1
|
Chenouf NS, Messaï CR, Carvalho I, Álvarez-Gómez T, Silva V, Zitouni A, Hakem A, Poeta P, Torres C. Serogrouping and Molecular Characterization of ESBL-Producing Avian Pathogenic Escherichia coli from Broilers and Turkeys with Colibacillosis in Algeria. Antibiotics (Basel) 2025; 14:356. [PMID: 40298547 PMCID: PMC12023931 DOI: 10.3390/antibiotics14040356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Avian colibacillosis caused by avian pathogenic Escherichia coli (APEC) strains is a bacterial disease responsible for enormous economic losses in the poultry industry, due to high mortality rates in farms, antibiotic therapy costs, and seizures at slaughterhouses. The aim of this study was to characterize the serogroups and molecular features of extended spectrum β-lactamase (ESBL)-producing APEC isolates recovered from 248 liver samples of 215 broilers and 33 turkeys with colibacillosis lesions in northeast Algeria. For this, microbiological tests were carried out, according to the recommended standards: E. coli isolates were recovered using standard microbiological protocols, and identification was carried out by MALDI-TOF MS. Serogrouping was performed using a rapid agglutination slide and the antisera of three O somatic groups (O1, O2, O78). Antimicrobial susceptibility was determined by the disk diffusion method. PCR assays and sequencing were used to detect antimicrobial resistance genes, integrons, phylogrouping, and MLST. Conjugation experiments were also conducted to determine the transferability of the retrieved ESBL-encoding genes. Overall, 211 (85.1%) APEC isolates were collected (one per positive sample), and 164 (77.7%) of them were typable. The O2 and O1 serogroups were the most detected (46.1% in broiler typable isolates and 61.5% in turkey typable isolates). Seventeen APEC isolates were ESBL-producers and harbored the following genes (number of isolates): blaCTX-M-1 (14), blaCTX-M-15 (2), and blaSHV-12 (1). They belonged to phylogroups D (10 isolates), B1 (6 isolates), and B2 (1 isolate). The MLST of 13 ESBL producers revealed seven STs: ST23, ST38, ST48, ST117, ST131, ST1146, and ST5087. The ESBL-encoding genes were transferred by conjugation among 15 ESBL-producing isolates, and transconjugants acquired either the IncK or IncI1 plasmids. Concerted efforts from all poultry actors are needed to establish surveillance monitoring strategies to mitigate the spread of ESBL-producing isolates implicated in avian colibacillosis.
Collapse
Affiliation(s)
- Nadia Safia Chenouf
- Faculty of Natural and Life Sciences, Earth and Universe Sciences, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj, El Anasser, Bordj Bou Arreridj 34000, Algeria; (N.S.C.); (C.R.M.)
- Laboratory for Exploration and Valorization of Steppe Ecosystems (EVES), Department of Biology, Faculty of Natural Sciences and Life, University of Djelfa, Moudjbara Road BP 3117, Djelfa 17000, Algeria
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, BP 92, Kouba, Algiers 16000, Algeria;
| | - Chafik Redha Messaï
- Faculty of Natural and Life Sciences, Earth and Universe Sciences, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj, El Anasser, Bordj Bou Arreridj 34000, Algeria; (N.S.C.); (C.R.M.)
- Laboratory of Research Health and Animal Production, High National Veterinary School, Issad Abbes Street, Oued Smar, Algiers 16000, Algeria
| | - Isabel Carvalho
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (I.C.); (P.P.)
| | - Tamara Álvarez-Gómez
- Area Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain;
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (I.C.); (P.P.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Abdelghani Zitouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, BP 92, Kouba, Algiers 16000, Algeria;
| | - Ahcene Hakem
- Agropastoralism Research Center of Djelfa, Djelfa 17000, Algeria;
| | - Patricia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (I.C.); (P.P.)
- Agropastoralism Research Center of Djelfa, Djelfa 17000, Algeria;
- CECAV—Veterinary and Animal Research Centre, University of Traìs-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Carmen Torres
- Area Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain;
| |
Collapse
|
2
|
Laopiem S, Witoonsatian K, Kulprasetsri S, Panomwan P, Pathomchai-Umporn C, Kamtae R, Jirawattanapong P, Songserm T, Sinwat N. Antimicrobial resistance, virulence gene profiles, and phylogenetic groups of Escherichia coli isolated from healthy broilers and broilers with colibacillosis in Thailand. BMC Vet Res 2025; 21:160. [PMID: 40057792 PMCID: PMC11889816 DOI: 10.1186/s12917-025-04626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Multidrug resistance in Escherichia coli has a significant global impact on poultry production. This study aimed to determine the phenotypic and genotypic backgrounds of antimicrobial resistance (AMR) and virulence gene profiles of E. coli strains isolated from diseased and healthy broilers. A total of 211 E. coli isolates were recovered from diseased (n = 110) and healthy broilers (n = 101). All the isolates were subjected to antimicrobial susceptibility testing. A PCR-based technique was applied to screen AMR genes, virulence genes and analyze phylogenetic groups. RESULTS Phylogenetic groups B1 and D were the most prevalent for E. coli isolated from diseased and healthy birds. Among virulence genes, the detection rates of cva/cvi, iutA, iucD, iroN, iss and ompT were considerably greater in E.coli strains from diseased birds than in healthy birds. The virulence gene pattern of hlyF-iutA-iucD-iroN-iss-ompT (16.4%) was frequently observed in E.coli isolated from diseased birds, whereas approximately 22.8% of E.coli from healthy birds did not carry any virulence genes. Analysis of AMR profiles revealed that 58.3% of E.coli were resistant to multiple classes of antibiotics, and 96.7% carried at least one antibiotic resistance gene AMR genes. CONCLUSION The findings of this study demonstrate the variable distribution of phylogenetic groups and virulence genes. E.coli strains isolated from broilers had multidrug resistance profiles. The study emphasizes the need for continuous monitoring of AMR emergence in E. coli from broilers. This monitoring allows for early detection and implementation of strategies to control the spread of resistant strains.
Collapse
Affiliation(s)
- Sudtisa Laopiem
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand
| | - Kriangkrai Witoonsatian
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand
| | - Sittinee Kulprasetsri
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand
| | - Pun Panomwan
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand
| | - Chutima Pathomchai-Umporn
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand
| | - Raktipon Kamtae
- Kamphaeng Saen Veterinary Diagnostic Center, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean campus, Nakorn Pathom, 73140, Thailand
| | - Pichai Jirawattanapong
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand
| | - Thaweesak Songserm
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean campus, Nakorn Pathom, 73140, Thailand
| | - Nuananong Sinwat
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand.
| |
Collapse
|
3
|
Sariçam İnce S, Ünal A, Akan M. Comparison of pathogenicity factors of avian pathogenic and extraintestinal pathogenic Escherichia coli isolates originating from broiler chickens. Br Poult Sci 2025:1-8. [PMID: 39853191 DOI: 10.1080/00071668.2025.2451242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/28/2024] [Indexed: 01/26/2025]
Abstract
1. E. coli is an opportunist pathogen of animals, including food-producing ones and humans. Chickens may be a notable source of pathogenic and antimicrobial resistant E. coli for transmission to humans.2. This study compared virulence-associated genes (VGs) and antimicrobial resistance (AMR) in avian pathogenic E. coli (APEC) and extraintestinal pathogenic E. coli (ExPEC) isolates from broiler chickens, specifically APEC isolates in liver samples (n = 78) and ExPEC or non-ExPEC isolates in litter samples (n = 34). Virulence was evaluated by PCR for feoB, hlyF, iroN, iss, iutA and ompT genes, while AMR was evaluated by using antimicrobials from seven classes and detecting blaSHV, blaTEM, blaOXA, qnrB, stcM, mrc1, mrc2, sul1 and tetA genes.3. The APEC isolates were found in 100% of livers, while ExPEC and non-ExPEC isolates were found in 44% and 56% of the litter samples. The predominant VG was feoB (100%), followed by ompT (63%), iutA (60%), iss (58%) and hlyF (43%). Surprisingly, iroN, omp T and iutA had higher prevalences in APEC isolates (85%, 96% and 96%, respectively) than in ExPEC isolates (73%, 87% and 73%, respectively) and non-ExPEC isolates (0% for all). The presence of all VG in 33% of isolates indicated high pathogenicity.4. The isolates were phenotypically resistant to ampicillin (93%), ceftazidime (72%) and nalidixic acid (82%). All APEC and ExPEC isolates (100%) were multidrug resistant (MDR), while 63% of non-ExPEC isolates were MDR. Genotypic AMR testing revealed that 53% and 52% of all isolates had stcM and tetA, respectively. No isolate was positive for blaSHV, blaOXA, mrc1 or mrc2, which suggested the benefits of colistin for treating carbapenem-resistant enteric pathogens, due to the high resistance detected to meropenem (47%).5. Given the potential pathogenicity of E. coli isolates, improving biosecurity practices in chicken flocks should be prioritised to eliminate transmission to humans through the food chain.
Collapse
Affiliation(s)
- S Sariçam İnce
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - A Ünal
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - M Akan
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
4
|
Nawaz S, Wang Z, Zhang Y, Jia Y, Jiang W, Chen Z, Yin H, Huang C, Han X. Avian pathogenic Escherichia coli (APEC): current insights and future challenges. Poult Sci 2024; 103:104359. [PMID: 39388979 PMCID: PMC11490931 DOI: 10.1016/j.psj.2024.104359] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis in avian species, and new investigations have implicated APEC as a possible foodborne zoonotic pathogen. This review analyzes APEC's pathogenic and virulence features, assesses the zoonotic potential, provides an update on antibiotic resistance and vaccine research efforts, and outlines alternate management approaches. Aside from established virulence factors, various additional components, including 2-component systems (TCS), adhesins, secretion systems (SS), invasions, iron acquisition systems, quorum sensing systems (QS), transcriptional regulators (TR), toxins, and genes linked with metabolism, contribute to APEC pathogenesis. APEC may spread to diverse species of birds in all business sectors and can infect birds of varying ages. However, younger birds experience more severe sickness than mature ones, probably due to their developing immune systems, and stress factors such as vaccination, Mycoplasma Infections, poor housing circumstances, respiratory viruses, and other risk factors for secondary infections can all make APEC both primary and secondary pathogens. Understanding these factors will help in generating new and effective treatments. Moreover, APEC O145 was the most prevalent serotype recently reported in all of China. Thus, the APEC's zoonotic potential should not be underrated. Furthermore, it has already been noted that APEC is resistant to almost all antibiotic classes, including carbapenems. A robust vaccine capable of protecting against multiple APEC serotypes is urgently needed. Alternative medications, particularly virulence inhibitors, can provide a special method with a decreased likelihood of acquiring resistance.
Collapse
Affiliation(s)
- Saqib Nawaz
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, 364012, Fujian, China; Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Zhihao Wang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Yan Zhang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Yuanzheng Jia
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Wei Jiang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Zhaoguo Chen
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Huifang Yin
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, 364012, Fujian, China
| | - Cuiqin Huang
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, 364012, Fujian, China
| | - Xiangan Han
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, 364012, Fujian, China; Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China.
| |
Collapse
|
5
|
Usman S, Anjum A, Usman M, Imran MS, Ali M, Moustafa M, Rehman MS, Hussain T, Sarwar F, Azad A, Hussain I, Naseer J, Tiwana U, Hafeez S. Antibiotic resistance pattern and pathological features of avian pathogenic Escherichia coli O78:K80 in chickens. BRAZ J BIOL 2024; 84:e257179. [DOI: 10.1590/1519-6984.257179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Avian pathogenic Escherichia coli (APEC) induces colibacillosis, an acute and systemic disease, resulting in substantial economic losses in the poultry sector. This study aimed to investigate the antibiotic resistance pattern associated with frequent virulence gene distribution in APEC O78:K80 that may cause pathological alterations in chickens. The antibiogram profile showed high resistance to erythromycin, chloramphenicol, tetracycline, ampicillin, and co-trimoxazole, followed by intermediate resistance to ciprofloxacin, levofloxacin, enrofloxacin, norfloxacin, nitrofurantoin, and doxycycline hydrochloride, and sensitive to amikacin, streptomycin, gentamicin, and colistin. Virulence gene distribution identifies eight (irp-2, iutA, ompT, iss, iucD, astA, hlyF, iroN) genes through a conventional polymerase chain reaction. APEC O78:K80 caused significantly high liver enzyme concentrations, serum interleukin-6 and tumor necrosis factor-alpha levels in experimental birds. Also, infected birds have hypoproteinemia, hypoalbuminemia, and hyperglobulinemia. Necropsy examination revealed fibrinous perihepatitis and pericarditis, congested lungs, intestinal ecchymotic hemorrhages and necrotizing granulomatosis of the spleen. Histopathological examination depicted hepatocellular degeneration, myocardial necrosis, interstitial nephritis, intestinal hemorrhages and lymphopenia in the spleen. This study is the first evidence to assess the antibiotic resistance profile linked with virulence genes and clinicopathological potential of APEC O78:K80 in chickens in Pakistan, which could be a useful and rapid approach to prevent and control the disease by developing the control strategies.
Collapse
Affiliation(s)
- S. Usman
- University of Veterinary and Animal Sciences, Pakistan
| | - A. Anjum
- Muhammad Nawaz Shareef University of Agriculture Multan, Pakistan
| | - M. Usman
- University of Veterinary and Animal Sciences, Pakistan
| | - M. S. Imran
- University of Veterinary and Animal Sciences, Pakistan
| | - M. Ali
- BZU Bahadur sub campus Layyah, Pakistan
| | - M. Moustafa
- King Khalid University; South Valley University, Egypt
| | | | - T. Hussain
- The Islamia University of Bahawalpur, Pakistan
| | - F. Sarwar
- Poultry Research Institute, Pakistan
| | - A. Azad
- Poultry Research Institute, Pakistan
| | | | - J. Naseer
- The Islamia University of Bahawalpur, Pakistan
| | - U. Tiwana
- Range Land Research Institute, Pakistan
| | - S. Hafeez
- University of Agriculture Faisalabad, Pakistan
| |
Collapse
|
6
|
Mohamed MYI, Habib I. Pathogenic E. coli in the Food Chain across the Arab Countries: A Descriptive Review. Foods 2023; 12:3726. [PMID: 37893619 PMCID: PMC10606471 DOI: 10.3390/foods12203726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Foodborne bacterial infections caused by pathogens are a widespread problem in the Middle East, leading to significant economic losses and negative impacts on public health. This review aims to offer insights into the recent literature regarding the occurrence of harmful E. coli bacteria in the food supply of Arab countries. Additionally, it aims to summarize existing information on health issues and the state of resistance to antibiotics. The reviewed evidence highlights a lack of a comprehensive understanding of the extent to which harmful E. coli genes are present in the food supply of Arab countries. Efforts to identify the source of harmful E. coli in the Arab world through molecular characterization are limited. The Gulf Cooperation Council (GCC) countries have conducted few surveys specifically targeting harmful E. coli in the food supply. Despite having qualitative data that indicate the presence or absence of harmful E. coli, there is a noticeable absence of quantitative data regarding the actual numbers of harmful E. coli in chicken meat supplies across all Arab countries. While reports about harmful E. coli in animal-derived foods are common, especially in North African Arab countries, the literature emphasized in this review underscores the ongoing challenge that harmful E. coli pose to food safety and public health in Arab countries.
Collapse
Affiliation(s)
- Mohamed-Yousif Ibrahim Mohamed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab of Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Ihab Habib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab of Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
- Department of Environmental Health, High Institute of Public Health, Alexandria University, Alexandria P.O. Box 21511, Egypt
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
7
|
Lenchenko E, Sachivkina N, Lobaeva T, Zhabo N, Avdonina M. Bird immunobiological parameters in the dissemination of the biofilm-forming bacteria Escherichia coli. Vet World 2023; 16:1052-1060. [PMID: 37576771 PMCID: PMC10420717 DOI: 10.14202/vetworld.2023.1052-1060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim With the development of industrial maintenance technology, a group of pathogens called avian pathogenic Escherichia coli (APEC) became very common. The initiation, development, and outcome of the infectious process mediated by virulent APEC strains occur through a decrease in the colonization resistance of the intestine, an immunobiological marker of homeostasis stability in susceptible species. This study focused on the pathogenetic features of colibacillosis and the morphological features of E. coli. Materials and Methods Clinical, immunological, bacteriological, and histological studies were conducted on 15-day-old white Leghorn birds (n = 20). The birds were divided into two groups: Control group (Group I; n = 10) with birds intranasally inoculated with 0.5 mL of 0.9% NaCl solution and experimental group (Group II; n = 10) with birds intranasally inoculated with 0.5 mL of an E. coli suspension at 1 billion/mL. Results During the biofilm formation, clusters of microcolonies were formed as a gel-like intercellular matrix that accumulated due to cell coagulation. The intercellular matrix "glues" heteromorphic cells together and forms a structure of densely packed heteromorphic cells arranged in an orderly manner and growing in different directions. During the experimental reproduction of E. coli, excessive growth was observed in material isolated from poultry. Pathogenic E. coli strains implementing virulence factors adhered to the receptors of erythrocytes, alveolocytes, and enterocytes. Multicellular heterogeneous biofilms, united by an intercellular matrix, were located at the apical poles of the respiratory tract alveolocytes and enterocytes of the terminal ileum villi. Many bacteria exudate containing desquamated epithelial cells with an admixture of mucus, and polymorphonuclear leukocytes were detected in the lumen of the birds' abdominal organs. Invasive bacteria damaged the epithelial layer, violated the endothelial layer of blood vessels, and developed inflammatory hyperemia of the lamina propria of the respiratory and digestive systems' mucous membrane. A correlative dependence of changes developed by the type of delayed hypersensitivity reaction was established. Signs of accidental transformation of the thymus, atrophy of the bursa of Fabricius, disseminated thrombosis, and septic spleen developed. Moreover, toxic cardiomyocyte dystrophy, signs of congestive vascular hyperemia, massive disintegration of lymphocytes, macrophage reactions, perivascular edema resulting from the release of plasma, and shaped blood elements were detected. Conclusion The development and outcome of the infectious process in escherichiosis primarily depend on the homeostasis stability of susceptible species and virulence factors of the pathogenic microorganisms. One of the selected strains, E. coli O78:K80 displayed the highest ability to form biofilms. Its strong adhesion ability to bird erythrocytes was demonstrated. Deepening the scientific knowledge of the interaction between eukaryotes and prokaryotes will contribute to a better understanding of the pathogenetic aspects of avian escherichiosis and eventually find promising anti-adhesive drugs that could reduce primary bacterial contamination in vivo and in vitro.
Collapse
Affiliation(s)
- Ekaterina Lenchenko
- Department of Veterinary Medicine, Russian Biotechnological University (BIOTECH University), 125080, Moscow, Russia
| | - Nadezhda Sachivkina
- Department of Microbiology V.S. Kiktenko, Institute of Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), 117198, Moscow, Russia
| | - Tatiana Lobaeva
- Department of Biochemistry T.T. Berezov, Institute of Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), 117198 Moscow, Russia
| | - Natallia Zhabo
- Department of Foreign Languages, Institute of Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), 117198, Moscow, Russia
| | - Marina Avdonina
- Department of Linguistics and Intercultural Communication, Moscow State Linguistic University, 119034, Moscow, Russia
| |
Collapse
|
8
|
Aberkane C, Messaï A, Messaï CR, Boussaada T. Antimicrobial resistance pattern of avian pathogenic Escherichia coli with detection of extended-spectrum β-lactamase-producing isolates in broilers in east Algeria. Vet World 2023; 16:449-454. [PMID: 37041836 PMCID: PMC10082731 DOI: 10.14202/vetworld.2023.449-454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/24/2023] [Indexed: 03/18/2023] Open
Abstract
Background and Aim: Avian pathogenic Escherichia coli (APEC) is the causative agent of colibacillosis, one of the most prevalent bacterial diseases responsible for significant economic losses in the poultry industry worldwide. This study aimed to assess the antimicrobial resistance (AMR) patterns of APEC isolates recovered from poultry in east Algeria and estimate the prevalence of extended-spectrum β-lactamase (ESBL)-producing isolates.
Materials and Methods: In the slaughterhouse of Batna City (Algeria), livers indicating colibacillosis were sampled from 204 suspected carcasses with growth retardation and generalized congestion. Escherichia coli isolation and identification were performed on MacConkey agar using conventional methods and the API 20E system. Antimicrobial resistance susceptibility was tested by the disk diffusion method according to the Clinical Laboratory Standards Institute Guidelines. Extended-spectrum β-lactamase detection was carried out using the double-disk confirmation test.
Results: One hundred sixty E. coli isolates were recovered (one isolate per sample). Avian pathogenic Escherichia coli isolates showed high levels of resistance to ampicillin and tetracycline (100%), nalidixic acid (95%), ofloxacin (93.75%), doxycycline (91.87), ciprofloxacin (87.50%), trimethoprim/sulfamethoxazole (62.50%), gentamycin (32.50%), chloramphenicol (27.50%), amoxicillin/clavulanic acid (16.25%), colistin (14.37%), and nitrofurantoin (10.62%). All strains were multidrug-resistant to at least three antibiotics, and more than half (52.52%) of the isolates were resistant to at least seven antibiotics. All isolates were susceptible to ceftriaxone, ceftazidime, and aztreonam. Two E. coli isolates were ESBL producers (1.25%).
Conclusion: Avian pathogenic Escherichia coli resistance to most antimicrobial agents used in poultry may lead to antimicrobial therapy failure.
Keywords: antimicrobial resistance, avian pathogenic Escherichia coli, broilers, colibacillosis, Eastern Algeria, extended-spectrum β-lactamase.
Collapse
Affiliation(s)
- Chahrazed Aberkane
- Department of Agricultural Sciences, DEDSPAZA Laboratory, Mohamed-Khider University, Biskra, Algeria
| | - Ahmed Messaï
- Department of Agricultural Sciences, PIARA Laboratory, Mohamed-Khider University, Biskra, Algeria
| | - Chafik Redha Messaï
- Laboratory of Research Health and Animal Production, High National Veterinary School, Algiers, Algeria; Department of Biology and Agronomy, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj, Algeria
| | - Tarek Boussaada
- Scientific and Technical Research Centre for Arid Areas (CRSTRA) Biskra, Algeria
| |
Collapse
|
9
|
Abdel-Rahman MAA, Hamed EA, Abdelaty MF, Sorour HK, Badr H, Hassan WM, Shalaby AG, Mohamed AAE, Soliman MA, Roshdy H. Distribution pattern of antibiotic resistance genes in Escherichia coli isolated from colibacillosis cases in broiler farms of Egypt. Vet World 2023; 16:1-11. [PMID: 36855348 PMCID: PMC9967716 DOI: 10.14202/vetworld.2023.1-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 01/04/2023] Open
Abstract
Background and Aim Multidrug resistance (MDR) of Escherichia coli has become an increasing concern in poultry farming worldwide. However, E. coli can accumulate resistance genes through gene transfer. The most problematic resistance mechanism in E. coli is the acquisition of genes encoding broad-spectrum β-lactamases, known as extended-spectrum β-lactamases, that confer resistance to broad-spectrum cephalosporins. Plasmid-mediated quinolone resistance genes (conferring resistance to quinolones) and mcr-1 genes (conferring resistance to colistin) also contribute to antimicrobial resistance. This study aimed to investigate the prevalence of antimicrobial susceptibility and to detect β-lactamase and colistin resistance genes of E. coli isolated from broiler farms in Egypt. Materials and Methods Samples from 938 broiler farms were bacteriologically examined for E. coli isolation. The antimicrobial resistance profile was evaluated using disk diffusion, and several resistance genes were investigated through polymerase chain reaction amplification. Results Escherichia coli was isolated and identified from 675/938 farms (72%) from the pooled internal organs (liver, heart, lung, spleen, and yolk) of broilers. Escherichia coli isolates from the most recent 3 years (2018-2020) were serotyped into 13 serotypes; the most prevalent serotype was O125 (n = 8). The highest phenotypic antibiotic resistance profiles during this period were against ampicillin, penicillin, tetracycline, and nalidixic acid. Escherichia coli was sensitive to clinically relevant antibiotics. Twenty-eight selected isolates from the most recent 3 years (2018-2020) were found to have MDR, where the prevalence of the antibiotic resistance genes ctx, tem, and shv was 46% and that of mcr-1 was 64%. Integrons were found in 93% of the isolates. Conclusion The study showed a high prevalence of E. coli infection in broiler farms associated with MDR, which has a high public health significance because of its zoonotic relevance. These results strengthen the application of continuous surveillance programs.
Collapse
Affiliation(s)
- Mona A. A. Abdel-Rahman
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Engy A. Hamed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - May F. Abdelaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Hend K. Sorour
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Heba Badr
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Wafaa M. Hassan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Azhar G. Shalaby
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Ahmed Abd-Elhalem Mohamed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Mohamed A. Soliman
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Heba Roshdy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| |
Collapse
|
10
|
Phenotypic and Genotypic Screening of Colistin Resistance Associated with Emerging Pathogenic Escherichia coli Isolated from Poultry. Vet Sci 2022; 9:vetsci9060282. [PMID: 35737334 PMCID: PMC9229556 DOI: 10.3390/vetsci9060282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Chickens continue to be an important reservoir of zoonotic multidrug-resistant illnesses. Antimicrobial resistance correlated with colistin has emerged as a critical concern worldwide in the veterinary field and the public health sector. The current study investigated the prevalence of multidrug-resistant avian pathogenic Escherichia coli among chicken farms in three Egyptian governorates, focusing on colistin resistance assessment. A total of 56 Escherichia coli isolates were recovered out of 120 pooled samples obtained from diseased chicken broilers (46.7%). The E. coli isolates were serotyped to nine different serotypes; the highest incidence was for O125 (n = 18). The E. coli isolates demonstrated multidrug-resistant patterns against 10 antibiotics, especially clindamycin, tetracycline, streptomycin and ampicillin, by 100, 100, 96.4 and 92.9%, respectively. On the other hand, colistin resistance was 41.1% using AST. All E. coli isolates displayed positive colistin resistance growth on chromogenic medium, but only 25% represented this positivity via MIC estimation and Sensititre kit. PCR results revealed that all isolates harbored mcr-1, but no isolates harbored the other 2–5 mcr genes. In conclusion, the study demonstrated the emergence of multidrug-resistant, especially colistin-resistant, E. coli among chicken broiler flocks, and mcr-1 is the master gene of the colistin resistance feature.
Collapse
|
11
|
Prevalence and Molecular Characteristics of Avian Pathogenic Escherichia coli in "No Antibiotics Ever" Broiler Farms. Microbiol Spectr 2021; 9:e0083421. [PMID: 34878309 PMCID: PMC8653813 DOI: 10.1128/spectrum.00834-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes significant economic and welfare concerns to the broiler industry. For several decades, prophylactic supplementation of antimicrobial growth promoters was the primary method to control APEC; however, the recent shift to no antibiotics ever (NAE) production has increased colibacillosis incidence. The objectives of this study were to determine the influence of season, flock age, and sample type on the prevalence and virulence of E. coli and to identify the serogroups and antimicrobial susceptibility of virulent and nonvirulent E. coli in NAE broiler farms. Litter, feces, cloacal swabs, and tracheal swabs were collected from 4 NAE farms during spring and summer seasons, and E. coli was isolated and confirmed by PCR. Confirmed E. coli isolates were tested for 5 APEC-virulence-associated genes (VAGs) using quantitative PCR (qPCR). Further, E. coli isolates with all five VAGs (100 isolates) and E. coli isolates without any VAGs (87 isolates) were screened against 11 antimicrobials through Kirby-Bauer disk diffusion assay, and their serogroups were tested using PCR. Data were analyzed using the GLIMMIX procedure of SAS 9.4, and statistical significance was determined at a P value of ≤0.05. Overall, the prevalence of E. coli was not affected by season, flock age, or sample type. However, the prevalence of all tested VAGs decreased from spring to summer (P ≤ 0.002). The frequency of resistance was highest for tetracycline, and serogroups O8 (31%) and O78 (11%) were most frequent in virulent E. coli. In conclusion, there is a high prevalence of virulent E. coli in NAE farms, especially in the spring season. IMPORTANCE Avian pathogenic Escherichia coli causes one of the most detrimental bacterial diseases to the United States poultry industry, colibacillosis. Colibacillosis leads to decreased performance, early mortality, and subsequent production loss. Previously, colibacillosis was largely mitigated by the use of antimicrobial growth promoters. Due to concerns about antimicrobial resistance, the use of these promoters has been largely removed from the broiler industry. With recent shifts in the poultry industry to NAE broiler production, there is an increase in bacterial disease and mortality. We do not know how this shift to NAE affects APEC prevalence within broiler farms. Therefore, in the current study, we attempted to assess the prevalence and virulence of E. coli within an antibiotic-free broiler environment, assessed antimicrobial susceptibility, and identified the serogroups of virulent and nonvirulent E. coli.
Collapse
|
12
|
Narasinakuppe Krishnegowda D, Singh BR, Mariappan AK, Munuswamy P, Singh KP, Monalisa Sahoo, Saminathan M, Ramalingam R, Chellappa MM, Singh V, Dhama K, Reddy MR. Molecular epidemiological studies on avian pathogenic Escherichia coli associated with septicemia in chickens in India. Microb Pathog 2021; 162:105313. [PMID: 34902538 DOI: 10.1016/j.micpath.2021.105313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/06/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022]
Abstract
Bacterial septicemia causes huge economic losses in the poultry industry and there is no systematic research available in India on the connection of various pathogens associated with septicemia. The present molecular epidemiological study was conducted to investigate the association of different bacterial and immunosuppressive viral pathogens in septicemia suspected chickens. A total of 443 chicken carcasses with septicemic conditions from 71 different flocks were included in this study. Heart blood swabs were subjected to bacterial culture for Salmonella spp., Pasteurella multocida, Escherichia coli, and Gallibacterium anatis. Of these 51 flocks tested for E. coli, 49 (96.1%) flocks were found positive. Among flocks tested for Salmonella spp., 2 flocks were found positive. All tested flocks were found negative for G. anatis and P. multocida as well as air sac swabs tested negative for Mycoplasma spp. Bacterial cultural examination revealed that majority of septicemic chickens were found to be infected with E. coli and these E. coli isolates showed the highest resistance to vancomycin (60%), followed by erythromycin (50%) and cefotaxime (38%) and maximum sensitivity to cefotaxime and clavulanic acid combinations (81.5%), followed by chloramphenicol (69.6%) and ertapenem (67.2%). Among the 5 avian pathogenic E. coli (APEC) virulence genes were detected in 36 flocks and highest frequency of iss (100%), followed by ompT or iutA (97.2%), hly (61.1%) and iroN (47.2%) genes. On polymerase chain reaction (PCR) screening, 10.5, 4.5, 52.2, 19.4, 9.0, 4.5, 20.1 and 19.4% of the flocks were positive for G. anatis, Ornithobacterium rhinotracheale, APEC, Salmonella spp., Mycoplasma gallisepticum, Mycoplasma synoviae, chicken infectious anemia virus and Marek's disease virus, respectively. To our knowledge, the present study is first on the etiology of septicemia in chicken flocks in India. The present study infers that the majority of septicemic deaths in broiler chickens less than 8 weeks have been connected with APEC and majority of E. coli isolates are multidrug resistance, suggesting the need for surveillance and intervention to curb the inadvertent use of antibiotics. Although, incidence of G. anatis association with septicemia was reported, still requires a rigorous epidemiological study to determine the actual prevalence. However, more detailed studies encompassing vast geographical area with large sample size and long duration of the studies are necessary to provide a clear picture of the interaction of different pathogens causing septicemia in chicken.
Collapse
Affiliation(s)
| | - Bhoj Raj Singh
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Asok Kumar Mariappan
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Palanivelu Munuswamy
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Monalisa Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Mani Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Rajasekar Ramalingam
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Madhan Mohan Chellappa
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Vidya Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, 243 122, Uttar Pradesh, India.
| | - Maddula Ramakoti Reddy
- Avian Health Laboratory, ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, 500030, Telengana, India.
| |
Collapse
|
13
|
Avian Pathogenic Escherichia coli (APEC): An Overview of Virulence and Pathogenesis Factors, Zoonotic Potential, and Control Strategies. Pathogens 2021; 10:pathogens10040467. [PMID: 33921518 PMCID: PMC8069529 DOI: 10.3390/pathogens10040467] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis in avian species, and recent reports have suggested APEC as a potential foodborne zoonotic pathogen. Herein, we discuss the virulence and pathogenesis factors of APEC, review the zoonotic potential, provide the current status of antibiotic resistance and progress in vaccine development, and summarize the alternative control measures being investigated. In addition to the known virulence factors, several other factors including quorum sensing system, secretion systems, two-component systems, transcriptional regulators, and genes associated with metabolism also contribute to APEC pathogenesis. The clear understanding of these factors will help in developing new effective treatments. The APEC isolates (particularly belonging to ST95 and ST131 or O1, O2, and O18) have genetic similarities and commonalities in virulence genes with human uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC) and abilities to cause urinary tract infections and meningitis in humans. Therefore, the zoonotic potential of APEC cannot be undervalued. APEC resistance to almost all classes of antibiotics, including carbapenems, has been already reported. There is a need for an effective APEC vaccine that can provide protection against diverse APEC serotypes. Alternative therapies, especially the virulence inhibitors, can provide a novel solution with less likelihood of developing resistance.
Collapse
|
14
|
Kimura AH, Koga VL, de Souza Gazal LE, de Brito BG, de Brito KCT, Navarro-Ocaña A, Nakazato G, Kobayashi RKT. Characterization of multidrug-resistant avian pathogenic Escherichia coli: an outbreak in canaries. Braz J Microbiol 2021; 52:1005-1012. [PMID: 33566322 DOI: 10.1007/s42770-021-00443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/02/2021] [Indexed: 10/22/2022] Open
Abstract
The canary (Serinus canaria) is appreciated for its beautiful song, colors, and docile temperament and drives a lucrative business. However, diseases caused by avian pathogenic Escherichia coli (APEC) compromise the health of canaries, and the inadequate antimicrobial treatment can lead to the emergence of resistant strains. This study aimed to characterize 21 isolates of E. coli obtained from canaries infected with colibacillosis during an outbreak in northern Paraná State, Brazil. APEC and diarrheagenic E. coli (DEC) virulence genes were screened for by polymerase chain reaction (PCR). All isolates were positive for the hlyF, iss, and ompT genes, which are characteristic of APEC. The iroN gene was found in 95.2% of isolates, and none had the iutA gene. The ipaH gene, characteristic of enteroinvasive E. coli (EIEC), was found in 71.4% of isolates, all belonging to the phylogenetic group B1. High genetic similarity (>95%) was found using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). The isolates belonged to serotypes O117:H4 (71.4%) and O1:H20 (23.8%). This is the first report of a clonal colibacillosis outbreak in canaries caused by APEC. All isolates were resistant to ampicillin, nalidixic acid, ciprofloxacin, enrofloxacin, norfloxacin, and tetracycline. The high rate of multidrug resistance in our study shows the importance of avoiding the inadequate antibiotic treatment. We suggest that further studies should be conducted to contribute to the understanding of colibacillosis in canaries since the health of animals is linked to human and environmental health, as defined by the concept of One Health.
Collapse
Affiliation(s)
- Angela Hitomi Kimura
- Department of Microbiology, Laboratory of Basic and Applied Bacteriology, State University of Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970, Londrina, Paraná, Brazil
| | - Vanessa Lumi Koga
- Department of Microbiology, Laboratory of Basic and Applied Bacteriology, State University of Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970, Londrina, Paraná, Brazil
| | - Luís Eduardo de Souza Gazal
- Department of Microbiology, Laboratory of Basic and Applied Bacteriology, State University of Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970, Londrina, Paraná, Brazil
| | - Benito Guimarães de Brito
- Avian Health Laboratory, Agricultural Diagnosis and Research Department, Secretariat of Agriculture Livestock Rural Development, Veterinary Research Institute Desidério Finamor, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, 92990-000, Brazil
| | - Kelly Cristina Tagliari de Brito
- Avian Health Laboratory, Agricultural Diagnosis and Research Department, Secretariat of Agriculture Livestock Rural Development, Veterinary Research Institute Desidério Finamor, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, 92990-000, Brazil
| | - Armando Navarro-Ocaña
- Department of Public Health, Faculty of Medicine, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Gerson Nakazato
- Department of Microbiology, Laboratory of Basic and Applied Bacteriology, State University of Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970, Londrina, Paraná, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Department of Microbiology, Laboratory of Basic and Applied Bacteriology, State University of Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
15
|
Amer MM, Mekky HM, Fedawy HS, El-Shemy A, Bosila MA, Elbayoumi KM. Molecular identification, genotyping of virulence-associated genes, and pathogenicity of cellulitis-derived Escherichia coli. Vet World 2020; 13:2703-2712. [PMID: 33487989 PMCID: PMC7811558 DOI: 10.14202/vetworld.2020.2703-2712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Avian colibacillosis, which is caused by avian pathogenic Escherichia coli (APEC), is a major bacterial disease that affects birds of all ages worldwide, causing significant economic losses. APEC manifests in several clinical forms, including cellulitis, and its high pathogenicity is attributed to harboring numerous virulence-associated genes (VGs). This study evaluated the pathogenicity of the cellulitis-derived E. coli (O78) strain through molecular identification of genes coding for seven virulence factors and by conducting an in vivo assessment of capability for cellulitis induction in broiler chickens. Materials and Methods: This study was performed using a previously isolated and identified cellulitis-derived E. coli (O78), which was screened for seven VGs using molecular detection and identification through polymerase chain reaction followed by nucleotide sequencing and phylogenetic analysis. Experimental infection by subcutaneous (SC) inoculation in broilers and its pathogenicity was confirmed in vivo by cellulitis induction. The impact of cellulitis on broiler performance was assessed. Results: Molecular genotyping proved that the isolate harbored five virulence genes (iroN, iutA, tsh, iss, and papC) and was negative for stx1 and hly genes. The amplified products for iroN, iss, and iutA were subjected to sequencing and phylogenetic analysis, and the results indicate the highest similarity and matching with E. coli submitted to the National Center for Biotechnology Information GenBank. SC inoculation of bacteria in broiler chickens resulted in cellulitis, as indicated by thick red edematous skin with yellowish-white material in the SC tissue at the inoculation site, and the abdominal muscle showed redness and increased vacuolization. Histopathological examination revealed moderate-to-severe caseous inflammatory reaction with a marked accumulation of heterophils and mononuclear cells in the SC fatty tissue. The average feed intake, body weight gain (BWG), and feed conversion ratio (FCR) were lower in infected chickens in comparison with those of the control non-infected chickens. Conclusion: This study proves that molecular techniques are accurate for pathogenicity determination in virulent bacteria, with the advantages of being rapid, time-saving, and economical. Cellulitis is associated with economic losses that are represented by a lower BWG and FCR.
Collapse
Affiliation(s)
- Mohamed M Amer
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, P.O. 12211, Giza, Egypt
| | - Hoda M Mekky
- Poultry Diseases Department, Veterinary Research Division, National Research Centre, P.O. 12622, Giza, Egypt
| | - Hanaa S Fedawy
- Poultry Diseases Department, Veterinary Research Division, National Research Centre, P.O. 12622, Giza, Egypt
| | - A El-Shemy
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, P.O. 12622, Giza, Egypt
| | - M A Bosila
- Poultry Diseases Department, Veterinary Research Division, National Research Centre, P.O. 12622, Giza, Egypt
| | - Kh M Elbayoumi
- Poultry Diseases Department, Veterinary Research Division, National Research Centre, P.O. 12622, Giza, Egypt
| |
Collapse
|
16
|
Li T, Castañeda CD, Miotto J, McDaniel C, Kiess AS, Zhang L. Effects of in ovo probiotic administration on the incidence of avian pathogenic Escherichia coli in broilers and an evaluation on its virulence and antimicrobial resistance properties. Poult Sci 2020; 100:100903. [PMID: 33518345 PMCID: PMC7936151 DOI: 10.1016/j.psj.2020.11.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis in poultry, which has been traditionally controlled by the prophylactic in-feed supplementation of antibiotics. However, antibiotics are being removed from poultry diets owing to the emergence of multidrug-resistant (MDR) bacteria. Therefore, alternatives to control APEC are required. This study aimed to evaluate the effects of in ovo inoculation of probiotics on the incidence of APEC in broilers and evaluate the virulence and antimicrobial resistance properties of the APEC isolates. On embryonic day 18, 4 in ovo treatments (T) were applied: T1 (Marek's vaccine [MV]), T2 (MV and Lactobacillus animalis), T3 (MV and Lactobacillus reuteri), and T4 (MV and Lactobacillus rhamnosus). A total of 180 male broilers per treatment were randomly placed in 10 pens. The heart, liver, spleen, and yolk sac were collected on day 0, 14, 28, and 42. Presumptive E. coli isolates were confirmed by real-time PCR. The positive isolates were screened for the APEC-related genes (iroN, ompT, hlyF, iss, and iutA), and E. coli isolates containing one or more of these genes were identified as APEC-like strains. A total of 144 APEC-like isolates were isolated from 548 organ samples. No differences (P > 0.05) among treatments were observed for the incidence of APEC-like strains in all organs when averaged over sampling days. However, when averaged over treatments, the incidence in the heart, liver, and yolk sac was different among sampling days; a significant increase was observed in these organs on day 14 compared with day 0. Twenty-five antimicrobial resistance genes were evaluated for all APEC-like isolates, and 92.4% of the isolates carried at least one antimicrobial resistance gene. Thirty-seven isolates were then selected for antimicrobial susceptibility testing; MDR strains accounted for 37.8% of the isolates. In conclusion, the in ovo inoculation of a single probiotic strain did not confer protection against APEC strains in broilers. The high prevalence of MDR isolates indicates that further research on antibiotic alternatives is required to prevent APEC infections in broilers.
Collapse
Affiliation(s)
- Tianmin Li
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Claudia D Castañeda
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Julio Miotto
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Chris McDaniel
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Aaron S Kiess
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
17
|
Serogrouping, phylotyping, and virulence genotyping of commensal and avian pathogenic Escherichia coli isolated from broilers in Hamedan, Iran. Comp Immunol Microbiol Infect Dis 2020; 73:101558. [PMID: 33096460 DOI: 10.1016/j.cimid.2020.101558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 01/24/2023]
Abstract
In the present study, 100 Avian-Pathogenic Escherichia coli (APEC) isolates from colibacillosis-suspected broilers and 100 Avian Faecal Escherichia coli (AFEC) isolates from healthy broilers in Iran were examined by PCR for confirmation of their serogroups and phylogenetic background, and their association with ten virulence-associated genes (VAG) including fimC, iutA, chuA, sitA, iss, cvaA/B, hylA, stx1, stx2, and yjaA. Serogroups O78, O1, O2 and O18 were the prominent strains including 54 % of the APEC and 23 % of the AFEC strains. At phylotyping, the majority of APEC strains belonged to phylogenetic group E (22 %) while for the AFEC strains, half of the isolates were not assigned to any group but the predominant phylogroup was E (27 %). Virulence genotyping, revealed that the predominant VAGs were iutA (97 %), fimC (87 %) and iss (84 %) among APEC strains, and fimC (95 %), iss (93 %) and sitA (87 %) in AFEC strains. This is the first time that phylogroup E is described as predominant phylogroup among APEC strains also, this is the first report on the presence of the stx1 gene in APEC strains isolated from broilers in Iran. The results of the present study indicate that VAGs are more prevalent in APEC strains belonging to O2 and O78 serogroups, also phylogroups E and D have more frequency of VAGs than other phylogroups. Therefore, the APEC strains belonging to O2 and O78 serogroups and phylogroups E and D probably have more pathogenicity to broilers.
Collapse
|
18
|
Molecular Detection of Avian Pathogenic Escherichia coli (APEC) for the First Time in Layer Farms in Bangladesh and Their Antibiotic Resistance Patterns. Microorganisms 2020; 8:microorganisms8071021. [PMID: 32660167 PMCID: PMC7409187 DOI: 10.3390/microorganisms8071021] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes significant economic losses in poultry industries. Here, we determined for the first time in Bangladesh, the prevalence of APEC-associated virulence genes in E. coli isolated from layer farms and their antibiotic resistance patterns. A total of 99 samples comprising internal organs, feces, and air were collected from 32 layer farms. Isolation was performed by culturing samples on eosin–methylene blue agar plates, while the molecular detection of APEC was performed by PCR, and antibiograms were performed by disk diffusion. Among the samples, 36 were positive for the APEC-associated virulence genes fimC, iucD, and papC. Out of 36 isolates, 7, 18, and 11 were positive, respectively, for three virulence genes (papC, fimC, and iucD), two virulence genes, and a single virulence gene. Although the detection of virulence genes was significantly higher in the internal organs, the air and feces were also positive. The antibiograms revealed that all the isolates (100%) were resistant to ampicillin and tetracycline; 97.2%, to chloramphenicol and erythromycin; 55.5%, to enrofloxacin; 50.0%, to norfloxacin and ciprofloxacin; 19.4%, to streptomycin; 11.1%, to colistin; and 8.33%, to gentamicin. Interestingly, all the isolates were multidrug-resistant (MDR). Spearman’s rank correlation coefficient analysis revealed the strongest significant correlation between norfloxacin and ciprofloxacin resistance. This is the first study in Bangladesh describing the molecular detection of APEC in layer farms. Isolated APEC can now be used for detailed genetic characterization and assessing the impact on public health.
Collapse
|
19
|
Zhao S, Wang CL, Chang SK, Tsai YL, Chou CH. Characterization of Escherichia coli Isolated from Day-old Chicken Fluff in Taiwanese Hatcheries. Avian Dis 2020; 63:9-16. [PMID: 31251514 DOI: 10.1637/11935-072318-reg.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 11/05/2022]
Abstract
Avian colibacillosis resulting from avian pathogenic Escherichia coli (APEC) seriously disrupts poultry production. Hatcheries are the main source of chickens for commercial farms. To characterize the potential pathogenicity of E. coli strains isolated from hatcheries, 2344 fluff samples from 1-day-old chickens were collected from hatching incubators between October 2016 and November 2017. Among the hatcheries, the incidence of E. coli varied from 0% to 16.9%, with an overall incidence of 2.0%. High incidences reflected inadequate sanitation in some hatcheries. We also compared 20 clinically isolated APEC strains with fluff-originated E. coli in terms of existence of 10 virulence-associated genes (VAGs) and antimicrobial-resistance genes, and antimicrobial resistance using minimum inhibitory concentration (MIC) values. Our results showed that APEC more-frequently possessed most of the assessed VAGs (papC, astA, cvaC, hlyF, fyuA, iroN, iutA, iss, and ompT), suggesting that fluff-originated E. coli is less likely to cause avian colibacillosis. However, fluff-originated E. coli more-frequently expressed the adhesion gene fimC, which could confer higher upper respiratory tract adhesion. Both APEC and fluff-originated E. coli demonstrated multidrug resistance including 100% resistance to ampicillin, amoxicillin, cephalexin, florfenicol, and trimethoprim-sulfamethoxazole. Based on median MIC values, fluff-originated E. coli was more susceptible to antibiotics. However, resistance-gene existence did not significantly differ between groups, suggesting that fluff-originated E. coli should still be a public health concern. Molecular subtyping with XbaI-digested pulsed-field gel electrophoresis revealed that only a few strains showed identical patterns, indicating that a variety of contamination sources were present within individual hatcheries. Identical strains within the same hatchery may indicate vertical transmission from parent flocks. Overall, this is the first study to characterize fluff-originated E. coli. Our results suggest that it has lower pathogenicity than APEC and that thorough sanitation should be performed to reduce the occurrence of fluff-originated E. coli in hatcheries.
Collapse
Affiliation(s)
- Shengnan Zhao
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City 10617, Taiwan
| | - Chia-Lan Wang
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City 10617, Taiwan
| | - Shao-Kuang Chang
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City 10617, Taiwan
| | - Yi-Lun Tsai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung County 91201, Taiwan,
| | - Chung-Hsi Chou
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City 10617, Taiwan,
| |
Collapse
|
20
|
Meguenni N, Chanteloup N, Tourtereau A, Ahmed CA, Bounar-Kechih S, Schouler C. Virulence and antibiotic resistance profile of avian Escherichia coli strains isolated from colibacillosis lesions in central of Algeria. Vet World 2019; 12:1840-1848. [PMID: 32009764 PMCID: PMC6925048 DOI: 10.14202/vetworld.2019.1840-1848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/15/2019] [Indexed: 01/18/2023] Open
Abstract
Background and Aim Avian pathogenic Escherichia coli cause extensive mortality in poultry flocks, leading to extensive economic losses. To date, in Algeria, little information has been available on virulence potential and antibiotics resistance of avian E. coli isolates. Therefore, the aim of this study was the characterization of virulence genes and antibiotic resistance profile of Algerian E. coli strains isolated from diseased broilers. Materials and Methods In this study, 43 avian E. coli strains isolated from chicken colibacillosis lesions at different years were analyzed to determine their contents in 10 virulence factors by polymerase chain reaction, antimicrobial susceptibility to 22 antibiotics belonging to six different chemical classes and genomic diversity by pulsed-field gel electrophoresis (PFGE). Results Mainly E. coli isolates (58.1%) carried two at six virulence genes and the most frequent virulence gene association detected were ompT (protectin), hlyF (hemolysin) with 55.8% (p<0.001), and iroN, sitA (iron acquisition/uptake systems), and iss (protectin) with 41.8% (p<0.001). Some strains were diagnosed as virulent according to their virulence gene profile. Indeed, 23.25% of the isolates harbored iroN, ompT, hlyF, iss, and sitA combination, 14% ompT, hlyF, and frzorf4 (sugar metabolism), and 11,6% iroN, hlyF, ompT, iss, iutA (iron acquisition/uptake systems), and frz orf4. The chicken embryo lethality assay performed on five isolates confirmed the potential virulence of these strains. All isolates submitted to PFGE analysis yielded different genetic profiles, which revealed their diversity. Overall, 97.2% of the isolates were resistant to at least one antibiotic and 53.5% demonstrated multi-antimicrobial resistance to three different antimicrobial classes. The highest resistance levels were against nalidixic acid (83.4%), amoxicillin and ampicillin (83.3%), ticarcillin (80.5%), pipemidic acid (75%), and triméthoprim-sulfamethoxazole (66.6%). For beta-lactam class, the main phenotype observed belonged to broad-spectrum beta-lactamases. However, extended-spectrum beta-lactamase associated with three at six virulence factors was also detected in 13 isolates. Two of them were attested virulent as demonstrated in the embryo lethality test which constitutes a real public threat. Conclusion It would be imperative in avian production to discourage misuse while maintaining constant vigilance guidelines and regulations, to limit and rationalize antimicrobial use.
Collapse
Affiliation(s)
- Nacima Meguenni
- Laboratory of Analytic Biochemistry and Biotechnology, Mouloud Mammeri University, Tizi Ouzou 15000, Algeria
| | | | | | - Chafika Ali Ahmed
- Laboratory of Analytic Biochemistry and Biotechnology, Mouloud Mammeri University, Tizi Ouzou 15000, Algeria
| | | | | |
Collapse
|
21
|
Azam M, Mohsin M, Sajjad-ur-Rahman, Saleemi MK. Virulence-associated genes and antimicrobial resistance among avian pathogenic Escherichia coli from colibacillosis affected broilers in Pakistan. Trop Anim Health Prod 2019; 51:1259-1265. [DOI: 10.1007/s11250-019-01823-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/21/2019] [Indexed: 01/08/2023]
|
22
|
Cyoia PS, Koga VL, Nishio EK, Houle S, Dozois CM, de Brito KCT, de Brito BG, Nakazato G, Kobayashi RKT. Distribution of ExPEC Virulence Factors, bla CTX-M, fosA3, and mcr-1 in Escherichia coli Isolated From Commercialized Chicken Carcasses. Front Microbiol 2019; 9:3254. [PMID: 30692971 PMCID: PMC6339928 DOI: 10.3389/fmicb.2018.03254] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022] Open
Abstract
Pathogenic Escherichia coli found in humans and poultry carcasses harbor similar virulence and resistance genes. The present study aimed to analyze the distribution of extraintestinal pathogenic E. coli (ExPEC) virulence factors (VF), blaCTX−M groups, fosA3, and mcr-1 genes in E. coli isolated from commercialized chicken carcasses in southern Brazil and to evaluate their pathogenic risk. A total of 409 E. coli strains were isolated and characterized for genes encoding virulence factors described in ExPEC. Results of antimicrobial susceptibility testing confirmed that the strains were resistant to β-lactams, fosfomycin, colistin, and others resistance groups. The highest prevalence of VFs was observed in isolates belonging to the CTX-M groups, especially the CTX-M-2 group, when compared to those in other susceptible strains or strains with different mechanisms of resistance. Furthermore, ESBL strains were found to be 1.40 times more likely to contain three to five ExPEC virulence genes than non-ESBL strains. Our findings revealed the successful conjugation between ESBL-producing E. coli isolated from chicken carcass and the E. coli recipient strain J53, which suggested that genetic determinants encoding CTX-M enzymes may have originated from animals and could be transmitted to humans via food chain. In summary, chicken meat is a potential reservoir of MDR E. coli strains harboring resistance and virulence genes that could pose serious risks to human public health.
Collapse
Affiliation(s)
- Paula Signolfi Cyoia
- Department of Microbiology, Center of Sciences Biological, Universidade Estadual de Londrina, Londrina, Brazil
| | - Vanessa Lumi Koga
- Department of Microbiology, Center of Sciences Biological, Universidade Estadual de Londrina, Londrina, Brazil
| | - Erick Kenji Nishio
- Department of Microbiology, Center of Sciences Biological, Universidade Estadual de Londrina, Londrina, Brazil
| | - Sébastien Houle
- Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, QC, Canada
| | - Charles M Dozois
- Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, QC, Canada
| | - Kelly Cristina Tagliari de Brito
- Avian Health Laboratory & Technical Innovation, Institute of Veterinary Research Desiderio Finamor (IPVDF), Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Benito Guimarães de Brito
- Avian Health Laboratory & Technical Innovation, Institute of Veterinary Research Desiderio Finamor (IPVDF), Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Gerson Nakazato
- Department of Microbiology, Center of Sciences Biological, Universidade Estadual de Londrina, Londrina, Brazil
| | | |
Collapse
|
23
|
Köck R, Daniels-Haardt I, Becker K, Mellmann A, Friedrich AW, Mevius D, Schwarz S, Jurke A. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect 2018; 24:1241-1250. [PMID: 29654871 DOI: 10.1016/j.cmi.2018.04.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The spread of carbapenem-resistant Enterobacteriaceae (CRE) in healthcare settings challenges clinicians worldwide. However, little is known about dissemination of CRE in livestock, food, and companion animals and potential transmission to humans. METHODS We performed a systematic review of all studies published in the PubMed database between 1980 and 2017 and included those reporting the occurrence of CRE in samples from food-producing and companion animals, wildlife, and exposed humans. The primary outcome was the occurrence of CRE in samples from these animals; secondary outcomes included the prevalence of CRE, carbapenemase types, CRE genotypes, and antimicrobial susceptibilities. RESULTS We identified 68 articles describing CRE among pigs, poultry, cattle, seafood, dogs, cats, horses, pet birds, swallows, wild boars, wild stork, gulls, and black kites in Africa, America, Asia, Australia, and Europe. The following carbapenemases have been detected (predominantly affecting the genera Escherichia and Klebsiella): VIM, KPC, NDM, OXA, and IMP. Two studies found that 33-67% of exposed humans on poultry farms carried carbapenemase-producing CRE closely related to isolates from the farm environment. Twenty-seven studies selectively screened samples for CRE and found a prevalence of <1% among livestock and companion animals in Europe, 2-26% in Africa, and 1-15% in Asia. Wildlife (gulls) in Australia and Europe carried CRE in 16-19%. CONCLUSIONS The occurrence of CRE in livestock, seafood, wildlife, pets, and directly exposed humans poses a risk for public health. Prospective prevalence studies using molecular and cultural microbiological methods are needed to better define the scope and transmission of CRE.
Collapse
Affiliation(s)
- R Köck
- University Hospital Münster, University of Münster, Institute of Medical Microbiology, Münster, Germany; University Hospital Münster, University of Münster, Institute for Hygiene, Münster, Germany; Institute of Hospital Hygiene Oldenburg, Oldenburg, Germany.
| | - I Daniels-Haardt
- NRW Centre for Health, Section Infectious Disease Epidemiology, Bochum, Germany
| | - K Becker
- University Hospital Münster, University of Münster, Institute of Medical Microbiology, Münster, Germany
| | - A Mellmann
- University Hospital Münster, University of Münster, Institute for Hygiene, Münster, Germany
| | - A W Friedrich
- Department for Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D Mevius
- Wageningen Bioveterinary Research, Department of Bacteriology and Epidemiology, Lelystad, The Netherlands; Faculty of Veterinary Medicine, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands
| | - S Schwarz
- Freie Universität Berlin, Institute of Microbiology and Epizootics, Berlin, Germany
| | - A Jurke
- NRW Centre for Health, Section Infectious Disease Epidemiology, Bochum, Germany
| |
Collapse
|