1
|
Elbadawy M, Saito N, Kato Y, Hayashi K, Abugomaa A, Kobayashi M, Yoshida T, Shibutani M, Kaneda M, Yamawaki H, Sasaki K, Usui T, Omatsu T. Establishment of a bat lung organoid culture model for studying bat-derived infectious diseases. Sci Rep 2025; 15:4035. [PMID: 39900611 PMCID: PMC11791068 DOI: 10.1038/s41598-025-88621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Bat is considered a natural reservoir of various important pathogens, including severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, Ebola virus, and Nipah virus. To study these viruses' pathogenicity and proliferation efficacy and viral tolerance mechanisms in bats, bat-derived cell lines, and primary cultured cells are used. However, these do not adequately reflect the exact biology of bats, and establishing new bat-related research models is necessary. Organoid culture can recapitulate organ structure, functions, and diseases. The respiratory tract is one of the primary routes of viral infection, and the establishment of bat lung organoids (BLO) is necessary to study the viral susceptibility in bats. Therefore, we aimed to establish a culture method of BLO from Rousettus leschenaultia that died of natural causes. The generated BLO successfully recapitulated the characteristics of pulmonary epithelial structure and morphology. BLO expressed the entry receptors for coronavirus, Angiotensin-converting enzyme 2 (ACE2), and Transmembrane Protease Serine 2 (TMPRSS2), and alveolar type 2 cells were successfully sorted from BLO, which has an important role for the development of viral infection in the respiratory system. Furthermore, we showed that BLO had no susceptibility to Pteropine orthoreovirus (PRV) compared to bat intestinal organoids. Collectively, our established bat organoid culture models including this BLO might become promising in vitro biomaterials to study the biology of bat-derived infectious diseases.
Collapse
Affiliation(s)
- Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, 183-8509, Tokyo, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Elqaliobiya, Egypt
| | - Nagisa Saito
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, 183-8509, Tokyo, Japan
| | - Yuki Kato
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, 183-8509, Tokyo, Japan
| | - Kimika Hayashi
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, 183-8509, Tokyo, Japan
| | - Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, 183-8509, Tokyo, Japan
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mio Kobayashi
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, 183-8509, Tokyo, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, 183-8509, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, 183-8509, Tokyo, Japan
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, 183-8509, Tokyo, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, 35-1, Higashi 23 ban-cho, Towada, 034-8628, Aomori, Japan
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, 183-8509, Tokyo, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, 183-8509, Tokyo, Japan.
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, 183-8509, Tokyo, Japan.
| |
Collapse
|
2
|
Intaruck K, Tabata K, Itakura Y, Kawaguchi N, Kishimoto M, Setiyono A, Handharyani E, Harima H, Kimura T, Hall WW, Orba Y, Sawa H, Sasaki M. Characterization of a mammalian orthoreovirus isolated from the large flying fox, Pteropus vampyrus, in Indonesia. J Gen Virol 2024; 105. [PMID: 39319430 DOI: 10.1099/jgv.0.002028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Fruit bats serve as an important reservoir for many zoonotic pathogens, including Nipah virus, Hendra virus, Marburg virus and Lyssavirus. To gain a deeper insight into the virological characteristics, pathogenicity and zoonotic potential of bat-borne viruses, recovery of infectious viruses from field samples is important. Here, we report the isolation and characterization of a mammalian orthoreovirus (MRV) from a large flying fox (Pteropus vampyrus) in Indonesia, which is the first detection of MRV in Southeast Asia. MRV was recovered from faecal samples of three different P. vampyrus in Central Java. Nucleotide sequence analysis revealed that the genome of the three MRV isolates shared more than 99% nucleotide sequence identity. We tentatively named one isolated strain as MRV12-52 for further analysis and characterization. Among 10 genome segments, MRV12-52 S1 and S4, which encode the cell-attachment protein and outer capsid protein, had 93.6 and 95.1% nucleotide sequence identities with known MRV strains, respectively. Meanwhile, the remaining genome segments of MRV12-52 were divergent with 72.9-80.7 % nucleotide sequence identities. Based on the nucleotide sequence of the S1 segment, MRV12-52 was grouped into serotype 2, and phylogenetic analysis demonstrated evidence of past reassortment events. In vitro characterization of MRV12-52 showed that the virus efficiently replicated in BHK-21, HEK293T and A549 cells. In addition, experimental infection of laboratory mice with MRV12-52 caused severe pneumonia with 75% mortality. This study highlights the presence of pathogenic MRV in Indonesia, which could serve as a potential animal and public health concern.
Collapse
Affiliation(s)
- Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Koshiro Tabata
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Yukari Itakura
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Nijiho Kawaguchi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mai Kishimoto
- Laboratory of Veterinary Microbiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Japan
| | - Agus Setiyono
- Division of Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Ekowati Handharyani
- Division of Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Hayato Harima
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - William W Hall
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- National Virus Reference Laboratory, School of Medicine, University College of Dublin, Dublin, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Kong J, Shao G, Zhang Y, Wang J, Xie Z, Feng K, Zhang X, Xie Q. Molecular characterization, complete genome sequencing, and pathogenicity of Novel Duck Reovirus from South Coastal Area in China. Poult Sci 2023; 102:102776. [PMID: 37302330 PMCID: PMC10276289 DOI: 10.1016/j.psj.2023.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Novel Duck Reovirus (NDRV) that has been found throughout the world in waterfowl, and it has been extensively described. Here, we report the complete genome sequence of a NDRV strain isolated in China called NDRV YF10. This strain was collected from 87 samples with infected ducks in South Coastal Area. The NDRV genome consists of 23,419 bp. With the assistance of computer analysis, the promoter and terminator of each gene segment and 10 viral genes segments were identified, which encode polypeptides ranging from 98 to 1,294 amino acids. All gene fragments of this virus strain were determined and compared to previously reported strains, revealing genetic variation with similarity rates ranging from 96 to 99% for each gene segment. Each gene segment formed 2 host-associated groups, the waterfowl-derived reovirus and the avian-derived reovirus, except for the S1 gene segment, which was closely related to ARV evolution and formed a host-independent subcluster. This difference may be due to Avian Reovirus (ARV) evolving in a host-dependent manner. In order to evaluate the pathogenicity of YF10, a novel isolated strain of NDRV was tested in 2 types of ducks. It was observed that the YF10 isolated strain exhibits varying degrees of virulence, highlighting the potential risk posed to different types of ducks. In conclusion, our findings emphasize the importance of epidemiology studies, molecular characterization, and prevention of NDRV in waterfowl.
Collapse
Affiliation(s)
- Jie Kong
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Guanming Shao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yukun Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jinfeng Wang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zi Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Keyu Feng
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
4
|
Siew ZY, Loh A, Segeran S, Leong PP, Voon K. Oncolytic Reoviruses: Can These Emerging Zoonotic Reoviruses Be Tamed and Utilized? DNA Cell Biol 2023. [PMID: 37015068 DOI: 10.1089/dna.2022.0561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Orthoreovirus is a nonenveloped double-stranded RNA virus under the Reoviridae family. This group of viruses, especially mammalian orthoreovirus (MRV), are reported with great therapeutic values due to their oncolytic effects. In this review, the life cycle and oncolytic effect of MRV and a few emerging reoviruses were summarized. This article also highlights the challenges and strategies of utilizing MRV and the emerging reoviruses, avian orthoreovirus (ARV) and pteropine orthoreovirus (PRV), as oncolytic viruses (OVs). Besides, the emergence of potential ARV and PRV as OVs were discussed in comparison to MRV. Finally, the risk of reovirus as zoonosis or reverse zoonosis (zooanthroponosis) were debated, and concerns were raised in this article, which warrant continue surveillance of reovirus (MRV, ARV, and PRV) in animals, humans, and the environment.
Collapse
Affiliation(s)
- Zhen Yun Siew
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Alson Loh
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Sharrada Segeran
- School of Medicine, Australian National University, Canberra, Australia
| | - Pooi Pooi Leong
- Faculty of Medicine and Health Sciences, Universiti of Tunku Abdul Rahman, Kajang, Malaysia
| | - Kenny Voon
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
5
|
Tee KK, Chan PQ, Loh AMK, Singh S, Teo CH, Iyadorai T, Chook JB, Ng KT, Takebe Y, Chan KG, Sam IC, Voon K. Surveillance, isolation and genomic characterization of Pteropine orthoreovirus of probable bat origin among patients with acute respiratory infection in Malaysia. J Med Virol 2023; 95:e28520. [PMID: 36691929 DOI: 10.1002/jmv.28520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
Pteropine orthoreovirus (PRV), an emerging bat-borne virus, has been linked to cases of acute respiratory infections (ARI) in humans. The prevalence, epidemiology and genomic diversity of PRV among ARI of unknown origin were studied. Among 632 urban outpatients tested negative for all known respiratory viruses, 2.2% were PRV-positive. Patients mainly presented with moderate to severe forms of cough, sore throat and muscle ache, but rarely with fever. Phylogenetic analysis revealed that over 90% of patients infected with the Melaka virus (MelV)-like PRV, while one patient infected with the Pulau virus previously found only in fruit bats. Human oral keratinocytes and nasopharyngeal epithelial cells were susceptible to clinical isolates of PRV, including the newly isolated MelV-like 12MYKLU1034. Whole genome sequence of 12MYKLU1034 using Nanopore technique revealed a novel reassortant strain. Evolutionary analysis of the global PRV strains suggests the continuous evolution of PRV through genetic reassortment among PRV strains circulating in human, bats and non-human primate hosts, creating a spectrum of reassortant lineages with complex evolutionary characteristics. In summary, the role of PRV as a common etiologic agent of ARI is evident. Continuous monitoring of PRV prevalence, pathogenicity and diversity among human and animal hosts is important to trace the emergence of novel reassortants.
Collapse
Affiliation(s)
- Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Special Resource Centre, Institute for Medical Research, Ministry of Health, Shah Alam, Malaysia
| | - Po Qhuan Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Alson Mun-Khin Loh
- School of Medicine, Pathology Division, International Medical University, Kuala Lumpur, Malaysia
| | - Sarbhan Singh
- Special Resource Centre, Institute for Medical Research, Ministry of Health, Shah Alam, Malaysia
| | - Chee How Teo
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Thevambiga Iyadorai
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jack Bee Chook
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Kim Tien Ng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yutaka Takebe
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,International Genome Centre, Jiangsu University, Zhenjiang, China
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kenny Voon
- School of Medicine, Pathology Division, International Medical University, Kuala Lumpur, Malaysia.,School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
6
|
Intaruck K, Itakura Y, Kishimoto M, Chambaro HM, Setiyono A, Handharyani E, Uemura K, Harima H, Taniguchi S, Saijo M, Kimura T, Orba Y, Sawa H, Sasaki M. Isolation and characterization of an orthoreovirus from Indonesian fruit bats. Virology 2022; 575:10-19. [PMID: 35987079 DOI: 10.1016/j.virol.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Nelson Bay orthoreovirus (NBV) is an emerging bat-borne virus and causes respiratory tract infections in humans sporadically. Over the last two decades, several strains genetically related to NBV were isolated from humans and various bat species, predominantly in Southeast Asia (SEA), suggesting a high prevalence of the NBV species in this region. In this study, an orthoreovirus (ORV) belonging to the NBV species was isolated from Indonesian fruit bats' feces, tentatively named Paguyaman orthoreovirus (PgORV). Serological studies revealed that 81.2% (108/133) of Indonesian fruit bats sera had neutralizing antibodies against PgORV. Whole-genome sequencing and phylogenetic analysis of PgORV suggested the occurrence of past reassortments with other NBV strains isolated in SEA, indicating the dispersal and circulation of NBV species among bats in this region. Intranasal PgORV inoculation of laboratory mice caused severe pneumonia. Our study characterized PgORV's unique genetic background and highlighted the potential risk of PgORV-related diseases in Indonesia.
Collapse
Affiliation(s)
- Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yukari Itakura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mai Kishimoto
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Herman M Chambaro
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Agus Setiyono
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Ekowati Handharyani
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Kentaro Uemura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan; Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hayato Harima
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Satoshi Taniguchi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan; Global Virus Network, Baltimore, MD, USA
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
7
|
Tarigan R, Katta T, Takemae H, Shimoda H, Maeda K, Iida A, Hondo E. Distinct interferon response in bat and other mammalian cell lines infected with Pteropine orthoreovirus. Virus Genes 2021; 57:510-520. [PMID: 34432209 PMCID: PMC8386163 DOI: 10.1007/s11262-021-01865-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/09/2021] [Indexed: 12/24/2022]
Abstract
Bats serve as natural hosts of Pteropine orthoreovirus (PRV), an emerging group of bat-borne, zoonotic viruses. Bats appear to possess unique innate immune system responses that can inhibit viral replication, thus reducing clinical symptoms. We examined the innate immune response against PRV and assessed viral replication in cell lines derived from four bat species (Miniopterus fuliginosus, Pteropus dasymallus, Rhinolophus ferrumequinum, and Rousettus leschenaultii), one rodent (Mesocricetous auratus), and human (Homo sapiens). The expression levels of pattern recognition receptors (PRRs) (TLR3, RIG-I, and MDA5) and interferons (IFNB1 and IFNL1) were higher and PRV replication was lower in cell lines derived from M. fuliginosus, R. ferrumequinum, and R. leschenaultii. Reduction of IFNB1 expression by the knockdown of PRRs in the cell line derived from R. ferrumequinum was associated with increased PRV replication. The knockdown of RIG-I led to the most significant reduction in viral replication for all cell lines. These results suggest that RIG-I production is important for antiviral response against PRV in R. ferrumequinum.
Collapse
Affiliation(s)
- Ronald Tarigan
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Tetsufumi Katta
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hitoshi Takemae
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ken Maeda
- Division of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsuo Iida
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
8
|
Leong WJ, Quek XF, Tan HY, Wong KM, Muhammad HS, Mohamed NA, Wong ST, Abdullah ML, Leong PP, Wang L, Voon K. Seroprevalence of Pteropine orthoreovirus in humans remain similar after nearly two decades (2001-2002 vs. 2017) in Tioman Island, Malaysia. J Med Virol 2021; 94:771-775. [PMID: 34708881 DOI: 10.1002/jmv.27422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/18/2021] [Accepted: 10/25/2021] [Indexed: 11/06/2022]
Abstract
Pteropine orthoreovirus (PRV) is an emerging zoonotic respiratory virus that can be transmitted from bats to humans. In Malaysia, aside from PRV2P (Pulau virus) being isolated from Pteropus hypomelanus sampled in Tioman Island, PRV3M (Melaka virus), PRV4K (Kampar virus), and PRV7S (Sikamat virus) were all isolated from samples of patients who reported having a disease spectrum from acute respiratory distress to influenza-like illness and sometimes even with enteric symptoms such as diarrhea and abdominal pain. Screening of sera collected from human volunteers on Tioman Island in 2001-2002 demonstrated that 12.8% (14/109) were positive for PRV2P and PRV3M. Taking all these together, we aim to investigate the serological prevalence of PRV (including PRV4K and PRV7S) among Tioman Island inhabitants again with the assumption that the seroprevalence rate will remain nearly similar to the above reported if human exposure to bats is still happening in the island. Using sera collected from human volunteers on the same island in 2017, we demonstrated seroprevalence of 17.8% (28/157) against PRV2P and PRV3M, respectively. Seropositivity of 11.4% among Tioman Island inhabitants against PRV4K and PRV7S, respectively, was described in this study. In addition, the seroprevalence of 89.5% (17/19), 73.6% (14/19), 63.0% (12/19), and 73.6% (14/19) against PRV2P, PRV3M, PRV4K, and PRV7S, respectively, were observed among pteropid bats in the island. We revealed that the seroprevalence of PRV among island inhabitants remains nearly similar after nearly two decades, suggesting that potential spill-over events in bat-human interface areas in the Tioman Island. We are unclear whether such spillover was directly from bats to humans, as suspected for the PRV3M human cases, or from an intermediate host(s) yet to be identified. There is a high possibility of the viruses circulating among the bats as demonstrated by high seroprevalence against PRV in the bats.
Collapse
Affiliation(s)
- Wai J Leong
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Xin F Quek
- School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Hui Y Tan
- School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Kim M Wong
- School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Hariz S Muhammad
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan, Malaysia
| | - Nurul A Mohamed
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan, Malaysia
| | - Siew T Wong
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Mohd L Abdullah
- Department of Wildlife and National Parks, National Wildlife Forensic Laboratory, Kuala Lumpur, Malaysia
| | - Pooi P Leong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Linfa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Kenny Voon
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Harima H, Sasaki M, Orba Y, Okuya K, Qiu Y, Wastika CE, Changula K, Kajihara M, Simulundu E, Yamaguchi T, Eto Y, Mori-Kajihara A, Sato A, Taniguchi S, Takada A, Saijo M, Hang’ombe BM, Sawa H. Attenuated infection by a Pteropine orthoreovirus isolated from an Egyptian fruit bat in Zambia. PLoS Negl Trop Dis 2021; 15:e0009768. [PMID: 34492038 PMCID: PMC8448348 DOI: 10.1371/journal.pntd.0009768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/17/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022] Open
Abstract
Background Pteropine orthoreovirus (PRV) is an emerging bat-borne zoonotic virus that causes severe respiratory illness in humans. Although PRVs have been identified in fruit bats and humans in Australia and Asia, little is known about the prevalence of PRV infection in Africa. Therefore, this study performed an PRV surveillance in fruit bats in Zambia. Methods Egyptian fruit bats (Rousettus aegyptiacus, n = 47) and straw-colored fruit bats (Eidolon helvum, n = 33) captured in Zambia in 2017–2018 were screened for PRV infection using RT-PCR and serum neutralization tests. The complete genome sequence of an isolated PRV strain was determined by next generation sequencing and subjected to BLAST and phylogenetic analyses. Replication capacity and pathogenicity of the strain were investigated using Vero E6 cell cultures and BALB/c mice, respectively. Results An PRV strain, tentatively named Nachunsulwe-57, was isolated from one Egyptian fruit bat. Serological assays demonstrated that 98% of sera (69/70) collected from Egyptian fruit bats (n = 37) and straw-colored fruit bats (n = 33) had neutralizing antibodies against PRV. Genetic analyses revealed that all 10 genome segments of Nachunsulwe-57 were closely related to a bat-derived Kasama strain found in Uganda. Nachunsulwe-57 showed less efficiency in viral growth and lower pathogenicity in mice than another PRV strain, Miyazaki-Bali/2007, isolated from a patient. Conclusions A high proportion of Egyptian fruit bats and straw-colored fruit bats were found to be seropositive to PRV in Zambia. Importantly, a new PRV strain (Nachunsulwe-57) was isolated from an Egyptian fruit bat in Zambia, which had relatively weak pathogenicity in mice. Taken together, our findings provide new epidemiological insights about PRV infection in bats and indicate the first isolation of an PRV strain that may have low pathogenicity to humans. Pteropine orthoreovirus (PRV) is a causative agent of acute respiratory illness in humans in tropical and sub-tropical regions in Southeast Asia. PRVs have been originally isolated from fruit bats, and it is assumed that PRVs spread to humans by both bat-to-human and human-to-human transmission. Recently, an PRV was also detected from a fruit bat in the Afrotropical region and might potentially cause an emerging infection of the bat-borne zoonotic virus in Africa. However, little is known about the prevalence of PRV infection in Africa. In this study, we demonstrated the high prevalence of PRV infection in bat populations in Zambia and isolated a new strain of PRV from Egyptian fruit bats. In addition, we found that the bat-derived PRV strain had lower pathogenicity in mice than a human-derived PRV strain isolated from a patient in Southeast Asia. Our findings provide new epidemiological information about PRV in fruit bats in the Afrotropical region and indicate the first isolation of an PRV strain that may cause attenuated infection in humans.
Collapse
Affiliation(s)
- Hayato Harima
- Hokudai Center for Zoonosis Control in Zambia, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kosuke Okuya
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yongjin Qiu
- Hokudai Center for Zoonosis Control in Zambia, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Christida E. Wastika
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Katendi Changula
- Department of Para-clinical Studies, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia
| | - Masahiro Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia
- Macha Research Trust, Choma, Zambia
| | - Tomoyuki Yamaguchi
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshiki Eto
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akina Mori-Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akihiko Sato
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Satoshi Taniguchi
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Ayato Takada
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, Zambia
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Bernard M. Hang’ombe
- Department of Para-clinical Studies, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, Zambia
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, Zambia
- Global Virus Network, Baltimore, Maryland, United States of America
- One Health Research Center, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
10
|
Tan CW, Yang X, Anderson DE, Wang LF. Bat virome research: the past, the present and the future. Curr Opin Virol 2021; 49:68-80. [PMID: 34052731 DOI: 10.1016/j.coviro.2021.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Bats have been increasingly recognised as an exceptional reservoir for emerging zoonotic viruses for the past few decades. Recent studies indicate that the unique bat immune system may be partially responsible for their ability to co-exist with viruses with minimal or no clinical diseases. In this review, we discuss the history and importance of bat virome studies and contrast the vast difference between such studies before and after the introduction of next generation sequencing (NGS) in this area of research. We also discuss the role of discovery serology and high-throughput single cell RNA-seq in future bat virome research.
Collapse
Affiliation(s)
- Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Xinglou Yang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore; Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Danielle E Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore; SingHealth Duke-NUS Global Health Institute, 169857, Singapore.
| |
Collapse
|
11
|
Iida A, Takemae H, Tarigan R, Kobayashi R, Kato H, Shimoda H, Omatsu T, Supratikno, Basri C, Mayasari NLPI, Agungpriyono S, Maeda K, Mizutani T, Hondo E. Viral-derived DNA invasion and individual variation in an Indonesian population of large flying fox Pteropus vampyrus. J Vet Med Sci 2021; 83:1068-1074. [PMID: 33994419 PMCID: PMC8349802 DOI: 10.1292/jvms.21-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here, we performed next-generation sequencing (NGS) on six large flying foxes (Pteropus vampyrus) collected in Indonesia. Seventy-five virus species in the liver tissue of each specimen were listed. Viral homologous sequences in the bat genome were identified from the listed viruses. This finding provides collateral evidence of viral endogenization into the host genome. We found that two of the six specimens bore partial sequences that were homologous to the plant pathogens Geminiviridae and Luteoviridae. These sequences were absent in the P. vampyrus chromosomal sequences. Hence, plant viral homologous sequences were localized to the hepatocytes as extrachromosomal DNA fragments. Therefore, this suggests that the bat is a potential carrier or vector of plant viruses. The present investigation on wild animals offered novel perspectives on viral invasion, variation, and host interaction.
Collapse
Affiliation(s)
- Atsuo Iida
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Hitoshi Takemae
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8602, Japan.,Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Sawai, Fuchu, Tokyo 183-8509, Japan
| | - Ronald Tarigan
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Ryosuke Kobayashi
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Hirokazu Kato
- Biology and Somatology Related Support Section, Nagoya University, Nagoya 464-8602, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Tsutomu Omatsu
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Sawai, Fuchu, Tokyo 183-8509, Japan
| | - Supratikno
- Faculty of Veterinary Medicine Bogor Agricultural University-IPB University, Bogor 16680, Indonesia
| | - Chaerul Basri
- Faculty of Veterinary Medicine Bogor Agricultural University-IPB University, Bogor 16680, Indonesia
| | - Ni Luh Putu Ika Mayasari
- Faculty of Veterinary Medicine Bogor Agricultural University-IPB University, Bogor 16680, Indonesia
| | - Srihadi Agungpriyono
- Faculty of Veterinary Medicine Bogor Agricultural University-IPB University, Bogor 16680, Indonesia
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan.,Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tetsuya Mizutani
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Sawai, Fuchu, Tokyo 183-8509, Japan
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
12
|
Harima H, Sasaki M, Kajihara M, Mori-Kajihara A, Hang'ombe BM, Changula K, Orba Y, Ogawa H, Simuunza M, Yoshida R, Mweene A, Takada A, Sawa H. Detection of novel orthoreovirus genomes in shrew (Crocidura hirta) and fruit bat (Rousettus aegyptiacus). J Vet Med Sci 2019; 82:162-167. [PMID: 31866632 PMCID: PMC7041985 DOI: 10.1292/jvms.19-0424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Orthoreoviruses have been indentified in several mammals, however, there is no
information about orthoreoviruses in shrews. In this study, we screened wild animals in
Zambia, including shrews, rodents, and bats for the detection of orthoreoviruses. Two
orthoreovirus RNA genomes were detected from a shrew intestinal-contents (1/24) and a bat
colon (1/96) sample by reverse-transcription (RT)-PCR targeting the RNA-dependent RNA
polymerase gene of orthoreoviruses. Phylogenetic analyses revealed that each of the
identified orthoreoviruses formed a distinct branch among members of the
Orthoreovirus genus. This is the first report that shrews are
susceptible to orthoreovirus infection. Our results suggest the existence of undiscovered
orthoreoviruses in shrews and provide important information about the genetic diversity of
orthoreoviruses.
Collapse
Affiliation(s)
- Hayato Harima
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Masahiro Kajihara
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Akina Mori-Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Bernard M Hang'ombe
- Department of Para-clinical studies, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, Zambia.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Katendi Changula
- Department of Para-clinical studies, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, Zambia.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Hirohito Ogawa
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Martin Simuunza
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, PO Box 32379, Lusaka, Zambia.,Department of Disease Control, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Reiko Yoshida
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Aaron Mweene
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, PO Box 32379, Lusaka, Zambia.,Department of Disease Control, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, PO Box 32379, Lusaka, Zambia.,Department of Disease Control, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, Zambia.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, PO Box 32379, Lusaka, Zambia.,Department of Disease Control, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, Zambia.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,Global Virus Network, 725 West Lombard St, Room S413, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Tan CW, Wittwer K, Lim XF, Uehara A, Mani S, Wang LF, Anderson DE. Serological evidence and experimental infection of cynomolgus macaques with pteropine orthoreovirus reveal monkeys as potential hosts for transmission to humans. Emerg Microbes Infect 2019; 8:787-795. [PMID: 31132935 PMCID: PMC6542153 DOI: 10.1080/22221751.2019.1621668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pteropine orthoreoviruses (PRV) are emerging bat-borne viruses with proven zoonotic transmission. We recently demonstrated human exposure to PRV in Singapore, which together with previous reports from Malaysia and Vietnam suggest that human infection of PRV may occur periodically in the region. This raises the question whether bats are the only sources of human infection. In this study, we screened 517 cynomolgus macaques caught in Singapore for evidence of exposure to PRV3M (also known as Melaka virus), which was first isolated from human patients in Melaka, Malaysia. We found that 67 serum samples were PRV3M positive by ELISA and 34 were also positive by virus neutralization assay. To investigate whether monkeys could act as hosts for PRV transmission, we experimentally infected cynomolgus macaques with PRV3M and housed these animals with uninfected monkeys. Although no clinical signs of infection were observed in infected animals, viral RNA was detected in nasal and rectal swabs and all infected macaques seroconverted. Additionally, one of the uninfected animals seroconverted, implying active shedding and transmission of PRV3M. We provide evidence that PRV exposure in the macaque population in Singapore occurs at a relatively high prevalence and this study suggests that cynomolgus macaques may be an intermediate or reservoir host for PRVs.
Collapse
Affiliation(s)
- Chee Wah Tan
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore
| | - Kevin Wittwer
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore.,b Veterinary Medicine Division , Paul-Ehrlich-Institute , Langen , Germany
| | - Xiao Fang Lim
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore
| | - Anna Uehara
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore
| | - Shailendra Mani
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore
| | - Lin-Fa Wang
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore
| | - Danielle E Anderson
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore
| |
Collapse
|
14
|
Viruses in bats and potential spillover to animals and humans. Curr Opin Virol 2019; 34:79-89. [PMID: 30665189 PMCID: PMC7102861 DOI: 10.1016/j.coviro.2018.12.007] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
Abstract
Bats are a very important source of emerging viruses. Bat coronavirus, filovirus, paramyxovirus and reovirus are known zoonotic viruses. Many of the emergent bat viruses are highly lethal in livestock and humans. Past incidents and viral genetic features predict bat coronaviruses as the highest risk.
In the last two decades, several high impact zoonotic disease outbreaks have been linked to bat-borne viruses. These include SARS coronavirus, Hendra virus and Nipah virus. In addition, it has been suspected that ebolaviruses and MERS coronavirus are also linked to bats. It is being increasingly accepted that bats are potential reservoirs of a large number of known and unknown viruses, many of which could spillover into animal and human populations. However, our knowledge into basic bat biology and immunology is very limited and we have little understanding of major factors contributing to the risk of bat virus spillover events. Here we provide a brief review of the latest findings in bat viruses and their potential risk of cross-species transmission.
Collapse
|