1
|
Sun Z, Zhao F, Zeng H, Erwin DH, Zhu M. Episodic body size variations of early Paleozoic trilobites associated with marine redox changes. SCIENCE ADVANCES 2025; 11:eadt7572. [PMID: 40315312 PMCID: PMC12047424 DOI: 10.1126/sciadv.adt7572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/28/2025] [Indexed: 05/04/2025]
Abstract
Body size greatly affects how organisms interact with their environments. However, the macroevolutionary patterns of body size across many major metazoan clades and their constraining mechanisms remain elusive. A new high-resolution body size dataset covering 2435 species from 1091 genera of Cambrian and Ordovician trilobites reveals that body size evolution changes episodically, with three marked reductions in size. Such a pattern rules out a persistent Cope's rule dynamic. Rather, we find a strong temporal link between body size changes and major fluctuations in marine redox, supporting the hypothesis that marine oxygen levels exerted a primary control on the tempo and mode of trilobite body size evolution. These further imply a dominant role for marine oxygen in early animal evolution.
Collapse
Affiliation(s)
- Zhixin Sun
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangchen Zhao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Zeng
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Douglas H. Erwin
- Department of Paleobiology, MRC-121, National Museum of Natural History, Washington, DC 20013-7012, USA
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501-8943, USA
| | - Maoyan Zhu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Tarduno JA, Zhou T, Huang W, Jodder J. Earth's magnetic field and its relationship to the origin of life, evolution and planetary habitability. Natl Sci Rev 2025; 12:nwaf082. [PMID: 40206209 PMCID: PMC11980988 DOI: 10.1093/nsr/nwaf082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 04/11/2025] Open
Abstract
Earth's magnetic field history can provide insight into why life was able to originate and evolve on our planet, and how habitability has been maintained. The magnetism of minute magnetic inclusions in zircons indicates that the geomagnetic field is at least 4.2 billion years old, corresponding with genetic estimates for the age of the last universal common ancestor. The early establishment of the field would have provided shielding from solar and cosmic radiation, fostering environments for life to develop. The field was also likely important for preserving Earth's water, essential for life as we know it. Between 3.9 and ca. 3.4 billion years ago, zircon magnetism suggests latitudinal stasis of different ancestral terrains, and stagnant lid tectonics. These data also indicate that the solid Earth was stable with respect to the spin axis, consistent with the absence of plate tectonic driving forces. Moreover, these data point to the existence of low-latitude continental nuclei with equable climate locales that could have supported early life. Near the end of the Precambrian (0.591 to 0.565 billion years ago), the dynamo nearly collapsed, but growth of the inner core during earliest Cambrian times renewed the magnetic field and shielding, helping to prevent drying of the planet. Before this renewal, the ultra-weak magnetic shielding may have had an unexpected effect on evolution. The extremely weak field could have allowed enhanced hydrogen escape to space, leading to increased oxygenation of the atmosphere and oceans. In this way, Earth's magnetic field may have assisted the radiation of the macroscopic and mobile animals of the Ediacara fauna. Whether the Ediacara fauna are genetically related to modern life is a matter of debate, but if so, magnetospheric control on atmospheric composition may have led to an acceleration in evolution that ultimately resulted in the emergence of intelligent life.
Collapse
Affiliation(s)
- John A Tarduno
- Department of Earth & Environmental Sciences, University of Rochester, Rochester, NY 14618, USA
- Department of Physics & Astronomy, University of Rochester, Rochester, NY 14618, USA
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA
| | - Tinghong Zhou
- Department of Earth & Environmental Sciences, University of Rochester, Rochester, NY 14618, USA
| | - Wentao Huang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jaganmoy Jodder
- Centre for Planetary Habitability, Department of Geosciences, University of Oslo, Oslo 0316, Norway
- Evolutionary Studies Institute, University of the Witwatersrand, Wits 2050, South Africa
| |
Collapse
|
3
|
Matsuo T, Ito-Miwa K, Hoshino Y, Fujii YI, Kanno S, Fujimoto KJ, Tsuji R, Takeda S, Onami C, Arai C, Yoshiyama Y, Mino Y, Kato Y, Yanai T, Fujita Y, Masuda S, Kakegawa T, Miyashita H. Archaean green-light environments drove the evolution of cyanobacteria's light-harvesting system. Nat Ecol Evol 2025; 9:599-612. [PMID: 39966498 PMCID: PMC11976284 DOI: 10.1038/s41559-025-02637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/06/2025] [Indexed: 02/20/2025]
Abstract
Cyanobacteria induced the great oxidation event around 2.4 billion years ago, probably triggering the rise in aerobic biodiversity. While chlorophylls are universal pigments used by all phototrophic organisms, cyanobacteria use additional pigments called phycobilins for their light-harvesting antennas-phycobilisomes-to absorb light energy at complementary wavelengths to chlorophylls. Nonetheless, an enigma persists: why did cyanobacteria need phycobilisomes? Here, we demonstrate through numerical simulations that the underwater light spectrum during the Archaean era was probably predominantly green owing to oxidized Fe(III) precipitation. The green-light environments, probably shaped by photosynthetic organisms, may have directed their own photosynthetic evolution. Genetic engineering of extant cyanobacteria, simulating past natural selection, suggests that cyanobacteria that acquired a green-specialized phycobilin called phycoerythrobilin could have flourished under green-light environments. Phylogenetic analyses indicate that the common ancestor of modern cyanobacteria embraced all key components of phycobilisomes to establish an intricate energy transfer mechanism towards chlorophylls using green light and thus gained strong selective advantage under green-light conditions. Our findings highlight the co-evolutionary relationship between oxygenic phototrophs and light environments that defined the aquatic landscape of the Archaean Earth and envision the green colour as a sign of the distinct evolutionary stage of inhabited planets.
Collapse
Affiliation(s)
- Taro Matsuo
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan.
- Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | - Kumiko Ito-Miwa
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Yosuke Hoshino
- GFZ German Research Centre for Geosciences, Potsdam, Germany
- Synchrotron Radiation Research Center, Nagoya University, Nagoya, Japan
| | - Yuri I Fujii
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Satomi Kanno
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Kazuhiro J Fujimoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Rio Tsuji
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shinnosuke Takeda
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Chieko Onami
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Chihiro Arai
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yoko Yoshiyama
- Department of Life Sciences, Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Yoshihisa Mino
- Institute for Space-Earth Environment Research, Nagoya University, Nagoya, Japan
| | - Yuki Kato
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shinji Masuda
- Department of Life Science & Technology, Institute of Science Tokyo, Yokohama, Japan
- Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan
| | | | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Ruebenstahl A, Mongiardino Koch N, Lamsdell JC, Briggs DEG. Convergent evolution of giant size in eurypterids. Proc Biol Sci 2024; 291:20241184. [PMID: 39079669 PMCID: PMC11330558 DOI: 10.1098/rspb.2024.1184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024] Open
Abstract
Eurypterids-Palaeozoic marine and freshwater arthropods commonly known as sea scorpions-repeatedly evolved to remarkable sizes (over 0.5 m in length) and colonized continental aquatic habitats multiple times. We compiled data on the majority of eurypterid species and explored several previously proposed explanations for the evolution of giant size in the group, including the potential role of habitat, sea surface temperature and dissolved sea surface oxygen levels, using a phylogenetic comparative approach with a new tip-dated tree. There is no compelling evidence that the evolution of giant size was driven by temperature or oxygen levels, nor that it was coupled with the invasion of continental aquatic environments, latitude or local faunal diversity. Eurypterid body size evolution is best characterized by rapid bursts of change that occurred independently of habitat or environmental conditions. Intrinsic factors played a major role in determining the convergent origin of gigantism in eurypterids.
Collapse
Affiliation(s)
- Alexander Ruebenstahl
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT06520, USA
| | | | - James C. Lamsdell
- Department of Geology and Geography, West Virginia University, 98 Beechurst Avenue, Brooks Hall, Morgantown, WV26506, USA
| | - Derek E. G. Briggs
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT06520, USA
- Yale Peabody Museum, Yale University, New Haven, CT06520, USA
| |
Collapse
|
5
|
Richalet JP, Hermand E, Lhuissier FJ. Cardiovascular physiology and pathophysiology at high altitude. Nat Rev Cardiol 2024; 21:75-88. [PMID: 37783743 DOI: 10.1038/s41569-023-00924-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 10/04/2023]
Abstract
Oxygen is vital for cellular metabolism; therefore, the hypoxic conditions encountered at high altitude affect all physiological functions. Acute hypoxia activates the adrenergic system and induces tachycardia, whereas hypoxic pulmonary vasoconstriction increases pulmonary artery pressure. After a few days of exposure to low oxygen concentrations, the autonomic nervous system adapts and tachycardia decreases, thereby protecting the myocardium against high energy consumption. Permanent exposure to high altitude induces erythropoiesis, which if excessive can be deleterious and lead to chronic mountain sickness, often associated with pulmonary hypertension and heart failure. Genetic factors might account for the variable prevalence of chronic mountain sickness, depending on the population and geographical region. Cardiovascular adaptations to hypoxia provide a remarkable model of the regulation of oxygen availability at the cellular and systemic levels. Rapid exposure to high altitude can have adverse effects in patients with cardiovascular diseases. However, intermittent, moderate hypoxia might be useful in the management of some cardiovascular disorders, such as coronary heart disease and heart failure. The aim of this Review is to help physicians to understand the cardiovascular responses to hypoxia and to outline some recommendations that they can give to patients with cardiovascular disease who wish to travel to high-altitude destinations.
Collapse
Affiliation(s)
- Jean-Paul Richalet
- Hypoxie et Poumon, Université Sorbonne Paris Nord, INSERM U1272, Paris, France.
| | - Eric Hermand
- Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR 7369-URePSSS, Université Littoral Côte d'Opale, Université Artois, Université Lille, CHU Lille, Dunkirk, France
| | | |
Collapse
|
6
|
Shevela D, Kern JF, Govindjee G, Messinger J. Solar energy conversion by photosystem II: principles and structures. PHOTOSYNTHESIS RESEARCH 2023; 156:279-307. [PMID: 36826741 PMCID: PMC10203033 DOI: 10.1007/s11120-022-00991-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 05/23/2023]
Abstract
Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden.
| |
Collapse
|
7
|
Najafpour MM, Shen JR, Allakhverdiev SI. Natural and artificial photosynthesis: fundamentals, progress, and challenges. PHOTOSYNTHESIS RESEARCH 2022; 154:229-231. [PMID: 36376763 DOI: 10.1007/s11120-022-00982-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
- Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Suleyman I Allakhverdiev
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| |
Collapse
|
8
|
Borges FO, Sampaio E, Santos CP, Rosa R. Impacts of Low Oxygen on Marine Life: Neglected, but a Crucial Priority for Research. THE BIOLOGICAL BULLETIN 2022; 243:104-119. [PMID: 36548969 DOI: 10.1086/721468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractGlobal ocean O2 content has varied significantly across the eons, both shaping and being shaped by the evolutionary history of life on planet Earth. Indeed, past O2 fluctuations have been associated with major extinctions and the reorganization of marine biota. Moreover, its most recent iteration-now anthropogenically driven-represents one of the most prominent challenges for both marine ecosystems and human societies, with ocean deoxygenation being regarded as one of the main drivers of global biodiversity loss. Yet ocean deoxygenation has received far less attention than concurrent environmental variables of marine climate change, namely, ocean warming and acidification, particularly in the field of experimental marine ecology. Together with the lack of consistent criteria defining gradual and acute changes in O2 content, a general lack of multifactorial studies featuring all three drivers and their interactions prevents an adequate interpretation of the potential effects of extreme and gradual deoxygenation. We present a comprehensive overview of the interplay between O2 and marine life across space and time and discuss the current knowledge gaps and future steps for deoxygenation research. This work may also contribute to the ongoing call for an integrative perspective on the combined effects of these three drivers of change for marine organisms and ecosystems worldwide.
Collapse
|
9
|
Bryant SRD, McClain CR. Energetic constraints on body-size niches in a resource-limited marine environment. Biol Lett 2022; 18:20220112. [PMID: 35975630 PMCID: PMC9382453 DOI: 10.1098/rsbl.2022.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2022] Open
Abstract
Body size of life on the Earth spans many orders of magnitude, and with it scales the energetic requirements of organisms. Thus, changes in environmental energy should impact community body-size distributions in predictable ways by reshaping ecological and niche dynamics. We examine how carbon, oxygen and temperature, three energetic drivers, impact community size-based assembly in deep-sea bivalves. We demonstrate that body-size distributions are influenced by multiple energetic constraints. Relaxation in these constraints leads to an expansion of body-size niche space through the addition of novel large size classes, increasing the standard deviation and mean of the body-size distribution. With continued Anthropogenic increases in temperature and reductions in carbon availability and oxygen in most ocean basins, our results point to possible radical shifts in invertebrate body size with the potential to impact ecosystem function.
Collapse
Affiliation(s)
- S. River D. Bryant
- Department of Biology, University of Louisiana-Lafayette, 410 E St. Mary Boulevard, Billeaud Hall, Lafayette, LA 70503, USA
- Louisiana Universities Marine Consortium, 8124 Highway 56, Chauvin, LA 70344, USA
| | - Craig R. McClain
- Department of Biology, University of Louisiana-Lafayette, 410 E St. Mary Boulevard, Billeaud Hall, Lafayette, LA 70503, USA
- Louisiana Universities Marine Consortium, 8124 Highway 56, Chauvin, LA 70344, USA
| |
Collapse
|
10
|
McClain CR, Bryant SR, Hanks G, Bowles MW. Extremophiles in Earth's Deep Seas: A View Toward Life in Exo-Oceans. ASTROBIOLOGY 2022; 22:1009-1028. [PMID: 35549348 DOI: 10.1089/ast.2021.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Humanity's search for extraterrestrial life is a modern manifestation of the exploratory and curious nature that has led us through millennia of scientific discoveries. With the ongoing exploration of extraterrestrial bodies, the potential for discovery of extraterrestrial life has expanded. We may better inform this search through an understanding of how life persists and flourishes on Earth in a myriad of environmental extremes. A significant proportion of our knowledge of extremophiles on Earth comes from studies on deep ocean life. Here, we review and synthesize the range of environmental extremes observed in the deep sea, the life that persists in these extreme conditions, and the biological adaptations utilized by these remarkable life-forms. We also review confirmed and predicted extraterrestrial oceans in our solar system and propose deep-sea sites that may serve as planetary field analog environments. We show that the clever ingenuity of evolution under deep-sea conditions suggests that the plausibility of extraterrestrial life is much greater than previously thought.
Collapse
Affiliation(s)
- Craig R McClain
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - S River Bryant
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Granger Hanks
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | | |
Collapse
|
11
|
Martinelli LA, Augusto FG. The co-evolution of life and biogeochemical cycles in our planet. BIOTA NEOTROPICA 2022. [DOI: 10.1590/1676-0611-bn-2022-1402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract The Earth has undergone numerous geological and biological changes over billions of years. The evolution of plants and animals had a direct relationship with the elements’ changes in the atmosphere and the development of the biogeochemical cycles on Earth. The Anthropocene is the age of the Homo sapiens leaves its geological signature on the planet. Human domination and/or interference in the biogeochemical cycles results in an environmental change that affects not only ecosystems, in general, but also the biota and global biodiversity. In this way, we are creating another mass extinction event, the “sixth extinction wave” as well as transforming the ecosystems’ functions and services.
Collapse
|
12
|
Bozdag GO, Libby E, Pineau R, Reinhard CT, Ratcliff WC. Oxygen suppression of macroscopic multicellularity. Nat Commun 2021; 12:2838. [PMID: 33990594 PMCID: PMC8121917 DOI: 10.1038/s41467-021-23104-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/14/2021] [Indexed: 02/04/2023] Open
Abstract
Atmospheric oxygen is thought to have played a vital role in the evolution of large, complex multicellular organisms. Challenging the prevailing theory, we show that the transition from an anaerobic to an aerobic world can strongly suppress the evolution of macroscopic multicellularity. Here we select for increased size in multicellular 'snowflake' yeast across a range of metabolically-available O2 levels. While yeast under anaerobic and high-O2 conditions evolved to be considerably larger, intermediate O2 constrained the evolution of large size. Through sequencing and synthetic strain construction, we confirm that this is due to O2-mediated divergent selection acting on organism size. We show via mathematical modeling that our results stem from nearly universal evolutionary and biophysical trade-offs, and thus should apply broadly. These results highlight the fact that oxygen is a double-edged sword: while it provides significant metabolic advantages, selection for efficient use of this resource may paradoxically suppress the evolution of macroscopic multicellular organisms.
Collapse
Affiliation(s)
- G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Eric Libby
- Integrated Science Lab, Umeå University, Umeå, Sweden
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- Santa Fe Institute, Santa Fe, NM, USA
| | - Rozenn Pineau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Georgia, USA
| | - Christopher T Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, CA, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- NASA Astrobiology Institute, Reliving the Past Team, Atlanta, GA, USA.
| |
Collapse
|
13
|
Duclos KK, Hendrikse JL, Jamniczky HA. Investigating the evolution and development of biological complexity under the framework of epigenetics. Evol Dev 2019; 21:247-264. [PMID: 31268245 PMCID: PMC6852014 DOI: 10.1111/ede.12301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biological complexity is a key component of evolvability, yet its study has been hampered by a focus on evolutionary trends of complexification and inconsistent definitions. Here, we demonstrate the utility of bringing complexity into the framework of epigenetics to better investigate its utility as a concept in evolutionary biology. We first analyze the existing metrics of complexity and explore the link between complexity and adaptation. Although recently developed metrics allow for a unified framework, they omit developmental mechanisms. We argue that a better approach to the empirical study of complexity and its evolution includes developmental mechanisms. We then consider epigenetic mechanisms and their role in shaping developmental and evolutionary trajectories, as well as the development and organization of complexity. We argue that epigenetics itself could have emerged from complexity because of a need to self‐regulate. Finally, we explore hybridization complexes and hybrid organisms as potential models for studying the association between epigenetics and complexity. Our goal is not to explain trends in biological complexity but to help develop and elucidate novel questions in the investigation of biological complexity and its evolution. This manuscript argues that biological complexity is better understood under the framework of epigenetics and that the epigenetic interactions emerge from the self‐regulation of complex systems. Hybrids are offered as models to study these properties.
Collapse
Affiliation(s)
- Kevin K Duclos
- Department of Cell Biology and Anatomy, The University of Calgary, Calgary, Alberta, Canada
| | - Jesse L Hendrikse
- Department of Community Health Sciences, The University of Calgary, Calgary, Alberta, Canada
| | - Heather A Jamniczky
- Department of Cell Biology and Anatomy, The University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
He T, Zhu M, Mills BJ, Wynn PM, Zhuravlev AY, Tostevin R, Pogge von Strandmann PAE, Yang A, Poulton SW, Shields GA. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. NATURE GEOSCIENCE 2019; 12:468-474. [PMID: 31178922 PMCID: PMC6548555 DOI: 10.1038/s41561-019-0357-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/27/2019] [Indexed: 05/30/2023]
Abstract
The role of oxygen as a driver for early animal evolution is widely debated. During the Cambrian explosion, episodic radiations of major animal phyla occurred coincident with repeated carbon isotope fluctuations. However, the driver of these isotope fluctuations and potential links to environmental oxygenation are unclear. Here, we report high-resolution carbon and sulphur isotope data for marine carbonates from the southeastern Siberian Platform that document the canonical explosive phase of the Cambrian radiation from ~524 to ~514 Myr ago. These analyses demonstrate a strong positive covariation between carbonate δ13C and carbonate-associated sulphate δ34S through five isotope cycles. Biogeochemical modelling suggests that this isotopic coupling reflects periodic oscillations in atmospheric O2 and the extent of shallow ocean oxygenation. Episodic maxima in the biodiversity of animal phyla directly coincided with these extreme oxygen perturbations. Conversely, the subsequent Botoman-Toyonian animal extinction events (~514 to ~512 Myr ago) coincided with decoupled isotope records that suggest a shrinking marine sulphate reservoir and expanded shallow marine anoxia. We suggest that fluctuations in oxygen availability in the shallow marine realm exerted a primary control on the timing and tempo of biodiversity radiations at a crucial phase in the early history of animal life.
Collapse
Affiliation(s)
- Tianchen He
- London Geochemistry and Isotope Centre (LOGIC), Institute of Earth and Planetary Sciences, University College London and Birkbeck, University of London, London, WC1E 6BT, UK
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Maoyan Zhu
- State Key Laboratory of Palaeobiology and Stratigraphy & Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Peter M. Wynn
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Andrey Yu. Zhuravlev
- Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, Leninskie gory 1(12), Moscow 119234, Russia
| | - Rosalie Tostevin
- Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
| | - Philip A. E. Pogge von Strandmann
- London Geochemistry and Isotope Centre (LOGIC), Institute of Earth and Planetary Sciences, University College London and Birkbeck, University of London, London, WC1E 6BT, UK
| | - Aihua Yang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210093, China
| | - Simon W. Poulton
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Graham A. Shields
- London Geochemistry and Isotope Centre (LOGIC), Institute of Earth and Planetary Sciences, University College London and Birkbeck, University of London, London, WC1E 6BT, UK
| |
Collapse
|
15
|
Sperling EA, Stockey RG. The Temporal and Environmental Context of Early Animal Evolution: Considering All the Ingredients of an "Explosion". Integr Comp Biol 2019; 58:605-622. [PMID: 30295813 DOI: 10.1093/icb/icy088] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Animals originated and evolved during a unique time in Earth history-the Neoproterozoic Era. This paper aims to discuss (1) when landmark events in early animal evolution occurred, and (2) the environmental context of these evolutionary milestones, and how such factors may have affected ecosystems and body plans. With respect to timing, molecular clock studies-utilizing a diversity of methodologies-agree that animal multicellularity had arisen by ∼800 million years ago (Ma) (Tonian period), the bilaterian body plan by ∼650 Ma (Cryogenian), and divergences between sister phyla occurred ∼560-540 Ma (late Ediacaran). Most purported Tonian and Cryogenian animal body fossils are unlikely to be correctly identified, but independent support for the presence of pre-Ediacaran animals is recorded by organic geochemical biomarkers produced by demosponges. This view of animal origins contrasts with data from the fossil record, and the taphonomic question of why animals were not preserved (if present) remains unresolved. Neoproterozoic environments demanding small, thin, body plans, and lower abundance/rarity in populations may have played a role. Considering environmental conditions, geochemical data suggest that animals evolved in a relatively low-oxygen ocean. Here, we present new analyses of sedimentary total organic carbon contents in shales suggesting that the Neoproterozoic ocean may also have had lower primary productivity-or at least lower quantities of organic carbon reaching the seafloor-compared with the Phanerozoic. Indeed, recent modeling efforts suggest that low primary productivity is an expected corollary of a low-O2 world. Combined with an inability to inhabit productive regions in a low-O2 ocean, earliest animal communities would likely have been more food limited than generally appreciated, impacting both ecosystem structure and organismal behavior. In light of this, we propose the "fire triangle" metaphor for environmental influences on early animal evolution. Moving toward consideration of all environmental aspects of the Cambrian radiation (fuel, heat, and oxidant) will ultimately lead to a more holistic view of the event.
Collapse
Affiliation(s)
- Erik A Sperling
- Department of Geological Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, CA 94305, USA
| | - Richard G Stockey
- Department of Geological Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Dynamic oxygen and coupled biological and ecological innovation during the second wave of the Ediacara Biota. Emerg Top Life Sci 2018; 2:223-233. [PMID: 32412611 DOI: 10.1042/etls20170148] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/29/2018] [Accepted: 06/02/2018] [Indexed: 11/17/2022]
Abstract
Animal life on Earth is generally accepted to have risen during a period of increasingly well-oxygenated conditions, but direct evidence for that relationship has previously eluded scientists. This gap reflects both the enigmatic nature of the early animal fossil record and the coarse temporal resolution of Precambrian environmental change. Here, we combine paleontological data from the Ediacara Biota, the earliest fossil animals, with geochemical evidence for fluctuating redox conditions. Using morphological and ecological novelties that broadly reflect oxygen demand, we show that the appearance of abundant oxygen-demanding organisms within the Ediacara Biota corresponds with a period of elevated global oxygen concentrations. This correlation suggests that a putative rise in oxygen levels may have provided the necessary environments for the diversification of complex body plans and energetically demanding ecologies. The potential loss of organisms with relatively high oxygen requirements in the latest Ediacaran coupled with an apparent return to low oxygen concentrations further supports the availability of oxygen as a control on early animal evolution. While the advent of animal life was probably the product of a variety of factors, the recognition of a possible connection between changing environmental conditions and the diversification of animal morphologies suggests that the availability of oxygen played a significant role in the evolution of animals on Earth.
Collapse
|
17
|
Lu W, Ridgwell A, Thomas E, Hardisty DS, Luo G, Algeo TJ, Saltzman MR, Gill BC, Shen Y, Ling HF, Edwards CT, Whalen MT, Zhou X, Gutchess KM, Jin L, Rickaby REM, Jenkyns HC, Lyons TW, Lenton TM, Kump LR, Lu Z. Late inception of a resiliently oxygenated upper ocean. Science 2018; 361:174-177. [PMID: 29853552 DOI: 10.1126/science.aar5372] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/17/2018] [Indexed: 11/02/2022]
Abstract
Rising oceanic and atmospheric oxygen levels through time have been crucial to enhanced habitability of surface Earth environments. Few redox proxies can track secular variations in dissolved oxygen concentrations around threshold levels for metazoan survival in the upper ocean. We present an extensive compilation of iodine-to-calcium ratios (I/Ca) in marine carbonates. Our record supports a major rise in the partial pressure of oxygen in the atmosphere at ~400 million years (Ma) ago and reveals a step change in the oxygenation of the upper ocean to relatively sustainable near-modern conditions at ~200 Ma ago. An Earth system model demonstrates that a shift in organic matter remineralization to greater depths, which may have been due to increasing size and biomineralization of eukaryotic plankton, likely drove the I/Ca signals at ~200 Ma ago.
Collapse
Affiliation(s)
- Wanyi Lu
- Department of Earth Sciences, Syracuse University, Syracuse, NY, USA
| | - Andy Ridgwell
- Department of Earth Sciences, University of California, Riverside, Riverside, CA, USA.,School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Ellen Thomas
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA.,Department of Earth and Environmental Sciences, Wesleyan University, Middletown, CT, USA
| | - Dalton S Hardisty
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, USA
| | - Genming Luo
- State Key Laboratory of Biogeology and Environmental Geology and School of Earth Science, China University of Geosciences, Wuhan, China
| | - Thomas J Algeo
- State Key Laboratory of Biogeology and Environmental Geology and School of Earth Science, China University of Geosciences, Wuhan, China.,State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China.,Department of Geology, University of Cincinnati, Cincinnati, OH, USA
| | | | - Benjamin C Gill
- Department of Geosciences, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Yanan Shen
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Hong-Fei Ling
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Cole T Edwards
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA
| | - Michael T Whalen
- Department of Geosciences, University of Alaska, Fairbanks, Fairbanks, AK, USA
| | - Xiaoli Zhou
- Department of Earth Sciences, Syracuse University, Syracuse, NY, USA
| | | | - Li Jin
- Geology Department, State University of New York College at Cortland, Cortland, NY, USA
| | | | - Hugh C Jenkyns
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Timothy W Lyons
- Department of Earth Sciences, University of California, Riverside, Riverside, CA, USA
| | - Timothy M Lenton
- Earth System Science Group, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Lee R Kump
- Department of Geosciences, Pennsylvania State University, University Park, PA, USA
| | - Zunli Lu
- Department of Earth Sciences, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
18
|
Sperling EA, Knoll AH, Girguis PR. The Ecological Physiology of Earth's Second Oxygen Revolution. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-110512-135808] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Living animals display a variety of morphological, physiological, and biochemical characters that enable them to live in low-oxygen environments. These features and the organisms that have evolved them are distributed in a regular pattern across dioxygen (O2) gradients associated with modern oxygen minimum zones. This distribution provides a template for interpreting the stratigraphic covariance between inferred Ediacaran-Cambrian oxygenation and early animal diversification. Although Cambrian oxygen must have reached 10–20% of modern levels, sufficient to support the animal diversity recorded by fossils, it may not have been much higher than this. Today's levels may have been approached only later in the Paleozoic Era. Nonetheless, Ediacaran-Cambrian oxygenation may have pushed surface environments across the low, but critical, physiological thresholds required for large, active animals, especially carnivores. Continued focus on the quantification of the partial pressure of oxygen (pO2) in the Proterozoic will provide the definitive tests of oxygen-based coevolutionary hypotheses.
Collapse
Affiliation(s)
- Erik A. Sperling
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California 92093
- Department of Earth and Planetary Sciences and
- Present address: Department of Geological Sciences, Stanford University, Stanford, California 94305
| | - Andrew H. Knoll
- Department of Earth and Planetary Sciences and
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138;,
| | - Peter R. Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138;,
| |
Collapse
|
19
|
Ray S, Kassan A, Busija AR, Rangamani P, Patel HH. The plasma membrane as a capacitor for energy and metabolism. Am J Physiol Cell Physiol 2015; 310:C181-92. [PMID: 26771520 DOI: 10.1152/ajpcell.00087.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as "capacitors for energy and metabolism." Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell.
Collapse
Affiliation(s)
- Supriyo Ray
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| | - Adam Kassan
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| | - Anna R Busija
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - Hemal H Patel
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| |
Collapse
|
20
|
Human domination of the biosphere: Rapid discharge of the earth-space battery foretells the future of humankind. Proc Natl Acad Sci U S A 2015; 112:9511-7. [PMID: 26178196 DOI: 10.1073/pnas.1508353112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Earth is a chemical battery where, over evolutionary time with a trickle-charge of photosynthesis using solar energy, billions of tons of living biomass were stored in forests and other ecosystems and in vast reserves of fossil fuels. In just the last few hundred years, humans extracted exploitable energy from these living and fossilized biomass fuels to build the modern industrial-technological-informational economy, to grow our population to more than 7 billion, and to transform the biogeochemical cycles and biodiversity of the earth. This rapid discharge of the earth's store of organic energy fuels the human domination of the biosphere, including conversion of natural habitats to agricultural fields and the resulting loss of native species, emission of carbon dioxide and the resulting climate and sea level change, and use of supplemental nuclear, hydro, wind, and solar energy sources. The laws of thermodynamics governing the trickle-charge and rapid discharge of the earth's battery are universal and absolute; the earth is only temporarily poised a quantifiable distance from the thermodynamic equilibrium of outer space. Although this distance from equilibrium is comprised of all energy types, most critical for humans is the store of living biomass. With the rapid depletion of this chemical energy, the earth is shifting back toward the inhospitable equilibrium of outer space with fundamental ramifications for the biosphere and humanity. Because there is no substitute or replacement energy for living biomass, the remaining distance from equilibrium that will be required to support human life is unknown.
Collapse
|
21
|
Najafpour MM, Abbasi Isaloo M. The mechanism of water oxidation catalyzed by nanolayered manganese oxides: New insights. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:133-8. [PMID: 25666103 DOI: 10.1016/j.jphotobiol.2015.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 01/13/2023]
Abstract
Herein we consider the mechanism of water oxidation by nanolayered manganese oxide in the presence of cerium(IV) ammonium nitrate. Based on membrane-inlet mass spectrometry results, the rate of H2((18))O exchange of μ-O groups on the surface of the nanolayered Mn-K oxide, and studies on water oxidation in the presence of different ratios of acetonitrile/water we propose a mechanism for water oxidation by nanolayered Mn oxides in the presence of cerium(IV) ammonium nitrate.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran; Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | - Mohsen Abbasi Isaloo
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
22
|
McClain CR, Balk MA, Benfield MC, Branch TA, Chen C, Cosgrove J, Dove ADM, Gaskins L, Helm RR, Hochberg FG, Lee FB, Marshall A, McMurray SE, Schanche C, Stone SN, Thaler AD. Sizing ocean giants: patterns of intraspecific size variation in marine megafauna. PeerJ 2015; 3:e715. [PMID: 25649000 PMCID: PMC4304853 DOI: 10.7717/peerj.715] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/10/2014] [Indexed: 11/20/2022] Open
Abstract
What are the greatest sizes that the largest marine megafauna obtain? This is a simple question with a difficult and complex answer. Many of the largest-sized species occur in the world’s oceans. For many of these, rarity, remoteness, and quite simply the logistics of measuring these giants has made obtaining accurate size measurements difficult. Inaccurate reports of maximum sizes run rampant through the scientific literature and popular media. Moreover, how intraspecific variation in the body sizes of these animals relates to sex, population structure, the environment, and interactions with humans remains underappreciated. Here, we review and analyze body size for 25 ocean giants ranging across the animal kingdom. For each taxon we document body size for the largest known marine species of several clades. We also analyze intraspecific variation and identify the largest known individuals for each species. Where data allows, we analyze spatial and temporal intraspecific size variation. We also provide allometric scaling equations between different size measurements as resources to other researchers. In some cases, the lack of data prevents us from fully examining these topics and instead we specifically highlight these deficiencies and the barriers that exist for data collection. Overall, we found considerable variability in intraspecific size distributions from strongly left- to strongly right-skewed. We provide several allometric equations that allow for estimation of total lengths and weights from more easily obtained measurements. In several cases, we also quantify considerable geographic variation and decreases in size likely attributed to humans.
Collapse
Affiliation(s)
- Craig R McClain
- National Evolutionary Synthesis Center , Durham, NC , USA ; Department of Biology, Duke University , Durham, NC , USA
| | - Meghan A Balk
- Department of Biology, University of New Mexico , Albuquerque, NM , USA
| | - Mark C Benfield
- Department of Oceanography and Coastal Sciences, Louisiana State University , Baton Rouge, LA , USA
| | - Trevor A Branch
- School of Aquatic & Fishery Sciences, University of Washington , Seattle, WA , USA
| | - Catherine Chen
- Department of Biology, Duke University , Durham, NC , USA
| | - James Cosgrove
- Natural History Section, Royal British Columbia Museum , Victoria, BC , Canada
| | | | - Leo Gaskins
- Department of Biology, Duke University , Durham, NC , USA
| | - Rebecca R Helm
- Department of Ecology and Evolutionary Biology, Brown University , Providence, RI , USA
| | - Frederick G Hochberg
- Department of Invertebrate Zoology, Santa Barbara Museum of Natural History , Santa Barbara, CA , USA
| | - Frank B Lee
- Department of Biology, Duke University , Durham, NC , USA
| | | | - Steven E McMurray
- Department of Biology and Marine Biology, University of North Carolina Wilmington , Wilmington, NC , USA
| | | | - Shane N Stone
- Department of Biology, Duke University , Durham, NC , USA
| | - Andrew D Thaler
- Blackbeard Biologic: Science and Environmental Advisors , Vallejo, CA , USA
| |
Collapse
|
23
|
Encarnação T, Pais AA, Campos MG, Burrows HD. Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals. Sci Prog 2015; 98:145-68. [PMID: 26288917 PMCID: PMC10365369 DOI: 10.3184/003685015x14298590596266] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microalgae and cyanobacteria are rich sources of many valuable compounds, including important bioactive and biotechnologically relevant chemicals. Their enormous biodiversity, and the consequent variability in the respective biochemical composition, make microalgae cultivations a promising resource for many novel chemically and biologically active molecules and compounds of high commercial value such as lipids and dyes. The nature of the chemicals produced can be manipulated by changing the cultivation media and conditions. Algae are extremely versatile because they can be adapted to a variety of cell culture conditions. They do not require arable land, can be cultivated on saline water and wastewaters, and require much less water than plants. They possess an extremely high growth rate making these microorganisms very attractive for use in biofuel production--some species of algae can achieve around 100 times more oil than oil seeds. In addition, microalgae and cyanobacteria can accumulate various biotoxins and can contribute to mitigate greenhouse gases since they produce biomass through carbon dioxide fixation. In this review, we provide an overview of the application of microalgae in the production of bioactive and other chemicals.
Collapse
Affiliation(s)
- Telma Encarnação
- Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | | | | | | |
Collapse
|
24
|
Planavsky NJ, Reinhard CT, Wang X, Thomson D, McGoldrick P, Rainbird RH, Johnson T, Fischer WW, Lyons TW. Earth history. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 2014; 346:635-8. [PMID: 25359975 DOI: 10.1126/science.1258410] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The oxygenation of Earth's surface fundamentally altered global biogeochemical cycles and ultimately paved the way for the rise of metazoans at the end of the Proterozoic. However, current estimates for atmospheric oxygen (O2) levels during the billion years leading up to this time vary widely. On the basis of chromium (Cr) isotope data from a suite of Proterozoic sediments from China, Australia, and North America, interpreted in the context of data from similar depositional environments from Phanerozoic time, we find evidence for inhibited oxidation of Cr at Earth's surface in the mid-Proterozoic (1.8 to 0.8 billion years ago). These data suggest that atmospheric O2 levels were at most 0.1% of present atmospheric levels. Direct evidence for such low O2 concentrations in the Proterozoic helps explain the late emergence and diversification of metazoans.
Collapse
Affiliation(s)
| | | | - Xiangli Wang
- Department Geology and Geophysics, Yale University, CT, USA. Department of Geology, University of Illinois, Champaign, IL, USA
| | - Danielle Thomson
- Department of Earth Science, Carleton University, Ottawa, ON, Canada
| | - Peter McGoldrick
- Centre for Ore Deposit and Exploration Science, University of Tasmania, TAS, Australia
| | | | - Thomas Johnson
- Department of Geology, University of Illinois, Champaign, IL, USA
| | - Woodward W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Timothy W Lyons
- Department of Earth Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
25
|
Mills DB, Canfield DE. Oxygen and animal evolution: did a rise of atmospheric oxygen "trigger" the origin of animals? Bioessays 2014; 36:1145-55. [PMID: 25244426 DOI: 10.1002/bies.201400101] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent studies challenge the classical view that the origin of animal life was primarily controlled by atmospheric oxygen levels. For example, some modern sponges, representing early-branching animals, can live under 200 times less oxygen than currently present in the atmosphere - levels commonly thought to have been maintained prior to their origination. Furthermore, it is increasingly argued that the earliest animals, which likely lived in low oxygen environments, played an active role in constructing the well-oxygenated conditions typical of the modern oceans. Therefore, while oxygen is still relevant to understanding early animal evolution, the relationships between the two might be less straightforward than previously thought.
Collapse
Affiliation(s)
- Daniel B Mills
- Department of Biology and the Nordic Center for Earth Evolution, University of Southern Denmark, Odense M, Denmark
| | | |
Collapse
|
26
|
The 2.1 Ga old Francevillian biota: biogenicity, taphonomy and biodiversity. PLoS One 2014; 9:e99438. [PMID: 24963687 PMCID: PMC4070892 DOI: 10.1371/journal.pone.0099438] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/14/2014] [Indexed: 11/20/2022] Open
Abstract
The Paleoproterozoic Era witnessed crucial steps in the evolution of Earth's surface environments following the first appreciable rise of free atmospheric oxygen concentrations ∼2.3 to 2.1 Ga ago, and concomitant shallow ocean oxygenation. While most sedimentary successions deposited during this time interval have experienced thermal overprinting from burial diagenesis and metamorphism, the ca. 2.1 Ga black shales of the Francevillian B Formation (FB2) cropping out in southeastern Gabon have not. The Francevillian Formation contains centimeter-sized structures interpreted as organized and spatially discrete populations of colonial organisms living in an oxygenated marine ecosystem. Here, new material from the FB2 black shales is presented and analyzed to further explore its biogenicity and taphonomy. Our extended record comprises variably sized, shaped, and structured pyritized macrofossils of lobate, elongated, and rod-shaped morphologies as well as abundant non-pyritized disk-shaped macrofossils and organic-walled acritarchs. Combined microtomography, geochemistry, and sedimentary analysis suggest a biota fossilized during early diagenesis. The emergence of this biota follows a rise in atmospheric oxygen, which is consistent with the idea that surface oxygenation allowed the evolution and ecological expansion of complex megascopic life.
Collapse
|
27
|
Abstract
A rise in the oxygen content of the atmosphere and oceans is one of the most popular explanations for the relatively late and abrupt appearance of animal life on Earth. In this scenario, Earth's surface environment failed to meet the high oxygen requirements of animals up until the middle to late Neoproterozoic Era (850-542 million years ago), when oxygen concentrations sufficiently rose to permit the existence of animal life for the first time. Although multiple lines of geochemical evidence support an oxygenation of the Ediacaran oceans (635-542 million years ago), roughly corresponding with the first appearance of metazoans in the fossil record, the oxygen requirements of basal animals remain unclear. Here we show that modern demosponges, serving as analogs for early animals, can survive under low-oxygen conditions of 0.5-4.0% present atmospheric levels. Because the last common ancestor of metazoans likely exhibited a physiology and morphology similar to that of a modern sponge, its oxygen demands may have been met well before the enhanced oxygenation of the Ediacaran Period. Therefore, the origin of animals may not have been triggered by a contemporaneous rise in the oxygen content of the atmosphere and oceans. Instead, other ecological and developmental processes are needed to adequately explain the origin and earliest evolution of animal life on Earth.
Collapse
|
28
|
Abstract
To be habitable, a world (planet or moon) does not need to be located in the stellar habitable zone (HZ), and worlds in the HZ are not necessarily habitable. Here, we illustrate how tidal heating can render terrestrial or icy worlds habitable beyond the stellar HZ. Scientists have developed a language that neglects the possible existence of worlds that offer more benign environments to life than Earth does. We call these objects "superhabitable" and discuss in which contexts this term could be used, that is to say, which worlds tend to be more habitable than Earth. In an appendix, we show why the principle of mediocracy cannot be used to logically explain why Earth should be a particularly habitable planet or why other inhabited worlds should be Earth-like. Superhabitable worlds must be considered for future follow-up observations of signs of extraterrestrial life. Considering a range of physical effects, we conclude that they will tend to be slightly older and more massive than Earth and that their host stars will likely be K dwarfs. This makes Alpha Centauri B, which is a member of the closest stellar system to the Sun and is supposed to host an Earth-mass planet, an ideal target for searches for a superhabitable world.
Collapse
Affiliation(s)
- René Heller
- 1 Department of Physics and Astronomy, McMaster University , Hamilton, Ontario, Canada
| | | |
Collapse
|
29
|
Verberk WCEP, Atkinson D. Why polar gigantism and
P
alaeozoic gigantism are not equivalent: effects of oxygen and temperature on the body size of ectotherms. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12152] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wilco C. E. P. Verberk
- Department of Animal Ecology and Ecophysiology Institute for Water and Wetland Research Radboud University P.O. Box 9010 6500 GL Nijmegen the Netherlands
- Marine Biology and Ecology Research Centre School of Marine Science and Engineering University of Plymouth Davy Building Drake Circus Plymouth PL4 8AA UK
| | - David Atkinson
- Department of Evolution, Ecology & Behaviour Biosciences Building Institute of Integrative Biology University of Liverpool Liverpool L69 7ZB UK
| |
Collapse
|
30
|
Abstract
The Proterozoic-Cambrian transition records the appearance of essentially all animal body plans (phyla), yet to date no single hypothesis adequately explains both the timing of the event and the evident increase in diversity and disparity. Ecological triggers focused on escalatory predator-prey "arms races" can explain the evolutionary pattern but not its timing, whereas environmental triggers, particularly ocean/atmosphere oxygenation, do the reverse. Using modern oxygen minimum zones as an analog for Proterozoic oceans, we explore the effect of low oxygen levels on the feeding ecology of polychaetes, the dominant macrofaunal animals in deep-sea sediments. Here we show that low oxygen is clearly linked to low proportions of carnivores in a community and low diversity of carnivorous taxa, whereas higher oxygen levels support more complex food webs. The recognition of a physiological control on carnivory therefore links environmental triggers and ecological drivers, providing an integrated explanation for both the pattern and timing of Cambrian animal radiation.
Collapse
|
31
|
Okie JG. General Models for the Spectra of Surface Area Scaling Strategies of Cells and Organisms: Fractality, Geometric Dissimilitude, and Internalization. Am Nat 2013; 181:421-39. [DOI: 10.1086/669150] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Payne JL, Jost AB, Wang SC, Skotheim JM. A SHIFT IN THE LONG-TERM MODE OF FORAMINIFERAN SIZE EVOLUTION CAUSED BY THE END-PERMIAN MASS EXTINCTION. Evolution 2012; 67:816-27. [DOI: 10.1111/j.1558-5646.2012.01807.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Lease HM, Klok CJ, Kaiser A, Harrison JF. Body size is not critical for critical PO2 in scarabaeid and tenebrionid beetles. J Exp Biol 2012; 215:2524-33. [DOI: 10.1242/jeb.057141] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Constraints on oxygen delivery potentially limit animal body size. Because diffusion rates are highly distance dependent, and because tracheal length increases with size, gas exchange was traditionally thought to be more difficult for larger insects. As yet the effect of body size on critical oxygen partial pressure (Pcrit) has not been measured for any clade of insect species for which there are interspecific data on tracheal scaling. We addressed this deficiency by measuring Pcrit over a 4150-fold mass range (ratio of largest to smallest species mean) of two families of Coleoptera (Tenebrionidae and Scarabaeidae). We exposed adult beetles to progressively lower oxygen levels and measured their ability to maintain CO2 release rates. Absolute metabolic rates increased hypometrically with beetle body mass (M) at both normoxic (M0.748) and hypoxic (M0.846) conditions. Pcrit, however, was independent of body size. Maximum overall conductances for oxygen from air to mitochondria (GO2,max) matched metabolic rates as insects became larger, likely enabling the similar Pcrit values observed in large and small beetles. These data suggest that current atmospheric oxygen levels do not limit body size of insects because of limitations on gas exchange. However, increasing relative investment in the tracheal system in larger insects may produce trade-offs or meet spatial limits that constrain insect size.
Collapse
Affiliation(s)
- Hilary M. Lease
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
- School of Physiology, Faculty of Health Science, University of the Witwatersrand, Parktown 2193, South Africa
| | - Cornelis J. Klok
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Alexander Kaiser
- Department of Biochemistry, Midwestern University, Glendale, AZ 85308, USA
| | - Jon F. Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
34
|
Moran AL, Woods HA. Why might they be giants? Towards an understanding of polar gigantism. J Exp Biol 2012; 215:1995-2002. [DOI: 10.1242/jeb.067066] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Beginning with the earliest expeditions to the poles, over 100 years ago, scientists have compiled an impressive list of polar taxa whose body sizes are unusually large. This phenomenon has become known as ‘polar gigantism’. In the intervening years, biologists have proposed a multitude of hypotheses to explain polar gigantism. These hypotheses run the gamut from invoking release from physical and physiological constraints, to systematic changes in developmental trajectories, to community-level outcomes of broader ecological and evolutionary processes. Here we review polar gigantism and emphasize two main problems. The first is to determine the true strength and generality of this pattern: how prevalent is polar gigantism across taxonomic units? Despite many published descriptions of polar giants, we still have a poor grasp of whether these species are unusual outliers or represent more systematic shifts in distributions of body size. Indeed, current data indicate that some groups show gigantism at the poles whereas others show nanism. The second problem is to identify underlying mechanisms or processes that could drive taxa, or even just allow them, to evolve especially large body size. The contenders are diverse and no clear winner has yet emerged. Distinguishing among the contenders will require better sampling of taxa in both temperate and polar waters and sustained efforts by comparative physiologists and evolutionary ecologists in a strongly comparative framework.
Collapse
Affiliation(s)
- Amy L. Moran
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - H. Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
35
|
Payne JL, Groves JR, Jost AB, Nguyen T, Moffitt SE, Hill TM, Skotheim JM. Late paleozoic fusulinoidean gigantism driven by atmospheric hyperoxia. Evolution 2012; 66:2929-39. [PMID: 22946813 DOI: 10.1111/j.1558-5646.2012.01626.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atmospheric hyperoxia, with pO(2) in excess of 30%, has long been hypothesized to account for late Paleozoic (360-250 million years ago) gigantism in numerous higher taxa. However, this hypothesis has not been evaluated statistically because comprehensive size data have not been compiled previously at sufficient temporal resolution to permit quantitative analysis. In this study, we test the hyperoxia-gigantism hypothesis by examining the fossil record of fusulinoidean foraminifers, a dramatic example of protistan gigantism with some individuals exceeding 10 cm in length and exceeding their relatives by six orders of magnitude in biovolume. We assembled and examined comprehensive regional and global, species-level datasets containing 270 and 1823 species, respectively. A statistical model of size evolution forced by atmospheric pO(2) is conclusively favored over alternative models based on random walks or a constant tendency toward size increase. Moreover, the ratios of volume to surface area in the largest fusulinoideans are consistent in magnitude and trend with a mathematical model based on oxygen transport limitation. We further validate the hyperoxia-gigantism model through an examination of modern foraminiferal species living along a measured gradient in oxygen concentration. These findings provide the first quantitative confirmation of a direct connection between Paleozoic gigantism and atmospheric hyperoxia.
Collapse
Affiliation(s)
- Jonathan L Payne
- Department of Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, California 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Smith FA, Lyons SK. How big should a mammal be? A macroecological look at mammalian body size over space and time. Philos Trans R Soc Lond B Biol Sci 2011; 366:2364-78. [PMID: 21768152 DOI: 10.1098/rstb.2011.0067] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Macroecology was developed as a big picture statistical approach to the study of ecology and evolution. By focusing on broadly occurring patterns and processes operating at large spatial and temporal scales rather than on localized and/or fine-scaled details, macroecology aims to uncover general mechanisms operating at organism, population, and ecosystem levels of organization. Macroecological studies typically involve the statistical analysis of fundamental species-level traits, such as body size, area of geographical range, and average density and/or abundance. Here, we briefly review the history of macroecology and use the body size of mammals as a case study to highlight current developments in the field, including the increasing linkage with biogeography and other disciplines. Characterizing the factors underlying the spatial and temporal patterns of body size variation in mammals is a daunting task and moreover, one not readily amenable to traditional statistical analyses. Our results clearly illustrate remarkable regularities in the distribution and variation of mammalian body size across both geographical space and evolutionary time that are related to ecology and trophic dynamics and that would not be apparent without a broader perspective.
Collapse
Affiliation(s)
- Felisa A Smith
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
37
|
Abstract
Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause. This article was reviewed by Dan Graur, W. Ford Doolittle, Eugene V. Koonin and Christophe Malaterre.
Collapse
Affiliation(s)
- William F Martin
- Institut of Botany III, University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
38
|
Abstract
The integrated functioning of two photosystems (I and II) whether in cyanobacteria or in chloroplasts is the outstanding sign of a common ancestral origin. Many variations on the basic theme are currently evident in oxygenic photosynthetic organisms whether they are prokaryotes, unicellular, or multicellular. By conservative estimates, oxygenic photosynthesis has been around for at least ca. 2.2-2.7 billions years, consistent with cyanobacteria-type microfossils, biomarkers, and an atmospheric rise in oxygen to less than 1.0% of the present concentration. The presumptions of chloroplast formation by the cyanobacterial uptake into a eukaryote prior to 1.6 BYa ago are confounded by assumptions of host type(s) and potential tolerance of oxygen toxicity. The attempted dating and interrelationships of particular chloroplasts in various plant or animal lineages has relied heavily on phylogenomic analysis and evaluations that have been difficult to confirm separately. Many variations occur in algal groups, involving the type and number of accessory pigments, and the number(s) of membranes (2-4) enclosing a chloroplast, which can both help and complicate inferences made about early or late origins of chloroplasts. Integration of updated phylogenomics with physiological and cytological observations remains a special challenge, but could lead to more accurate assumptions of initial and extant endosymbiotic event(s) leading toward stable chloroplast associations.
Collapse
Affiliation(s)
- Elisabeth Gantt
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|