1
|
Liu Y, Han X, Yu J, Li Y, Sun M, Pang Q, Li Y, Dai S. Genome-wide identification and expression analysis of glutaredoxin in Puccinellia tenuiflora under salinity stress. BMC PLANT BIOLOGY 2025; 25:605. [PMID: 40340753 PMCID: PMC12060299 DOI: 10.1186/s12870-025-06547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/11/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Glutaredoxins (GRX) are key oxidoreductases that modulate protein redox states during plant development and stress responses. Alkaligrass (Puccinellia tenuiflora) is a highly salt-tolerant forage grass, but its GRX gene family (PutGRXs) remains uncharacterized, unlike those in Arabidopsis and other plants. RESULTS We identified 25 PutGRX genes in the P. tenuiflora genome. Phylogenetic analysis revealed close evolutionary ties to monocotyledonous rice (Oryza sativa). Based on gene structure and conserved domains, PutGRXs were classified into three groups: five CGFS-type, eleven CPYC-type, and nine CC-type GRXs. Promoter analysis identified numerous cis-acting elements linked to abiotic stresses (e.g., light, drought, heat, cold) and hormone responses, suggesting a pivotal role in stress adaptation. Tissue-specific expression profiling showed differential PutGRX expression in roots, leaves, stems, flowers, and sheaths, with most genes responding to NaCl, NaHCO3, and Na2CO3 stresses. Functional characterization of chloroplast-localized PutGrxS12 demonstrated its importance in plant growth and ROS scavenging under salinity stress. CONCLUSION This study offers the first comprehensive genomic and functional analysis of the PutGRX family in P. tenuiflora, highlighting its conservation, classification, and stress-responsive roles. Our findings advance understanding of GRX-mediated stress tolerance and provide potential targets for engineering salt-resistant crops.
Collapse
Affiliation(s)
- Yanshuang Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xia Han
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Juanjuan Yu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yueyue Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Meihong Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiuying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Ying Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
2
|
Lemaire SD, Lombardi G, Mancini A, Carbone A, Henri J. Functional recoding of Chlamydomonas reinhardtii thioredoxin type-h into photosynthetic type-f by switching selectivity determinants. FRONTIERS IN PLANT SCIENCE 2025; 16:1554272. [PMID: 40115944 PMCID: PMC11922929 DOI: 10.3389/fpls.2025.1554272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025]
Abstract
Thioredoxins are ubiquitous disulfide reductases folded as an α/β domain of 100-120 amino acid residues. Functional redox site is composed of a pair of cysteines in a canonical WCGPC pentapeptide exposed at the surface of thioredoxins, that reduces disulfide bonds on target proteins. Several genetic isoforms of thioredoxins are phylogenetically classified into seven types, including type-h involved in general functions in the cytosol and type-f specifically associated to photosynthetic functions in chloroplasts. Specialization of thioredoxin function is correlated to its selectivity towards a type-dependent repertoire of protein targets. In this study, we combined biochemical and computational approaches to identify amino acid residues of photosynthetic type-f thioredoxin contributing to target the Calvin-Benson-Bassham cycle enzymes fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase. By introducing these residues into the scaffold of type-h thioredoxin, we generated a synthetic chimera of thioredoxin-h active towards photosynthetic fructose-1,6-bisphosphatase in vitro. Our combined computational and experimental approach provides a general pipeline for the design of molecular switches, enabling precise functional control.
Collapse
Affiliation(s)
- Stéphane D Lemaire
- Sorbonne Université, CNRS, Laboratoire de Biologie Computationnelle et Quantitative LCQB, Paris, France
| | - Gianluca Lombardi
- Sorbonne Université, CNRS, Laboratoire de Biologie Computationnelle et Quantitative LCQB, Paris, France
| | - Andrea Mancini
- Sorbonne Université, CNRS, Laboratoire de Biologie Computationnelle et Quantitative LCQB, Paris, France
| | - Alessandra Carbone
- Sorbonne Université, CNRS, Laboratoire de Biologie Computationnelle et Quantitative LCQB, Paris, France
- Institut Universitaire de France, Paris, France
| | - Julien Henri
- Sorbonne Université, CNRS, Laboratoire de Biologie Computationnelle et Quantitative LCQB, Paris, France
| |
Collapse
|
3
|
Mallén-Ponce MJ, Pérez-Pérez ME. Redox-mediated activation of ATG3 promotes ATG8 lipidation and autophagy progression in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2023; 194:359-375. [PMID: 37772945 PMCID: PMC10756753 DOI: 10.1093/plphys/kiad520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Autophagy is one of the main degradative pathways used by eukaryotic organisms to eliminate useless or damaged intracellular material to maintain cellular homeostasis under stress conditions. Mounting evidence indicates a strong interplay between the generation of reactive oxygen species and the activation of autophagy. Although a tight redox regulation of autophagy has been shown in several organisms, including microalgae, the molecular mechanisms underlying this control remain poorly understood. In this study, we have performed an in-depth in vitro and in vivo redox characterization of ATG3, an E2-activating enzyme involved in ATG8 lipidation and autophagosome formation, from 2 evolutionary distant unicellular model organisms: the green microalga Chlamydomonas (Chlamydomonas reinhardtii) and the budding yeast Saccharomyces cerevisiae. Our results indicated that ATG3 activity from both organisms is subjected to redox regulation since these proteins require reducing equivalents to transfer ATG8 to the phospholipid phosphatidylethanolamine. We established the catalytic Cys of ATG3 as a redox target in algal and yeast proteins and showed that the oxidoreductase thioredoxin efficiently reduces ATG3. Moreover, in vivo studies revealed that the redox state of ATG3 from Chlamydomonas undergoes profound changes under autophagy-activating stress conditions, such as the absence of photoprotective carotenoids, the inhibition of fatty acid synthesis, or high light irradiance. Thus, our results indicate that the redox-mediated activation of ATG3 regulates ATG8 lipidation under oxidative stress conditions in this model microalga.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Consejo Superior de Investigaciones Científicas (CSIC)- Universidad de Sevilla, Sevilla 41092, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Consejo Superior de Investigaciones Científicas (CSIC)- Universidad de Sevilla, Sevilla 41092, Spain
| |
Collapse
|
4
|
Carrera-Pacheco SE, Hankamer B, Oey M. Environmental and nuclear influences on microalgal chloroplast gene expression. TRENDS IN PLANT SCIENCE 2023; 28:955-967. [PMID: 37080835 DOI: 10.1016/j.tplants.2023.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Microalgal chloroplasts, such as those of the model organism Chlamydomonas reinhardtii, are emerging as a new platform to produce recombinant proteins, including industrial enzymes, diagnostics, as well as animal and human therapeutics. Improving transgene expression and final recombinant protein yields, at laboratory and industrial scales, require optimization of both environmental and cellular factors. Most studies on C. reinhardtii have focused on optimization of cellular factors. Here, we review the regulatory influences of environmental factors, including light (cycle time, intensity, and quality), carbon source (CO2 and organic), and temperature. In particular, we summarize their influence via the redox state, cis-elements, and trans-factors on biomass and recombinant protein production to support the advancement of emerging large-scale light-driven biotechnology applications.
Collapse
Affiliation(s)
- Saskya E Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Ben Hankamer
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Australia.
| | - Melanie Oey
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Australia.
| |
Collapse
|
5
|
Boisteau E, Posseme C, Di Modugno F, Edeline J, Coulouarn C, Hrstka R, Martisova A, Delom F, Treton X, Eriksson LA, Chevet E, Lièvre A, Ogier-Denis E. Anterior gradient proteins in gastrointestinal cancers: from cell biology to pathophysiology. Oncogene 2022; 41:4673-4685. [PMID: 36068336 DOI: 10.1038/s41388-022-02452-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Most of the organs of the digestive tract comprise secretory epithelia that require specialized molecular machines to achieve their functions. As such anterior gradient (AGR) proteins, which comprise AGR1, AGR2, and AGR3, belong to the protein disulfide isomerase family, and are involved in secretory and transmembrane protein biogenesis in the endoplasmic reticulum. They are generally expressed in epithelial cells with high levels in most of the digestive tract epithelia. To date, the vast majority of the reports concern AGR2, which has been shown to exhibit various subcellular localizations and exert pro-oncogenic functions. AGR2 overexpression has recently been associated with a poor prognosis in digestive cancers. AGR2 is also involved in epithelial homeostasis. Its deletion in mice results in severe diffuse gut inflammation, whereas in inflammatory bowel diseases, the secretion of AGR2 in the extracellular milieu participates in the reshaping of the cellular microenvironment. AGR2 thus plays a key role in inflammation and oncogenesis and may represent a therapeutic target of interest. In this review, we summarize the already known roles and mechanisms of action of the AGR family proteins in digestive diseases, their expression in the healthy digestive tract, and in digestive oncology. At last, we discuss the potential diagnostic and therapeutic implications underlying the biology of AGR proteins.
Collapse
Affiliation(s)
- Emeric Boisteau
- INSERM U1242, University of Rennes, Rennes, France
- Department of Gastroenterology, University Hospital Pontchaillou, University of Rennes, Rennes, France
| | - Céline Posseme
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Federico Di Modugno
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Julien Edeline
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Andrea Martisova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Xavier Treton
- Assistance Publique-Hôpitaux de Paris, University of Paris, Clichy, France
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France.
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| | - Astrid Lièvre
- INSERM U1242, University of Rennes, Rennes, France.
- Department of Gastroenterology, University Hospital Pontchaillou, University of Rennes, Rennes, France.
| | - Eric Ogier-Denis
- INSERM U1242, University of Rennes, Rennes, France.
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
6
|
Agrahari RK, Enomoto T, Ito H, Nakano Y, Yanase E, Watanabe T, Sadhukhan A, Iuchi S, Kobayashi M, Panda SK, Yamamoto YY, Koyama H, Kobayashi Y. Expression GWAS of PGIP1 Identifies STOP1-Dependent and STOP1-Independent Regulation of PGIP1 in Aluminum Stress Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:774687. [PMID: 34975956 PMCID: PMC8719490 DOI: 10.3389/fpls.2021.774687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
To elucidate the unknown regulatory mechanisms involved in aluminum (Al)-induced expression of POLYGALACTURONASE-INHIBITING PROTEIN 1 (PGIP1), which is one of the downstream genes of SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) regulating Al-tolerance genes, we conducted a genome-wide association analysis of gene expression levels (eGWAS) of PGIP1 in the shoots under Al stress using 83 Arabidopsis thaliana accessions. The eGWAS, conducted through a mixed linear model, revealed 17 suggestive SNPs across the genome having the association with the expression level variation in PGIP1. The GWAS-detected SNPs were directly located inside transcription factors and other genes involved in stress signaling, which were expressed in response to Al. These candidate genes carried different expression level and amino acid polymorphisms. Among them, three genes encoding NAC domain-containing protein 27 (NAC027), TRX superfamily protein, and R-R-type MYB protein were associated with the suppression of PGIP1 expression in their mutants, and accordingly, the system affected Al tolerance. We also found the involvement of Al-induced endogenous nitric oxide (NO) signaling, which induces NAC027 and R-R-type MYB genes to regulate PGIP1 expression. In this study, we provide genetic evidence that STOP1-independent NO signaling pathway and STOP1-dependent regulation in phosphoinositide (PI) signaling pathway are involved in the regulation of PGIP1 expression under Al stress.
Collapse
Affiliation(s)
| | - Takuo Enomoto
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hiroki Ito
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yuki Nakano
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Emiko Yanase
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | | | - Ayan Sadhukhan
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Satoshi Iuchi
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Masatomo Kobayashi
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Sanjib Kumar Panda
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | | | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
7
|
Juniar L, Tanaka H, Yoshida K, Hisabori T, Kurisu G. Structural basis for thioredoxin isoform-based fine-tuning of ferredoxin-thioredoxin reductase activity. Protein Sci 2020; 29:2538-2545. [PMID: 33015914 DOI: 10.1002/pro.3964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/20/2023]
Abstract
Photosynthetic electron transport occurs on the thylakoid membrane of chloroplasts. Ferredoxin (Fd), the final acceptor in the electron transport chain, distributes electrons to several Fd-dependent enzymes including Fd-thioredoxin reductase (FTR). A cascade from Fd to FTR further reduces Thioredoxin (Trx), which tunes the activity of target metabolic enzymes eventually in a light-dependent manner. We previously reported that 10 Trx isoforms in Arabidopsis thaliana can be clustered into three classes based on the kinetics of the FTR-dependent reduction (high-, middle-, and low-efficiency classes). In this study, we determined the X-ray structure of three electron transfer complexes of FTR and Trx isoform, Trx-y1, Trx-f2, and Trx-m2, as representative examples of each class. Superposition of the FTR structure with/without Trx showed no main chain structural changes upon complex formation. There was no significant conformational change for single and complexed Trx-m structures. Nonetheless, the interface of FTR:Trx complexes displayed significant variation. Comparative analysis of the three structures showed two types of intermolecular interactions; (i) common interactions shared by all three complexes and (ii) isoform-specific interactions, which might be important for fine-tuning FTR:Trx activity. Differential electrostatic potentials of Trx isoforms may be key to isoform-specific interactions.
Collapse
Affiliation(s)
- Linda Juniar
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Suita, Osaka, Japan
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Suita, Osaka, Japan
| | - Keisuke Yoshida
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Real-time monitoring of the in vivo redox state transition using the ratiometric redox state sensor protein FROG/B. Proc Natl Acad Sci U S A 2020; 117:16019-16026. [PMID: 32576684 DOI: 10.1073/pnas.1918919117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The intracellular redox state is one of the key factors regulating various physiological phenomena in the cell. Monitoring this state is therefore important for understanding physiological homeostasis in cells. Various fluorescent sensor proteins have already been developed to monitor intracellular redox state. We also developed fluorescent redox sensor proteins named Oba-Q and Re-Q, the emissions of which are quenched under oxidized and reduced conditions, respectively. Although these sensors were useful to visualize the redox changes in the cell over time, they have the weakness that their emission signals are directly influenced by their in situ expression levels. To overcome this problem, we developed a redox sensor protein with a single excitation peak and dual variable emission peaks. This sensor protein shows green emission under oxidized conditions and blue emission under reduced conditions. We therefore named this sensor FROG/B, fluorescent protein with redox-dependent change in green/blue. By using this sensor, we successfully measured the changes in intracellular redox potentials in cyanobacterial cells quantitatively caused by light/dark transition just by calculating the ratio of emission between green and blue signals.
Collapse
|
9
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Babele PK, Kumar J, Chaturvedi V. Proteomic De-Regulation in Cyanobacteria in Response to Abiotic Stresses. Front Microbiol 2019; 10:1315. [PMID: 31263458 PMCID: PMC6584798 DOI: 10.3389/fmicb.2019.01315] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/27/2019] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are oxygenic photoautotrophs, exhibiting a cosmopolitan distribution in almost all possible environments and are significantly responsible for half of the global net primary productivity. They are well adapted to the diverse environments including harsh conditions by evolving a range of fascinating repertoires of unique biomolecules and secondary metabolites to support their growth and survival. These phototrophs are proved as excellent models for unraveling the mysteries of basic biochemical and physiological processes taking place in higher plants. Several known species of cyanobacteria have tremendous biotechnological applications in diverse fields such as biofuels, biopolymers, secondary metabolites and much more. Due to their potential biotechnological and commercial applications in various fields, there is an imperative need to engineer robust cyanobacteria in such a way that they can tolerate and acclimatize to ever-changing environmental conditions. Adaptations to stress are mainly governed by a precise gene regulation pathways resulting in the expression of novel protein/enzymes and metabolites. Despite the demand, till date few proteins/enzymes have been identified which play a potential role in improving tolerance against abiotic stresses. Therefore, it is utmost important to study environmental stress responses related to post-genomic investigations, including proteomic changes employing advanced proteomics, synthetic and structural biology workflows. In this respect, the study of stress proteomics offers exclusive advantages to scientists working on these aspects. Advancements on these fields could be helpful in dissecting, characterization and manipulation of physiological and metabolic systems of cyanobacteria to understand the stress induced proteomic responses. Till date, it remains ambiguous how cyanobacteria perceive changes in the ambient environment that lead to the stress-induced proteins thus metabolic deregulation. This review briefly describes the current major findings in the fields of proteome research on the cyanobacteria under various abiotic stresses. These findings may improve and advance the information on the role of different class of proteins associated with the mechanism(s) of stress mitigation in cyanobacteria under harsh environmental conditions.
Collapse
Affiliation(s)
- Piyoosh Kumar Babele
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Jay Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Venkatesh Chaturvedi
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
11
|
Chibani K, Saul F, Didierjean C, Rouhier N, Haouz A. Structural snapshots along the reaction mechanism of the atypical poplar thioredoxin-like2.1. FEBS Lett 2018; 592:1030-1041. [PMID: 29453875 DOI: 10.1002/1873-3468.13009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 11/07/2022]
Abstract
Plastidial thioredoxin (TRX)-like2.1 proteins are atypical thioredoxins possessing a WCRKC active site signature and using glutathione for recycling. To obtain structural information supporting the peculiar catalytic mechanisms and target proteins of these TRXs, we solved the crystal structures of poplar TRX-like2.1 in oxidized and reduced states and of mutated variants. These structures share similar folding with TRXs exhibiting the canonical WCGPC signature. Moreover, the overall conformation is not altered by reduction of the catalytic disulfide bond or in a C45S/C67S variant that formed a disulfide-bridged dimer possibly mimicking reaction intermediates with target proteins. Modeling of the interaction of TRX-like2.1 with both NADPH- and ferredoxin-thioredoxin reductases (FTR) indicates that the presence of Arg43 and Lys44 residues likely precludes reduction by the plastidial FTR.
Collapse
Affiliation(s)
- Kamel Chibani
- UMR 1136, Interactions Arbres-Microorganismes, Faculté des Sciences et Technologies, Université de Lorraine/INRA, Vandœuvre-lès-Nancy, France
| | - Frederick Saul
- Institut Pasteur, Plateforme de Cristallographie, CNRS-UMR 3528, Paris, France
| | | | - Nicolas Rouhier
- UMR 1136, Interactions Arbres-Microorganismes, Faculté des Sciences et Technologies, Université de Lorraine/INRA, Vandœuvre-lès-Nancy, France
| | - Ahmed Haouz
- Institut Pasteur, Plateforme de Cristallographie, CNRS-UMR 3528, Paris, France
| |
Collapse
|
12
|
Pérez-Pérez ME, Mauriès A, Maes A, Tourasse NJ, Hamon M, Lemaire SD, Marchand CH. The Deep Thioredoxome in Chlamydomonas reinhardtii: New Insights into Redox Regulation. MOLECULAR PLANT 2017; 10:1107-1125. [PMID: 28739495 DOI: 10.1016/j.molp.2017.07.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
Thiol-based redox post-translational modifications have emerged as important mechanisms of signaling and regulation in all organisms, and thioredoxin plays a key role by controlling the thiol-disulfide status of target proteins. Recent redox proteomic studies revealed hundreds of proteins regulated by glutathionylation and nitrosylation in the unicellular green alga Chlamydomonas reinhardtii, while much less is known about the thioredoxin interactome in this organism. By combining qualitative and quantitative proteomic analyses, we have comprehensively investigated the Chlamydomonas thioredoxome and 1188 targets have been identified. They participate in a wide range of metabolic pathways and cellular processes. This study broadens not only the redox regulation to new enzymes involved in well-known thioredoxin-regulated metabolic pathways but also sheds light on cellular processes for which data supporting redox regulation are scarce (aromatic amino acid biosynthesis, nuclear transport, etc). Moreover, we characterized 1052 thioredoxin-dependent regulatory sites and showed that these data constitute a valuable resource for future functional studies in Chlamydomonas. By comparing this thioredoxome with proteomic data for glutathionylation and nitrosylation at the protein and cysteine levels, this work confirms the existence of a complex redox regulation network in Chlamydomonas and provides evidence of a tremendous selectivity of redox post-translational modifications for specific cysteine residues.
Collapse
Affiliation(s)
- María Esther Pérez-Pérez
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Adeline Mauriès
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Alexandre Maes
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Nicolas J Tourasse
- Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marion Hamon
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France; Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Christophe H Marchand
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France; Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
13
|
Remelli W, Santabarbara S, Carbonera D, Bonomi F, Ceriotti A, Casazza AP. Iron Binding Properties of Recombinant Class A Protein Disulfide Isomerase from Arabidopsis thaliana. Biochemistry 2017; 56:2116-2125. [DOI: 10.1021/acs.biochem.6b01257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- William Remelli
- Istituto
di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
- Istituto
di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria
26, 20133 Milano, Italy
| | - Stefano Santabarbara
- Istituto
di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria
26, 20133 Milano, Italy
| | - Donatella Carbonera
- Dipartimento
di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Francesco Bonomi
- Dipartimento
di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, DeFENS, Università di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Aldo Ceriotti
- Istituto
di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
| | - Anna Paola Casazza
- Istituto
di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
| |
Collapse
|
14
|
Peng RH, Qiu J, Tian YS, Gao JJ, Han HJ, Fu XY, Zhu B, Xu J, Wang B, Li ZJ, Wang LJ, Yao QH. Disulfide isomerase-like protein AtPDIL1-2 is a good candidate for trichlorophenol phytodetoxification. Sci Rep 2017; 7:40130. [PMID: 28059139 PMCID: PMC5216352 DOI: 10.1038/srep40130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/02/2016] [Indexed: 12/29/2022] Open
Abstract
Trichlorophenol (TCP) is a widely used and persistent environmentally toxic compound that poses a carcinogenic risk to humans. Phytoremediation is a proficient cleanup technology for organic pollutants. In this study, we found that the disulfide isomerase-like protein AtPDIL1-2 in plants is a good candidate for enhancing 2,4,6-TCP phytoremediation. The expression of AtPDIL1-2 in Arabidopsis was induced by 2,4,6-TCP. The heterologously expressed AtPDIL1-2 in Escherichia coli exhibited both oxidase and isomerase activities as protein disulfide isomerase and improved bacteria tolerance to 2,4,6-TCP. Further research revealed that transgenic tobacco overexpressing AtPDIL1-2 was more tolerant to high concentrations of 2,4,6-TCP and removed the toxic compound at far greater rates than the control plants. To elucidate the mechanism of action of AtPDIL1-2, we investigated the chemical interaction of AtPDIL1-2 with 2,4,6-TCP for the first time. HPLC analysis implied that AtPDIL1-2 exerts a TCP-binding activity. A suitable configuration of AtPDIL1-2-TCP binding was obtained by molecular docking studies using the AutoDock program. It predicted that the TCP binding site is located in the b-b' domain of AtPDIL1-2 and that His254 of the protein is critical for the binding interaction. These findings imply that AtPDIL1-2 can be used for TCP detoxification by the way of overexpression in plants.
Collapse
Affiliation(s)
- Ri-He Peng
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Jin Qiu
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Yong-Sheng Tian
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Jian-jie Gao
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Hong-juan Han
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Xiao-Yan Fu
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Bo Zhu
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Jing Xu
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Bo Wang
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Zhen-jun Li
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Li-juan Wang
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Quan-Hong Yao
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| |
Collapse
|
15
|
Pérez-Martín M, Pérez-Pérez ME, Lemaire SD, Crespo JL. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2014; 166:997-1008. [PMID: 25143584 PMCID: PMC4213124 DOI: 10.1104/pp.114.243659] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes.
Collapse
Affiliation(s)
- Marta Pérez-Martín
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Seville, Spain (M.P.-M., J.L.C.); andCentre National de la Recherche Scientifique (M.E.P.-P.; S.D.L.) andSorbonne Universités, Université Pierre et Marie Curie, University of Paris 06 (M.E.P.-P.; S.D.L.), Unité Mixte de Recherche 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Seville, Spain (M.P.-M., J.L.C.); andCentre National de la Recherche Scientifique (M.E.P.-P.; S.D.L.) andSorbonne Universités, Université Pierre et Marie Curie, University of Paris 06 (M.E.P.-P.; S.D.L.), Unité Mixte de Recherche 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Stéphane D Lemaire
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Seville, Spain (M.P.-M., J.L.C.); andCentre National de la Recherche Scientifique (M.E.P.-P.; S.D.L.) andSorbonne Universités, Université Pierre et Marie Curie, University of Paris 06 (M.E.P.-P.; S.D.L.), Unité Mixte de Recherche 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Seville, Spain (M.P.-M., J.L.C.); andCentre National de la Recherche Scientifique (M.E.P.-P.; S.D.L.) andSorbonne Universités, Université Pierre et Marie Curie, University of Paris 06 (M.E.P.-P.; S.D.L.), Unité Mixte de Recherche 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| |
Collapse
|
16
|
|
17
|
Li LC, Hsu YT, Chang HL, Wu TM, Sung MS, Cho CL, Lee TM. Polyamine effects on protein disulfide isomerase expression and implications for hypersalinity stress in the marine alga Ulva lactuca Linnaeus(1). JOURNAL OF PHYCOLOGY 2013; 49:1181-1191. [PMID: 27007636 DOI: 10.1111/jpy.12129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/19/2013] [Indexed: 06/05/2023]
Abstract
Full-length protein disulfide isomerase (UfPDI) cDNA was cloned from the intertidal macroalga Ulva lactuca Linnaeus. Modulation of UfPDI expression by stresses and polyamines (PA) was studied. UfPDI transcription and enzyme activity were increased by hypersalinity (90) or high light illumination (1,200 μmol photons · m(-2) · s(-1) ), decreased by the addition of 100 μM CuSO4 . An exposure to a salinity of 90 decreased PA contents. Treating with PA biosynthetic inhibitors, D-arginine (D-Arg) or α-methyl ornithine (α-MO), led to a further decrease and also inhibited UfPDI expression and recovery of the growth rate. These results suggest that PAs are required to activate UfPDI expression with hypersalinity, even PA contents are decreased at a salinity of 90. The induction of UfPDI expression by hypersalinity of 90 and tolerance to hypersalinity could be enhanced if internal PA contents rise. Sung et al. (2011b) showed that PA contents could be increased by pretreating with putrescine (Put, 1 mM), spermidine (Spd, 1 mM), or spermine (Spm, 1 mM) at a salinity of 30. Therefore, PA pretreatment effect on UfPDI expression was examined. Pretreatment with Spd and Spm, but not with Put, enhanced UfPDI expression after transferred to a salinity of 90 and restored the growth rate. In conclusion, induction of UfPDI expression by Spd or Spm before exposure to hypersaline conditions and continuous up-regulation after hypersalinity exposure are required for the acquisition of hypersalinity tolerance in the intertidal green macroalga U. lactuca.
Collapse
Affiliation(s)
- Lu-Chuan Li
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yuan-Ting Hsu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Hsueh-Ling Chang
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
- The Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Tzure-Meng Wu
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Ming-Shiuan Sung
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Chung-Lung Cho
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Tse-Min Lee
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| |
Collapse
|
18
|
Filonova A, Haemsch P, Gebauer C, Weisheit W, Wagner V. Protein disulfide isomerase 2 of Chlamydomonas reinhardtii is involved in circadian rhythm regulation. MOLECULAR PLANT 2013; 6:1503-17. [PMID: 23475997 DOI: 10.1093/mp/sst048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Protein disulfide isomerases (PDIs) are known to play important roles in the folding of nascent proteins and in the formation of disulfide bonds. Recently, we identified a PDI from Chlamydomonas reinhardtii (CrPDI2) by a mass spectrometry approach that is specifically enriched by heparin affinity chromatography in samples taken during the night phase. Here, we show that the recombinant CrPDI2 is a redox-active protein. It is reduced by thioredoxin reductase and catalyzes itself the reduction of insulin chains and the oxidative refolding of scrambled RNase A. By immunoblots, we confirm a high-amplitude change in abundance of the heparin-bound CrPDI2 during subjective night. Interestingly, we find that CrPDI2 is present in protein complexes of different sizes at both day and night. Among three identified interaction partners, one (a 2-cys peroxiredoxin) is present only during the night phase. To study a potential function of CrPDI2 within the circadian system, we have overexpressed its gene. Two transgenic lines were used to measure the rhythm of phototaxis. In the transgenic strains, a change in the acrophase was observed. This indicates that CrPDI2 is involved in the circadian signaling pathway and, together with the night phase-specific interaction of CrPDI2 and a peroxiredoxin, these findings suggest a close coupling of redox processes and the circadian clock in C. reinhardtii.
Collapse
Affiliation(s)
- Anna Filonova
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | | | | | | | | |
Collapse
|
19
|
König J, Muthuramalingam M, Dietz KJ. Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:261-8. [PMID: 22226570 DOI: 10.1016/j.pbi.2011.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 05/19/2023]
Abstract
Plant cells sense, weigh and integrate various endogenous and exogenous cues in order to optimize acclimation and resource allocation. The thiol/disulfide redox network appears to be in the core of this versatile integration process. In plant cells its complexity exceeds by far that of other organisms. Recent research has elucidated the multiplicity of the diversified input elements, transmitters (thioredoxin, glutaredoxins), targets and sensors (peroxiredoxins and other peroxidases), controlled processes and final acceptors (reactive oxygen species). An additional level of thiol/disulfide regulation is achieved by introducing dynamics in time and subcompartment and complex association.
Collapse
Affiliation(s)
- Janine König
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | | | | |
Collapse
|
20
|
Kikutani S, Tanaka R, Yamazaki Y, Hara S, Hisabori T, Kroth PG, Matsuda Y. Redox regulation of carbonic anhydrases via thioredoxin in chloroplast of the marine diatom Phaeodactylum tricornutum. J Biol Chem 2012; 287:20689-700. [PMID: 22535967 DOI: 10.1074/jbc.m111.322743] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thioredoxins (Trxs) are important regulators of photosynthetic fixation of CO(2) and nitrogen in plant chloroplasts. To date, they have been considered to play a minor role in controlling the Calvin cycle in marine diatoms, aquatic primary producers, although diatoms possess a set of plastidic Trxs. In this study we examined the influences of the redox state and the involvement of Trxs in the enzymatic activities of pyrenoidal carbonic anhydrases, PtCA1 and PtCA2, in the marine diatom Phaeodactylum tricornutum. The recombinant mature PtCA1 and -2 (mPtCA1 and -2) were completely inactivated following oxidation by 50 μm CuCl(2), whereas DTT activated CAs in a concentration-dependent manner. The maximum activity of mPtCAs in the presence of 6 mm reduced DTT increased significantly by addition of 10 μm Trxs from Arabidopsis thaliana (AtTrx-f2 and -m2) and 5 μm Trxs from P. tricornutum (PtTrxF and -M). Analyses of mPtCA activation by Trxs in the presence of DTT revealed that the maximum mPtCA1 activity was enhanced ∼3-fold in the presence of Trx, whereas mPtCA2 was only weakly activated by Trxs, and that PtTrxs activate PtCAs more efficiently compared with AtTrxs. Site-directed mutagenesis of potential disulfide-forming cysteines in mPtCA1 and mPtCA2 resulted in a lack of oxidative inactivation of both mPtCAs. These results reveal the first direct evidence of a target of plastidic Trxs in diatoms, indicating that Trxs may participate in the redox control of inorganic carbon flow in the pyrenoid, a focal point of the CO(2)-concentrating mechanism.
Collapse
Affiliation(s)
- Sae Kikutani
- Department of Bioscience, Research Center for Environmental Bioscience, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Zaffagnini M, Bedhomme M, Lemaire SD, Trost P. The emerging roles of protein glutathionylation in chloroplasts. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:86-96. [PMID: 22325869 DOI: 10.1016/j.plantsci.2012.01.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/08/2012] [Accepted: 01/16/2012] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species play important roles in redox signaling mainly through a set of reversible post-translational modifications of cysteine thiol residues in proteins, including glutathionylation and dithiol/disulfide exchange. Protein glutathionylation has been extensively studied in mammals but emerging evidence suggests that it can play important roles in plants and in chloroplast in particular. This redox modification involves protein thiols and glutathione and is mainly controlled by glutaredoxins, oxidoreductases belonging to the thioredoxin superfamily. In this review, we first present the possible mechanisms of protein glutathionylation and then introduce the chloroplast systems of glutaredoxins and thioredoxins, in order to pinpoint the biochemical properties that make some glutaredoxin isoforms the master enzymes in deglutathionylation. Finally, we discuss the possible roles of glutathionylation in thiol protection, protein regulation, reactive oxygen species scavenging and redox signaling in chloroplasts, with emphasis on the crosstalk between thioredoxin- and glutaredoxin-mediated signaling pathways.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratory of Molecular Plant Physiology, Department of Experimental Evolutionary Biology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | | | | | | |
Collapse
|
22
|
Zaffagnini M, Bedhomme M, Marchand CH, Morisse S, Trost P, Lemaire SD. Redox regulation in photosynthetic organisms: focus on glutathionylation. Antioxid Redox Signal 2012; 16:567-86. [PMID: 22053845 DOI: 10.1089/ars.2011.4255] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE In photosynthetic organisms, besides the well-established disulfide/dithiol exchange reactions specifically controlled by thioredoxins (TRXs), protein S-glutathionylation is emerging as an alternative redox modification occurring under stress conditions. This modification, consisting of the formation of a mixed disulfide between glutathione and a protein cysteine residue, can not only protect specific cysteines from irreversible oxidation but also modulate protein activities and appears to be specifically controlled by small disulfide oxidoreductases of the TRX superfamily named glutaredoxins (GRXs). RECENT STUDIES In recent times, several studies allowed significant progress in this area, mostly due to the identification of several plant proteins undergoing S-glutathionylation and to the characterization of the molecular mechanisms and the proteins involved in the control of this modification. CRITICAL ISSUES This article provides a global overview of protein glutathionylation in photosynthetic organisms with particular emphasis on the mechanisms of protein glutathionylation and deglutathionylation and a focus on the role of GRXs. Then, we describe the methods employed for identification of glutathionylated proteins in photosynthetic organisms and review the targets and the possible physiological functions of protein glutathionylation. FUTURE DIRECTIONS In order to establish the importance of protein S-glutathionylation in photosynthetic organisms, future studies should be aimed at delineating more accurately the molecular mechanisms of glutathionylation and deglutathionylation reactions, at identifying proteins undergoing S-glutathionylation in vivo under diverse conditions, and at investigating the importance of redoxins, GRX, and TRX, in the control of this redox modification in vivo.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | | | | | |
Collapse
|
23
|
Comparative genomic study of protein disulfide isomerases from photosynthetic organisms. Genomics 2011; 97:37-50. [DOI: 10.1016/j.ygeno.2010.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/15/2010] [Accepted: 10/07/2010] [Indexed: 11/19/2022]
|
24
|
Chapter 24 Antioxidants and Photo-oxidative Stress Responses in Plants and Algae. THE CHLOROPLAST 2010. [DOI: 10.1007/978-90-481-8531-3_24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Pérez-Pérez ME, Martín-Figueroa E, Florencio FJ. Photosynthetic regulation of the cyanobacterium Synechocystis sp. PCC 6803 thioredoxin system and functional analysis of TrxB (Trx x) and TrxQ (Trx y) thioredoxins. MOLECULAR PLANT 2009; 2:270-83. [PMID: 19825613 DOI: 10.1093/mp/ssn070] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The expression of the genes encoding the ferredoxin-thioredoxin system including the ferredoxin-thioredoxin reductase (FTR) genes ftrC and ftrV and the four different thioredoxin genes trxA (m-type; slr0623), trxB (x-type; slr1139), trxC (sll1057) and trxQ (y-type; slr0233) of the cyanobacterium Synechocystis sp. PCC 6803 has been studied according to changes in the photosynthetic conditions. Experiments of light-dark transition indicate that the expression of all these genes except trxQ decreases in the dark in the absence of glucose in the growth medium. The use of two electron transport inhibitors, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), reveals a differential effect on thioredoxin genes expression being trxC and trxQ almost unaffected, whereas trxA, trxB, and the ftr genes are down-regulated. In the presence of glucose, DCMU does not affect gene expression but DBMIB still does. Analysis of the single TrxB or TrxQ and the double TrxB TrxQ Synechocystis mutant strains reveal different functions for each of these thioredoxins under different growth conditions. Finally, a Synechocystis strain was generated containing a mutated version of TrxB (TrxBC34S), which was used to identify the potential in-vivo targets of this thioredoxin by a proteomic analysis.
Collapse
Affiliation(s)
- M Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda Américo Vespucio 49, 41092-Sevilla, Spain
| | | | | |
Collapse
|
26
|
Chibani K, Wingsle G, Jacquot JP, Gelhaye E, Rouhier N. Comparative genomic study of the thioredoxin family in photosynthetic organisms with emphasis on Populus trichocarpa. MOLECULAR PLANT 2009; 2:308-22. [PMID: 19825616 DOI: 10.1093/mp/ssn076] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The recent genome sequencing of Populus trichocarpa and Vitis vinifera, two models of woody plants, of Sorghum bicolor, a model of monocot using C4 metabolism, and of the moss Physcomitrella patens, together with the availability of photosynthetic organism genomes allows performance of a comparative genomic study with organisms having different ways of life, reproduction modes, biological traits, and physiologies. Thioredoxins (Trxs) are small ubiquitous proteins involved in the reduction of disulfide bridges in a variety of target enzymes present in all sub-cellular compartments and involved in many biochemical reactions. The genes coding for these enzymes have been identified in these newly sequenced genomes and annotated. The gene content, organization and distribution were compared to other photosynthetic organisms, leading to a refined classification. This analysis revealed that higher plants and bryophytes have a more complex family compared to algae and cyanobacteria and to non-photosynthetic organisms, since poplar exhibits 49 genes coding for typical and atypical thioredoxins and thioredoxin reductases, namely one-third more than monocots such as Oryza sativa and S. bicolor. The higher number of Trxs in poplar is partially explained by gene duplication in the Trx m, h, and nucleoredoxin classes. Particular attention was paid to poplar genes with emphasis on Trx-like classes called Clot, thioredoxin-like, thioredoxins of the lilium type and nucleoredoxins, which were not described in depth in previous genomic studies.
Collapse
Affiliation(s)
- Kamel Chibani
- UMR 1136 Nancy University-INRA, Interactions Arbres Microorganismes, IFR 110 GEEF, Faculté des Sciences, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | | | |
Collapse
|
27
|
Abstract
Forty years ago, ferredoxin (Fdx) was shown to activate fructose 1,6-bisphosphatase in illuminated chloroplast preparations, thereby laying the foundation for the field now known as "redox biology." Enzyme activation was later shown to require the ubiquitous protein thioredoxin (Trx), reduced photosynthetically by Fdx via an enzyme then unknown-ferredoxin:thioredoxin reductase (FTR). These proteins, Fdx, FTR, and Trx, constitute a regulatory ensemble, the "Fdx/Trx system." The redox biology field has since grown beyond all expectations and now embraces a spectrum of processes throughout biology. Progress has been notable with plants that possess not only the plastid Fdx/Trx system, but also the earlier known NADP/Trx system in the cytosol, endoplasmic reticulum, and mitochondria. Plants contain at least 19 types of Trx (nine in chloroplasts). In this review, we focus on the structure and mechanism of action of members of the photosynthetic Fdx/Trx system and on biochemical processes linked to Trx. We also summarize recent evidence that extends the Fdx/Trx system to amyloplasts-heterotrophic plastids functional in the biosynthesis of starch and other cell components. The review highlights the plant as a model system to uncover principles of redox biology that apply to other organisms.
Collapse
Affiliation(s)
- Peter Schürmann
- Laboratoire de Biologie Moléculaire et Cellulaire, Université de Neuchâtel, Neuchâtel, Switzerland.
| | | |
Collapse
|
28
|
Lu DP, Christopher DA. Endoplasmic reticulum stress activates the expression of a sub-group of protein disulfide isomerase genes and AtbZIP60 modulates the response in Arabidopsis thaliana. Mol Genet Genomics 2008; 280:199-210. [DOI: 10.1007/s00438-008-0356-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 06/01/2008] [Indexed: 11/28/2022]
|
29
|
Norton GJ, Lou-Hing DE, Meharg AA, Price AH. Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2267-76. [PMID: 18453530 PMCID: PMC2413274 DOI: 10.1093/jxb/ern097] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/05/2008] [Accepted: 03/07/2008] [Indexed: 05/18/2023]
Abstract
Rice (Oryza sativa) varieties that are arsenate-tolerant (Bala) and -sensitive (Azucena) were used to conduct a transcriptome analysis of the response of rice seedlings to sodium arsenate (AsV) in hydroponic solution. RNA extracted from the roots of three replicate experiments of plants grown for 1 week in phosphate-free nutrient with or without 13.3 muM AsV was used to challenge the Affymetrix (52K) GeneChip Rice Genome array. A total of 576 probe sets were significantly up-regulated at least 2-fold in both varieties, whereas 622 were down-regulated. Ontological classification is presented. As expected, a large number of transcription factors, stress proteins, and transporters demonstrated differential expression. Striking is the lack of response of classic oxidative stress-responsive genes or phytochelatin synthases/synthatases. However, the large number of responses from genes involved in glutathione synthesis, metabolism, and transport suggests that glutathione conjugation and arsenate methylation may be important biochemical responses to arsenate challenge. In this report, no attempt is made to dissect differences in the response of the tolerant and sensitive variety, but analysis in a companion article will link gene expression to the known tolerance loci available in the BalaxAzucena mapping population.
Collapse
Affiliation(s)
- Gareth J Norton
- Department of Plant and Soil Science, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK.
| | | | | | | |
Collapse
|
30
|
Pedone E, Limauro D, Bartolucci S. The machinery for oxidative protein folding in thermophiles. Antioxid Redox Signal 2008; 10:157-69. [PMID: 17956189 DOI: 10.1089/ars.2007.1855] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Disulfide bonds are required for the stability and function of many proteins. A large number of thiol-disulfide oxidoreductases, belonging to the thioredoxin superfamily, catalyze protein disulfide bond formation in all living cells, from bacteria to humans. The protein disulfide isomerase (PDI) is the eukaryotic factor that catalyzes oxidative protein folding in the endoplasmic reticulum; by contrast, in prokaryotes, a family of disulfide bond (Dsb) proteins have an equivalent outcome in the bacterial periplasm. Recently the results from genome analysis suggested an important role for disulfide bonds in the structural stabilization of intracellular proteins from thermophiles. A specific protein disulfide oxidoreductase (PDO) has a key role in intracellular disulfide shuffling in thermophiles. Here we focus on the structural and functional characterization of PDO correlated with the multifunctional eukaryotic PDI. In addition, we highlight the chimeric nature of the machinery for oxidative protein folding in thermophiles in comparison with the mesophilic bacterial and eukaryal counterparts.
Collapse
Affiliation(s)
- Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, C.N.R., Naples, Italy.
| | | | | |
Collapse
|
31
|
Shibagaki N, Grossman A. The State of Sulfur Metabolism in Algae: From Ecology to Genomics. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Meyer Y, Riondet C, Constans L, Abdelgawwad MR, Reichheld JP, Vignols F. Proteomic profiles of thylakoid membranes and changes in response to iron deficiency. PHOTOSYNTHESIS RESEARCH 2006; 89:179-92. [PMID: 16969715 DOI: 10.1007/s11120-006-9095-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 08/14/2006] [Indexed: 05/04/2023]
Abstract
The proteomic profile of thylakoid membranes and the changes induced in that proteome by iron deficiency have been studied by using thylakoid preparations from Beta vulgaris plants grown in hydroponics. Two different 2-D electrophoresis approaches have been used to study these proteomes: isoelectrical focusing followed by SDS PAGE (IEF-SDS PAGE) and blue-native polyacrylamide gel electrophoresis followed by SDS PAGE (BN-SDS PAGE). These techniques resolved approximately 110-140 and 40 polypeptides, respectively. Iron deficiency induced significant changes in the thylakoid sugar beet proteome profiles: the relative amounts of electron transfer protein complexes were reduced, whereas those of proteins participating in leaf carbon fixation-linked reactions were increased. A set of polypeptides, which includes several enzymes related to metabolism, was detected in thylakoid preparations from Fe-deficient Beta vulgaris leaves by using BN-SDS PAGE, suggesting that they may be associated with these thylakoids in vivo. The BN-SDS PAGE technique has been proven to be a better method than IEF-SDS PAGE to resolve highly hydrophobic integral membrane proteins from thylakoid preparations, allowing for the identification of complexes and determination of their polypeptidic components.
Collapse
Affiliation(s)
- Yves Meyer
- Génome et dévelopement des plantes, UMR 5096, CNRS-UP-IRD Université, Av P. Alduy, Perpignan Cedex, 66860, France.
| | | | | | | | | | | |
Collapse
|
33
|
Gillet S, Decottignies P, Chardonnet S, Le Maréchal P. Cadmium response and redoxin targets in Chlamydomonas reinhardtii: a proteomic approach. PHOTOSYNTHESIS RESEARCH 2006; 89:201-11. [PMID: 17103236 DOI: 10.1007/s11120-006-9108-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 09/15/2006] [Indexed: 05/12/2023]
Abstract
A proteomic approach including two-dimensional electrophoresis and MALDI-TOF analysis has been developed to identify the soluble proteins of the unicellular photosynthetic algae Chlamydomonas reinhardtii. We first described the partial 2D-picture of soluble proteome obtained from whole cells grown on acetate. Then we studied the effects of the exposure of these cells to 150 muM cadmium (Cd). The most drastic effect was the decrease in abundance of both large and small subunits of the ribulose-1,5-bisphosphate carboxylase/oxygenase, in correlation with several other enzymes involved in photosynthesis, Calvin cycle and chlorophyll biosynthesis. Other down-regulated processes were fatty acid biosynthesis, aminoacid and protein biosynthesis. On the other hand, proteins involved in glutathione synthesis, ATP metabolism, response to oxidative stress and protein folding were up-regulated in the presence of cadmium. In addition, we observed that most of the cadmium-sensitive proteins were also regulated via two major cellular thiol redox systems, thioredoxin and glutaredoxin.
Collapse
Affiliation(s)
- Sylvie Gillet
- IBBMC, CNRS UMR 8619, Bat 430, Univ Paris-Sud, Orsay cedex, 91405, France
| | | | | | | |
Collapse
|
34
|
Michelet L, Zaffagnini M, Massot V, Keryer E, Vanacker H, Miginiac-Maslow M, Issakidis-Bourguet E, Lemaire SD. Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore. PHOTOSYNTHESIS RESEARCH 2006; 89:225-45. [PMID: 17089213 DOI: 10.1007/s11120-006-9096-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 08/17/2006] [Indexed: 05/12/2023]
Abstract
Oxidants are widely considered as toxic molecules that cells have to scavenge and detoxify efficiently and continuously. However, emerging evidence suggests that these oxidants can play an important role in redox signaling, mainly through a set of reversible post-translational modifications of thiol residues on proteins. The most studied redox system in photosynthetic organisms is the thioredoxin (TRX) system, involved in the regulation of a growing number of target proteins via thiol/disulfide exchanges. In addition, recent studies suggest that glutaredoxins (GRX) could also play an important role in redox signaling especially by regulating protein glutathionylation, a post-translational modification whose importance begins to be recognized in mammals while much less is known in photosynthetic organisms. This review focuses on oxidants and redox signaling with particular emphasis on recent developments in the study of functions, regulation mechanisms and targets of TRX, GRX and glutathionylation. This review will also present the complex emerging interplay between these three components of redox-signaling networks.
Collapse
Affiliation(s)
- Laure Michelet
- Institut de Biotechnologie des Plantes, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique/Université Paris-Sud, Bâtiment 630, Orsay Cedex, 91405, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Balmer Y, Vensel WH, Cai N, Manieri W, Schürmann P, Hurkman WJ, Buchanan BB. A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts. Proc Natl Acad Sci U S A 2006; 103:2988-93. [PMID: 16481623 PMCID: PMC1413819 DOI: 10.1073/pnas.0511040103] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A growing number of processes throughout biology are regulated by redox via thiol-disulfide exchange. This mechanism is particularly widespread in plants, where almost 200 proteins have been linked to thioredoxin (Trx), a widely distributed small regulatory disulfide protein. The current study extends regulation by Trx to amyloplasts, organelles prevalent in heterotrophic plant tissues that, among other biosynthetic activities, catalyze the synthesis and storage of copious amounts of starch. Using proteomics and immunological methods, we identified the components of the ferredoxin/Trx system (ferredoxin, ferredoxin-Trx reductase, and Trx), originally described for chloroplasts, in amyloplasts isolated from wheat starchy endosperm. Ferredoxin is reduced not by light, as in chloroplasts, but by metabolically generated NADPH via ferredoxin-NADP reductase. However, once reduced, ferredoxin appears to act as established for chloroplasts, i.e., via ferredoxin-Trx reductase and a Trx (m-type). A proteomics approach in combination with affinity chromatography and a fluorescent thiol probe led to the identification of 42 potential Trx target proteins, 13 not previously recognized, including a major membrane transporter (Brittle-1 or ADP-glucose transporter). The proteins function in a range of processes in addition to starch metabolism: biosynthesis of lipids, amino acids, and nucleotides; protein folding; and several miscellaneous reactions. The results suggest a mechanism whereby light is initially recognized as a thiol signal in chloroplasts, then as a sugar during transit to the sink, where it is converted again to a thiol signal. In this way, amyloplast reactions in the grain can be coordinated with photosynthesis taking place in leaves.
Collapse
Affiliation(s)
- Yves Balmer
- *Department of Plant and Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720
| | - William H. Vensel
- Western Regional Research Center, U.S. Department of Agriculture Agricultural Research Service, Albany, CA 94710; and
| | - Nick Cai
- *Department of Plant and Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720
| | - Wanda Manieri
- Laboratoire de Biochimie Végétale, Université de Neuchātel, 2007 Neuchātel, Switzerland
| | - Peter Schürmann
- Laboratoire de Biochimie Végétale, Université de Neuchātel, 2007 Neuchātel, Switzerland
| | - William J. Hurkman
- Western Regional Research Center, U.S. Department of Agriculture Agricultural Research Service, Albany, CA 94710; and
| | - Bob B. Buchanan
- *Department of Plant and Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720
| |
Collapse
|
36
|
Michelet L, Zaffagnini M, Marchand C, Collin V, Decottignies P, Tsan P, Lancelin JM, Trost P, Miginiac-Maslow M, Noctor G, Lemaire SD. Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants. Proc Natl Acad Sci U S A 2005; 102:16478-83. [PMID: 16263928 PMCID: PMC1283444 DOI: 10.1073/pnas.0507498102] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Indexed: 11/18/2022] Open
Abstract
Thioredoxin f (TRXf) is a key factor in the redox regulation of chloroplastic carbon fixation enzymes, whereas glutathione is an important thiol buffer whose status is modulated by stress conditions. Here, we report specific glutathionylation of TRXf. A conserved cysteine is present in the TRXf primary sequence, in addition to its two active-site cysteines. The additional cysteine becomes glutathionylated when TRXf is exposed to oxidized glutathione or to reduced glutathione plus oxidants. No other chloroplastic TRX, from either Arabidopsis or Chlamydomonas, is glutathionylated under these conditions. Glutathionylation decreases the ability of TRXf to be reduced by ferredoxin-thioredoxin reductase and results in impaired light activation of target enzymes in a reconstituted thylakoid system. Although several mammalian proteins undergoing glutathionylation have already been identified, TRXf is among the first plant proteins found to undergo this posttranslational modification. This report suggests that a crosstalk between the TRX and glutathione systems mediates a previously uncharacterized form of redox signaling in plants in stress conditions.
Collapse
Affiliation(s)
- Laure Michelet
- Institut de Biotechnologie des Plantes, Unité Mixte de Recherche 8618, Unité Mixte de Recherche 8619, Centre National de la Recherche Scientifique/Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Buchanan BB, Luan S. Redox regulation in the chloroplast thylakoid lumen: a new frontier in photosynthesis research. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:1439-47. [PMID: 15851415 DOI: 10.1093/jxb/eri158] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Initially linked to photosynthesis, regulation by change in the redox state of thiol groups (S-S<-- -->2SH) is now known to occur throughout biology. Thus, in addition to serving important structural and catalytic functions, it is recognized that, in many cases, disulphide bonds can be broken and reformed for regulation. Several systems, each linking a hydrogen donor to an intermediary disulphide protein, act to effect changes that alter the activity of target proteins by change in the thiol redox state. Pertinent to the present discussion is the chloroplast ferredoxin/thioredoxin system, comprised of photoreduced ferredoxin, a thioredoxin, and the enzyme ferredoxin-thioredoxin reductase, that occur in the stroma. In this system, thioredoxin links the activity of enzymes to light: those enzymes functional in biosynthesis are reductively activated by light via thioredoxin (S-S-->2SH), whereas counterparts acting in degradation are deactivated under illumination conditions and are oxidatively activated in the dark (2SH-->S-S). Recent research has uncovered a new paradigm in which an immunophilin, FKBP13, and potentially other enzymes of the chloroplast thylakoid lumen are oxidatively activated in the light (2SH-->S-S). The present review provides a perspective on this recent work.
Collapse
Affiliation(s)
- Bob B Buchanan
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|
38
|
Abstract
Initially discovered in the context of photosynthesis, regulation by change in the redox state of thiol groups (S-S <--> 2SH) is now known to occur throughout biology. Several systems, each linking a hydrogen donor to an intermediary disulfide protein, act to effect changes that alter the activity of target proteins: the ferredoxin/thioredoxin system, comprised of reduced ferredoxin, a thioredoxin, and the enzyme, ferredoxin-thioredoxin reductase; the NADP/thioredoxin system, including NADPH, a thioredoxin, and NADP-thioredoxin reductase; and the glutathione/glutaredoxin system, composed of reduced glutathione and a glutaredoxin. A related disulfide protein, protein disulfide isomerase (PDI) acts in protein assembly. Regulation linked to plastoquinone and signaling induced by reactive oxygen species (ROS) and other agents are also being actively investigated. Progress made on these systems has linked redox to the regulation of an increasing number of processes not only in plants, but in other types of organisms as well. Research in areas currently under exploration promises to provide a fuller understanding of the role redox plays in cellular processes, and to further the application of this knowledge to technology and medicine.
Collapse
Affiliation(s)
- Bob B Buchanan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|