1
|
O’Neill BF, Boeckman C, LeRoy K, Linderblood C, Olson T, Woods R, Challender M. An environmental risk assessment of IPD079Ea: a protein derived from Ophioglossum pendulum with activity against Diabrotica spp.In maize. GM CROPS & FOOD 2024; 15:15-31. [PMID: 38238889 PMCID: PMC10802193 DOI: 10.1080/21645698.2023.2299503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Farmers in North America face significant pressure from insects in their maize fields, particularly from corn rootworm (Diabrotica spp.). Research into proteins capable of insecticidal activity has found several produced by ferns. One protein, IPD079Ea, was derived from Ophioglossum pendulum and has shown activity against corn rootworm. An environmental risk assessment was conducted for maize event DP-915635-4, which provides control of corn rootworms via expression of the IPD079Ea protein. This assessment focused on IPD079Ea and characterized potential exposure and hazard to non-target organisms (NTOs). For exposure, estimated environmental concentrations (EECs) were calculated. For hazard, laboratory dietary toxicity studies were conducted with IPD079Ea and surrogate non-target organisms. Environmental risk was characterized by comparing hazard and exposure to calculate the margin of exposure (MOE). Based on the MOE values for DP-915635-4 maize, the IPD079Ea protein is not expected to result in unreasonable adverse effects on beneficial NTO populations at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Bridget F. O’Neill
- Corteva Agriscience™, Regulatory and Stewardship institution, Indianapolis, IN, USA
| | - Chad Boeckman
- Corteva Agriscience™, Regulatory and Stewardship, Johnston, IA, USA
| | - Kristine LeRoy
- Corteva Agriscience™, Regulatory and Stewardship, Johnston, IA, USA
| | | | - Taylor Olson
- Corteva Agriscience™, Regulatory and Stewardship, Johnston, IA, USA
| | - Rachel Woods
- Corteva Agriscience™, Regulatory and Stewardship, Johnston, IA, USA
| | - Mary Challender
- Corteva Agriscience™, Regulatory and Stewardship, Johnston, IA, USA
| |
Collapse
|
2
|
Dhaouadi S, Jeni RE, Kraiem H, Ayyildiz G, Filik-Iscen C, Yurtkuran-Ceterez Z, Bouhaouala-Zahar B. Effects of New Btk-Based Formulations BLB1 and Lip on Aquatic Non-Target Organisms. BIOLOGY 2024; 13:824. [PMID: 39452133 PMCID: PMC11505242 DOI: 10.3390/biology13100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 10/26/2024]
Abstract
Integrated pest management based on the use of biopesticides is largely applied. Experimental bioassays are critical to assess biopesticide biosafety at the ecotoxicological level. In this study, we investigated the effects of the new Bacillus thuringiensis subsp. kurstaki (Btk)-formulated-based biopesticides BLB1 and Lip, efficiently tested in field assays (IPM-4-CITRUS EC project no. 734921) on two aquatic non-target organisms, precisely the water flea Daphnia magna and the bioluminescent bacteria Aliivibrio fischeri. Acute toxicity studies, carried out in a comparative manner with Delfin® as the reference bioproduct and the lactose-based Blank formulation, show that no significant toxicity was observed up to 1 g/L. Our results indicated that BLB1- and Lip-formulated new bioproducts are far less toxic than the Delfin® reference bioproduct.
Collapse
Affiliation(s)
- Sayda Dhaouadi
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Equipe NanoBioMedika, Institut Pasteur de Tunis, Université Tunis-El Manar, 13 Place Pasteur, BP74, Belvédère, Tunis 1002, Tunisia; (S.D.); (R.E.J.)
| | - Rim El Jeni
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Equipe NanoBioMedika, Institut Pasteur de Tunis, Université Tunis-El Manar, 13 Place Pasteur, BP74, Belvédère, Tunis 1002, Tunisia; (S.D.); (R.E.J.)
| | - Hazar Kraiem
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Equipe NanoBioMedika, Institut Pasteur de Tunis, Université Tunis-El Manar, 13 Place Pasteur, BP74, Belvédère, Tunis 1002, Tunisia; (S.D.); (R.E.J.)
| | - Gul Ayyildiz
- Biyans Biyolojik ÜRÜNLER AR-GE DAN. SAN. TİC.LTD.ŞTİ., Mustafa Kemal Mah. Dumlupinar BLV.NO: 280: G İÇ KAPI NO: 1260, Çankaya 06530, Turkey; (G.A.); (Z.Y.-C.)
| | - Cansu Filik-Iscen
- Department of Mathematics and Science Education, Faculty of Education, Eskisehir Osmangazi University, Eskisehir 26040, Turkey;
| | - Zeynep Yurtkuran-Ceterez
- Biyans Biyolojik ÜRÜNLER AR-GE DAN. SAN. TİC.LTD.ŞTİ., Mustafa Kemal Mah. Dumlupinar BLV.NO: 280: G İÇ KAPI NO: 1260, Çankaya 06530, Turkey; (G.A.); (Z.Y.-C.)
| | - Balkiss Bouhaouala-Zahar
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Equipe NanoBioMedika, Institut Pasteur de Tunis, Université Tunis-El Manar, 13 Place Pasteur, BP74, Belvédère, Tunis 1002, Tunisia; (S.D.); (R.E.J.)
- Faculté de Médecine de Tunis, Université Tunis-El Manar, 13 Place Pasteur, BP74, Belvédère, Tunis 1002, Tunisia
| |
Collapse
|
3
|
Avisar D, Manoeli A, dos Santos AA, Porto ACDM, Rocha CDS, Zauza E, Gonzalez ER, Soliman E, Gonsalves JMW, Bombonato L, Galan MP, Domingues MM, Candelaria MC, Mafia R, Graça RN, Azulay S, Livne S, Dias TB, Drezza TR, Silva WJ, Pinheiro AC. Genetically engineered eucalyptus expressing pesticidal proteins from Bacillus thuringiensis for insect resistance: a risk assessment evaluation perspective. Front Bioeng Biotechnol 2024; 12:1322985. [PMID: 38562667 PMCID: PMC10982518 DOI: 10.3389/fbioe.2024.1322985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/05/2024] [Indexed: 04/04/2024] Open
Abstract
Eucalyptus covers approximately 7.5 million hectares in Brazil and serves as the primary woody species cultivated for commercial purposes. However, native insects and invasive pests pose a significant threat to eucalyptus trees, resulting in substantial economic losses and reduced forest productivity. One of the primary lepidopteran pests affecting eucalyptus is Thyrinteina arnobia (Stoll, 1782) (Lepidoptera: Geometridae), commonly referred to as the brown looper caterpillar. To address this issue, FuturaGene, the biotech division of Suzano S.A., has developed an insect-resistant (IR) eucalyptus variety, which expresses Cry pesticidal proteins (Cry1Ab, Cry1Bb, and Cry2Aa), derived from Bacillus thuringiensis (Bt). Following extensive safety assessments, including field trials across various biomes in Brazil, the Brazilian National Technical Commission of Biosafety (CTNBio) recently approved the commercialization of IR eucalyptus. The biosafety assessments involved the analysis of molecular genomics, digestibility, thermostability, non-target organism exposure, degradability in the field, and effects on soil microbial communities and arthropod communities. In addition, in silico studies were conducted to evaluate allergenicity and toxicity. Results from both laboratory and field studies indicated that Bt eucalyptus is as safe as the conventional eucalyptus clone for humans, animals, and the environment, ensuring the secure use of this insect-resistant trait in wood production.
Collapse
Affiliation(s)
- Dror Avisar
- FuturaGene Israel Ltd. (R&D), Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | - Maria P. Galan
- Suzano S.A. (FuturaGene—Biotech Division), Itapetininga, Brazil
| | | | | | | | | | | | - Sivan Livne
- FuturaGene Israel Ltd. (R&D), Rehovot, Israel
| | | | | | | | | |
Collapse
|
4
|
Xiang D, Luo M, Jiang F, Wen Z, Chen X, Wang X, Xu X, Wei W, Xu J. Safety assessment of subchronic feeding of insect-resistant and herbicide-resistant transgenic soybeans to juvenile channel catfish (Ictalurus punctatus). Sci Rep 2023; 13:5445. [PMID: 37012256 PMCID: PMC10070625 DOI: 10.1038/s41598-023-31072-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Transgenic soybean is one of the most planted crops for human food and animal feed. The channel catfish (Ictalurus punctatus) is an important aquatic organism cultured worldwide. In this study, the effect of six different soybean diets containing: two transgenic soybeans expressing different types of cp4-epsps, Vip3Aa and pat genes (DBN9004 and DBN8002), their non-transgenic parent JACK, and three conventional soybean varieties (Dongsheng3, Dongsheng7, and Dongsheng9) was investigated in juvenile channel catfish for eight weeks, and a safety assessment was performed. During the experiment, no difference in survival rate was observed in six groups. The hepatosomatic index (HSI) and condition factor (CF) showed no significant difference. Moreover, comparable feed conversion (FC), feeding rate (FR), and feed conversion ratio (FCR) were found between transgenic soybean and JACK groups. Assessment of growth performance showed that the weight gain rate (WGR) and specific growth rate (SGR) of channel catfish were consistent. In addition, there were no changes in enzyme activity indexes (lactate dehydrogenase (LDH), total antioxidant capacity (T-AOC), aspartate aminotransferase (AST) and alanine aminotransferase (ALT)) in channel catfish among treatments. The research provided an experimental basis for the aquaculture feed industry to employ transgenic soybean DBN9004 and DBN8002 for commercial purposes.
Collapse
Affiliation(s)
- Dan Xiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Mingzhong Luo
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Fukun Jiang
- Beijing DaBeiNong Biotechnology Co., Ltd., Beijing, 100193, China
| | - Zhengrong Wen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoli Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
5
|
Li P, Ye S, Chen J, Wang L, Li Y, Ge L, Wu G, Song L, Wang C, Sun Y, Wang J, Pan A, Quan Z, Wu Y. Combined metagenomic and metabolomic analyses reveal that Bt rice planting alters soil C-N metabolism. ISME COMMUNICATIONS 2023; 3:4. [PMID: 36690796 PMCID: PMC9870860 DOI: 10.1038/s43705-023-00217-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
The environmental impacts of genetically modified (GM) plants remain a controversial global issue. To address these issues, comprehensive environmental risk assessments of GM plants is critical for the sustainable development and application of transgenic technology. In this paper, significant differences were not observed between microbial metagenomic and metabolomic profiles in surface waters of the Bt rice (T1C-1, the transgenic line) and non-Bt cultivars (Minghui 63 (the isogenic line) and Zhonghua 11 (the conventional japonica cultivar)). In contrast, differences in these profiles were apparent in the rhizospheres. T1C-1 planting increased soil microbiome diversity and network stability, but did not significantly alter the abundances of potential probiotic or phytopathogenic microorganisms compared with Minghui 63 and Zhonghua 11, which revealed no adverse effects of T1C-1 on soil microbial communities. T1C-1 planting could significantly alter soil C and N, probably via the regulation of the abundances of enzymes related to soil C and N cycling. In addition, integrated multi-omic analysis of root exudate metabolomes and soil microbiomes showed that the abundances of various metabolites released as root exudates were significantly correlated with subsets of microbial populations including the Acidobacteria, Actinobacteria, Chloroflexi, and Gemmatimonadetes that were differentially abundant in T1C-1 and Mnghui 63 soils. Finally, the potential for T1C-1-associated root metabolites to exert growth effects on T1C-1-associated species was experimentally validated by analysis of bacterial cultures, revealing that Bt rice planting could selectively modulate specific root microbiota. Overall, this study indicate that Bt rice can directly modulate rhizosphere microbiome assemblages by altering the metabolic compositions of root exudates that then alters soil metabolite profiles and physiochemical properties. This study unveils the mechanistic associations of Bt plant-microorganism-environment, which provides comprehensive insights into the potential ecological impacts of GM plants.
Collapse
Affiliation(s)
- Peng Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China.
- Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd, 201106, Shanghai, China.
| | - Shuifeng Ye
- College of Life Sciences, Shangrao Normal University, 334001, Shangrao, China
| | - Jun Chen
- East China University of Technology, 330013, Nanchang, China
| | - Luyao Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China
| | - Yujie Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China
| | - Lei Ge
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China
| | - Guogan Wu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China
| | - Lili Song
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China
| | - Cui Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China
| | - Yu Sun
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China
| | - Jinbin Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China
| | - Aihu Pan
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China
| | - Zhexue Quan
- School of Life Sciences, Fudan University, 200433, Shanghai, China.
| | - Yunfei Wu
- The College of Bioscience and Biotechnology, Yangzhou University, 225009, Yangzhou, China.
| |
Collapse
|
6
|
Pott A, Bundschuh M, Otto M, Schulz R. Assessing Effects of Genetically Modified Plant Material on the Aquatic Environment Using higher-tier Studies. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:35. [PMID: 36592218 DOI: 10.1007/s00128-022-03678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/28/2022] [Indexed: 06/17/2023]
Abstract
Genetically modified organisms are used extensively in agriculture. To assess potential side effects of genetically modified (GM) plant material on aquatic ecosystems, only a very small number of higher-tier studies have been performed. At the same time, these studies are particularly important for comprehensive risk assessment covering complex ecological relationships. Here we evaluate the methods of experimental higher-tier effect studies with GM plant material (or Bt toxin) in comparison to those well-established for pesticides. A major difference is that nominal test concentrations and thus dose-response relationships cannot easily be produced with GM plant material. Another important difference, particularly to non-systemic pesticides, is that aquatic organisms are exposed to GM plant material primarily through their feed. These and further differences in test requirements, compared with pesticides, call for a standardisation for GM-specific higher-tier study designs to assess their potentially complex effects in the aquatic ecosystems comprehensively.
Collapse
Affiliation(s)
- Antonia Pott
- Institute for Environmental Sciences, iES Landau, University of Kaiserslautern-Landau, Fortstrasse 7, 76829, Landau, Germany.
- Federal Agency for Nature Conservation (BfN), Konstantinstrasse 110, 53179, Bonn, Germany.
| | - Mirco Bundschuh
- Institute for Environmental Sciences, iES Landau, University of Kaiserslautern-Landau, Fortstrasse 7, 76829, Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 75007, Uppsala, Sweden
| | - Mathias Otto
- Federal Agency for Nature Conservation (BfN), Konstantinstrasse 110, 53179, Bonn, Germany
| | - Ralf Schulz
- Institute for Environmental Sciences, iES Landau, University of Kaiserslautern-Landau, Fortstrasse 7, 76829, Landau, Germany
| |
Collapse
|
7
|
Ren Z, Yang M, He H, Ma Y, Zhou Y, Liu B, Xue K. Transgenic Maize Has Insignificant Effects on the Diversity of Arthropods: A 3-Year Study. PLANTS 2022; 11:plants11172254. [PMID: 36079638 PMCID: PMC9460771 DOI: 10.3390/plants11172254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
In order to provide more evidence for the evaluation of the ecological risks of transgenic maize, arthropod population dynamics and biodiversity in fields planted with two kinds of transgenic maize (DBN9868, expressing the PAT and EPSPS genes, and DBN9936, expressing the Cry1Ab and EPSPS gene) were investigated by direct observation and trapping for three years. The recorded arthropod species belonged to 19 orders and 87 families, including Aphidoidea, Chrysomelidae, Coccinellidae, Chrysopidae and Araneae. The species richness, Shannon–Wiener diversity index, Pielou evenness index, dominance index and community similarity index of arthropod communities in maize fields were statistically analyzed, and the results showed that (1) the biodiversity difference of arthropod communities between transgenic maize and non-transgenic maize was smaller than that between different conventional cultivars; (2) the differences between ground-dwelling arthropod communities were less obvious than those between plant-inhabiting arthropod communities; and (3) Lepidoptera, the target pests of Bt maize, were not the dominant population in maize fields, and the dominant arthropod population in maize fields varied greatly between years and months. Combining those results, we concluded that the transgenic maize DBN9868 and DBN9936 had no significant effect on the arthropod communities in the field.
Collapse
Affiliation(s)
- Zhentao Ren
- Country Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Muzhi Yang
- Country Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Haopeng He
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yanjie Ma
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- Correspondence: (B.L.); (K.X.)
| | - Kun Xue
- Country Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- Correspondence: (B.L.); (K.X.)
| |
Collapse
|
8
|
Chen Y, Romeis J, Meissle M. No Adverse Effects of Stacked Bacillus thuringiensis Maize on the Midge Chironomus riparius. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1078-1088. [PMID: 35040173 PMCID: PMC9306926 DOI: 10.1002/etc.5293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Material from genetically engineered maize producing insecticidal Cry proteins from Bacillus thuringiensis (Bt) may enter aquatic ecosystems and expose nontarget organisms. We investigated the effects on life table parameters of the midge Chironomus riparius (Diptera: Chironomidae) of SmartStax maize leaves, which contain six different Cry proteins targeting Lepidoptera and Coleoptera pests, in two plant backgrounds. For midge development and emergence, 95% confidence intervals for the means of six conventional maize lines (Rheintaler, Tasty Sweet, ES-Eurojet, Planoxx, EXP 258, and EXP 262), were used to capture the natural range of variation. For reproduction, lowest and highest means were used. The natural range of variation allows one to judge whether observed effects between Bt maize and the closest non-Bt comparator are likely to be of biological relevance. No adverse effects on C. riparius were observed with any Bt maize line compared with the respective non-Bt counterpart. Development time was shorter when females were fed Bt maize than when they were fed non-Bt maize, but this effect was not considered adverse. Development time, emergence ratio, sex ratio, and larvae/egg rope measured for Bt maize were within the natural range of variation. Fecundity for the Bt lines was equal to or higher than that for the conventional lines. Future risk assessment studies may consider plant background effects and the natural range of variation to judge the relevance of observed differences between particular genetically engineered and non-genetically engineered plants. Environ Toxicol Chem 2022;41:1078-1088. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Yi Chen
- Research Division Agroecology and Environment, AgroscopeZurichSwitzerland
- Institute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouHainanChina
- Sanya Research InstituteChinese Academy of Tropical Agricultural SciencesSanyaHainanChina
| | - Jörg Romeis
- Research Division Agroecology and Environment, AgroscopeZurichSwitzerland
| | - Michael Meissle
- Research Division Agroecology and Environment, AgroscopeZurichSwitzerland
| |
Collapse
|
9
|
Chatterjee A, Zhang K, Rao Y, Sharma N, Giammar DE, Parker KM. Metal-Catalyzed Hydrolysis of RNA in Aqueous Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3564-3574. [PMID: 35226478 DOI: 10.1021/acs.est.1c08468] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The stability of RNA in aqueous systems is critical for multiple environmental applications including evaluating the environmental fate of RNA interference pesticides and interpreting viral genetic marker abundance for wastewater-based epidemiology. In addition to biological processes, abiotic reactions may also contribute to RNA loss. In particular, some metals are known to dramatically accelerate rates of RNA hydrolysis under certain conditions (i.e., 37 °C or higher temperatures, 0.15-100 mM metal concentrations). In this study, we investigated the extent to which metals catalyze RNA hydrolysis under environmentally relevant conditions. At ambient temperature, neutral pH, and ∼10 μM metal concentrations, we determined that metals that are stronger Lewis acids (i.e., lead, copper) catalyzed single-stranded (ss)RNA, whereas metals that are weaker Lewis acids (i.e., zinc, nickel) did not. In contrast, double-stranded (ds)RNA resisted hydrolysis by all metals. While lead and copper catalyzed ssRNA hydrolysis at ambient temperature and neutral pH values, other factors such as lowering the solution pH and including inorganic and organic ligands reduced the rates of these reactions. Considering these factors along with sub-micromolar metal concentrations typical of environmental systems, we determined that both ssRNA and dsRNA are unlikely to undergo significant metal-catalyzed hydrolysis in most environmental aqueous systems.
Collapse
Affiliation(s)
- Anamika Chatterjee
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ke Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yue Rao
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Neha Sharma
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Daniel E Giammar
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kimberly M Parker
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
10
|
Liu J, Liang YS, Hu T, Zeng H, Gao R, Wang L, Xiao YH. Environmental fate of Bt proteins in soil: Transport, adsorption/desorption and degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112805. [PMID: 34592526 DOI: 10.1016/j.ecoenv.2021.112805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/05/2021] [Accepted: 09/16/2021] [Indexed: 05/26/2023]
Abstract
During the production and application of Bacillus thuringiensis (Bt) transgenic crops, large doses of insecticidal Bt toxic proteins are expressed continuously. The multi-interfacial behaviors of Bt proteins entering the environment in multi-media affects their states of existence transformation, transport and fate as well as biological and ecological impacts. Because both soil matrix and organisms will be exposed to Bt proteins to a certain extent, knowledge of the multi-interfacial behaviors and affecting factors of Bt proteins are vital not only for understanding the source-sink distribution mechanisms, predicting their bio-availability, but also for exploring the soil safety and environmental problems caused by the interaction between Bt proteins and soil matrix. This review summarized and analyzed various internal and external factors that affect the adsorption/ desorption and degradation of Bt proteins in the environment, so as to understand the multi-interfacial behaviors of Bt proteins. In addition, the reasons of concentration changes of Bt proteins in soil are discussed. This review will also discuss the existing knowledge of the combined effects of Bt proteins and other pollutants in environment. Finally, discussing the factors that should be considered when assessing the environmental risk of Bt proteins, thus to further improve the understanding of the environmental fate of Bt proteins.
Collapse
Affiliation(s)
- Jiao Liu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Yun-Shan Liang
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China.
| | - Teng Hu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Hong Zeng
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Rong Gao
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| | - Li Wang
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Yun-Hua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| |
Collapse
|
11
|
Chen Y, Romeis J, Meissle M. Addressing the challenges of non-target feeding studies with genetically engineered plant material - stacked Bt maize and Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112721. [PMID: 34478987 DOI: 10.1016/j.ecoenv.2021.112721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Previous studies reported adverse effects of genetically engineered maize that produces insecticidal Cry proteins from Bacillus thuringiensis (Bt) on the water flea Daphnia magna. In the current study, effects of flour, leaves, or pollen from stacked Bt maize that contains six Bt proteins (SmartStax) in two plant backgrounds on life table parameters of D. magna were investigated. Adverse effects were observed for Bt maize flour, originating from different production fields and years, but not for leaves or pollen, produced from plants grown concurrently in a glasshouse. Because leaves contained eight to ten times more Cry protein than flour, the effects of the flour were probably not caused by the Cry proteins, but by compositional differences between the plant backgrounds. Furthermore, considering the natural range of variation in the response of D. magna to conventional maize lines, the observed effects of Bt maize flour were unlikely to be of biological relevance. Our study demonstrates how Cry protein effects can be separated from plant background effects in non-target studies using Bt plant material as the test substance and how detected effects can be judged for their biological relevance.
Collapse
Affiliation(s)
- Yi Chen
- Research Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Michael Meissle
- Research Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland.
| |
Collapse
|
12
|
Chen Y, Romeis J, Meissle M. Performance of Daphnia magna on flour, leaves, and pollen from different maize lines: Implications for risk assessment of genetically engineered crops. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111967. [PMID: 33524911 DOI: 10.1016/j.ecoenv.2021.111967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Non-target effects of genetically engineered (GE) plants on aquatic Daphnia magna have been studied by feeding the species with different maize materials containing insecticidal Cry proteins from Bacillus thuringiensis (Bt). The results of those studies were often difficult to interpret, because only one GE plant was compared to one related non-GE control. In such a setting, effects of the Cry proteins cannot be distinguished from plant background effects, in particular when the test species is nutritionally stressed. In the present study, we tested the suitability of three different maize materials, i.e., flour, leaves and pollen, from five diverse non-GE maize lines (including EXP 258, a breeding line that is closely related to a SmartStax Bt maize) as exclusive food sources for D. magna. The parameters recorded included survival, sublethal endpoints such as body size, number of moltings to first offspring, time to first offspring, number of individuals in first clutch, total number of clutches, total number of offspring, average number of offspring per clutch, and population measures such as net reproductive rate R0, generation time T and intrinsic rate of increase rm. The results showed that D. magna can survive, grow and reproduce when fed only maize materials, although the performance was poorer than when fed algae, which indicates nutritional stress. Large differences in life table and population parameters of D. magna were observed among the different maize lines. Our results suggest that confounding effects caused by nutritional stress and plant background might explain some of the conflicting results previously published on the effects of Bt crops on D. magna. Using 95% confidence intervals for the means of the five maize lines for all measured parameters of D. magna performance in our study, we captured the natural range of variation. This information is useful for the interpretation of observed differences in D. magna performance between a GE plant and its non-GE comparator as it helps judging whether observed effects are of biological relevance. If differences between a GE and comparator line are observed and their biological relevance needs to be assessed in future risk assessments of GE maize, 1) the data on natural variation of the different parameters generated by previous studies can be informative (e.g. data from our study for maize fed D. magna); 2) for additional experiments the inclusion of multiple unrelated non-GE comparators should be considered; In addition, it should be taken into account that nutritional stress can affect the outcome of the study.
Collapse
Affiliation(s)
- Yi Chen
- Agroscope, Research Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Jörg Romeis
- Agroscope, Research Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Michael Meissle
- Agroscope, Research Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland.
| |
Collapse
|
13
|
Vieira L, Hissa DC, Souza T, Gonçalves ÍFS, Evaristo JAM, Nogueira FCS, Carvalho AFU, Farias D. Assessing the effects of an acute exposure to worst-case concentration of Cry proteins on zebrafish using the embryotoxicity test and proteomics analysis. CHEMOSPHERE 2021; 264:128538. [PMID: 33038734 DOI: 10.1016/j.chemosphere.2020.128538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Cry1C, Cry1F and Cry1Ab are insecticidal proteins from Bacillus thuringiensis (Bt) which are expressed in transgenic crops. Given the entry of these proteins into aquatic environments, it is relevant to evaluate their impacts on aquatic organisms. In this work, we sought to evaluate the effects of Cry1C, Cry1F and Cry1Ab on zebrafish embryos and larvae of a predicted worst-case scenario concentration of these proteins (set to 1.1 mg/L). For that, we coupled a traditional toxicity approach (the zebrafish embryotoxicity test and dosage of enzymatic biomarkers) to gel free proteomics analysis. At the concentration tested, these proteins did not cause adverse effects in the zebrafish early life stages, either by verifying phenotypic endpoints of toxicity or alterations in representative enzymatic biomarkers (catalase, glutathione-S-tranferase and lactate-dehydrogenase). At the molecular level, the Cry proteins tested lead to very small changes in the proteome of zebrafish larvae. In a global way, these proteins upregulated the expression of vitellogenins. Besides that, Cry1C e Cry1F deregulated heterogeneous nuclear ribonucleoproteins (Hnrnpa0l and Hnrnpaba, respectively), implicated in mRNA processing and gene regulation. Overall, these data lead to the conclusion that Cry1C, Cry1F and Cry1Ab proteins, even at a very high concentration, have limited effects in the early stages of zebrafish life.
Collapse
Affiliation(s)
- Leonardo Vieira
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceara, 60455-970, Fortaleza, Brazil
| | - Denise Cavalcante Hissa
- Department of Biology, Building 909, Campus Pici, Federal University of Ceara, 60455-970, Fortaleza, Brazil
| | - Terezinha Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Oncology, Maastricht University, Maastricht, the Netherlands
| | - Íris Flávia Sousa Gonçalves
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceara, 60455-970, Fortaleza, Brazil; Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, 58051-900, João Pessoa, Brazil
| | - Joseph Alberto Medeiros Evaristo
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Fábio César Sousa Nogueira
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil; Proteomics Unit, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Ana Fontenele Urano Carvalho
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceara, 60455-970, Fortaleza, Brazil; Department of Biology, Building 909, Campus Pici, Federal University of Ceara, 60455-970, Fortaleza, Brazil
| | - Davi Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceara, 60455-970, Fortaleza, Brazil; Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, 58051-900, João Pessoa, Brazil.
| |
Collapse
|
14
|
Boeckman CJ, Anderson JA, Linderblood C, Olson T, Roper J, Sturtz K, Walker C, Woods R. Environmental risk assessment of the DvSSJ1 dsRNA and the IPD072Aa protein to non-target organisms. GM CROPS & FOOD 2021; 12:459-478. [PMID: 34904520 PMCID: PMC8820247 DOI: 10.1080/21645698.2021.1982348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Event DP-Ø23211-2 (hereafter referred to as DP23211) maize expresses the DvSSJ1 double-stranded RNA (DvSSJ1 dsRNA) and the IPD072Aa protein, encoded by the ipd072Aa gene. DvSSJ1 dsRNA and the IPD072Aa protein each provide control of corn rootworms (Diabrotica spp.) when expressed in plants. As part of the environmental risk assessment (ERA), the potential hazard to non-target organisms (NTOs) exposed to the DvSSJ1 dsRNA and the IPD072Aa protein expressed in DP23211 maize was assessed. Worst-case estimated environmental concentrations (EECs) for different NTO functional groups (pollinators and pollen feeders, soil dwelling detritivores, predators and parasitoids, aquatic detritivores, insectivorous birds, and wild mammals) were calculated using worst-case assumptions. Several factors that reduce exposure to NTOs under more realistic environmental conditions were applied, when needed to provide more environmentally relevant EECs. Laboratory bioassays were conducted to assess the activity of DvSSJ1 dsRNA or the IPD072Aa protein against selected surrogate species, and margins of exposure (MOEs) were calculated by comparing the Tier I hazard study results to worst-case or refined EECs. Based on specificity and MOE values, DvSSJ1 dsRNA and the IPD072Aa protein expressed in DP23211 maize are not expected to be harmful to NTO populations at environmentally relevant concentrations.
Collapse
|
15
|
Romeis J, Widmer F. Assessing the Risks of Topically Applied dsRNA-Based Products to Non-target Arthropods. FRONTIERS IN PLANT SCIENCE 2020; 11:679. [PMID: 32582240 PMCID: PMC7289159 DOI: 10.3389/fpls.2020.00679] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/30/2020] [Indexed: 05/17/2023]
Abstract
RNA interference (RNAi) is a powerful technology that offers new opportunities for pest control through silencing of genes that are essential for the survival of arthropod pests. The approach relies on sequence-specificity of applied double-stranded (ds) RNA that can be designed to have a very narrow spectrum of both the target gene product (RNA) as well as the target organism, and thus allowing highly targeted pest control. Successful RNAi has been reported from a number of arthropod species belonging to various orders. Pest control may be achieved by applying dsRNA as foliar sprays. One of the main concerns related to the use of dsRNA is adverse environmental effects particularly on valued non-target species. Arthropods form an important part of the biodiversity in agricultural landscapes and contribute important ecosystem services. Consequently, environmental risk assessment (ERA) for potential impacts that plant protection products may have on valued non-target arthropods is legally required prior to their placement on the market. We describe how problem formulation can be used to set the context and to develop plausible pathways on how the application of dsRNA-based products could harm valued non-target arthropod species, such as those contributing to biological pest control. The current knowledge regarding the exposure to and the hazard posed by dsRNA in spray products for non-target arthropods is reviewed and suggestions are provided on how to select the most suitable test species and to conduct laboratory-based toxicity studies that provide robust, reliable and interpretable results to support the ERA.
Collapse
Affiliation(s)
- Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Franco Widmer
- Competence Division Method Development and Analytics, Agroscope, Zurich, Switzerland
| |
Collapse
|
16
|
Fischer JR, MacQuarrie GR, Malven M, Song Z, Rogan G. Dissipation of DvSnf7 RNA from Late-Season Maize Tissue in Aquatic Microcosms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1032-1040. [PMID: 32077138 DOI: 10.1002/etc.4693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
The commercialization of RNA-based agricultural products requires robust ecological risk assessments. Ecological risk is operationally defined as a function of exposure and adverse effects. Information on the environmental fate of RNA-based plant-incorporated protectants is essential to define routes and duration of exposure to potentially sensitive nontarget organisms. Providing these details in problem formulation helps focus the ecological risk assessment on the relevant species of concern. Postharvest plant residue is often considered to be the most significant route of exposure for genetically modified crops to adjacent aquatic environments. Previous studies have shown that DvSnf7 RNA from SmartStax PRO maize dissipates rapidly in both terrestrial and aquatic environments. Although these studies suggest that direct exposure to DvSnf7 RNA is likely to be low, little is known regarding the fate of DvSnf7 RNA produced in plants after entering an aquatic environment. This exposure scenario is relevant to detritivorous aquatic invertebrates that process conditioned maize tissues that enter aquatic environments. To assess potential exposure to shredders, dissipation of DvSnf7 RNA expressed maize tissue was evaluated following immersion in microcosms containing sediment and water. Concentrations of DvSnf7 RNA in the tissue were measured over a duration of 21 d. The DvSnf7 RNA dissipated rapidly from immersed maize tissue and was undetectable in the tissues after 3 d. Concentrations of DvSnf7 RNA found in tissue as well as calculated water column concentrations were below levels known to elicit effects in a highly sensitive surrogate species, supporting the conclusion of minimal risk to aquatic nontarget organisms. Environ Toxicol Chem 2020;39:1032-1040. © 2020 SETAC.
Collapse
Affiliation(s)
- Joshua R Fischer
- Regulatory Sciences, Bayer CropScience, Chesterfield, Missouri, USA
| | | | - Marianne Malven
- Regulatory Sciences, Bayer CropScience, Chesterfield, Missouri, USA
| | - Zihong Song
- Regulatory Sciences, Bayer CropScience, Chesterfield, Missouri, USA
| | - Glennon Rogan
- Regulatory Sciences, Bayer CropScience, Chesterfield, Missouri, USA
| |
Collapse
|
17
|
Bachman P, Fischer J, Song Z, Urbanczyk-Wochniak E, Watson G. Environmental Fate and Dissipation of Applied dsRNA in Soil, Aquatic Systems, and Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:21. [PMID: 32117368 PMCID: PMC7016216 DOI: 10.3389/fpls.2020.00021] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/10/2020] [Indexed: 05/10/2023]
Abstract
Two primary use patterns exist for dsRNA-based products for crop protection: in planta produced dsRNA such as in a genetically engineered (GE) crop; and topically applied dsRNA such as a spray application. To enable effective environmental risk assessments for these products, dsRNA must be successfully measured in relevant environmental compartments (soil, sediment, surface water) to provide information on potential exposure. This perspective reviews results from numerous environmental fate and degradation studies with topically applied unformulated dsRNAs to demonstrate the high lability of these molecules and low potential for persistence in the environment. Additionally, we report on results of a pilot study of topically applied dsRNA on soybean plants demonstrating similar rapid degradation under field conditions. Microbial degradation of nucleic acids in environmental compartments has been shown to be a key driver for this lack of persistence. In fact, the instability of dsRNA in the environment has posed a challenge for the development of commercial topically-applied products. Formulations or other approaches that mitigate environmental degradation may lead to development of commercially successful products but may change the known degradation kinetics of dsRNAs. The formulation of these products and the resultant impacts on the stability of the dsRNA in environmental compartments will need to be addressed using problem formulation and product formulation testing may be required on a case by case basis to ensure an effective risk assessment.
Collapse
Affiliation(s)
- Pamela Bachman
- Science Organization, The Climate Corporation, Creve Coeur, MO, United States
- Regulatory Science, Bayer Crop Science, Chesterfield, MO, United States
| | - Joshua Fischer
- Regulatory Science, Bayer Crop Science, Chesterfield, MO, United States
| | - Zihong Song
- Regulatory Science, Bayer Crop Science, Chesterfield, MO, United States
| | | | - Greg Watson
- Regulatory Science, Bayer Crop Science, Chesterfield, MO, United States
| |
Collapse
|
18
|
Raybould A. Hypothesis-Led Ecological Risk Assessment of GM Crops to Support Decision-Making About Product Use. GMOS 2020. [DOI: 10.1007/978-3-030-53183-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Chen Y, Gao Y, Zhu H, Romeis J, Li Y, Peng Y, Chen X. Effects of straw leachates from Cry1C-expressing transgenic rice on the development and reproduction of Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:630-636. [PMID: 30241091 DOI: 10.1016/j.ecoenv.2018.09.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/28/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
The transgenic rice line T1C-19 provides high resistance to lepidopteran pests because of the synthesis of the Bacillus thuringiensis (Bt) insecticidal protein Cry1C. It thus shows good prospect for commercial planting in China. Species of Cladocera, an order of aquatic arthropods commonly found in aquatic ecosystems such as rice paddies, might be exposed to the insecticidal protein released from Bt-transgenic rice-straw residues. For the study reported herein, we used Daphnia magna (water flea) as a representative of Cladocera to evaluate whether aquatic arthropods are adversely affected when exposed to Bt rice-straw leachates. We exposed D. magna to M4 medium containing various volume percentages of medium that had been incubated with T1C-19 rice straw or rice straw from its non-transformed near-isoline Minghui 63 (MH63) for 21 days. Compared with pure M4 medium (control), the fitness and developmental and reproduction parameters of D. magna decreased significantly when exposed to rice-straw leachates; conversely, no significant differences between the T1C-19 and MH63 rice-straw leachate treatments were observed, indicating that the Bt rice straw leachate did not adversely affect this non-target species.
Collapse
Affiliation(s)
- Yi Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Agroscope, Research Devision Agroecology and Environment, 8046 Zurich, Switzerland
| | - Yanjie Gao
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haojun Zhu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jörg Romeis
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Agroscope, Research Devision Agroecology and Environment, 8046 Zurich, Switzerland
| | - Yunhe Li
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yufa Peng
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiuping Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
20
|
Pott A, Otto M, Schulz R. Impact of genetically modified organisms on aquatic environments: Review of available data for the risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:687-698. [PMID: 29680759 DOI: 10.1016/j.scitotenv.2018.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/31/2018] [Accepted: 04/01/2018] [Indexed: 05/20/2023]
Abstract
The aquatic environment is strongly connected to the surrounding agricultural landscapes, which regularly serve as sources of stressors such as agrochemicals. Genetically modified crops, which are cultivated on a large scale in many countries, may also act as stressors. Despite the commercial use of genetically modified organisms (GMOs) for over 20years, their impact on the aquatic environment came into focus only 10years ago. We present the status quo of the available scientific data in order to provide an input for informed aquatic risk assessment of GMOs. We could identify only 39 publications, including 84 studies, dealing with GMOs in the aquatic environment, and our analysis shows substantial knowledge gaps. The available information is restricted to a small number of crop plants, traits, events, and test organisms. The analysis of effect studies reveals that only a narrow range of organisms has been tested and that studies on combinatorial actions of stressors are virtually absent. The analysis of fate studies shows that many aspects, such as the fate of leached toxins, degradation of plant material, and distribution of crop residues in the aquatic habitat, are insufficiently investigated. Together with these research needs, we identify standardization of test methods as an issue of high priority, both for research and risk assessment needed for GMO regulation.
Collapse
Affiliation(s)
- Antonia Pott
- Federal Agency for Nature Conservation (BfN), Konstantinstrasse 110, 53179 Bonn, Germany; Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany.
| | - Mathias Otto
- Federal Agency for Nature Conservation (BfN), Konstantinstrasse 110, 53179 Bonn, Germany
| | - Ralf Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
| |
Collapse
|
21
|
Gao YJ, Zhu HJ, Chen Y, Li YH, Peng YF, Chen XP. Safety Assessment of Bacillus thuringiensis Insecticidal Proteins Cry1C and Cry2A with a Zebrafish Embryotoxicity Test. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4336-4344. [PMID: 29653490 DOI: 10.1021/acs.jafc.8b01070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As a result of the large-scale planting of transgenic Bacillus thuringiensis (Bt) crops, fish would be exposed to freely soluble Bt insecticidal protein(s) that are released from Bt crop tissues into adjacent bodies of water or by way of direct feeding on deposited plant material. To assess the safety of two Bt proteins Cry1C and Cry2A to fish, we used zebrafish as a representative species and exposed their embryos to 0.1, 1, and 10 mg/L of the two Cry proteins until 132 h post-fertilization and then several developmental, biochemical, and molecular parameters were evaluated. Chlorpyrifos (CPF), a known toxicant to aquatic organisms, was used as a positive control. Although CPF exposure resulted in significant developmental, biochemical, and molecular changes in the zebrafish embryos, there were almost no significant differences after Cry1C or Cry2A exposure. Thus, we conclude that zebrafish embryos are not sensitive to Cry1C and Cry2A insecticidal proteins at test concentrations.
Collapse
Affiliation(s)
- Yan-Jie Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 West Yuanmingyuan Road , Haidian District, Beijing 100193 , People's Republic of China
| | - Hao-Jun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 West Yuanmingyuan Road , Haidian District, Beijing 100193 , People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center , Chinese Academy of Fishery Sciences , Wuxi , Jiangsu 214081 , People's Republic of China
| | - Yi Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 West Yuanmingyuan Road , Haidian District, Beijing 100193 , People's Republic of China
- Research Division Agroecology and Environment , Agroscope , 8046 Zurich , Switzerland
| | - Yun-He Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 West Yuanmingyuan Road , Haidian District, Beijing 100193 , People's Republic of China
| | - Yu-Fa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 West Yuanmingyuan Road , Haidian District, Beijing 100193 , People's Republic of China
| | - Xiu-Ping Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 West Yuanmingyuan Road , Haidian District, Beijing 100193 , People's Republic of China
| |
Collapse
|
22
|
Chen Y, Yang Y, Zhu H, Romeis J, Li Y, Peng Y, Chen X. Safety of Bacillus thuringiensis Cry1C protein for Daphnia magna based on different functional traits. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:631-636. [PMID: 28926817 DOI: 10.1016/j.ecoenv.2017.08.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Cry1C is a Bacillus thuringiensis (Bt) insecticidal protein and it can be produced by transgenic rice lines developed in China. Cladocera species are common aquatic arthropods that may be exposed to insecticidal proteins produced in Bt-transgenic plants through ingestion of pollen or crop residues in water. As the cladoceran Daphnia magna plays an important role in the aquatic food chain, it is important to assess the possible effects of Bt crops to this species. To evaluate the safety of the Cry1C protein for D. magna, individuals were exposed to different concentrations of purified Cry1C protein in M4 medium for 21 days. Potassium dichromate (K2Cr2O7), a known toxicant to D. magna, was added to M4 medium as a positive control treatment, and pure M4 medium was used as a negative control. Our results show that developmental, reproductive, and biochemical parameters of D. magna were not significantly different between Cry1C and negative control treatments but were significantly inhibited by the positive control. We thus conclude that D. magna is insensitive to Cry1C.
Collapse
Affiliation(s)
- Yi Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Yang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haojun Zhu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jörg Romeis
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Agroscope, Research Division Agroecology and Environment, 8046 Zurich, Switzerland
| | - Yunhe Li
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yufa Peng
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiuping Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
23
|
Hilbeck A, Bundschuh R, Bundschuh M, Hofmann F, Oehen B, Otto M, Schulz R, Trtikova M. Procedure to select test organisms for environmental risk assessment of genetically modified crops in aquatic systems. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2017; 13:974-979. [PMID: 28755496 DOI: 10.1002/ieam.1965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/02/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
For a long time, the environmental risk assessment (ERA) of genetically modified (GM) crops focused mainly on terrestrial ecosystems. This changed when it was scientifically established that aquatic ecosystems are exposed to GM crop residues that may negatively affect aquatic species. To assist the risk assessment process, we present a tool to identify ecologically relevant species usable in tiered testing prior to authorization or for biological monitoring in the field. The tool is derived from a selection procedure for terrestrial ecosystems with substantial but necessary changes to adequately consider the differences in the type of ecosystems. By using available information from the Water Framework Directive (2000/60/EC), the procedure can draw upon existing biological data on aquatic systems. The proposed procedure for aquatic ecosystems was tested for the first time during an expert workshop in 2013, using the cultivation of Bacillus thuringiensis (Bt) maize as the GM crop and 1 stream type as the receiving environment in the model system. During this workshop, species executing important ecological functions in aquatic environments were identified in a stepwise procedure according to predefined ecological criteria. By doing so, we demonstrated that the procedure is practicable with regard to its goal: From the initial long list of 141 potentially exposed aquatic species, 7 species and 1 genus were identified as the most suitable candidates for nontarget testing programs. Integr Environ Assess Manag 2017;13:974-979. © 2017 SETAC.
Collapse
Affiliation(s)
- Angelika Hilbeck
- Swiss Federal Institute of Technology, Institute of Integrative Biology, Zurich, Switzerland
| | - Rebecca Bundschuh
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Mirco Bundschuh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Frieder Hofmann
- Ökologiebüro TIEM Integrated Environmental Monitoring GbR, Bremen, Germany
| | - Bernadette Oehen
- Swiss Federal Institute of Technology, Institute of Integrative Biology, Zurich, Switzerland
| | - Mathias Otto
- German Federal Agency for Nature Conservation (BfN), Bonn, Germany
| | - Ralf Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Miluse Trtikova
- Swiss Federal Institute of Technology, Institute of Integrative Biology, Zurich, Switzerland
| |
Collapse
|
24
|
Horn P, Schlichting A, Baum C, Hammesfahr U, Thiele-Bruhn S, Leinweber P, Broer I. Reprint of "Fast and sensitive in vivo studies under controlled environmental conditions to substitute long-term field trials with genetically modified plants". J Biotechnol 2017; 257:22-34. [PMID: 28755910 DOI: 10.1016/j.jbiotec.2017.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 10/19/2022]
Abstract
We introduce an easy, fast and effective method to analyze the influence of genetically modified (GM) plants on soil and model organisms in the laboratory to substitute laborious and time consuming field trials. For the studies described here we focused on two GM plants of the so-called 3rd generation: GM plants producing pharmaceuticals (PMP) and plant made industrials (PMI). Cyanophycin synthetase (cphA) was chosen as model for PMI and Choleratoxin B (CTB) as model for PMP. The model genes are expressed in transgenic roots of composite Vicia hirsuta plants grown in petri dishes for semi-sterile growth or small containers filled with non-sterile soil. No significant influence of the model gene expression on root induction, growth, biomass, interaction with symbionts such as rhizobia (number, size and functionality of nodules, selection of nodulating strains) or arbuscular mycorrhizal fungi could be detected. In vitro, but not in situ under field conditions, structural diversity of the bulk soil microbial community between transgenic and non-transgenic cultivars was determined by PLFA pattern-derived ratios of bacteria: fungi and of gram+: gram- bacteria. Significant differences in PLFA ratios were associated with dissimilarities in the quantity and molecular composition of rhizodeposits as revealed by Py-FIMS analyses. Contrary to field trials, where small effects based on the transgene expression might be hidden by the immense influence of various environmental factors, our in vitro system can detect even minor effects and correlates them to transgene expression with less space, time and labour.
Collapse
Affiliation(s)
- Patricia Horn
- Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - André Schlichting
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Christel Baum
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Ute Hammesfahr
- Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany
| | - Sören Thiele-Bruhn
- Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany
| | - Peter Leinweber
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Inge Broer
- Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.
| |
Collapse
|
25
|
Griffiths NA, Tank JL, Royer TV, Rosi EJ, Shogren AJ, Frauendorf TC, Whiles MR. Occurrence, leaching, and degradation of Cry1Ab protein from transgenic maize detritus in agricultural streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 592:97-105. [PMID: 28314135 DOI: 10.1016/j.scitotenv.2017.03.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
The insecticidal Cry1Ab protein expressed by transgenic (Bt) maize can enter adjacent water bodies via multiple pathways, but its fate in stream ecosystems is not as well studied as in terrestrial systems. In this study, we used a combination of field sampling and laboratory experiments to examine the occurrence, leaching, and degradation of soluble Cry1Ab protein derived from Bt maize in agricultural streams. We surveyed 11 agricultural streams in northwestern Indiana, USA, on 6 dates that encompassed the growing season, crop harvest, and snowmelt/spring flooding, and detected Cry1Ab protein in the water column and in flowing subsurface tile drains at concentrations of 3-60ng/L. In a series of laboratory experiments, submerged Bt maize leaves leached Cry1Ab into stream water with 1% of the protein remaining in leaves after 70d. Laboratory experiments suggested that dissolved Cry1Ab protein degraded rapidly in microcosms containing water-column microorganisms, and light did not enhance breakdown by stimulating assimilatory uptake of the protein by autotrophs. The common detection of Cry1Ab protein in streams sampled across an agricultural landscape, combined with laboratory studies showing rapid leaching and degradation, suggests that Cry1Ab may be pseudo-persistent at the watershed scale due to the multiple input pathways from the surrounding terrestrial environment.
Collapse
Affiliation(s)
- Natalie A Griffiths
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jennifer L Tank
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Todd V Royer
- School of Public and Environmental Affairs, Indiana University, 1315 East Tenth Street, Bloomington, IN 47405, USA
| | - Emma J Rosi
- Department of Biology, Loyola University Chicago, 6525 N. Sheridan Road, Chicago, IL 60626, USA
| | - Arial J Shogren
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Therese C Frauendorf
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matt R Whiles
- Department of Zoology and Center for Ecology, Southern Illinois University, Carbondale, IL 62901-6501, USA
| |
Collapse
|
26
|
Pálinkás Z, Kiss J, Zalai M, Szénási Á, Dorner Z, North S, Woodward G, Balog A. Effects of genetically modified maize events expressing Cry34Ab1, Cry35Ab1, Cry1F, and CP4 EPSPS proteins on arthropod complex food webs. Ecol Evol 2017; 7:2286-2293. [PMID: 28405292 PMCID: PMC5383485 DOI: 10.1002/ece3.2848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/16/2017] [Accepted: 02/07/2017] [Indexed: 11/21/2022] Open
Abstract
Four genetically modified (GM) maize (Zea mays L.) hybrids (coleopteran resistant, coleopteran and lepidopteran resistant, lepidopteran resistant and herbicide tolerant, coleopteran and herbicide tolerant) and its non-GM control maize stands were tested to compare the functional diversity of arthropods and to determine whether genetic modifications alter the structure of arthropods food webs. A total number of 399,239 arthropod individuals were used for analyses. The trophic groups' number and the links between them indicated that neither the higher magnitude of Bt toxins (included resistance against insect, and against both insects and glyphosate) nor the extra glyphosate treatment changed the structure of food webs. However, differences in the average trophic links/trophic groups were detected between GM and non-GM food webs for herbivore groups and plants. Also, differences in characteristic path lengths between GM and non-GM food webs for herbivores were observed. Food webs parameterized based on 2-year in-field assessments, and their properties can be considered a useful and simple tool to evaluate the effects of Bt toxins on non-target organisms.
Collapse
Affiliation(s)
- Zoltán Pálinkás
- Institute of Plant ProtectionFaculty of Agriculture and Environmental SciencesSzent István UniversityGödöllőHungary
| | - József Kiss
- Institute of Plant ProtectionFaculty of Agriculture and Environmental SciencesSzent István UniversityGödöllőHungary
| | - Mihály Zalai
- Institute of Plant ProtectionFaculty of Agriculture and Environmental SciencesSzent István UniversityGödöllőHungary
| | - Ágnes Szénási
- Institute of Plant ProtectionFaculty of Agriculture and Environmental SciencesSzent István UniversityGödöllőHungary
| | - Zita Dorner
- Institute of Plant ProtectionFaculty of Agriculture and Environmental SciencesSzent István UniversityGödöllőHungary
| | - Samuel North
- Faculty of Natural SciencesDepartment of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Guy Woodward
- Faculty of Natural SciencesDepartment of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Adalbert Balog
- Department of HorticultureFaculty of Technical and Human ScienceSapientia Hungarian University of TransylvaniaCluj NapocaRomania
| |
Collapse
|
27
|
Fischer JR, Zapata F, Dubelman S, Mueller GM, Uffman JP, Jiang C, Jensen PD, Levine SL. Aquatic fate of a double-stranded RNA in a sediment---water system following an over-water application. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:727-734. [PMID: 27530554 DOI: 10.1002/etc.3585] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/08/2016] [Accepted: 08/13/2016] [Indexed: 05/20/2023]
Abstract
Determining the rate of biodegradation of double-stranded RNA (dsRNA) in the environment is an essential element of a comprehensive risk assessment of an RNA-based agricultural product. This information is used during problem formulation to define relevant routes and durations of environmental exposure for in planta-expressed dsRNA. Although exposure to biotechnology-derived crops expressing dsRNA traits in the aquatic environment is predicted to be minimal, little is known regarding the fate of dsRNA in these environments. To assess exposure to aquatic environments, a study was conducted to measure the rate of biodegradation of DvSnf7 dsRNA in aerobic water-sediment systems. Aquatic systems containing natural water and sediments that varied in physical and chemical characteristics were treated with dsRNA by applying DvSnf7 dsRNA directly to the water column. In the present study, DvSnf7 dsRNA dissipated rapidly from the water phase and was undetectable within 7 d as measured by QuantiGene (Affymetrix) and a sensitive insect bioassay in these diverse systems. Degradation kinetics estimated a half-life (time to 50% dissipation [DT50]) of less than 3 d and a time to 90% dissipation of approximately 4 d. Further analysis indicated that DvSnf7 dsRNA had DT50 values of less than 6 d in both sediment-free systems containing natural water and systems with only sediment. Taken together, the results of the present study indicate that dsRNA-based agricultural products rapidly degrade and consequently are unlikely to persist in aquatic environments. Environ Toxicol Chem 2017;36:727-734. © 2016 SETAC.
Collapse
Affiliation(s)
| | - Fatima Zapata
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | - Samuel Dubelman
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | | | - Joshua P Uffman
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | - Changjian Jiang
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | - Peter D Jensen
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | - Steven L Levine
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Horn P, Schlichting A, Baum C, Hammesfahr U, Thiele-Bruhn S, Leinweber P, Broer I. Fast and sensitive in vivo studies under controlled environmental conditions to substitute long-term field trials with genetically modified plants. J Biotechnol 2017; 243:48-60. [PMID: 28011129 DOI: 10.1016/j.jbiotec.2016.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
Abstract
We introduce an easy, fast and effective method to analyze the influence of genetically modified (GM) plants on soil and model organisms in the laboratory to substitute laborious and time consuming field trials. For the studies described here we focused on two GM plants of the so-called 3rd generation: GM plants producing pharmaceuticals (PMP) and plant made industrials (PMI). Cyanophycin synthetase (cphA) was chosen as model for PMI and Choleratoxin B (CTB) as model for PMP. The model genes are expressed in transgenic roots of composite Vicia hirsuta plants grown in petri dishes for semi-sterile growth or small containers filled with non-sterile soil. No significant influence of the model gene expression on root induction, growth, biomass, interaction with symbionts such as rhizobia (number, size and functionality of nodules, selection of nodulating strains) or arbuscular mycorrhizal fungi could be detected. In vitro, but not in situ under field conditions, structural diversity of the bulk soil microbial community between transgenic and non-transgenic cultivars was determined by PLFA pattern-derived ratios of bacteria: fungi and of gram+: gram- bacteria. Significant differences in PLFA ratios were associated with dissimilarities in the quantity and molecular composition of rhizodeposits as revealed by Py-FIMS analyses. Contrary to field trials, where small effects based on the transgene expression might be hidden by the immense influence of various environmental factors, our in vitro system can detect even minor effects and correlates them to transgene expression with less space, time and labour.
Collapse
Affiliation(s)
- Patricia Horn
- Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - André Schlichting
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Christel Baum
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Ute Hammesfahr
- Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany
| | - Sören Thiele-Bruhn
- Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany
| | - Peter Leinweber
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Inge Broer
- Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.
| |
Collapse
|
29
|
Venter HJ, Bøhn T. Interactions between Bt crops and aquatic ecosystems: A review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2891-2902. [PMID: 27530353 DOI: 10.1002/etc.3583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/13/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
The term Bt crops collectively refers to crops that have been genetically modified to include a gene (or genes) sourced from Bacillus thuringiensis (Bt) bacteria. These genes confer the ability to produce proteins toxic to certain insect pests. The interaction between Bt crops and adjacent aquatic ecosystems has received limited attention in research and risk assessment, despite the fact that some Bt crops have been in commercial use for 20 yr. Reports of effects on aquatic organisms such as Daphnia magna, Elliptio complanata, and Chironomus dilutus suggest that some aquatic species may be negatively affected, whereas other reports suggest that the decreased use of insecticides precipitated by Bt crops may benefit aquatic communities. The present study reviews the literature regarding entry routes and exposure pathways by which aquatic organisms may be exposed to Bt crop material, as well as feeding trials and field surveys that have investigated the effects of Bt-expressing plant material on such organisms. The present review also discusses how Bt crop development has moved past single-gene events, toward multigene stacked varieties that often contain herbicide resistance genes in addition to multiple Bt genes, and how their use (in conjunction with co-technology such as glyphosate/Roundup) may impact and interact with aquatic ecosystems. Lastly, suggestions for further research in this field are provided. Environ Toxicol Chem 2016;35:2891-2902. © 2016 SETAC.
Collapse
Affiliation(s)
- Hermoine J Venter
- Unit for Environmental Sciences and Management, North-West University Potchefstroom Campus, North West Province, South Africa
| | - Thomas Bøhn
- GenØk-Center for Biosafety, Tromsø, Troms, Norway
| |
Collapse
|
30
|
Haller S, Meissle M, Romeis J. Establishing a system with Drosophila melanogaster (Diptera: Drosophilidae) to assess the non-target effects of gut-active insecticidal compounds. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1794-1804. [PMID: 27796688 DOI: 10.1007/s10646-016-1722-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
Potentially adverse effects on ecosystem functioning by the planting of insect-resistant, genetically engineered plants or by the direct application of insecticidal compounds are carefully evaluated in pre-market risk assessments. To date, few studies have assessed the potential risks of genetically engineered crops or insecticidal compounds on the survival and fitness of dipteran species, despite their important contribution to ecosystem services such as decomposition in agricultural systems. Therefore, we propose that Drosophila melanogaster Meigen (Drosophilidae) be used as a surrogate species for the order Diptera and for the functional guild of soil arthropod decomposers in pre-market risk assessments. We developed two assays to assess the toxicity of gut-active insecticidal compounds to D. melanogaster. One assay uses groups of fly larvae, and the other uses individuals. Cryolite, a mineral pesticide, proved to be an adequate positive control. The effects of cryolite on D. melanogaster larvae were comparable between the two assays. Statistical power analyses were used to define the number of replications required to identify different effect sizes between control and treatment groups. Finally, avidin, E-64, GNA, and SBTI were used as test compounds to validate the individual-based assay; only avidin adversely affected D. melanogaster. These results indicate that both D. melanogaster assays will be useful for early tier risk assessment concerning the effects of orally active compounds on non-target dipterans.
Collapse
Affiliation(s)
- Simone Haller
- Agroscope, Institute for Sustainability Sciences ISS, Reckenholzstrasse 191, Zurich, 8046, Switzerland.
| | - Michael Meissle
- Agroscope, Institute for Sustainability Sciences ISS, Reckenholzstrasse 191, Zurich, 8046, Switzerland
| | - Jörg Romeis
- Agroscope, Institute for Sustainability Sciences ISS, Reckenholzstrasse 191, Zurich, 8046, Switzerland.
| |
Collapse
|
31
|
Plácido A, de Oliveira Farias EA, Marani MM, Vasconcelos AG, Mafud AC, Mascarenhas YP, Eiras C, Leite JR, Delerue-Matos C. Layer-by-layer films containing peptides of the Cry1Ab16 toxin from Bacillus thuringiensis for potential biotechnological applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:832-41. [DOI: 10.1016/j.msec.2016.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/26/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023]
|
32
|
Bundschuh R, Kuhn U, Bundschuh M, Naegele C, Elsaesser D, Schlechtriemen U, Oehen B, Hilbeck A, Otto M, Schulz R, Hofmann F. Prioritizing stream types according to their potential risk to receive crop plant material--A GIS-based procedure to assist in the risk assessment of genetically modified crops and systemic insecticide residues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 547:226-233. [PMID: 26789360 DOI: 10.1016/j.scitotenv.2015.12.124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
Crop plant residues may enter aquatic ecosystems via wind deposition or surface runoff. In the case of genetically modified crops or crops treated with systemic pesticides, these materials may contain insecticidal Bt toxins or pesticides that potentially affect aquatic life. However, the particular exposure pattern of aquatic ecosystems (i.e., via plant material) is not properly reflected in current risk assessment schemes, which primarily focus on waterborne toxicity and not on plant material as the route of uptake. To assist in risk assessment, the present study proposes a prioritization procedure of stream types based on the freshwater network and crop-specific cultivation data using maize in Germany as a model system. To identify stream types with a high probability of receiving crop materials, we developed a formalized, criteria-based and thus transparent procedure that considers the exposure-related parameters, ecological status--an estimate of the diversity and potential vulnerability of local communities towards anthropogenic stress--and availability of uncontaminated reference sections. By applying the procedure to maize, ten stream types out of 38 are expected to be the most relevant if the ecological effects from plant-incorporated pesticides need to be evaluated. This information is an important first step to identifying habitats within these stream types with a high probability of receiving crop plant material at a more local scale, including accumulation areas. Moreover, the prioritization procedure developed in the present study may support the selection of aquatic species for ecotoxicological testing based on their probability of occurrence in stream types having a higher chance of exposure. Finally, this procedure can be adapted to any geographical region or crop of interest and is, therefore, a valuable tool for a site-specific risk assessment of crop plants carrying systemic pesticides or novel proteins, such as insecticidal Bt toxins, expressed in genetically modified crops.
Collapse
Affiliation(s)
- Rebecca Bundschuh
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau, Germany.
| | - Ulrike Kuhn
- TIEM Integrierte Umweltüberwachung GbR, Hohenzollernstr. 20, D-44135 Dortmund, Germany; Büro Kuhn, Voltastr. 77, D-28357, Bremen, Germany
| | - Mirco Bundschuh
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, S-75007, Uppsala, Sweden
| | - Caroline Naegele
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau, Germany
| | - David Elsaesser
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau, Germany; REE-Mix GmbH, Fortstrasse 7, D-76829 Landau, Germany
| | - Ulrich Schlechtriemen
- TIEM Integrierte Umweltüberwachung GbR, Hohenzollernstr. 20, D-44135 Dortmund, Germany; Sachverständigenbüro Schlechtriemen, Hohenzollernstr. 20, D-44135 Dortmund, Germany
| | - Bernadette Oehen
- ETH Zurich, Integrative Biology, Universitätstr 16, CH-8092, Zurich, Switzerland
| | - Angelika Hilbeck
- ETH Zurich, Integrative Biology, Universitätstr 16, CH-8092, Zurich, Switzerland
| | - Mathias Otto
- Federal Agency for Nature Conservation, Konstantinstrasse 110, D-53179 Bonn, Germany
| | - Ralf Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau, Germany
| | - Frieder Hofmann
- TIEM Integrierte Umweltüberwachung GbR, Hohenzollernstr. 20, D-44135 Dortmund, Germany; Ökologiebüro Hofmann, Rennstieg 25, D-28205, Bremen, Germany
| |
Collapse
|
33
|
De Schrijver A, Devos Y, De Clercq P, Gathmann A, Romeis J. Quality of laboratory studies assessing effects of Bt-proteins on non-target organisms: minimal criteria for acceptability. Transgenic Res 2016; 25:395-411. [DOI: 10.1007/s11248-016-9950-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/07/2016] [Indexed: 11/28/2022]
|
34
|
|
35
|
Chen X, Wang J, Zhu H, Li Y, Ding J, Peng Y. Effects of Transgenic cry1Ca Rice on the Development of Xenopus laevis. PLoS One 2015; 10:e0145412. [PMID: 26695426 PMCID: PMC4690606 DOI: 10.1371/journal.pone.0145412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 12/03/2015] [Indexed: 11/29/2022] Open
Abstract
In fields of genetically modified, insect-resistant rice expressing Bacillus thuringiensis (Bt) proteins, frogs are exposed to Bt Cry proteins by consuming both target and non-target insects, and through their highly permeable skin. In the present study, we assessed the potential risk posed by transgenic cry1Ca rice (T1C-19) on the development of a frog species by adding purified Cry1Ca protein or T1C-19 rice straw into the rearing water of Xenopus laevis tadpoles, and by feeding X. laevis froglets diets containing rice grains of T1C-19 or its non-transformed counterpart MH63. Our results showed that there were no significant differences among groups receiving 100 μg L–1 or 10 μg L–1 Cry1Ca and the blank control in terms of time to completed metamorphosis, survival rate, body weight, body length, organ weight and liver enzyme activity after being exposed to the Cry1Ca (P > 0.05). Although some detection indices in the rice straw groups were significantly different from those of the blank control group (P < 0.05), there was no significant difference between the T1C-19 and MH63 rice straw groups. Moreover, there were no significant differences in the mortality rate, body weight, daily weight gain, liver and fat body weight of the froglets between the T1C-19 and MH63 dietary groups after 90 days, and there were no abnormal pathological changes in the stomach, intestines, livers, spleens and gonads. Thus, we conclude that the planting of transgenic cry1Ca rice will not adversely affect frog development.
Collapse
Affiliation(s)
- Xiuping Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- * E-mail: (XC); (YP)
| | - Jiamei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Haojun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiatong Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- * E-mail: (XC); (YP)
| |
Collapse
|
36
|
Delaney B. Safety assessment of foods from genetically modified crops in countries with developing economies. Food Chem Toxicol 2015; 86:132-43. [PMID: 26456807 DOI: 10.1016/j.fct.2015.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Population growth particularly in countries with developing economies will result in a need to increase food production by 70% by the year 2050. Biotechnology has been utilized to produce genetically modified (GM) crops for insect and weed control with benefits including increased crop yield and will also be used in emerging countries. A multicomponent safety assessment paradigm has been applied to individual GM crops to determine whether they as safe as foods from non-GM crops. This paper reviews methods to assess the safety of foods from GM crops for safe consumption from the first generation of GM crops. The methods can readily be applied to new products developed within country and this paper will emphasize the concept of data portability; that safety data produced in one geographic location is suitable for safety assessment regardless of where it is utilized.
Collapse
Affiliation(s)
- Bryan Delaney
- Global Industry Affairs and Regulatory, DuPont Pioneer, 7100 NW 62nd Avenue, P.O. Box 1004, Johnston, IA 50131, United States.
| |
Collapse
|
37
|
Raybould A, Burns A, Hamer M. High concentrations of protein test substances may have non-toxic effects on Daphnia magna: implications for regulatory study designs and ecological risk assessments for GM crops. GM CROPS & FOOD 2015; 5:296-301. [PMID: 25523175 PMCID: PMC5033194 DOI: 10.4161/21645698.2014.950540] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Laboratory testing for possible adverse effects of insecticidal proteins on non-target organisms (NTOs) is an important part of many ecological risk assessments for regulatory decision-making about the cultivation of insect-resistant genetically modified (IRGM) crops. To increase confidence in the risk assessments, regulatory guidelines for effects testing specify that representative surrogate species for NTOs are exposed to concentrations of insecticidal proteins that are in excess of worst-case predicted exposures in the field. High concentrations in effects tests are achieved by using protein test substances produced in microbes, such as Escherichia coli. In a study that exposed Daphnia magna to a single high concentration of a microbial test substance containing Vip3Aa20, the insecticidal protein in MIR162 maize, small reductions in growth were observed. These effects were surprising as many other studies strongly suggest that the activity of Vip3Aa20 is limited to Lepidoptera. A plausible explanation for the effect on growth is that high concentrations of test substance have a non-toxic effect on Daphnia, perhaps by reducing its feeding rate. A follow-up study tested that hypothesis by exposing D. magna to several concentrations of Vip3Aa20, and a high concentration of a non-toxic protein, bovine serum albumin (BSA). Vip3Aa20 and BSA had sporadic effects on the reproduction and growth of D. magna. The pattern of the effects suggests that they result from non-toxic effects of high concentrations of protein, and not from toxicity. The implications of these results for regulatory NTO effects testing and ERA of IRGM crops are discussed.
Collapse
Affiliation(s)
- Alan Raybould
- a Syngenta ; Jealott's Hill International Research Center ; Bracknell , Berkshire , UK
| | | | | |
Collapse
|
38
|
Strain KE, Lydy MJ. The fate and transport of the Cry1Ab protein in an agricultural field and laboratory aquatic microcosms. CHEMOSPHERE 2015; 132:94-100. [PMID: 25828252 DOI: 10.1016/j.chemosphere.2015.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 06/04/2023]
Abstract
Genetically engineered crops expressing insecticidal crystalline proteins derived from Bacillus thuringiensis (Bt), were commercialized almost two decades ago as a means to manage agricultural pests. The Bt proteins are highly specific and only lethal upon ingestion, limiting the scope of toxicity to target insects. However, concern of exposure to non-target organisms and negative public perceptions regarding Bt crops has caused controversy surrounding their use. The objective of this research was to monitor the fate and transport of a Bt protein, Cry1Ab, in a large-scale agricultural field containing maize expressing the Cry1Ab protein and a non-Bt near isoline, and in aquatic microcosms. The highest environmental concentrations of the Cry1Ab protein were found in runoff water and sediment, up to 130ngL(-1) and 143ngg(-1) dry weight, respectively, with the Cry1Ab protein detected in both Bt and non-Bt maize fields. As surface runoff and residual crop debris can transport Bt proteins to waterways adjacent to agricultural fields, a series of laboratory experiments were conducted to determine the potential fate of the Cry1Ab protein under different conditions. The results showed that sediment type and temperature can influence the degradation of the Cry1Ab protein in an aquatic system and that the Cry1Ab protein can persist for up to two months. Although Cry1Ab protein concentrations measured in the field soil indicate little exposure to terrestrial organisms, the consistent input of Bt-contaminated runoff and crop debris into agricultural waterways is relevant to understanding potential consequences to aquatic species.
Collapse
Affiliation(s)
- Katherine E Strain
- Center for Fisheries, Aquaculture, and Aquatic Sciences and Department of Zoology, Southern Illinois University Carbondale, IL 62901, USA.
| | - Michael J Lydy
- Center for Fisheries, Aquaculture, and Aquatic Sciences and Department of Zoology, Southern Illinois University Carbondale, IL 62901, USA.
| |
Collapse
|
39
|
Whiting SA, Lydy MJ. A site-specific ecological risk assessment for corn-associated insecticides. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2015; 11:445-458. [PMID: 25557061 DOI: 10.1002/ieam.1613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/08/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
A site-specific ecological risk assessment (ERA) was conducted to examine the simultaneous use of genetically modified corn (Bt corn) with a neonicotinoid seed coating, clothianidin, and use of a granular insecticide, tefluthrin, to protect crops from pest damage. A field study was conducted on site, and exposure data from the literature were summarized to determine the matrices and exposure concentrations that nontarget species could typically experience within an agricultural ecosystem. To determine ecological effects on nontarget species, acute toxicity bioassays were conducted on earthworms (Eisenia fetida), amphipods (Hyalella azteca), and Elmid riffle beetle larvae (Ancyronyx spp.) in which the test species were exposed to single insecticides as well as the mixture of the 3 insecticides. In the risk characterization section of the ERA, stressor-response profiles for each species tested were compared with field distributions of the insecticides, and a margin of safety at the 10th percentile (MOS10) was calculated to estimate risk. No acute toxicity was observed in any of the 3 nontarget species after exposure to senescent Bt corn leaf tissue. Large MOS10 values were calculated for clothianidin to the nontarget species. When bioassays were compared with tefluthrin field distributions, very low MOS10 values were calculated for earthworms (0.06) and H. azteca (0.08) because the environmental concentrations often exceeded the stressor-response profile. No increased toxicity was observed when nontarget species were exposed to a mixture of the 3 insecticides. In summary, the genetically modified corn insecticidal proteins and clothianidin were not found at environmental concentrations exceeding benchmark values for ecological effects, but tefluthrin was consistently detected in the environment at levels that could be causing toxicity to nontarget species, especially if this pyrethroid is able to travel off site.
Collapse
Affiliation(s)
- Sara A Whiting
- Center for Fisheries, Aquaculture, and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, Illinois, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture, and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
40
|
Koch MS, Ward JM, Levine SL, Baum JA, Vicini JL, Hammond BG. The food and environmental safety of Bt crops. FRONTIERS IN PLANT SCIENCE 2015; 6:283. [PMID: 25972882 PMCID: PMC4413729 DOI: 10.3389/fpls.2015.00283] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/08/2015] [Indexed: 05/28/2023]
Abstract
Bacillus thuringiensis (Bt) microbial pesticides have a 50-year history of safety in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s). Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals, and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms.
Collapse
|
41
|
Koch MS, Ward JM, Levine SL, Baum JA, Vicini JL, Hammond BG. The food and environmental safety of Bt crops. FRONTIERS IN PLANT SCIENCE 2015; 6:283. [PMID: 25972882 DOI: 10.3389/fpls.2015.0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/08/2015] [Indexed: 05/28/2023]
Abstract
Bacillus thuringiensis (Bt) microbial pesticides have a 50-year history of safety in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s). Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals, and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms.
Collapse
|
42
|
Garcia-Alonso M, Hendley P, Bigler F, Mayeregger E, Parker R, Rubinstein C, Satorre E, Solari F, McLean MA. Transportability of confined field trial data for environmental risk assessment of genetically engineered plants: a conceptual framework. Transgenic Res 2014; 23:1025-41. [PMID: 24733670 PMCID: PMC4204004 DOI: 10.1007/s11248-014-9785-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/06/2014] [Indexed: 11/29/2022]
Abstract
It is commonly held that confined field trials (CFTs) used to evaluate the potential adverse environmental impacts of a genetically engineered (GE) plant should be conducted in each country where cultivation is intended, even when relevant and potentially sufficient data are already available from studies conducted elsewhere. The acceptance of data generated in CFTs "out of country" can only be realized in practice if the agro-climatic zone where a CFT is conducted is demonstrably representative of the agro-climatic zones in those geographies to which the data will be transported. In an attempt to elaborate this idea, a multi-disciplinary Working Group of scientists collaborated to develop a conceptual framework and associated process that can be used by the regulated and regulatory communities to support transportability of CFT data for environmental risk assessment (ERA). As proposed here, application of the conceptual framework provides a scientifically defensible process for evaluating if existing CFT data from remote sites are relevant and/or sufficient for local ERAs. Additionally, it promotes a strategic approach to identifying CFT site locations so that field data will be transportable from one regulatory jurisdiction to another. Application of the framework and process should be particularly beneficial to public sector product developers and small enterprises that develop innovative GE events but cannot afford to replicate redundant CFTs, and to regulatory authorities seeking to improve the deployment of limited institutional resources.
Collapse
Affiliation(s)
| | - Paul Hendley
- Phasera Ltd., 7 Kenilworth Avenue, Bracknell, Berkshire, RG12 2JJ UK
| | - Franz Bigler
- Agroscope Reckenholz-Tänikon, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Edgar Mayeregger
- Unidad de Gestión del Riesgo, Ministerio de Agricultura, Asunción, República del Paraguay
| | - Ronald Parker
- Environmental Fate and Effects Division, Office of Pesticide Programs, United States Environmental Protection Agency, One Potomac Yard, 2777 S. Crystal Drive, Arlington, VA 22202 USA
| | - Clara Rubinstein
- ILSI Argentina, Av Santa Fe 1145, 4° piso, C1059ABF Buenos Aires, Argentina
| | - Emilio Satorre
- IFEVA, Cátedra de Cerealicultura, Facultad de Agronomía y Veterinaria, Universidad de Buenos Aires, Avda. San Martín 4453, Buenos Aires, Argentina
| | - Fernando Solari
- Monsanto Argentina SAIC, Estacion Experimental Fontezuela, Ruta 8 km 214, Fontezuela, Partido de Pergamino, Buenos Aires, Argentina
| | - Morven A. McLean
- Center for Environmental Risk Assessment, ILSI Research Foundation, 1156 Fifteenth Street NW, Suite 200, Washington, DC 20005 USA
| |
Collapse
|
43
|
Wang JM, Chen XP, Liang YY, Zhu HJ, Ding JT, Peng YF. Influence of transgenic rice expressing a fused Cry1Ab/1Ac protein on frogs in paddy fields. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1619-1628. [PMID: 25129148 DOI: 10.1007/s10646-014-1301-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2014] [Indexed: 06/03/2023]
Abstract
As genetic engineering in plants is increasingly used to control agricultural pests, it is important to determine whether such transgenic plants adversely affect non-target organisms within and around cultivated fields. The cry1Ab/1Ac fusion gene from Bacillus thuringiensis (Bt) has insecticidal activity and has been introduced into rice line Minghui 63 (MH63). We evaluated the effect of transgenic cry1Ab/1Ac rice (Huahui 1, HH1) on paddy frogs by comparing HH1 and MH63 rice paddies with and without pesticide treatment. The density of tadpoles in rice fields was surveyed at regular intervals, and Cry1Ab/1Ac protein levels were determined in tissues of tadpoles and froglets collected from the paddy fields. In addition, Rana nigromaculata froglets were raised in purse nets placed within these experimental plots. The survival, body weight, feeding habits, and histological characteristics of the digestive tract of these froglets were analyzed. We found that the tadpole density was significantly decreased immediately after pesticide application, and the weight of R. nigromaculata froglets of pesticide groups was significantly reduced compared with no pesticide treatment, but we found no differences between Bt and non-Bt rice groups. Moreover, no Cry1Ab/1Ac protein was detected in tissue samples collected from 192 tadpoles and froglets representing all four experimental groups. In addition, R. nigromaculata froglets raised in purse seines fed primarily on stem borer and non-target insects, and showed no obvious abnormality in the microstructure of their digestive tracts. Based on these results, we conclude that cultivation of transgenic cry1Ab/1Ac rice does not adversely affect paddy frogs.
Collapse
Affiliation(s)
- Jia-Mei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
44
|
Laboratory and field validation of a Cry1Ab protein quantitation method for water. Talanta 2014; 128:109-16. [DOI: 10.1016/j.talanta.2014.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 11/17/2022]
|
45
|
Li G, Wang Y, Liu B, Zhang G. Transgenic Bacillus thuringiensis (Bt) rice is safer to aquatic ecosystems than its non-transgenic counterpart. PLoS One 2014; 9:e104270. [PMID: 25105299 PMCID: PMC4126711 DOI: 10.1371/journal.pone.0104270] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/04/2014] [Indexed: 11/18/2022] Open
Abstract
Rice lines genetically modified with the crystal toxin genes from Bacillus thuringiensis (Bt) have experienced rapid development, with biosafety certificates for two Bt rice lines issued in 2009. There has still been no commercial release of these lines yet due to public concerns about human health and environmental risks. Some studies confirmed that Bt rice was as safe as conventional rice to non-target organisms when pesticides were not applied, however, pesticides are still required in Bt rice to control non-lepidopteran pests. In this study, we assessed the environmental effects of two Bt rice lines expressing either the cry1Ab/1Ac or cry2A genes, respectively, by using zooplanktons as indicator species under normal field management practices using pesticides when required. In the whole rice growing season, non-Bt rice was sprayed 5 times while Bt rice was sprayed 2 times, which ensured both rice achieved a normal yield. Field investigations showed that rice type (Bt and non-Bt) significantly influenced zooplankton abundance and diversity, which were up to 95% and 80% lower in non-Bt rice fields than Bt rice fields. Laboratory rearing showed that water from non-Bt rice fields was significantly less suitable for the survival and reproduction of Daphnia magna and Paramecium caudatum in comparison with water from Bt rice fields. Higher pesticide residues were detected in the water from non-Bt than Bt rice fields, accounting for the bad performance of zooplankton in non-Bt field water. Our results demonstrate that Bt rice is safer to aquatic ecosystems than non-Bt rice, and its commercialization will be beneficial for biodiversity restoration in rice-based ecosystems.
Collapse
Affiliation(s)
- Guangsheng Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P.R. CHINA
| | - Yongmo Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P.R. CHINA
- * E-mail:
| | - Biao Liu
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection of the People’s Republic of China, Nanjing, P.R. CHINA
| | - Guoan Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P.R. CHINA
| |
Collapse
|
46
|
Wang J, Chen X, Li Y, Su C, Ding J, Peng Y. Green algae (Chlorella pyrenoidosa) adsorbs Bacillus thurigiensis (Bt) toxin, Cry1Ca insecticidal protein, without an effect on growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 106:6-10. [PMID: 24836871 DOI: 10.1016/j.ecoenv.2014.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 04/11/2014] [Accepted: 04/20/2014] [Indexed: 06/03/2023]
Abstract
The effect of purified Cry1Ca insecticidal protein on the growth of Chlorella pyrenoidosa was studied in a three-generation toxicity test. The C. pyrenoidosa medium with a density of 5.4 × 10(5) cells/mL was subcultured for three generations with added Cry1Ca at 0, 10, 100, and 1000 µg/L, and cell numbers were determined daily. To explore the distribution of Cry1Ca in C. pyrenoidosa and the culture medium, Cry1Ca was added at 1000 µg/L to algae with a high density of 4.8 × 10(6) cells/mL, and Cry1Ca content was determined daily in C. pyrenoidosa and the culture medium by enzyme-linked immunosorbent assays. Our results showed that the growth curves of C. pyrenoidosa exposed to 10, 100, and 1000 µg/L of Cry1Ca almost overlapped with that of the blank control, and there were no statistically significant differences among the four treatments from day 0 to day 7, regardless of generation. Moreover, the Cry1Ca content in the culture medium and in C. pyrenoidosa sharply decreased under exposure of 1000 µg/L Cry1Ca with high initial C. pyrenoidosa cell density. The above results demonstrate that Cry1Ca in water can be rapidly adsorbed and degraded by C. pyrenoidosa, but it has no suppressive or stimulative effect on algae growth.
Collapse
Affiliation(s)
- Jiamei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Xiuping Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Changqing Su
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Jiatong Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
47
|
Szénási Á, Pálinkás Z, Zalai M, Schmitz OJ, Balog A. Short-term effects of different genetically modified maize varieties on arthropod food web properties: an experimental field assessment. Sci Rep 2014; 4:5315. [PMID: 24937207 PMCID: PMC4060488 DOI: 10.1038/srep05315] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/16/2014] [Indexed: 11/16/2022] Open
Abstract
There is concern that genetically modified (GM) plants may have adverse affects on the arthropod biodiversity comprising agricultural landscapes. The present study report on a two year field experimental test of whether four different genotypic lines, some are novel with no previous field tests, of GM maize hybrids alter the structure of arthropod food webs that they harbour, relative to non-GM maize (control) that is widely used in agriculture. The different GM genotypes produced either Bt toxins, conferred glyphosate tolerance or a combination of the two traits. Quantitative food web analysis, based on short-term assessment assigning a total of 243,896 arthropod individuals collected from the treatments to their positions in food webs, revealed that complex and stable food webs persisted in each maize treatment. Moreover, food web structure remained relatively unchanged by the GM-genotype. The results suggest that at least in short-term period these particular GM maize genotypes will not have adverse effects on arthropod biota of agricultural landscapes.
Collapse
Affiliation(s)
- Ágnes Szénási
- Institute of Plant Protection, Faculty of Agriculture and Environmental Sciences, Szent István University, Gödöllő, Páter Károly str. 1. Hungary
| | - Zoltán Pálinkás
- Institute of Plant Protection, Faculty of Agriculture and Environmental Sciences, Szent István University, Gödöllő, Páter Károly str. 1. Hungary
| | - Mihály Zalai
- Institute of Plant Protection, Faculty of Agriculture and Environmental Sciences, Szent István University, Gödöllő, Páter Károly str. 1. Hungary
| | - Oswald J. Schmitz
- School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, Connecticut, USA
| | - Adalbert Balog
- School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, Connecticut, USA
- Department of Horticulture, Faculty of Technical Science, Sapientia University. 1/C Sighisoara Street, Tg. Mures, Romania
| |
Collapse
|
48
|
Wang J, Chen X, Li Y, Zhu H, Ding J, Peng Y. Effect of straw leachates from Cry1Ca-expressing transgenic rice on the growth of Chlorella pyrenoidosa. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:1156-1162. [PMID: 24478192 DOI: 10.1002/etc.2535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/07/2014] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
Because of the prevalence of algae in rice paddy fields, they will be exposed to Bacillus thurigiensis (Bt) proteins released from Bt protein-expressing genetically engineered rice. To assess the effects of leachates extracted from Cry1Ca-expressing transgenic rice (T1C-19) straw on the microalga Chlorella pyrenoidosa, the authors added purified Cry1Ca (10 µg/L, 100 µg/L, and 1000 µg/L) and 5 concentrations of diluted extracts (5%, 10%, 20%, 40%, and 80%) from T1C-19 and the nontransformed control strain Minghui 63 (MH63) to the medium of C. pyrenoidosa. The authors found that the growth curves of C. pyrenoidosa treated with purified Cry1Ca overlapped with the medium control; that the order of C. pyrenoidosa growth rates for the T1C-19 leachate concentrations was 5% > 10% > 20% > control > 40% > 80%, and for the MH63 concentrations the order was 5% > 10% > control > 20% > 40% > 80%, but there were no statistical differences between the 20% T1C-19 or 20% MH63 leachate treatment and the medium control on day 8; and that after 7 d of culture, Cry1Ca could be detected in C. pyrenoidosa treated with different concentrations of T1C-19 leachate. The results demonstrated that Cry1Ca protein released from T1C-19 rice can be absorbed into C. pyrenoidosa but that purified Cry1Ca and leachates from T1C-19 rice have no obvious adverse effects on the growth of C. pyrenoidosa.
Collapse
Affiliation(s)
- Jiamei Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
49
|
Carstens K, Cayabyab B, De Schrijver A, Gadaleta PG, Hellmich RL, Romeis J, Storer N, Valicente FH, Wach M. Surrogate species selection for assessing potential adverse environmental impacts of genetically engineered insect-resistant plants on non-target organisms. GM CROPS & FOOD 2013; 5:11-5. [PMID: 24637519 PMCID: PMC5033195 DOI: 10.4161/gmcr.26560] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most regulatory authorities require that developers of genetically engineered insect-resistant (GEIR) crops evaluate the potential for these crops to have adverse impacts on valued non-target organisms (NTOs), i.e., organisms not intended to be controlled by the trait. In many cases, impacts to NTOs are assessed using surrogate species, and it is critical that the data derived from surrogates accurately predict any adverse impacts likely to be observed from the use of the crop in the agricultural context. The key is to select surrogate species that best represent the valued NTOs in the location where the crop is going to be introduced, but this selection process poses numerous challenges for the developers of GE crops who will perform the tests, as well as for the ecologists and regulators who will interpret the test results. These issues were the subject of a conference “Surrogate Species Selection for Assessing Potential Adverse Environmental Impacts of Genetically Engineered Plants on Non-Target Organisms” convened by the Center for Environmental Risk Assessment, ILSI Research Foundation. This report summarizes the proceedings of the conference, including the presentations, discussions and the points of consensus agreed to by the participants.
Collapse
Affiliation(s)
| | - Bonifacio Cayabyab
- National Crop Protection Center-Crop Protection Cluster; College of Agriculture; University of the Philippines Los Baños; Laguna, Philippines
| | - Adinda De Schrijver
- Biosafety and Biotechnology Unit; Institute of Public Health; Brussels, Belgium
| | - Patricia G Gadaleta
- Biotechnology Directorate; Ministry of Agriculture, Livestock and Fisheries; Buenos Aires, Argentina
| | - Richard L Hellmich
- USDA-ARS; Corn Insects and Crop Genetics Research Unit and Department of Entomology; Iowa State University; Ames, IA USA
| | - Jörg Romeis
- Agroscope Reckenholz-Tänikon Research Station ART; Zurich, Switzerland
| | | | | | - Michael Wach
- Center for Environmental Risk Assessment; ILSI Research Foundation; Washington, DC USA
| |
Collapse
|
50
|
Wang Y, Huang J, Hu H, Li J, Liu B, Zhang G. Field and laboratory studies on the impact of two Bt rice lines expressing a fusion protein Cry1Ab/1Ac on aquatic organisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 92:87-93. [PMID: 23523003 DOI: 10.1016/j.ecoenv.2013.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/30/2013] [Accepted: 02/27/2013] [Indexed: 06/02/2023]
Abstract
Genetically modified (GM) rice expressing Bt toxins is at the edge of commercial release in China. However, little information is available concerning the impact of Bt rice on aquatic organisms which are abundant in paddy field. A two-year study was conducted to assess the effects of two GM rice lines expressing a fusion protein Cry1Ab/1Ac (Bt rice) on three groups of zooplankton, rotifers, cladocerans and copepods in field conditions. Multi-factor ANOVA revealed that the population densities of rotifers, cladocerans and copepods in paddy field varied significantly between years and rice developmental stages, but did not differ significantly between Bt and non-Bt rice treatments. In all the field investigations, only one significant difference was found on copepods in the tillering stage of 2009, but the difference was not related to the presence of the Cry toxin. Under open-air conditions, we simulated the farming practice of straw mulch, using Bt rice straw as a food source for the water flea Daphnia hyalina. After one and two months of culture, the density of D. hyalina did not differ between Bt rice treatments and non-Bt rice treatments. A laboratory experiment found that purified Bt toxins Cry1Ab and Cry1Ac had no toxic effect on D. hyalina even in the treatment in which the Bt toxin concentration was as high as 2500ng/ml. Those above results indicate that the two Bt rice lines have no negative effect on the three groups of zooplankton. However, further studies are needed to compare the effects of Bt rice and non-Bt rice on the paddy zooplankton community in the context of integrated pest management which includes the use of pesticides.
Collapse
Affiliation(s)
- Yongmo Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Wuhan 430070, Hubei, PR China
| | | | | | | | | | | |
Collapse
|