1
|
Wei Y, Dai G, Huang M, Wen L, Chen RA, Liu DX. Construction of an infectious cloning system of porcine reproductive and respiratory syndrome virus and identification of glycoprotein 5 as a potential determinant of virulence and pathogenicity. Front Microbiol 2023; 14:1227485. [PMID: 37547693 PMCID: PMC10397516 DOI: 10.3389/fmicb.2023.1227485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection of pigs causes a variety of clinical manifestations, depending on the pathogenicity and virulence of the specific strain. Identification and characterization of potential determinant(s) for the pathogenicity and virulence of these strains would be an essential step to precisely design and develop effective anti-PRRSV intervention. In this study, we report the construction of an infectious clone system based on PRRSV vaccine strain SP by homologous recombination technique, and the rescue of a chimeric rSP-HUB2 strain by replacing the GP5 and M protein-coding region from SP strain with the corresponding region from a highly pathogenic strain PRRSV-HUB2. The two recombinant viruses were shown to be genetically stable and share similar growth kinetics, with rSP-HUB2 exhibiting apparent growth and fitness advantages. Compared to in cells infected with PRRSV-rSP, infection of cells with rSP-HUB2 showed significantly more inhibition of the induction of type I interferon (IFN-β) and interferon stimulator gene 56 (ISG56), and significantly more promotion of the induction of proinflammatory cytokines IL-6, IL-8, ISG15 and ISG20. Further overexpression, deletion and mutagenesis studies demonstrated that amino acid residue F16 in the N-terminal region of the GP5 protein from HUB2 was a determinant for the phenotypic difference between the two recombinant viruses. This study provides evidence that GP5 may function as a potential determinant for the pathogenicity and virulence of highly pathogenic PRRSV.
Collapse
Affiliation(s)
- Yuqing Wei
- Guangdong Province Key Laboratory Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, Guangdong, China
| | - Guo Dai
- Guangdong Province Key Laboratory Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mei Huang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, Guangdong, China
| | - Lianghai Wen
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, Guangdong, China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, Guangdong, China
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, Guangdong, China
| |
Collapse
|
2
|
Young JE, Dvorak CMT, Graham SP, Murtaugh MP. Isolation of Porcine Reproductive and Respiratory Syndrome Virus GP5-Specific, Neutralizing Monoclonal Antibodies From Hyperimmune Sows. Front Immunol 2021; 12:638493. [PMID: 33692807 PMCID: PMC7937800 DOI: 10.3389/fimmu.2021.638493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a devastating disease which impacts the pig industry worldwide. The disease is caused by PRRS viruses (PRRSV-1 and -2) which leads to abortions and other forms of reproductive failure in sows and severe respiratory disease in growing pigs. Current PRRSV vaccines provide limited protection; only providing complete protection against closely related strains. The development of improved PRRSV vaccines would benefit from an increased understanding of epitopes relevant to protection, including those recognized by antibodies which possess the ability to neutralize distantly related strains. In this work, a reverse vaccinology approach was taken; starting first with pigs known to have a broadly neutralizing antibody response and then investigating the responsible B cells/antibodies through the isolation of PRRSV neutralizing monoclonal antibodies (mAbs). PBMCs were harvested from pigs sequentially exposed to a modified-live PRRSV-2 vaccine as well as divergent PRRSV-2 field isolates. Memory B cells were immortalized and a total of 5 PRRSV-specific B-cell populations were isolated. All identified PRRSV-specific antibodies were found to be broadly binding to all PRRSV-2 isolates tested, but not PRRSV-1 isolates. Antibodies against GP5 protein, commonly thought to possess a dominant PRRSV neutralizing epitope, were found to be highly abundant, as four out of five B cells populations were GP5 specific. One of the GP5-specific mAbs was shown to be neutralizing but this was only observed against homologous and not heterologous PRRSV strains. Further investigation of these antibodies, and others, may lead to the elucidation of conserved neutralizing epitopes that can be exploited for improved vaccine design and lays the groundwork for the study of broadly neutralizing antibodies against other porcine pathogens.
Collapse
Affiliation(s)
- Jordan E Young
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Cheryl M T Dvorak
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | | | - Michael P Murtaugh
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
3
|
Chen N, Li X, Xiao Y, Li S, Zhu J. Characterization of four types of MLV-derived porcine reproductive and respiratory syndrome viruses isolated in unvaccinated pigs from 2016 to 2020. Res Vet Sci 2020; 134:102-111. [PMID: 33360570 DOI: 10.1016/j.rvsc.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022]
Abstract
Modified live vaccines (MLVs) have been utilized to combat porcine reproductive and respiratory syndrome (PRRS), which raises a serious concern about the MLV-derived PRRS virus (PRRSV) isolates. During the routine investigation of PRRSV in China, four lung samples collected from unvaccinated diseased pigs from 2016 to 2020 were detected as PRRSV positive. The PRRSVs shared high ORF5 identities to CH-1R, JXA1-R, TJM-F92 and RespPRRS MLV vaccines, respectively. The viruses were isolated in Marc-145 cells and denominated as SD1612-1, JS1703-21, JSTZ1907-714 and JSYC20-05-1. Genome comparison confirmed that these isolates share the highest genomic homologies to CH-1R (97.96%), JXA1-R (99.64%), TJM-F92 (99.00%) and RespPRRS MLV (99.57%) than any other known isolates. Genome-based phylogenetic analysis showed that SD1612-1 and CH-1R, JS1703-21 and JXA1-R, JSTZ1907-714 and TJM-F92, JSYC20-05-1 and RespPRRS MLV were grouped in the same branches. In addition, amino acids unique to corresponding vaccine attenuations were also identified in our isolates. Noticeably, amino-acids potentially associated with the virulence revision from MLV strains to parental virulent viruses were also identified in the MLV-derived isolates. Our results confirm that the four types of MLV-derived isolates are circulating and evolving in Chinese swine herds for years, which highlights the necessity for the fair use of PRRS MLVs.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
4
|
Wu C, Gu G, Zhai T, Wang Y, Yang Y, Li Y, Zheng X, Zhao Q, Zhou EM, Nan Y. Broad neutralization activity against both PRRSV-1 and PRRSV-2 and enhancement of cell mediated immunity against PRRSV by a novel IgM monoclonal antibody. Antiviral Res 2020; 175:104716. [PMID: 31981575 DOI: 10.1016/j.antiviral.2020.104716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/30/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most economically important infectious disease affecting the global swine industry, especially since vaccination has had limited impact on PRRSV prevention and control. In this study, the monoclonal antibody PR5nf1 (Mab-PR5nf1, IgM isotype) was shown to react with heterogeneous PRRSV isolates belonging to both PRRSV-1 and PRRSV-2 species. Pepsin digestion of Mab-PR5nf1 did not affect Mab binding to virions, as F(ab)2 fragments demonstrated the same reactivity as undigested Mab. Upon further investigation, Mab-PR5nf1 could neutralize all tested PRRSV isolates of both PRRSV-1 and PRRSV-2, suggesting it was a broadly neutralizing Mab against PRRSV. Interestingly, Mab-PR5nf1 appeared to recognize a specific virus epitope that required post-translational modification within the host cellular Golgi apparatus. Deglycosylation of PRRSV virions with PNGase F abolished Mab binding, suggesting that a novel Mab-binding epitope may exist that confers cross-protection against isolates of both PRRSV species. Additionally, immunization of mice with a cocktail of inactivated PRRSV virus and Mab-PR5nf1 enhanced cell-mediated immunity, as determined by IFN-γ ELIspot. In conclusion, this is the first report describing a novel Mab that recognizes a conserved epitope common to both PRRSV-1 and PRRSV-2 and provides valuable insights to guide future PRRSV vaccine development.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Guoqian Gu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Tianshu Zhai
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yajing Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yongling Yang
- Key Laboratory of Antibody Technique of National Health and Family Planning Commission, Nanjing Medical University, Nanjing, China; Department of Infectious Diseases, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yafei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xu Zheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China.
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|
5
|
Liu J, Wei C, Lin Z, Xia W, Ma Y, Dai A, Yang X. Full genome sequence analysis of a 1-7-4-like PRRSV strain in Fujian Province, China. PeerJ 2019; 7:e7859. [PMID: 31637126 PMCID: PMC6800524 DOI: 10.7717/peerj.7859] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/09/2019] [Indexed: 01/12/2023] Open
Abstract
PRRS virus (PRRSV) has undergone rapid evolution and resulted in immense economic losses worldwide. In the present study, a PRRSV strain named FJ0908 causing high abortion rate (25%) and mortality (40%) was detected in a swine herd in China. To determine if a new PRRSV genotype had emerged, we characterized the genetic characteristics of FJ0908. Phylogenetic analysis indicated that FJ0908 was related to 1-7-4-like strains circulating in the United States since 2014. Furthermore, the ORF5 sequence restriction fragment length polymorphism (RFLP) pattern of FJ0908 was 1-7-4. Additionally, FJ0908 had a 100 aa deletion (aa329-428) within nsp2, as compared to VR-2332, and the deletion pattern was consistent with most of 1-7-4 PRRSVs. Collectively, the data of this study contribute to the understanding of 1-7-4-like PRRSV molecular epidemiology in China.
Collapse
Affiliation(s)
- Jiankui Liu
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| | - Chunhua Wei
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| | - Zhifeng Lin
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Xia
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| | - Ying Ma
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| | - Ailing Dai
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| | - Xiaoyan Yang
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| |
Collapse
|
6
|
Zhang L, Ren J, Shi P, Lu D, Zhao C, Su Y, Zhang L, Huang J. The Immunological Regulation Roles of Porcine β-1, 4 Galactosyltransferase V (B4GALT5) in PRRSV Infection. Front Cell Infect Microbiol 2018; 8:48. [PMID: 29546034 PMCID: PMC5837993 DOI: 10.3389/fcimb.2018.00048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
B4GALT5, also known as β-1, 4 galactosyltransferase V, is one of the members of β-1, 4 galactosyltransferase gene (B4GALT) family, which was concerned with embryonic development, tumor generation, other malignant diseases. In this study, we firstly cloned porcine B4GALT (pB4GALT5) from porcine alveolar macrophages, and predicted the structural domain and function of seven porcine β-1, 4 galactosyltransferase (I–VII) based on transcriptome analysis of PRRSV infected cells. Additionally, the upregulated porcine B4GALT5 expression was detected from PRRSV infected porcine alveolar macrophage (PAM) cells. The PRRSV proliferation were slightly inhibited in overexpression of pB4GALT5 transfected cells, the interaction of B4GALT5 and GP5 of PRRSV was firstly be detected by Co-IP, and the co-location between B4GALT5 and GP5 were also observed in golgi membranes by confocal microscopy. A significant increasing mRNA transcription, including inflammatory cytokines (IFN-α, IL-6, IL-18, IL-1β, TNF-α) and some cell surface glycosylated protein involved in antigen present (MHC-I/II), cell adhesion and migration (chemokine MCP-1 and receptor CCR2; LFA-1, ICAM-1) were upregulated in B4GALT5 overexpressed PRRSV infected cells. Our results demonstrated that the regulation of pB4GALT5 plays an important roles in PRRSV proliferation and modification function in viral infection cells. And these results will make achievements by supporting the research of latent mechanisms of β-1, 4 galactosyltransferase V in antiviral immunity.
Collapse
Affiliation(s)
- Lei Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Jie Ren
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Peidian Shi
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Dong Lu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Chengxue Zhao
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yanxin Su
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Nan Y, Wu C, Gu G, Sun W, Zhang YJ, Zhou EM. Improved Vaccine against PRRSV: Current Progress and Future Perspective. Front Microbiol 2017; 8:1635. [PMID: 28894443 PMCID: PMC5581347 DOI: 10.3389/fmicb.2017.01635] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/11/2017] [Indexed: 12/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), one of the most economically significant pathogens worldwide, has caused numerous outbreaks during the past 30 years. PRRSV infection causes reproductive failure in sows and respiratory disease in growing and finishing pigs, leading to huge economic losses for the swine industry. This impact has become even more significant with the recent emergence of highly pathogenic PRRSV strains from China, further exacerbating global food security. Since new PRRSV variants are constantly emerging from outbreaks, current strategies for controlling PRRSV have been largely inadequate, even though our understanding of PRRSV virology, evolution and host immune response has been rapidly expanding. Meanwhile, practical experience has revealed numerous safety and efficacy concerns for currently licensed vaccines, such as shedding of modified live virus (MLV), reversion to virulence, recombination between field strains and MLV and failure to elicit protective immunity against heterogeneous virus. Therefore, an effective vaccine against PRRSV infection is urgently needed. Here, we systematically review recent advances in PRRSV vaccine development. Antigenic variations resulting from PRRSV evolution, identification of neutralizing epitopes for heterogeneous isolates, broad neutralizing antibodies against PRRSV, chimeric virus generated by reverse genetics, and novel PRRSV strains with interferon-inducing phenotype will be discussed in detail. Moreover, techniques that could potentially transform current MLV vaccines into a superior vaccine will receive special emphasis, as will new insights for future PRRSV vaccine development. Ultimately, improved PRRSV vaccines may overcome the disadvantages of current vaccines and minimize the PRRS impact to the swine industry.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Guoqian Gu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Weiyao Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College ParkMD, United States
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| |
Collapse
|
8
|
Liu JK, Zhou X, Zhai JQ, Li B, Wei CH, Dai AL, Yang XY, Luo ML. Emergence of a novel highly pathogenic porcine reproductive and respiratory syndrome virus in China. Transbound Emerg Dis 2017; 64:2059-2074. [PMID: 28198110 DOI: 10.1111/tbed.12617] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Indexed: 01/26/2023]
Abstract
From 2014 to 2015, four novel highly pathogenic PRRS virus (HP-PRRSV) strains named 14LY01-FJ, 14LY02-FJ 15LY01-FJ, and 15LY02-FJ were isolated from high morbidity (100%) and mortality (40%-80%) in piglets and sows in Fujian Province. To further our knowledge about these novel virus strains, we characterized their complete genomes and determined their pathogenicity in piglets. Full-length genome sequencing analysis showed that these four isolates were closely related to type 2 (North American type, NA-type) isolates, with 88.1%-96.3% nucleotide similarity, but only 60.6%-60.8% homology to the Lelystad virus (LV) (European type, EU-type). The full length of the four isolates was determined to be 15017 or 15018 nucleotides (nt), excluding the poly(A) tail. Furthermore, the four isolates had three discontinuous deletions (aa 322-432, aa 483, and aa 504-522) within hypervariable region II (HV-II) of Nsp2, as compared to the reference strain VR-2332. This deletion pattern in the four isolates is consistent with strain MN184 and strain NADC30 isolated from America. Phylogenetic and molecular evolutionary analyses indicated that these virulent strains originated from a natural recombination event between the JXA1-like HP-PRRSV (JXA-1 is one of the earliest Chinese HP-PRRSV strains; sublineage 8.7) and the NADC30-like (lineage 1) PRRSV. Animal experiments demonstrated that these four strains caused significant weight loss and severe histopathological lung lesions as compared to the negative control group. High mortality rate (40% or 80%) was found in piglets infected with any one of the four strains, similar to that found with other Chinese HP-PRRSV strains. This study showed that the novel variant PRRSV was HP-PRRSV, and it is therefore critical to monitor PRRSV evolution in China and develop a method for controlling PRRS.
Collapse
Affiliation(s)
- J-K Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,College of Life Sciences of Longyan University, Longyan, Fujian Province, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province, China
| | - X Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - J-Q Zhai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - B Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - C-H Wei
- College of Life Sciences of Longyan University, Longyan, Fujian Province, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province, China
| | - A-L Dai
- College of Life Sciences of Longyan University, Longyan, Fujian Province, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province, China
| | - X-Y Yang
- College of Life Sciences of Longyan University, Longyan, Fujian Province, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province, China
| | - M-L Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Do HQ, Trinh DT, Nguyen TL, Vu TTH, Than DD, Van Lo T, Yeom M, Song D, Choe S, An DJ, Le VP. Molecular evolution of type 2 porcine reproductive and respiratory syndrome viruses circulating in Vietnam from 2007 to 2015. BMC Vet Res 2016; 12:256. [PMID: 27855667 PMCID: PMC5112882 DOI: 10.1186/s12917-016-0885-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/10/2016] [Indexed: 11/24/2022] Open
Abstract
Background Porcine respiratory and reproductive syndrome (PRRS) virus is one of the most economically significant pathogens in the Vietnamese swine industry. ORF5, which participates in many functional processes, including virion assembly, entry of the virus into the host cell, and viral adaptation to the host immune response, has been widely used in molecular evolution and phylogeny studies. Knowing of molecular evolution of PRRSV fields strains might contribute to PRRS control in Vietnam. Results The results showed that phylogenetic analysis indicated that all strains belonged to sub-lineages 8.7 and 5.1. The nucleotide and amino acid identities between strains were 84.5–100% and 82–100%, respectively. Furthermore, the results revealed differences in nucleotide and amino acid identities between the 2 sub-lineage groups. N-glycosylation prediction identified 7 potential N-glycosylation sites and 11 glycotypes. Analyses of the GP5 sequences, revealed 7 sites under positive selective pressure and 25 under negative selective pressure. Conclusions Phylogenetic analysis based on ORF5 sequence indicated the diversity of PRRSV in Vietnam. Furthermore, the variance of N-glycosylation sites and position under selective pressure were demonstrated. This study expands existing knowledge on the genetic diversity and evolution of PRRSV in Vietnam and assists the effective strategies for PRRS vaccine development in Vietnam. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0885-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hai Quynh Do
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Dinh Thau Trinh
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thi Lan Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thi Thu Hang Vu
- Research and Development Laboratory, Avac Vietnam Company Limited (AVAC), Hung Yen, Vietnam
| | - Duc Duong Than
- Research and Development Laboratory, Avac Vietnam Company Limited (AVAC), Hung Yen, Vietnam
| | - Thi Van Lo
- Research and Development Laboratory, Avac Vietnam Company Limited (AVAC), Hung Yen, Vietnam
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - SeEun Choe
- Animal and Plant Quarantine Agency, Gyeonggi-do, Gimcheon, Gyeongsangbukdo, Republic of Korea
| | - Dong-Jun An
- Animal and Plant Quarantine Agency, Gyeonggi-do, Gimcheon, Gyeongsangbukdo, Republic of Korea
| | - Van Phan Le
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam.
| |
Collapse
|
10
|
Lee JA, Lee NH, Lee JB, Park SY, Song CS, Choi IS, Lee SW. Augmented immune responses in pigs immunized with an inactivated porcine reproductive and respiratory syndrome virus containing the deglycosylated glycoprotein 5 under field conditions. Clin Exp Vaccine Res 2016; 5:70-4. [PMID: 26866026 PMCID: PMC4742602 DOI: 10.7774/cevr.2016.5.1.70] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/02/2015] [Accepted: 12/03/2015] [Indexed: 01/19/2023] Open
Abstract
Purpose Porcine reproductive and respiratory syndrome virus (PRRSV) leads to major economic losses in the swine industry. Vaccination is the most effective method to control the disease by PRRSV. Materials and Methods In this study, the efficacy of a glycoprotein (GP) 5-modified inactivated vaccine was investigated in pigs. The study was performed in three farms: farm A, which was porcine reproductive and respiratory syndrome (PRRS)-negative, farm B (PRRS-active), which showed clinical signs of PRRS but had not used vaccines, and farm C (PRRS-stable), which had a history of endemic PRRS over the past years, but showed no more clinical signs after periodic administration of modified live virus vaccine. Results The inactivated vaccine induced great enhancement in serum neutralizing antibody titer, which was sufficient to protect pigs from further infections of PRRSV in a farm where pre-existing virus was circulating. Conclusion These results indicated that vaccination with the inactivated vaccine composed of viruses possessing deglycosylated GP5 would provide enhanced protection to pigs from farms suffering from endemic PRRSV.
Collapse
Affiliation(s)
- Jung-Ah Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Korea.; Division of Vaccine Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Nak-Hyung Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Joong-Bok Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Seung-Yong Park
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Chang-Seon Song
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - In-Soo Choi
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Sang-Won Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
11
|
Loving CL, Osorio FA, Murtaugh MP, Zuckermann FA. Innate and adaptive immunity against Porcine Reproductive and Respiratory Syndrome Virus. Vet Immunol Immunopathol 2015. [PMID: 26209116 PMCID: PMC7112826 DOI: 10.1016/j.vetimm.2015.07.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many highly effective vaccines have been produced against viruses whose virulent infection elicits strong and durable protective immunity. In these cases, characterization of immune effector mechanisms and identification of protective epitopes/immunogens has been informative for the development of successful vaccine programs. Diseases in which the immune system does not rapidly clear the acute infection and/or convalescent immunity does not provide highly effective protection against secondary challenge pose a major hurdle for clinicians and scientists. Porcine reproductive and respiratory syndrome virus (PRRSV) falls primarily into this category, though not entirely. PRRSV causes a prolonged infection, though the host eventually clears the virus. Neutralizing antibodies can provide passive protection when present prior to challenge, though infection can be controlled in the absence of detectable neutralizing antibodies. In addition, primed pigs (through natural exposure or vaccination with a modified-live vaccine) show some protection against secondary challenge. While peripheral PRRSV-specific T cell responses have been examined, their direct contribution to antibody-mediated immunity and viral clearance have not been fully elucidated. The innate immune response following PRRSV infection, particularly the antiviral type I interferon response, is meager, but when provided exogenously, IFN-α enhances PRRSV immunity and viral control. Overall, the quality of immunity induced by natural PRRSV infection is not ideal for informing vaccine development programs. The epitopes necessary for protection may be identified through natural exposure or modified-live vaccines and subsequently applied to vaccine delivery platforms to accelerate induction of protective immunity following vaccination. Collectively, further work to identify protective B and T cell epitopes and mechanisms by which PRRSV eludes innate immunity will enhance our ability to develop more effective methods to control and eliminate PRRS disease.
Collapse
Affiliation(s)
- Crystal L Loving
- USDA-ARS-National Animal Disease Center, Ames, IA, United States.
| | - Fernando A Osorio
- Nebraska Center for Virology and School of Veterinary & Biomedical Sciences, University of Nebraska-Lincoln, United States
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Federico A Zuckermann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, United States
| |
Collapse
|
12
|
Wang X, Qui L, Dang Y, Xiao S, Zhang S, Yang Z. Linear epitope recognition antibodies strongly respond to the C-terminal domain of HP-PRRSV GP5. Vet Microbiol 2014; 174:565-569. [PMID: 25448446 DOI: 10.1016/j.vetmic.2014.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 08/17/2014] [Accepted: 09/08/2014] [Indexed: 11/25/2022]
Abstract
A total of 155 peptides derived from the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) glycoprotein 5 (GP5) were printed on a chip to reveal the antigen reaction characteristics of the protein. The reactions of these peptides to HP-PRRSV-specific pig serum were scanned and quantified using fluorescence intensity via the PepSlide(®) Analyzer software. The intensity plots showed different reactions in the different sectors of GP5. The highest reaction intensity value reached 3894.5, with a peptide sequence of IVEKGGKVEVEGHLI. Seventeen peptides that showed relatively high reaction levels with HP-PRRSV-specific pig serum were selected as epitope candidates. Furthermore, the antigenic character was predicted using a software and was compared with the peptide scan results. In contrast to the software prediction, the HP-PRRSV-specific antibodies strongly responded to the C-terminal domain of GP5. The acquired data may be useful for understanding the antigenic characteristics of HP-PRRSV GP5.
Collapse
Affiliation(s)
- Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong road, Yangling 712100, China.
| | - Li Qui
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong road, Yangling 712100, China
| | - Yu Dang
- Shaanxi University of Technology, Hanzhong 723001, China
| | - Sha Xiao
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong road, Yangling 712100, China
| | - Shuxia Zhang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong road, Yangling 712100, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong road, Yangling 712100, China.
| |
Collapse
|
13
|
Genetic diversity and phylogenetic analysis of porcine reproductive and respiratory syndrome virus isolates in East China. INFECTION GENETICS AND EVOLUTION 2014; 24:193-201. [DOI: 10.1016/j.meegid.2014.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/05/2014] [Accepted: 02/14/2014] [Indexed: 11/24/2022]
|
14
|
Protective humoral immune response induced by an inactivated porcine reproductive and respiratory syndrome virus expressing the hypo-glycosylated glycoprotein 5. Vaccine 2014; 32:3617-22. [PMID: 24814552 DOI: 10.1016/j.vaccine.2014.04.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 11/22/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses to the swine industry worldwide. Although inactivated and live vaccines are commercially available for the control of PRRS, both types of vaccine have not always proven successful in terms of generating a protective immune response, particularly in the case of inactivated vaccines. In this study, we tested whether an inactivated vaccine could induce a humoral immune response to PRRS during a homologous challenge. Amino acid substitutions were introduced into glycoprotein (GP) 5 of the FL12 strain of the PRRS virus (PRRSV) using site-directed mutagenesis with a pFL12 infectious clone. The substitutions led to double deglycosylation in the putative glycosylation moieties on GP5. The mutant virus was subsequently inactivated with binary ethylenimine. The efficacy of the inactivated mutant virus was compared with that of the inactivated wild-type PRRSV. Only the inactivated mutant PRRSV induced serum neutralizing antibodies at six weeks post-vaccination. The group that was administered the inactivated mutant virus twice exhibited a significantly increased neutralizing antibody titer after a challenge with the virulent homologous strain and exhibited more rapid clearing of viremia compared to other groups, including the groups that were administered either the inactivated mutant or wild-type virus only once and the group that was administered the inactivated wild-type virus twice. Histopathological examination of lung tissue sections revealed that the group that was administered the inactivated mutant virus twice exhibited significantly thinner alveolar septa, whereas the thickness of the alveolar septa of the other groups were markedly increased due to lymphocyte infiltration. These results indicated that the deglycosylation of GP5 enhanced the immunogenicity of the inactivated mutant PRRSV and that twice administrations of the inactivated mutant virus conferred better protection against the homologous challenge. These findings suggest that the inactivated PRRSV that expresses a hypo-glycosylated GP5 is a potential inactivated vaccine candidate and a valuable tool for controlling PRRS for the swine industry.
Collapse
|
15
|
Zhao H, Wang Y, Ma Z, Wang Y, Feng WH. Recombinant Kluyveromyces lactis expressing highly pathogenic porcine reproductive and respiratory syndrome virus GP5 elicits mucosal and cell-mediated immune responses in mice. J Vet Sci 2013; 15:199-208. [PMID: 24378591 PMCID: PMC4087221 DOI: 10.4142/jvs.2014.15.2.199] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/23/2013] [Indexed: 11/25/2022] Open
Abstract
Currently, killed-virus and modified-live porcine reproductive and respiratory syndrome virus (PRRSV) vaccines are used to control porcine reproductive and respiratory syndrome. However, both types of vaccines have inherent drawbacks; accordingly, the development of novel PRRSV vaccines is urgently needed. Previous studies have suggested that yeast possesses adjuvant activities, and it has been used as an expression vehicle to elicit immune responses to foreign antigens. In this report, recombinant Kluyveromyces lactis expressing GP5 of HP-PRRSV (Yeast-GP5) was generated and immune responses to this construct were analyzed in mice. Intestinal mucosal PRRSV-specific sIgA antibody and higher levels of IFN-γ in spleen CD4+ and CD8+ T cells were induced by oral administration of Yeast-GP5. Additionally, Yeast-GP5 administered subcutaneously evoked vigorous cell-mediated immunity, and PRRSV-specific lymphocyte proliferation and IFN-γ secretion were detected in the splenocytes of mice. These results suggest that Yeast-GP5 has the potential for use as a vaccine for PRRSV in the future.
Collapse
Affiliation(s)
- Haiyan Zhao
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | |
Collapse
|
16
|
Construction and immunogenicity of DNA vaccines encoding fusion protein of porcine IFN- λ 1 and GP5 gene of porcine reproductive and respiratory syndrome virus. BIOMED RESEARCH INTERNATIONAL 2013; 2013:318698. [PMID: 24490154 PMCID: PMC3884778 DOI: 10.1155/2013/318698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/29/2013] [Indexed: 01/05/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been mainly responsible for the catastrophic economic losses in pig industry worldwide. The commercial vaccines only provide a limited protection against PRRSV infection. Thus, the focus and direction is to develop safer and more effective vaccines in the research field of PRRS. The immune modulators are being considered to enhance the effectiveness of PRRSV vaccines. IFN-λ1 belongs to type III interferon, a new interferon family. IFN-λ1 is an important cytokine with multiple functions in innate and acquired immunity. In this study, porcine IFN-λ1 (PoIFN-λ1) was evaluated for its adjuvant effects on the immunity of a DNA vaccine carrying the GP5 gene of PRRSV. Groups of mice were immunized twice at 2-week interval with 100 μg of the plasmid DNA vaccine pcDNA3.1-SynORF5, pcDNA3.1-PoIFN-λ1-SynORF5, and the blank vector pcDNA3.1, respectively. The results showed that pcDNA3.1-PoIFN-λ1-SynORF5 can significantly enhance GP5-specific ELISA antibody, PRRSV-specific neutralizing antibody, IFN-γ level, and lymphocyte proliferation rather than the responses induced by pcDNA3.1-SynORF5. Therefore, type III interferon PoIFN-λ1 could enhance the immune responses of DNA vaccine of PRRSV, highlighting the potential value of PoIFN-λ1 as a molecular adjuvant in the prevention of PRRSV infection.
Collapse
|
17
|
Roques E, Girard A, St-Louis MC, Massie B, Gagnon CA, Lessard M, Archambault D. Immunogenic and protective properties of GP5 and M structural proteins of porcine reproductive and respiratory syndrome virus expressed from replicating but nondisseminating adenovectors. Vet Res 2013; 44:17. [PMID: 23497101 PMCID: PMC3608016 DOI: 10.1186/1297-9716-44-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 02/13/2013] [Indexed: 02/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is responsible for significant economic losses in the porcine industry. Currently available commercial vaccines do not allow optimal and safe protection. In this study, replicating but nondisseminating adenovectors (rAdV) were used for the first time in pigs for vaccinal purposes. They were expressing the PRRSV matrix M protein in fusion with either the envelope GP5 wild-type protein (M-GP5) which carries the major neutralizing antibody (NAb)-inducing epitope or a mutant form of GP5 (M-GP5m) developed to theoretically increase the NAb immune response. Three groups of fourteen piglets were immunized both intramuscularly and intranasally at 3-week intervals with rAdV expressing the green fluorescent protein (GFP, used as a negative control), M-GP5 or M-GP5m. Two additional groups of pigs were primed with M-GP5m-expressing rAdV followed by a boost with bacterially-expressed recombinant wild-type GP5 or were immunized twice with a PRRSV inactivated commercial vaccine. The results show that the rAdV expressing the fusion proteins of interest induced systemic and mucosal PRRSV GP5-specific antibody response as determined in an ELISA. Moreover the prime with M-GP5m-expressing rAdV and boost with recombinant GP5 showed the highest antibody response against GP5. Following PRRSV experimental challenge, pigs immunized twice with rAdV expressing either M-GP5 or M-GP5m developed partial protection as shown by a decrease in viremia overtime. The lowest viremia levels and/or percentages of macroscopic lung lesions were obtained in pigs immunized twice with either the rAdV expressing M-GP5m or the PRRSV inactivated commercial vaccine.
Collapse
Affiliation(s)
- Elodie Roques
- Department of Biological Sciences, University of Québec at Montréal, Succursale Centre-Ville, P,O, Box 8888, Montréal, Québec, H3C 3P8, Canada.
| | | | | | | | | | | | | |
Collapse
|
18
|
Li J, Murtaugh MP. Dissociation of porcine reproductive and respiratory syndrome virus neutralization from antibodies specific to major envelope protein surface epitopes. Virology 2012; 433:367-76. [PMID: 22981434 DOI: 10.1016/j.virol.2012.08.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 06/09/2012] [Accepted: 08/17/2012] [Indexed: 12/19/2022]
Abstract
Glycoprotein 5 (GP5) and membrane (M) protein are the major proteins in the envelope of porcine reproductive and respiratory syndrome virus (PRRSV). Although viral neutralization epitopes are reported in GP5 and M of type 2 PRRSV, their significance as targets of porcine humoral immunity is not well described. Thus, we constructed recombinant polypeptides containing ectodomain neutralization epitopes to examine their involvement in porcine antibody neutralization and antiviral immunity. PRRSV infection elicited ectodomain-specific antibodies, whose titers did not correlate with the neutralizing antibody (NA) response. Ectodomain-specific antibodies from PRRSV-neutralizing serum bound virus but did not neutralize infectivity. Furthermore, immunization of pigs with ectodomain polypeptides raised specific antibodies and provided partial protection without a detectable NA response. Finally the polypeptides did not block infection of porcine macrophages. These results suggest that the GP5/M ectodomain peptide epitopes are accessible for host antibody recognition, but are not associated with antibody-mediated virus neutralization.
Collapse
Affiliation(s)
- Juan Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | | |
Collapse
|
19
|
Chand RJ, Trible BR, Rowland RRR. Pathogenesis of porcine reproductive and respiratory syndrome virus. Curr Opin Virol 2012; 2:256-63. [DOI: 10.1016/j.coviro.2012.02.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/06/2012] [Indexed: 11/28/2022]
|
20
|
Immunological solutions for treatment and prevention of porcine reproductive and respiratory syndrome (PRRS). Vaccine 2011; 29:8192-204. [DOI: 10.1016/j.vaccine.2011.09.013] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 02/07/2023]
|
21
|
Prieto C, Martínez-Lobo FJ, Díez-Fuertes F, Aguilar-Calvo P, Simarro I, Castro JM. Immunisation of pigs with a major envelope protein sub-unit vaccine against porcine reproductive and respiratory syndrome virus (PRRSV) results in enhanced clinical disease following experimental challenge. Vet J 2011; 189:323-9. [PMID: 20713312 PMCID: PMC7172774 DOI: 10.1016/j.tvjl.2010.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 07/06/2010] [Accepted: 07/12/2010] [Indexed: 12/23/2022]
Abstract
Disease exacerbation was observed in pigs challenged with virulent porcine reproductive and respiratory syndrome virus (PRRSV) following immunisation with a recombinant GP5 sub-unit PRRSV vaccine (rGP5) produced in E. coli. Eighteen animals were divided into three experimental groups: group A were immunised twice IM with rGP5, 21 days apart; group B acted as positive controls (challenged but not immunised); and group C were negative controls. Pigs in groups A and B were challenged 21 days after the second immunisation of the group A animals. Following challenge, three pigs given rGP5 exhibited more severe clinical signs than the positive controls, including respiratory distress and progressive weight-loss. Although not statistically significant, the more severe disease exhibited by group A animals may suggest previous immunisation as a contributory factor. The mechanisms of these findings remain unclear and no association could be established between the severity of disease, non-neutralising antibody concentrations and tissue viral loads.
Collapse
|
22
|
Darwich L, Díaz I, Mateu E. Certainties, doubts and hypotheses in porcine reproductive and respiratory syndrome virus immunobiology. Virus Res 2010; 154:123-32. [PMID: 20659507 DOI: 10.1016/j.virusres.2010.07.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/15/2010] [Accepted: 07/18/2010] [Indexed: 12/30/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most costly pathogens for the swine industry. Since its emergence some 20 years ago, much has been learned about the immunobiology of PRRSV. Although vaccines are available, they do not provide full and universal protection against PRRSV infection. In the present review, current knowledge on the virus's immunobiology will be discussed including: role of viral receptors, innate immune response to the virus, regulation of the immune response by PRRSV, and the characteristics and role of adaptive immunity. In addition, some hypotheses for future research in this area are presented.
Collapse
Affiliation(s)
- Laila Darwich
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
23
|
Cruz JLG, Zúñiga S, Bécares M, Sola I, Ceriani JE, Juanola S, Plana J, Enjuanes L. Vectored vaccines to protect against PRRSV. Virus Res 2010; 154:150-60. [PMID: 20600388 PMCID: PMC7114413 DOI: 10.1016/j.virusres.2010.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 06/14/2010] [Indexed: 12/18/2022]
Abstract
PRRSV is the causative agent of the most important infectious disease affecting swine herds worldwide, producing great economic losses. Commercially available vaccines are only partially effective in protection against PRRSV. Moreover, modified live vaccines may allow virus shedding, and could revert generating virulent phenotypes. Therefore, new efficient vaccines are required. Vaccines based on recombinant virus genomes (virus vectored vaccines) against PRRSV could represent a safe alternative for the generation of modified live vaccines. In this paper, current vectored vaccines to protect against PRRSV are revised, including those based on pseudorabies virus, poxvirus, adenovirus, and virus replicons. Special attention has been provided to the use of transmissible gastroenteritis virus (TGEV) as vector for the expression of PRRSV antigens. This vector has the capability of expressing high levels of heterologous genes, is a potent interferon-α inducer, and presents antigens in mucosal surfaces, eliciting both secretory and systemic immunity. A TGEV derived vector (rTGEV) was generated, expressing PRRSV wild type or modified GP5 and M proteins, described as the main inducers of neutralizing antibodies and cellular immune response, respectively. Protection experiments showed that vaccinated animals developed a faster and stronger humoral immune response than the non-vaccinated ones. Partial protection in challenged animals was observed, as vaccinated pigs showed decreased lung damage when compared with the non-vaccinated ones. Nevertheless, the level of neutralizing antibodies was low, what may explain the limited protection observed. Several strategies are proposed to improve current rTGEV vectors expressing PRRSV antigens.
Collapse
Affiliation(s)
- Jazmina L G Cruz
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Chia MY, Hsiao SH, Chan HT, Do YY, Huang PL, Chang HW, Tsai YC, Lin CM, Pang VF, Jeng CR. Immunogenicity of recombinant GP5 protein of porcine reproductive and respiratory syndrome virus expressed in tobacco plant. Vet Immunol Immunopathol 2010; 135:234-42. [PMID: 20053461 DOI: 10.1016/j.vetimm.2009.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/04/2009] [Accepted: 12/13/2009] [Indexed: 12/13/2022]
Abstract
The aim of the study was to evaluate the immunogenicity of the ORF5-encoded major envelop glycoprotein 5 (GP5) of porcine reproductive and respiratory syndrome virus (PRRSV) expressed in tobacco plant as a potential pig oral vaccine in protection against PRRSV infection. Six-week-old PRRSV-free pigs were fed four times orally with 50g of chopped fresh GP5 transgenic tobacco leaves (GP5-T) (GP5 reaching 0.011% of total soluble protein) or wild-type tobacco leaves (W-T) each on days 0, 14, 28, and 42. Samples of serum, saliva, and peripheral blood mononuclear cells (PBMCs) were collected on days -1, 6, 13, 20, 27, 34, 41, and 48 after the initial oral vaccination. A similar vaccination-dependent gradual increase in the responses of serum and saliva anti-PRRSV total IgG and IgA, respectively, and in the levels of PRRSV-specific blastogenic response of PBMCs was seen in GP5-T-treated pigs; all statistically significant elevations occurred after the 2nd vaccination and were revealed after 20 days post-initial oral vaccination (DPIOV). Pigs fed on GP5-T also developed serum neutralizing antibodies to PRRSV at a titer of 1:4-1:8 after the 4th vaccination by 48 DPIOV. No detectable anti-PRRSV antibody responses and PRRSV-specific blastogenic response were seen in W-T-treated pigs. The present study has demonstrated that pigs fed on GP5-T could develop specific mucosal as well as systemic humoral and cellular immune responses against PRRSV. The results also support that transgenic plant as GP5-T can be an effective system for oral delivery of recombinant subunit vaccines in pigs.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/blood
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Base Sequence
- Bioreactors
- DNA, Viral/genetics
- Immunity, Cellular
- Immunity, Humoral
- Immunity, Mucosal
- Immunoglobulin A, Secretory/biosynthesis
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/blood
- Lymphocyte Activation
- Male
- Plants, Genetically Modified
- Porcine Reproductive and Respiratory Syndrome/immunology
- Porcine Reproductive and Respiratory Syndrome/prevention & control
- Porcine respiratory and reproductive syndrome virus/genetics
- Porcine respiratory and reproductive syndrome virus/immunology
- Saliva/immunology
- Sus scrofa
- Swine
- Nicotiana/genetics
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/genetics
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
Collapse
Affiliation(s)
- Min-Yuan Chia
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, Taipei 106, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis. Anim Health Res Rev 2010; 11:135-63. [DOI: 10.1017/s1466252310000034] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractPorcine reproductive and respiratory syndrome (PRRS) is an economically devastating viral disease affecting the swine industry worldwide. The etiological agent, PRRS virus (PRRSV), possesses a RNA viral genome with nine open reading frames (ORFs). The ORF1a and ORF1b replicase-associated genes encode the polyproteins pp1a and pp1ab, respectively. The pp1a is processed in nine non-structural proteins (nsps): nsp1α, nsp1β, and nsp2 to nsp8. Proteolytic cleavage of pp1ab generates products nsp9 to nsp12. The proteolytic pp1a cleavage products process and cleave pp1a and pp1ab into nsp products. The nsp9 to nsp12 are involved in virus genome transcription and replication. The 3′ end of the viral genome encodes four minor and three major structural proteins. The GP2a, GP3and GP4(encoded by ORF2a, 3 and 4), are glycosylated membrane associated minor structural proteins. The fourth minor structural protein, the E protein (encoded by ORF2b), is an unglycosylated membrane associated protein. The viral envelope contains two major structural proteins: a glycosylated major envelope protein GP5(encoded by ORF5) and an unglycosylated membrane M protein (encoded by ORF6). The third major structural protein is the nucleocapsid N protein (encoded by ORF7). All PRRSV non-structural and structural proteins are essential for virus replication, and PRRSV infectivity is relatively intolerant to subtle changes within the structural proteins. PRRSV virulence is multigenic and resides in both the non-structural and structural viral proteins. This review discusses the molecular characteristics, biological and immunological functions of the PRRSV structural and nsps and their involvement in the virus pathogenesis.
Collapse
|
26
|
Ren X, Wang M, Yin J, Ren Y, Li G. Heterologous expression of fused genes encoding the glycoprotein 5 from PRRSV: a way for producing functional protein in prokaryotic microorganism. J Biotechnol 2010; 147:130-5. [PMID: 20356565 PMCID: PMC7114092 DOI: 10.1016/j.jbiotec.2010.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 03/15/2010] [Accepted: 03/22/2010] [Indexed: 11/18/2022]
Abstract
Based on the bioinformatics analysis of the gene encoding glycoprotein 5 (GP5) of porcine reproductive and respiratory syndrome virus (PRRSV) isolate HH08, two gene fragments were amplified by polymerase chain reaction (PCR), deleting the signal peptide and transmembrane sequences in GP5 gene. Both gene fragments were designated GP5a and GP5b, respectively. They were ligated with a linker and cloned into prokaryotic expression vector, pET-30a. Expression of the protein of interest was induced by isopropyl beta-d-1-thiogalactopyranoside. The purified protein was used as an immunogen to elicit antibody in rabbit. The immunoreactivity of the protein was determined using ELISA and Western blot. Biologically active GP5 and anti-GP5 antibody inhibited cell infection by PRRSV. Moreover, the antibody produced in this study was capable of detecting the cell infection by PRRSV and distinguishing this virus from other viruses.
Collapse
Affiliation(s)
- Xiaofeng Ren
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, 150030 Harbin, China
- Corresponding authors. Tel.: +86 451 55190385; fax: +86 451 55103336.
| | - Mingcui Wang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, 150030 Harbin, China
| | - Jiechao Yin
- College of Life Sciences, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, 150030 Harbin, China
| | - Yudong Ren
- Department of Computer, College of Engineering, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, 150030 Harbin, China
| | - Guangxing Li
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, 150030 Harbin, China
- Corresponding authors. Tel.: +86 451 55190385; fax: +86 451 55103336.
| |
Collapse
|
27
|
|
28
|
Zhou YJ, Yu H, Tian ZJ, Li GX, Hao XF, Yan LP, Peng JM, An TQ, Xu AT, Wang YX, Wei TC, Zhang SR, Cai XH, Feng L, Li X, Zhang GH, Zhou LJ, Tong GZ. Genetic diversity of the ORF5 gene of porcine reproductive and respiratory syndrome virus isolates in China from 2006 to 2008. Virus Res 2009; 144:136-44. [DOI: 10.1016/j.virusres.2009.04.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 11/26/2022]
|
29
|
Kimman TG, Cornelissen LA, Moormann RJ, Rebel JMJ, Stockhofe-Zurwieden N. Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology. Vaccine 2009; 27:3704-18. [PMID: 19464553 DOI: 10.1016/j.vaccine.2009.04.022] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/30/2009] [Accepted: 04/07/2009] [Indexed: 01/11/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a threat for the pig industry. Vaccines have been developed, but these failed to provide sustainable disease control, in particular against genetically unrelated strains. Here we give an overview of current knowledge and gaps in our knowledge that may be relevant for the development of a future generation of more effective vaccines. PRRSV replicates in cells of the monocyte/macrophage lineage, induces apoptosis and necrosis, interferes with the induction of a proinflammatory response, only slowly induces a specific antiviral response, and may cause persistent infections. The virus appears to use several evasion strategies to circumvent both innate and acquired immunity, including interference with antigen presentation, antibody-mediated enhancement, reduced cell surface expression of viral proteins, and shielding of neutralizing epitopes. In particular the downregulation of type I interferon-alpha production appears to interfere with the induction of acquired immunity. Current vaccines are ineffective because they suffer both from the immune evasion strategies of the virus and the antigenic heterogeneity of field strains. Future vaccines therefore must "uncouple" the immune evasion and apoptogenic/necrotic properties of the virus from its immunogenic properties, and they should induce a broad immune response covering the plasticity of its major antigenic sites. Alternatively, the composition of the vaccine should be changed regularly to reflect presently and locally circulating strains. Preferably new vaccines should also allow discriminating infected from vaccinated pigs to support a virus elimination strategy. Challenges in vaccine development are the incompletely known mechanisms of immune evasion and immunity, lack of knowledge of viral sequences that are responsible for the pathogenic and immunosuppressive properties of the virus, lack of knowledge of the forces that drive antigenic heterogeneity and its consequences for immunogenicity, and a viral genome that is relatively intolerant for subtle changes at functional sites.
Collapse
Affiliation(s)
- Tjeerd G Kimman
- Central Veterinary Institute of Wageningen UR (CVI), P.O. Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
30
|
Li B, Xiao S, Wang Y, Xu S, Jiang Y, Chen H, Fang L. Immunogenicity of the highly pathogenic porcine reproductive and respiratory syndrome virus GP5 protein encoded by a synthetic ORF5 gene. Vaccine 2009; 27:1957-63. [PMID: 19368777 DOI: 10.1016/j.vaccine.2009.01.098] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/12/2009] [Accepted: 01/22/2009] [Indexed: 11/16/2022]
Abstract
Since May 2006, a highly pathogenic porcine reproductive and respiratory syndrome virus (PRRSV), which causes continuous high fever and a high proportion of deaths in vaccinated pigs of all ages, has emerged and prevailed in Mainland China. Huge efforts should be made towards the development of an efficient vaccine against the highly pathogenic PRRSV. Although the ORF5-encoded GP5 is the most important immunogenic protein, accumulating evidences have demonstrated that incomplete protection conferred by GP5-based vaccines. The inability to induce robust protective immunity has been postulated to be associated with the presence of a non-neutralizing decoy epitope and heavy glycosylation in close to its neutralizing epitope. In this study, a synthetic ORF5 gene (SynORF5) was engineered with the codon usage optimized for mammalian cell expression based on the native ORF5 gene of highly pathogenic PRRSV strain WUH3. Additional modifications, i.e., inserting a Pan DR T-helper cell epitope (PADRE) between the neutralizing epitope and the non-neutralizing decoy epitope, and mutating four potential N-glycosylation sites (N30, N34, N35 and N51) were also included in the synthetic ORF5 gene. The immunogenicity of the SynORF5-encoded GP5 was evaluated by DNA vaccination in mice and piglets. Results showed that significantly enhanced GP5-specific ELISA antibody, PRRSV-specific neutralizing antibody, IFN-gamma level, as well as lymphocyte proliferation response, could be induced in mice and piglets immunized with DNA construct encoding the modified GP5 than those received DNA vaccine expressing the native GP5. The enhanced immunogenicity of the modified GP5 will be useful to facilitate the development of efficient vaccines against the highly pathogenic PRRSV in the future.
Collapse
Affiliation(s)
- Bin Li
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | | | | | | | | | | |
Collapse
|