNAC477, and these genes are enriched in metabolic activities, cellular processes, stimulus responses, and biological regulation. TtNAC477 was found to be highly expressed in roots, stems, and leaves in response to salt stress, as confirmed by real-time PCR. These findings suggest that TtNAC477 is associated with salt tolerance in plants and might serve as a valuable exogenous gene for enhancing salt tolerance in wheat.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Guangyi Zhou
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Songshu Chen
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Zhenzhen Jia
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Suqin Zhang
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Fang He
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Mingjian Ren
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Debnath T, Dhar DG, Dhar P. Molecular switches in plant stress adaptation. Mol Biol Rep 2023; 51:20. [PMID: 38108912 DOI: 10.1007/s11033-023-09051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/23/2023] [Indexed: 12/19/2023]
Abstract
Climate change poses a significant threat to the global ecosystem, prompting plants to use various adaptive mechanisms via molecular switches to combat biotic and abiotic stress factors. These switches activate stress-induced pathways by altering their configuration between stable states. In this review, we investigated the regulation of molecular switches in different plant species in response to stress, including the stress-regulated response of multiple switches in Arabidopsis thaliana. We also discussed techniques for developing stress-resilient crops using molecular switches through advanced biotechnological tools. The literature search, conducted using databases such as PubMed, Google Scholar, Web of Science, and SCOPUS, utilized keywords such as molecular switch, plant adaptation, biotic and abiotic stresses, transcription factors, Arabidopsis thaliana, and crop improvement. Recent studies have shown that a single molecular switch can regulate multiple stress networks, and multiple switches can regulate a single stress condition. This multifactorial understanding provides clarity to the switch regulatory network and highlights the interrelationships of different molecular switches. Advanced breeding techniques, along with genomic and biotechnological tools, have paved the way for further research on molecular switches in crop improvement. The use of synthetic biology in molecular switches will lead to a better understanding of plant stress biology and potentially bring forth a new era of stress-resilient, climate-smart crops worldwide.
Collapse
Affiliation(s)
- Tista Debnath
- Post Graduate Department of Botany, Brahmananda Keshab Chandra College, 111/2 B.T. Road, Bon-Hooghly, Kolkata, West Bengal, 700108, India
| | - Debasmita Ghosh Dhar
- Kataganj Spandan, Social Welfare Organization, Kalyani, West Bengal, 741250, India
| | - Priyanka Dhar
- Post Graduate Department of Botany, Brahmananda Keshab Chandra College, 111/2 B.T. Road, Bon-Hooghly, Kolkata, West Bengal, 700108, India.
| |
Collapse
|
8
|
Han X, Yang R, Zhang L, Wei Q, Zhang Y, Wang Y, Shi Y. A Review of Potato Salt Tolerance. Int J Mol Sci 2023; 24:10726. [PMID: 37445900 DOI: 10.3390/ijms241310726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Potato is the world's fourth largest food crop. Due to limited arable land and an ever-increasing demand for food from a growing population, it is critical to increase crop yields on existing acreage. Soil salinization is an increasing problem that dramatically impacts crop yields and restricts the growing area of potato. One possible solution to this problem is the development of salt-tolerant transgenic potato cultivars. In this work, we review the current potato planting distribution and the ways in which it overlaps with salinized land, in addition to covering the development and utilization of potato salt-tolerant cultivars. We also provide an overview of the current progress toward identifying potato salt tolerance genes and how they may be deployed to overcome the current challenges facing potato growers.
Collapse
Affiliation(s)
- Xue Han
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Ruijie Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Qiaorong Wei
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yazhi Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Ying Shi
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Praveen A, Dubey S, Singh S, Sharma VK. Abiotic stress tolerance in plants: a fascinating action of defense mechanisms. 3 Biotech 2023; 13:102. [PMID: 36866326 PMCID: PMC9971429 DOI: 10.1007/s13205-023-03519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Climate fluctuation mediated abiotic stress consequences loss in crop yields. These stresses have a negative impact on plant growth and development by causing physiological and molecular changes. In this review, we have attempted to outline recent studies (5 years) associated with abiotic stress resistance in plants. We investigated the various factors that contribute to coping with abiotic challenges, such as transcription factors (TFs), microRNAs (miRNAs), epigenetic changes, chemical priming, transgenic breeding, autophagy, and non-coding RNAs. Stress responsive genes are regulated mostly by TFs, and these can be used to enhance stress resistance in plants. Plants express some miRNA during stress imposition that act on stress-related target genes to help them survive. Epigenetic alterations govern gene expression and facilitate stress tolerance. Chemical priming enhances growth in plants by modulating physiological parameters. Transgenic breeding enables identification of genes involved in precise plant responses during stressful situations. In addition to protein coding genes, non-coding RNAs also influence the growth of the plant by causing alterations at gene expression levels. For achieving sustainable agriculture for a rising world population, it is crucial to develop abiotic-resistant crops with anticipated agronomical traits. To achieve this objective, understanding the diverse mechanisms by which plants protect themselves against abiotic stresses is imperative. This review emphasizes on recent progress and future prospects for abiotic stress tolerance and productivity in plants.
Collapse
Affiliation(s)
- Afsana Praveen
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Yamuna Expressway, Sector 17A, Gautam Budh Nagar, Uttar Pradesh 203201 India
| | - Sonali Dubey
- National Botanical Research Institute, Uttar Pradesh, Lukhnow, 226001 India
| | - Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Yamuna Expressway, Sector 17A, Gautam Budh Nagar, Uttar Pradesh 203201 India
| | - Varun Kumar Sharma
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Yamuna Expressway, Sector 17A, Gautam Budh Nagar, Uttar Pradesh 203201 India
| |
Collapse
|
10
|
Liu Y, Mu C, Du D, Yang Y, Li L, Xuan W, Kircher S, Palme K, Li X, Li R. Alkaline stress reduces root waving by regulating PIN7 vacuolar transport. FRONTIERS IN PLANT SCIENCE 2022; 13:1049144. [PMID: 36582637 PMCID: PMC9792863 DOI: 10.3389/fpls.2022.1049144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Root development and plasticity are assessed via diverse endogenous and environmental cues, including phytohormones, nutrition, and stress. In this study, we observed that roots in model plant Arabidopsis thaliana exhibited waving and oscillating phenotypes under normal conditions but lost this pattern when subjected to alkaline stress. We later showed that alkaline treatment disturbed the auxin gradient in roots and increased auxin signal in columella cells. We further demonstrated that the auxin efflux transporter PIN-FORMED 7 (PIN7) but not PIN3 was translocated to vacuole lumen under alkaline stress. This process is essential for root response to alkaline stress because the pin7 knockout mutants retained the root waving phenotype. Moreover, we provided evidence that the PIN7 vacuolar transport might not depend on the ARF-GEFs but required the proper function of an ESCRT subunit known as FYVE domain protein required for endosomal sorting 1 (FREE1). Induced silencing of FREE1 disrupted the vacuolar transport of PIN7 and reduced sensitivity to alkaline stress, further highlighting the importance of this cellular process. In conclusion, our work reveals a new role of PIN7 in regulating root morphology under alkaline stress.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Chenglin Mu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Dongdong Du
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lixin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower‐Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Stefan Kircher
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestr. 1, Freiburg, Germany
| | - Klaus Palme
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestr. 1, Freiburg, Germany
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestr. 1, Freiburg, Germany
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
11
|
Saeed S, Usman B, Shim SH, Khan SU, Nizamuddin S, Saeed S, Shoaib Y, Jeon JS, Jung KH. CRISPR/Cas-mediated editing of cis-regulatory elements for crop improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111435. [PMID: 36031021 DOI: 10.1016/j.plantsci.2022.111435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
To improve future agricultural production, major technological advances are required to increase crop production and yield. Targeting the coding region of genes via the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated Protein (CRISPR/Cas) system has been well established and has enabled the rapid generation of transgene-free plants, which can lead to crop improvement. The emergence of the CRISPR/Cas system has also enabled scientists to achieve cis-regulatory element (CRE) editing and, consequently, engineering endogenous critical CREs to modulate the expression of target genes. Recent genome-wide association studies have identified the domestication of natural CRE variants to regulate complex agronomic quantitative traits and have allowed for their engineering via the CRISPR/Cas system. Although engineering plant CREs can be advantageous to drive gene expression, there are still many limitations to its practical application. Here, we review the current progress in CRE editing and propose future strategies to effectively target CREs for transcriptional regulation for crop improvement.
Collapse
Affiliation(s)
- Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Babar Usman
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Su-Hyeon Shim
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University KPK, Pakistan
| | - Sabzoi Nizamuddin
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Sundus Saeed
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Yasira Shoaib
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
12
|
Luo D, Liu J, Wu Y, Zhang X, Zhou Q, Fang L, Liu Z. NUCLEAR TRANSPORT FACTOR 2-LIKE improves drought tolerance by modulating leaf water loss in alfalfa (Medicago sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:429-450. [PMID: 36006043 DOI: 10.1111/tpj.15955] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Drought is a major environmental factor that limits the production of alfalfa (Medicago sativa). In the present study, M. sativa NUCLEAR TRANSPORT FACTOR 2-LIKE (MsNTF2L) was identified as a nucleus-, cytoplasm-, and plasma membrane-localized protein. Its transcriptional expression was highly induced by ABA and drought stress. Overexpression of MsNTF2L in Arabidopsis resulted in hypersensitivity to ABA during both the seed germination and seedling growth stages. However, transgenic Arabidopsis plants exhibited enhanced tolerance to drought stress by reducing the levels of reactive oxygen species (ROS) and increasing the expression of stress/ABA-inducible genes. Consistently, analysis of MsNTF2L overexpression (OE) and RNA interference (RNAi) alfalfa plants revealed that MsNTF2L confers drought tolerance through promoting ROS scavenging, a decrease in stomatal density, ABA-induced stomatal closure, and epicuticular wax crystal accumulation. MsNTF2L highly affected epicuticular wax deposition, as a large group of wax biosynthesis and transport genes were influenced in the alfalfa OE and RNAi lines. Furthermore, transcript profiling of drought-treated alfalfa WT, OE, and RNAi plants showed a differential drought response for genes related to stress/ABA signaling, antioxidant defense, and photosynthesis. Taken together, these results reveal that MsNTF2L confers drought tolerance in alfalfa via modulation of leaf water loss (by regulating both stomata and wax deposition), antioxidant defense, and photosynthesis.
Collapse
Affiliation(s)
- Dong Luo
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jie Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yuguo Wu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xi Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Qiang Zhou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Longfa Fang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
13
|
Wang Y, Cui Y, Liu B, Wang Y, Sun S, Wang J, Tan M, Yan H, Zhang Y. Lilium pumilum stress-responsive NAC transcription factor LpNAC17 enhances salt stress tolerance in tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:993841. [PMID: 36119598 PMCID: PMC9478543 DOI: 10.3389/fpls.2022.993841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Lilium pumilum is a perennial herb with ornamental edible and medicinal value. It is an excellent wild germplasm resource with wide distribution and strong resistance. The NAC family of transcription factors is unique to higher plants. The NAC family plays a regulatory role in plant growth and development and participates in plant responses to biotic and abiotic stresses. The LpNAC17 gene of L. pumilum was cloned and transformed into tobacco to investigate the response of transgenic tobacco to salt stress. The results showed that the net photosynthetic rate and contents of chlorophyll in LpNAC17 over-expressed tobacco were higher than those in the control plants, while the stomatal conductance, transpiration rate and intercellular CO2 concentration were lower than those in the controls. The activity of superoxide dismutase, peroxidase, catalase, and the content of proline in LpNAC17 over-expressed tobacco were higher than those in the controls, while the content of malondialdehyde, superoxide anion, and hydrogen peroxide were lower than that in the control. Nitro-blue tetrazolium staining and 3,3'-diaminobenzidine tissue localization showed that the contents of O 2 - and H2O2 in transgenic tobacco was lower than in the controls. The expression levels of NtSOD, NtPOD, NtCAT, NtHAK1, NtPMA4, and NtSOS1 in the transgenic tobacco were higher than those in the controls. Therefore, this study provides a gene source for molecular breeding of salt-tolerant plants through genetic engineering, and lays a foundation for further research on salt-tolerant Lily.
Collapse
|
14
|
Wang Z, Wong DCJ, Chen Z, Bai W, Si H, Jin X. Emerging Roles of Plant DNA-Binding With One Finger Transcription Factors in Various Hormone and Stress Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:844201. [PMID: 35668792 PMCID: PMC9165642 DOI: 10.3389/fpls.2022.844201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/25/2022] [Indexed: 05/24/2023]
Abstract
Coordinated transcriptional regulation of stress-responsive genes orchestrated by a complex network of transcription factors (TFs) and the reprogramming of metabolism ensure a plant's continued growth and survival under adverse environmental conditions (e.g., abiotic stress). DNA-binding with one finger (Dof) proteins, a group of plant-specific TF, were identified as one of several key components of the transcriptional regulatory network involved in abiotic stress responses. In many plant species, Dofs are often activated in response to a wide range of adverse environmental conditions. Dofs play central roles in stress tolerance by regulating the expression of stress-responsive genes via the DOFCORE element or by interacting with other regulatory proteins. Moreover, Dofs act as a key regulatory hub of several phytohormone pathways, integrating abscisic acid, jasmonate, SA and redox signaling in response to many abiotic stresses. Taken together, we highlight a unique role of Dofs in hormone and stress signaling that integrates plant response to adverse environmental conditions with different aspects of plant growth and development.
Collapse
Affiliation(s)
- Zemin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Darren Chern Jan Wong
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Zhengliang Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wei Bai
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xin Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
15
|
Lohani N, Singh MB, Bhalla PL. Biological Parts for Engineering Abiotic Stress Tolerance in Plants. BIODESIGN RESEARCH 2022; 2022:9819314. [PMID: 37850130 PMCID: PMC10521667 DOI: 10.34133/2022/9819314] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2023] Open
Abstract
It is vital to ramp up crop production dramatically by 2050 due to the increasing global population and demand for food. However, with the climate change projections showing that droughts and heatwaves becoming common in much of the globe, there is a severe threat of a sharp decline in crop yields. Thus, developing crop varieties with inbuilt genetic tolerance to environmental stresses is urgently needed. Selective breeding based on genetic diversity is not keeping up with the growing demand for food and feed. However, the emergence of contemporary plant genetic engineering, genome-editing, and synthetic biology offer precise tools for developing crops that can sustain productivity under stress conditions. Here, we summarize the systems biology-level understanding of regulatory pathways involved in perception, signalling, and protective processes activated in response to unfavourable environmental conditions. The potential role of noncoding RNAs in the regulation of abiotic stress responses has also been highlighted. Further, examples of imparting abiotic stress tolerance by genetic engineering are discussed. Additionally, we provide perspectives on the rational design of abiotic stress tolerance through synthetic biology and list various bioparts that can be used to design synthetic gene circuits whose stress-protective functions can be switched on/off in response to environmental cues.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
16
|
Mehari TG, Xu Y, Magwanga RO, Umer MJ, Shiraku ML, Hou Y, Wang Y, Wang K, Cai X, Zhou Z, Liu F. Identification and functional characterization of Gh_D01G0514 (GhNAC072) transcription factor in response to drought stress tolerance in cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:361-375. [PMID: 34153881 DOI: 10.1016/j.plaphy.2021.05.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/31/2021] [Indexed: 05/10/2023]
Abstract
Cotton encounters long-term drought stress problems resulting in major yield losses. Transcription factors (TFs) plays an important role in response to biotic and abiotic stresses. The coexpression patterns of gene networks associated with drought stress tolerance were investigated using transcriptome profiles. Applying a weighted gene coexpression network analysis, we discovered a salmon module with 144 genes strongly linked to drought stress tolerance. Based on coexpression and RT-qPCR analysis GH_D01G0514 was selected as the candidate gene, as it was also identified as a hub gene in both roots and leaves with a consistent expression in response to drought stress in both tissues. For validation of GH_D01G0514, Virus Induced Gene Silencing was performed and VIGS plants showed significantly higher excised leaf water loss and ion leakage, while lower relative water and chlorophyll contents as compared to WT (Wild type) and positive control plants. Furthermore, the WT and positive control seedlings showed higher CAT and SOD activities, and lower activities of hydrogen peroxide and MDA enzymes as compared to the VIGS plants. Gh_D01G0514 (GhNAC072) was localized in the nucleus and cytoplasm. Y2H assay demonstrates that Gh_D01G0514 has a potential of auto activation. It was observed that the Gh_D01G0514 was highly upregulated in both tissues based on RNA Seq and RT-qPCR analysis. Thus, we inferred that, this candidate gene might be responsible for drought stress tolerance in cotton. This finding adds significantly to the existing knowledge of drought stress tolerance in cotton and deep molecular analysis are required to understand the molecular mechanisms underlying drought stress tolerance in cotton.
Collapse
Affiliation(s)
- Teame Gereziher Mehari
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan, 455000, China; Ethiopian Institute of Agricultural Research, Mekhoni Agricultural Research Center, P.O Box 47, Mekhoni, Tigray, Ethiopia
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan, 455000, China
| | - Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan, 455000, China; School of Biological and Physical Sciences (SBPS), Main Campus, Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Main Campus, P.O. Box 210-40601, Bondo, Kenya
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan, 455000, China
| | - Margaret Linyerera Shiraku
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan, 455000, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan, 455000, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan, 455000, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan, 455000, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan, 455000, China.
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan, 455000, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan, 455000, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
17
|
Hussain Q, Asim M, Zhang R, Khan R, Farooq S, Wu J. Transcription Factors Interact with ABA through Gene Expression and Signaling Pathways to Mitigate Drought and Salinity Stress. Biomolecules 2021; 11:1159. [PMID: 34439825 PMCID: PMC8393639 DOI: 10.3390/biom11081159] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/18/2022] Open
Abstract
Among abiotic stressors, drought and salinity seriously affect crop growth worldwide. In plants, research has aimed to increase stress-responsive protein synthesis upstream or downstream of the various transcription factors (TFs) that alleviate drought and salinity stress. TFs play diverse roles in controlling gene expression in plants, which is necessary to regulate biological processes, such as development and environmental stress responses. In general, plant responses to different stress conditions may be either abscisic acid (ABA)-dependent or ABA-independent. A detailed understanding of how TF pathways and ABA interact to cause stress responses is essential to improve tolerance to drought and salinity stress. Despite previous progress, more active approaches based on TFs are the current focus. Therefore, the present review emphasizes the recent advancements in complex cascades of gene expression during drought and salinity responses, especially identifying the specificity and crosstalk in ABA-dependent and -independent signaling pathways. This review also highlights the transcriptional regulation of gene expression governed by various key TF pathways, including AP2/ERF, bHLH, bZIP, DREB, GATA, HD-Zip, Homeo-box, MADS-box, MYB, NAC, Tri-helix, WHIRLY, WOX, WRKY, YABBY, and zinc finger, operating in ABA-dependent and -independent signaling pathways.
Collapse
Affiliation(s)
- Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China; (Q.H.); (R.Z.)
| | - Muhammad Asim
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao 266101, China; (M.A.); (R.K.)
| | - Rui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China; (Q.H.); (R.Z.)
| | - Rayyan Khan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao 266101, China; (M.A.); (R.K.)
| | - Saqib Farooq
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College of Guangxi University, Nanning 530004, China;
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China; (Q.H.); (R.Z.)
| |
Collapse
|
18
|
Yang Z, Nie G, Feng G, Han J, Huang L, Zhang X. Genome-wide identification, characterization, and expression analysis of the NAC transcription factor family in orchardgrass (Dactylis glomerata L.). BMC Genomics 2021; 22:178. [PMID: 33711917 PMCID: PMC7953825 DOI: 10.1186/s12864-021-07485-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/25/2021] [Indexed: 01/07/2023] Open
Abstract
Background Orchardgrass (Dactylis glomerata L.) is one of the most important cool-season perennial forage grasses that is widely cultivated in the world and is highly tolerant to stressful conditions. However, little is known about the mechanisms underlying this tolerance. The NAC (NAM, ATAF1/2, and CUC2) transcription factor family is a large plant-specific gene family that actively participates in plant growth, development, and response to abiotic stress. At present, owing to the absence of genomic information, NAC genes have not been systematically studied in orchardgrass. The recent release of the complete genome sequence of orchardgrass provided a basic platform for the investigation of DgNAC proteins. Results Using the recently released orchardgrass genome database, a total of 108 NAC (DgNAC) genes were identified in the orchardgrass genome database and named based on their chromosomal location. Phylogenetic analysis showed that the DgNAC proteins were distributed in 14 subgroups based on homology with NAC proteins in Arabidopsis, including the orchardgrass-specific subgroup Dg_NAC. Gene structure analysis suggested that the number of exons varied from 1 to 15, and multitudinous DgNAC genes contained three exons. Chromosomal mapping analysis found that the DgNAC genes were unevenly distributed on seven orchardgrass chromosomes. For the gene expression analysis, the expression levels of DgNAC genes in different tissues and floral bud developmental stages were quite different. Quantitative real-time PCR analysis showed distinct expression patterns of 12 DgNAC genes in response to different abiotic stresses. The results from the RNA-seq data revealed that orchardgrass-specific NAC exhibited expression preference or specificity in diverse abiotic stress responses, and the results indicated that these genes may play an important role in the adaptation of orchardgrass under different environments. Conclusions In the current study, a comprehensive and systematic genome-wide analysis of the NAC gene family in orchardgrass was first performed. A total of 108 NAC genes were identified in orchardgrass, and the expression of NAC genes during plant growth and floral bud development and response to various abiotic stresses were investigated. These results will be helpful for further functional characteristic descriptions of DgNAC genes and the improvement of orchardgrass in breeding programs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07485-6.
Collapse
Affiliation(s)
- Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Jiating Han
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China.
| |
Collapse
|
19
|
Zhang X, Cheng Z, Yao W, Zhao K, Wang X, Jiang T. Functional Characterization of PsnNAC036 under Salinity and High Temperature Stresses. Int J Mol Sci 2021; 22:2656. [PMID: 33800795 PMCID: PMC7961394 DOI: 10.3390/ijms22052656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Plant growth and development are challenged by biotic and abiotic stresses including salinity and heat stresses. For Populus simonii × P. nigra as an important greening and economic tree species in China, increasing soil salinization and global warming have become major environmental challenges. We aim to unravel the molecular mechanisms underlying tree tolerance to salt stress and high temprerature (HT) stress conditions. Transcriptomics revealed that a PsnNAC036 transcription factor (TF) was significantly induced by salt stress in P. simonii × P. nigra. This study focuses on addressing the biological functions of PsnNAC036. The gene was cloned, and its temporal and spatial expression was analyzed under different stresses. PsnNAC036 was significantly upregulated under 150 mM NaCl and 37 °C for 12 h. The result is consistent with the presence of stress responsive cis-elements in the PsnNAC036 promoter. Subcellular localization analysis showed that PsnNAC036 was targeted to the nucleus. Additionally, PsnNAC036 was highly expressed in the leaves and roots. To investigate the core activation region of PsnNAC036 protein and its potential regulatory factors and targets, we conducted trans-activation analysis and the result indicates that the C-terminal region of 191-343 amino acids of the PsnNAC036 was a potent activation domain. Furthermore, overexpression of PsnNAC036 stimulated plant growth and enhanced salinity and HT tolerance. Moreover, 14 stress-related genes upregulated in the transgenic plants under high salt and HT conditions may be potential targets of the PsnNAC036. All the results demonstrate that PsnNAC036 plays an important role in salt and HT stress tolerance.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Xueyi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| |
Collapse
|
20
|
Potato NAC Transcription Factor StNAC053 Enhances Salt and Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2021; 22:ijms22052568. [PMID: 33806406 PMCID: PMC7961516 DOI: 10.3390/ijms22052568] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
The NAC (NAM, ATAF1/2, and CUC2) transcription factors comprise one of the largest transcription factor families in plants and play important roles in stress responses. However, little is known about the functions of potato NAC family members. Here we report the cloning of a potato NAC transcription factor gene StNAC053, which was significantly upregulated after salt, drought, and abscisic acid treatments. Furthermore, the StNAC053-GFP fusion protein was found to be located in the nucleus and had a C-terminal transactivation domain, implying that StNAC053 may function as a transcriptional activator in potato. Notably, Arabidopsis plants overexpressing StNAC053 displayed lower seed germination rates compared to wild-type under exogenous ABA treatment. In addition, the StNAC053 overexpression Arabidopsis lines displayed significantly increased tolerance to salt and drought stress treatments. Moreover, the StNAC053-OE lines were found to have higher activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) under multiple stress treatments. Interestingly, the expression levels of several stress-related genes including COR15A,DREB1A, ERD11, RAB18, ERF5, and KAT2, were significantly upregulated in these StNAC053-overexpressing lines. Taken together, overexpression of the stress-inducible StNAC053 gene could enhance the tolerances to both salt and drought stress treatments in Arabidopsis, likely by upregulating stress-related genes.
Collapse
|
21
|
Ma J, Wang LY, Dai JX, Wang Y, Lin D. The NAC-type transcription factor CaNAC46 regulates the salt and drought tolerance of transgenic Arabidopsis thaliana. BMC PLANT BIOLOGY 2021; 21:11. [PMID: 33407148 PMCID: PMC7788707 DOI: 10.1186/s12870-020-02764-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/01/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND The NAC (NAM, ATAF1/ATAF2, and CUC2) transcription factors belong to a large family of plant-specific transcription factors in monocot and dicot species. These transcription factors regulate the expression of stress tolerance-related genes that protect plants from various abiotic stresses, including drought, salinity, and low temperatures. RESULTS In this study, we identified the CaNAC46 transcription factor gene in Capsicum annuum. Its open reading frame was revealed to comprise 921 bp, encoding a protein consisting of 306 amino acids, with an isoelectric point of 6.96. A phylogenetic analysis indicated that CaNAC46 belongs to the ATAF subfamily. The expression of CaNAC46 was induced by heat, cold, high salt, drought, abscisic acid, salicylic acid, and methyl jasmonate treatments. Thus, CaNAC46 may be important for the resistance of dry pepper to abiotic stresses. A subcellular localization analysis confirmed that CaNAC46 is localized in the nucleus. The overexpression of CaNAC46 improved the tolerance of transgenic Arabidopsis thaliana plants to drought and salt stresses. The CaNAC46-overexpressing lines had longer roots and more lateral roots than wild-type lines under prolonged drought and high salt stress conditions. Additionally, CaNAC46 affected the accumulation of reactive oxygen species (ROS). Moreover, CaNAC46 promoted the expression of SOD, POD, RD29B, RD20, LDB18, ABI, IAA4, and P5CS. The malondialdehyde contents were higher in TRV2-CaNAC46 lines than in wild-type plants in response to drought and salt stresses. Furthermore, the expression levels of stress-responsive genes, such as ABA2, P5CS, DREB, RD22, CAT, and POD, were down-regulated in TRV2-CaNAC46 plants. CONCLUSIONS Under saline and drought conditions, CaNAC46 is a positive regulator that activates ROS-scavenging enzymes and enhances root formation. The results of our study indicate CaNAC46 is a transcriptional regulator responsible for salinity and drought tolerance and suggest the abiotic stress-related gene regulatory mechanisms controlling this NAC transcription factor are conserved between A. thaliana and pepper.
Collapse
Affiliation(s)
- Jing Ma
- College of Horticulture, Qingdao Agricultural University, Key Laboratory of Horticultural Plant Genetic Improvement and Breeding of Qingdao, 700 Changcheng Road, Qingdao, 266109 China
| | - Li-yue Wang
- College of Horticulture, Qingdao Agricultural University, Key Laboratory of Horticultural Plant Genetic Improvement and Breeding of Qingdao, 700 Changcheng Road, Qingdao, 266109 China
| | - Jia-xi Dai
- College of Horticulture, Qingdao Agricultural University, Key Laboratory of Horticultural Plant Genetic Improvement and Breeding of Qingdao, 700 Changcheng Road, Qingdao, 266109 China
| | - Ying Wang
- College of Horticulture, Qingdao Agricultural University, Key Laboratory of Horticultural Plant Genetic Improvement and Breeding of Qingdao, 700 Changcheng Road, Qingdao, 266109 China
| | - Duo Lin
- College of Horticulture, Qingdao Agricultural University, Key Laboratory of Horticultural Plant Genetic Improvement and Breeding of Qingdao, 700 Changcheng Road, Qingdao, 266109 China
| |
Collapse
|
22
|
He F, Wei C, Zhang Y, Long R, Li M, Wang Z, Yang Q, Kang J, Chen L. Genome-Wide Association Analysis Coupled With Transcriptome Analysis Reveals Candidate Genes Related to Salt Stress in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2021; 12:826584. [PMID: 35185967 PMCID: PMC8850473 DOI: 10.3389/fpls.2021.826584] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/28/2021] [Indexed: 05/12/2023]
Abstract
Salt stress is the main abiotic factor affecting alfalfa yield and quality. However, knowledge of the genetic basis of the salt stress response in alfalfa is still limited. Here, a genome-wide association study (GWAS) involving 875,023 single-nucleotide polymorphisms (SNPs) was conducted on 220 alfalfa varieties under both normal and salt-stress conditions. Phenotypic analysis showed that breeding status and geographical origin play important roles in the alfalfa salt stress response. For germination ability under salt stress, a total of 15 significant SNPs explaining 9%-14% of the phenotypic variation were identified. For tolerance to salt stress in the seedling stage, a total of 18 significant SNPs explaining 12%-23% of the phenotypic variation were identified. Transcriptome analysis revealed 2,097 and 812 differentially expressed genes (DEGs) that were upregulated and 2,445 and 928 DEGs that were downregulated in the leaves and roots, respectively, under salt stress. Among these DEGs, many encoding transcription factors (TFs) were found, including MYB-, CBF-, NAC-, and bZIP-encoding genes. Combining the results of our GWAS analysis and transcriptome analysis, we identified a total of eight candidate genes (five candidate genes for tolerance to salt stress and three candidate genes for germination ability under salt stress). Two SNPs located within the upstream region of MsAUX28, which encodes an auxin response protein, were significantly associated with tolerance to salt stress. The two significant SNPs within the upstream region of MsAUX28 existed as three different haplotypes in this panel. Hap 1 (G/G, A/A) was under selection in the alfalfa domestication and improvement process.
Collapse
|
23
|
Joshi RK, Bharat SS, Mishra R. Engineering drought tolerance in plants through CRISPR/Cas genome editing. 3 Biotech 2020; 10:400. [PMID: 32864285 PMCID: PMC7438458 DOI: 10.1007/s13205-020-02390-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Drought stress is primarily responsible for heavy yield losses and productivity in major crops and possesses the greatest threat to the global food security. While conventional and molecular breeding approaches along with genetic engineering techniques have been instrumental in developing drought-tolerant crop varieties, these methods are cumbersome, time consuming and the genetically modified varieties are not widely accepted due to regulatory concerns. Plant breeders are now increasingly centring towards the recently available genome-editing tools for improvement of agriculturally important traits. The advent of multiple sequence-specific nucleases has facilitated precise gene modification towards development of novel climate ready crop variants. Amongst the available genome-editing platforms, the clustered regularly interspaced short palindromic repeat-Cas (CRISPR/Cas) system has emerged as a revolutionary tool for its simplicity, adaptability, flexibility and wide applicability. In this review, we focus on understanding the molecular mechanism of drought response in plants and the application of CRISPR/Cas genome-editing system towards improved tolerance to drought stress.
Collapse
Affiliation(s)
- Raj Kumar Joshi
- Department of Biotechnology, Rama Devi Women’s University, Vidya Vihar, Bhubaneswar, Odisha India
| | - Suhas Sutar Bharat
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| | - Rukmini Mishra
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha India
| |
Collapse
|
24
|
Hassan MM, Yuan G, Chen JG, Tuskan GA, Yang X. Prime Editing Technology and Its Prospects for Future Applications in Plant Biology Research. BIODESIGN RESEARCH 2020; 2020:9350905. [PMID: 37849904 PMCID: PMC10530660 DOI: 10.34133/2020/9350905] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/19/2020] [Indexed: 10/19/2023] Open
Abstract
Many applications in plant biology requires editing genomes accurately including correcting point mutations, incorporation of single-nucleotide polymorphisms (SNPs), and introduction of multinucleotide insertion/deletions (indels) into a predetermined position in the genome. These types of modifications are possible using existing genome-editing technologies such as the CRISPR-Cas systems, which require induction of double-stranded breaks in the target DNA site and the supply of a donor DNA molecule that contains the desired edit sequence. However, low frequency of homologous recombination in plants and difficulty of delivering the donor DNA molecules make this process extremely inefficient. Another kind of technology known as base editing can perform precise editing; however, only certain types of modifications can be obtained, e.g., C/G-to-T/A and A/T-to-G/C. Recently, a new type of genome-editing technology, referred to as "prime editing," has been developed, which can achieve various types of editing such as any base-to-base conversion, including both transitions (C→T, G→A, A→G, and T→C) and transversion mutations (C→A, C→G, G→C, G→T, A→C, A→T, T→A, and T→G), as well as small indels without the requirement for inducing double-stranded break in the DNA. Because prime editing has wide flexibility to achieve different types of edits in the genome, it holds a great potential for developing superior crops for various purposes, such as increasing yield, providing resistance to various abiotic and biotic stresses, and improving quality of plant product. In this review, we describe the prime editing technology and discuss its limitations and potential applications in plant biology research.
Collapse
Affiliation(s)
- Md. Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
25
|
Guo Y, Zhang H, Yuan Y, Cui X, Zhang L. Identification and characterization of NAC genes in response to abiotic stress conditions in Picea wilsonii using transcriptome sequencing. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1718550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Yuxiao Guo
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Hehua Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Yihang Yuan
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Xiaoyue Cui
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Lingyun Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
26
|
Zafar SA, Zaidi SSEA, Gaba Y, Singla-Pareek SL, Dhankher OP, Li X, Mansoor S, Pareek A. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:470-479. [PMID: 31644801 DOI: 10.1093/jxb/erz476] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/15/2019] [Indexed: 05/20/2023]
Abstract
Abiotic stresses, including drought, salinity, temperature, and heavy metals, pose a major challenge for crop production and cause substantial yield reduction worldwide. Breeding tolerant cultivars against these abiotic stresses is the most sustainable and eco-friendly approach to cope with this challenge. Advances in genome editing technologies provide new opportunities for crop improvement by employing precision genome engineering for targeted crop traits. However, the selection of the candidate genes is critical for the success of achieving the desired traits. Broadly speaking, these genes could fall into two major categories, structural and regulatory genes. Structural genes encode proteins that provide stress tolerance directly, whereas regulatory genes act indirectly by controlling the expression of other genes involved in different cellular processes. Additionally, cis-regulatory sequences are also vital for achieving stress tolerance. We propose targeting of these regulatory and/or structural genes along with the cis-regulatory sequences via the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system as a robust, efficient, and practical approach for developing crop varieties resilient to climate change. We also discuss the possibility of creating novel quantitative trait loci for abiotic stress tolerance via the CRISPR/Cas-mediated targeting of promoters. It is hoped that these genome editing tools will not only make a significant contribution towards raising novel plant types having tolerance to multiple abiotic stresses but will also aid in public acceptance of these products in years to come. This article is an attempt to critically evaluate the suitability of available tools and the target genes for obtaining plants with improved tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Yashika Gaba
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
27
|
He L, Bian J, Xu J, Yang K. Novel Maize NAC Transcriptional Repressor ZmNAC071 Confers Enhanced Sensitivity to ABA and Osmotic Stress by Downregulating Stress-Responsive Genes in Transgenic Arabidopsis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8905-8918. [PMID: 31380641 DOI: 10.1021/acs.jafc.9b02331] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
NAC TFs play crucial roles in response to abiotic stresses in plants. Here, ZmNAC071 was identified as a nuclear located transcriptional repressor. Overexpression of ZmNAC071 in Arabidopsis enhanced sensitivity of transgenic plants to ABA and osmotic stress. The expression levels of SODs, PODs, P5CSs, and AtMYB61 were inhibited by ZmNAC071, which results in reduced ROS scavenging and proline content, increased ROS level, and water loss. Besides, the expression levels of some ABA or abiotic stress-related genes, like ABIs, RD29A, DREBs, and LEAs were also significantly inhibited by ZmNAC071. Yeast one-hybrid assay demonstrated that ZmNAC071 specifically bound to the cis-acting elements containing CGT[G/A] core sequences in the promoter of stress-related genes, suggesting that ZmNAC071 may participate in the regulation of transcription of these genes through recognizing the core sequences CGT[G/A]. These results will facilitate further studies concerning the cis-elements and downstream genes targeted by ZmNAC071 in maize.
Collapse
Affiliation(s)
- Lin He
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province , Heilongjiang Bayi Agricultural University , 5 Xinfeng Road , 163319 Daqing , China
| | - Jing Bian
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province , Heilongjiang Bayi Agricultural University , 5 Xinfeng Road , 163319 Daqing , China
| | - Jingyu Xu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province , Heilongjiang Bayi Agricultural University , 5 Xinfeng Road , 163319 Daqing , China
| | - Kejun Yang
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province , Heilongjiang Bayi Agricultural University , 5 Xinfeng Road , 163319 Daqing , China
| |
Collapse
|
28
|
Sanjari S, Shirzadian-Khorramabad R, Shobbar ZS, Shahbazi M. Systematic analysis of NAC transcription factors' gene family and identification of post-flowering drought stress responsive members in sorghum. PLANT CELL REPORTS 2019; 38:361-376. [PMID: 30627770 DOI: 10.1007/s00299-019-02371-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/02/2019] [Indexed: 05/25/2023]
Abstract
SbNAC genes (131) encoding 183 proteins were identified from the sorghum genome and characterized. The expression patterns of SbSNACs were evaluated at three sampling time points under post-flowering drought stress. NAC proteins are specific transcription factors in plants, playing vital roles in development and response to various environmental stresses. Despite the fact that Sorghum bicolor is well-known for its drought-tolerance, it suffers from grain yield loss due to pre and post-flowering drought stress. In the present study, 131 SbNAC genes encoding 183 proteins were identified from the sorghum genome. The phylogenetic trees were constructed based on the NAC domains of sorghum, and also based on sorghum with Arabidopsis and 8 known NAC domains of other plants, which classified the family into 15 and 19 subfamilies, respectively. Based on the obtained results, 13 SbNAC proteins joined the SNAC subfamily, and these proteins are expected to be involved in response to abiotic stresses. Promoter analysis revealed that all SbNAC genes comprise different stress-associated cis-elements in their promoters. UTRs analysis indicated that 101 SbNAC transcripts had upstream open reading frames, while 39 of the transcripts had internal ribosome entry sites in their 5'UTR. Moreover, 298 miRNA target sites were predicted to exist in the UTRs of SbNAC transcripts. The expression patterns of SbSNACs were evaluated in three genotypes at three sampling time points under post-flowering drought stress. Based on the results, it could be suggested that some gene members are involved in response to drought stress at the post-flowering stage since they act as positive or negative transcriptional regulators. Following further functional analyses, some of these genes might be perceived to be promising candidates for breeding programs to enhance drought tolerance in crops.
Collapse
Affiliation(s)
- Sepideh Sanjari
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Reza Shirzadian-Khorramabad
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Maryam Shahbazi
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
29
|
Transcription Factor ANAC074 Binds to NRS1, NRS2, or MybSt1 Element in Addition to the NACRS to Regulate Gene Expression. Int J Mol Sci 2018; 19:ijms19103271. [PMID: 30347890 PMCID: PMC6214087 DOI: 10.3390/ijms19103271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors play important roles in many biological processes, and mainly bind to the NACRS with core sequences "CACG" or "CATGTG" to regulate gene expression. However, whether NAC proteins can bind to other motifs without these core sequences remains unknown. In this study, we employed a Transcription Factor-Centered Yeast one Hybrid (TF-Centered Y1H) screen to study the motifs recognized by ANAC074. In addition to the NACRS core cis-element, we identified that ANAC074 could bind to MybSt1, NRS1, and NRS2. Y1H and GUS assays showed that ANAC074 could bind the promoters of ethylene responsive genes and stress responsive genes via the NRS1, NRS2, or MybSt1 element. ChIP study further confirmed that the bindings of ANAC074 to MybSt1, NRS1, and NRS2 actually occurred in Arabidopsis. Furthermore, ten NAC proteins from different NAC subfamilies in Arabidopsis thaliana were selected and confirmed to bind to the MybSt1, NRS1, and NRS2 motifs, indicating that they are recognized commonly by NACs. These findings will help us to further reveal the functions of NAC proteins.
Collapse
|
30
|
Mathew IE, Agarwal P. May the Fittest Protein Evolve: Favoring the Plant-Specific Origin and Expansion of NAC Transcription Factors. Bioessays 2018; 40:e1800018. [PMID: 29938806 DOI: 10.1002/bies.201800018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/26/2018] [Indexed: 12/12/2022]
Abstract
Plant-specific NAC transcription factors (TFs) evolve during the transition from aquatic to terrestrial plant life and are amplified to become one of the biggest TF families. This is because they regulate genes involved in water conductance and cell support. They also control flower and fruit formation. The review presented here focuses on various properties, regulatory intricacies, and developmental roles of NAC family members. Processes controlled by NACs depend majorly on their transcriptional properties. NACs can function as both activators and/or repressors. Additionally, their homo/hetero dimerization abilities can also affect DNA binding and activation properties. The active protein levels are dependent on the regulatory cascades. Because NACs regulate both development and stress responses in plants, in-depth knowledge about them has the potential to help guide future crop improvement studies.
Collapse
Affiliation(s)
- Iny Elizebeth Mathew
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
31
|
Khan SA, Li MZ, Wang SM, Yin HJ. Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress. Int J Mol Sci 2018; 19:ijms19061634. [PMID: 29857524 PMCID: PMC6032162 DOI: 10.3390/ijms19061634] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/10/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023] Open
Abstract
Owing to diverse abiotic stresses and global climate deterioration, the agricultural production worldwide is suffering serious losses. Breeding stress-resilient crops with higher quality and yield against multiple environmental stresses via application of transgenic technologies is currently the most promising approach. Deciphering molecular principles and mining stress-associate genes that govern plant responses against abiotic stresses is one of the prerequisites to develop stress-resistant crop varieties. As molecular switches in controlling stress-responsive genes expression, transcription factors (TFs) play crucial roles in regulating various abiotic stress responses. Hence, functional analysis of TFs and their interaction partners during abiotic stresses is crucial to perceive their role in diverse signaling cascades that many researchers have continued to undertake. Here, we review current developments in understanding TFs, with particular emphasis on their functions in orchestrating plant abiotic stress responses. Further, we discuss novel molecular mechanisms of their action under abiotic stress conditions. This will provide valuable information for understanding regulatory mechanisms to engineer stress-tolerant crops.
Collapse
Affiliation(s)
- Sardar-Ali Khan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Meng-Zhan Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Hong-Ju Yin
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
32
|
Wu D, Sun Y, Wang H, Shi H, Su M, Shan H, Li T, Li Q. The SlNAC8 gene of the halophyte Suaeda liaotungensis enhances drought and salt stress tolerance in transgenic Arabidopsis thaliana. Gene 2018; 662:10-20. [PMID: 29631006 DOI: 10.1016/j.gene.2018.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 11/19/2022]
Abstract
NAC (NAM, ATAF1/2 and CUC) transcription factors play an important role in resisting abiotic stress in plants. In this study, a novel NAC gene, designated SlNAC8 from Suaeda liaotungensis K. was characterized. SlNAC8 protein is localized in the nucleus, and the yeast one-hybrid screening showed that it contains an activation domain in its C-terminus and functions as a transcriptional activator. Gene expression analysis revealed that it is induced by drought and salt stress. Arabidopsis plants overexpressing SlNAC8 demonstrated enhanced tolerance to drought and salt stress, showing significant advantages in seed germination, root growth, shoot growth, and survival rate compared with controls. Moreover, transgenic plants had a significantly higher proline concentration, antioxidant enzyme activity (superoxide dismutase, peroxidase, and catalase), and level of chlorophyll fluorescence than wild-type, and a significantly lower malondialdehyde concentration and electrolyte leakage under drought and salt stress. The overexpression of SlNAC8 in transgenic plants also enhanced the expression of stress-responsive genes such as RD20, GSTF6, COR47, RD29A, RD29B, and NYC1. In summary, SlNAC8, as a transcription factor, may change the physiological-biochemical characteristic of plants by regulating the expression of stress-responsive genes and enhance the drought and salt stress tolerance of plants. SlNAC8 can be utilized for developing drought and salinity tolerance in crop plants through genetic engineering.
Collapse
Affiliation(s)
- Dandan Wu
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Yinghao Sun
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Hongfei Wang
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - He Shi
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Mingxing Su
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Hongyan Shan
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Tongtong Li
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Qiuli Li
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China.
| |
Collapse
|
33
|
Wang L, Li Z, Lu M, Wang Y. ThNAC13, a NAC Transcription Factor from Tamarix hispida, Confers Salt and Osmotic Stress Tolerance to Transgenic Tamarix and Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:635. [PMID: 28491072 PMCID: PMC5405116 DOI: 10.3389/fpls.2017.00635] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/07/2017] [Indexed: 05/18/2023]
Abstract
NAC (NAM, ATAF1/2, and CUC2) proteins play critical roles in many plant biological processes and environmental stress. However, NAC proteins from Tamarix hispida have not been functionally characterized. Here, we studied a NAC gene from T. hispida, ThNAC13, in response to salt and osmotic stresses. ThNAC13 is a nuclear protein with a C-terminal transactivation domain. ThNAC13 can bind to NAC recognized sites and calmodulin-binding NAC (CBNAC) binding element. Overexpression of ThNAC13 in Arabidopsis improved seed germination rate and increased root growth and fresh weight gain under salt or osmotic stress. Transgenic T. hispida plants transiently overexpressing ThNAC13 and with RNAi-silenced ThNAC13 were generated for gain- and loss-of-function experiments. Following exposure to salt or osmotic stress, overexpression of ThNAC13 induced superoxide dismutase (SOD) and peroxidase (POD) activities, chlorophyll and proline contents; decreased the reactive oxygen species (ROS) and malondialdehyde levels; and reduced electrolyte leakage rates in both transgenic Tamarix and Arabidopsis plants. In contrast, RNAi-silenced ThNAC13 showed the opposite results in transgenic Tamarix. Furthermore, ThNAC13 induced the expression of SODs and PODs in transgenic Arabidopsis. These results suggest that ThNAC13 improves salt and osmotic tolerance by enhancing the ROS-scavenging capability and adjusting osmotic potential.
Collapse
Affiliation(s)
- Liuqiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
| | - Zhen Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- *Correspondence: Mengzhu Lu, Yucheng Wang,
| | - Yucheng Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
- *Correspondence: Mengzhu Lu, Yucheng Wang,
| |
Collapse
|