1
|
Peng Q, Cheng S, Lin J, Zheng H, Xie G. Metabolic and microbial functionality during the fermentation of traditional Amaranth stems: Insights from metagenomics, flavoromics, and metabolomics. Food Chem 2025; 474:143216. [PMID: 39923519 DOI: 10.1016/j.foodchem.2025.143216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/19/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Fermented Amaranth stems is a traditional Chinese fermented vegetable known for its distinctive aroma, produced through natural microbial fermentation. However, the metabolic processes, flavor compounds, and microbial communities involved in its fermentation are not well understood. This study provides a comprehensive analysis using an integrated approach combining flavoromics, untargeted metabolomics, and metagenomics to examine the dynamic changes in metabolites and microbiota during fermentation. A total of 108 volatile organic compounds were identified, with sugar metabolism peaking on the third day of fermentation. The microbial community analysis revealed that key genera such as Pseudomonas, Acinetobacter, Pectobacterium, and Enterobacter play a significant role in flavor formation. The findings offer critical insights into the fermentation mechanisms and the production of flavor compounds, providing a foundation for optimizing fermentation processes and improving the flavor quality of fermented Amaranth stems. This research holds practical significance for enhancing food safety by controlling microbial communities during fermentation.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Shuangqi Cheng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Jiahao Lin
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
2
|
Fu Q, Wang F, Tang T, Liu Z, Wang L, Wang Q, Shi X, Wang B. A Snapshot of Microbial Succession and Volatile Component Dynamics of Marselan Wine in Xinjiang During Spontaneous Fermentation. Foods 2025; 14:994. [PMID: 40232002 PMCID: PMC11941887 DOI: 10.3390/foods14060994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Marselan wine is characterized by distinctive flavors of blackcurrant, cranberry, and spice, which are significantly influenced by environmental factors such as region and climate. In this study, we analyzed the dynamic changes in the microbial community, physicochemical indices, and flavor compounds during the spontaneous fermentation of Marselan wine in Xinjiang using high-throughput sequencing (HTS), high-performance liquid chromatography (HPLC), and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results indicated that the sugar content decreased from 259.12 g/L to 22.45 g/L, while the ethanol content increased to 13.63 ± 0.15% vol after 12 days of fermentation. The predominant aromatic components identified in Marselan grapes include isophorone, 2,3-pentanedione, 2-hexenal, and melonal. After fermentation, ethanol, phenethyl alcohol, isoamyl acetate, ethyl acetate, and ethyl hexanoate were produced, imparting rose, cream, and fruit flavors to wine. The key microorganisms involved in the spontaneous fermentation of Marselan wine include Saccharomyces, Starmerella, Pichia, Pseudomonas, Sphingomonas, and Aspergillus. These microorganisms contributed substantially to the main physicochemical indices and flavor profiles. Saccharomyces and Pichia enhanced the formation of most alcohols and esters, whereas Aspergillus, Acremonium, and Fusarium inhibited the synthesis of numerous volatile compounds. These findings provide valuable theoretical references for improving the quality of Marselan wines in Xinjiang.
Collapse
Affiliation(s)
- Qingquan Fu
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Fangfang Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Tiantian Tang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zimen Liu
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Lilin Wang
- Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, College of Food Science and Engineering, Tarim University, Alar 843300, China;
| | - Qingling Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Xuewei Shi
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Bin Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
3
|
Hou S, Liang Z, Wu Q, Cai Q, Weng Q, Guo W, Ni L, Lv X. Metagenomics reveals the differences in flavor quality of rice wines with Hongqu and Maiqu as the fermentation starters. Food Microbiol 2025; 125:104647. [PMID: 39448157 DOI: 10.1016/j.fm.2024.104647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Chinese rice wine (CRW) is an alcoholic beverage made mainly from rice or grain through saccharification and fermentation with Jiuqu (starter). Jiuqu makes an important contribution to the formation of the flavor characteristics of rice wine. Hongqu and Maiqu are two kinds of Jiuqu commonly used in CRW brewing. This study compared the microbial community, biogenic amines (BAs), and volatile flavor components (VFCs) of two types of rice wine brewed with Hongqu and Maiqu as fermentation agents. The results showed that the amino acid content of rice wine fermented with Maiqu (MQW) was significantly lower than that of rice wine fermented with Hongqu (HQW). On the contrary, the majority of BAs in MQW were significantly higher than those in HQW, except for putrescine. Multivariate statistical analysis indicated that most of the VFCs detected were enriched in HQW, while ethyl 3-phenylpropanoate and citronellol were enriched in MQW. The results of metagenomic analysis showed that Weissiella, Enterobacter, Leuconostoc, Kosakonia, Saccharomyces, Aspergilus and Monascus were identified as the predominant microbial genera in HQW brewing process, while Saccharopolyspora, Lactococcus, Enterobacter, Leuconostoc, Kosakonia, Pediococcus, Pantoea, Saccharomyces, Aspergillus, Lichtheimia and Nakaseomyces were the predominant microbial genera in MQW brewing. In addition, some VFCs and BAs were strongly correlated with dominant microbial genera in HQW and MQW brewing. Bioinformatics analysis showed that the abundance of genes involved in BAs synthesis in MQW brewing was much higher than that in HQW brewing, while the abundances of genes related to metabolic pathway of characteristic VFCs in HQW brewing were obviously higher than those in MQW, which explained the differences in flavor quality between HQW and MQW from the perspective of microbial genes. Collectively, these findings provide scientific evidence for elucidating the contribution of different microbial genera to the formation of flavor quality of CRW, and is helpful for screening beneficial microbes to enhance flavor quality and drinking comfort of CRW.
Collapse
Affiliation(s)
- Siwen Hou
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Zihua Liang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Qi Wu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Qiqi Cai
- School of Light Industry, Liming Vocational University, Quanzhou, Fujian, 362000, PR China
| | - Qibiao Weng
- Key Laboratory of Eel Aquaculture and Processing of Fujian Province, Fuzhou, Fujian, 350200, PR China
| | - Weiling Guo
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China; Key Laboratory of Eel Aquaculture and Processing of Fujian Province, Fuzhou, Fujian, 350200, PR China.
| |
Collapse
|
4
|
Wu F, Lyu J, Fan S, He G, Liang S, Xu Y, Tang K. Characterization of Potent Odorants Causing an Oily Odor in Rice-Made Baijiu by Comparative Aroma Extract Dilution Analysis, Quantitative Measurements, and Aroma Addition and Omission Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23438-23447. [PMID: 39363776 DOI: 10.1021/acs.jafc.4c06256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The presence of an oily odor in rice-made Baijiu is a unique characteristic that has not been thoroughly studied. This study qualitatively and quantitatively identified important aroma-active compounds in samples with typical and atypical oily odors using aroma extract dilution analysis (AEDA). By comparing the differences between flavor dilution (FD) and odor activity values (OAVs), nine compounds showing significant differences were selected. By combining normal-phase silica gel column and sensory analysis, these nine potential oily odor compounds were isolated from the typical oily odor sample. Addition and omission experiments confirmed that hexanal, trans-2-heptenal, trans,trans-2,4-nonadienal, (2E)-2-decenal, trans,trans-2,4-decadienal, and γ-nonanolide are key contributors to the oily odor.
Collapse
Affiliation(s)
- Fan Wu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Jiaheng Lyu
- Yantai Key Laboratory of Special Medical Food, School of Food and Bioengineering, Yantai Institute of Technology, Yantai 264003, P. R. China
| | - Shaohui Fan
- Guangdong Shiwan Baijiu Group Company Ltd., Foshan, Guangdong 528000, P. R. China
| | - Guoliang He
- Guangdong Shiwan Baijiu Group Company Ltd., Foshan, Guangdong 528000, P. R. China
| | - Siyu Liang
- Guangdong Shiwan Baijiu Group Company Ltd., Foshan, Guangdong 528000, P. R. China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Ke Tang
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
5
|
Shah I, Uddin Z, Hussain M, Khalil AAK, Amin A, Hanif F, Ali L, Amirzada MI, Shah TA, Dawoud TM, Bourhia M, Li WJ, Sajjad W. Streptomyces sp. from desert soil as a biofactory for antioxidants with radical scavenging and iron chelating potential. BMC Microbiol 2024; 24:419. [PMID: 39434054 PMCID: PMC11492556 DOI: 10.1186/s12866-024-03586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Iron homeostasis is vital for normal physiology, but in the majority of circumstances, like iron overload, this equilibrium is upset leading to free iron in the plasma. This condition with excess iron is known as hemochromatosis, which has been linked to many side effects, including cancer and liver cirrhosis. The current research aimed to investigate active molecules from Streptomyces sp. isolated from the extreme environment of Bahawalpur deserts. The strain was characterized using 16 S rRNA sequencing. Chemical analysis of the ethyl acetate cure extract revealed the presence of phenols, flavonoids, alkaloids, and tannins. Multiple ultraviolet (UV) active metabolites that were essential for the stated pharmacological activities were also demonstrated by thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Additionally, Gas chromatography/mass spectrometry (GC-MS) analysis revealed the primary constituents of the extract to compose of phenol and ester compounds. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was used to assess the extract's antioxidant capacity, and the results showed a good half-maximal inhibitory concentration (IC50) value of 0.034 µg/mL in comparison to the positive control ascorbic acid's 0.12 µg/mL. In addition, iron chelation activity of extract showed significant chelation potential at 250 and 125 µg/mL, while 62.5 µg/mL showed only mild chelation of the ferrous ion using ethylene diamine tetra acetic acid (EDTA) as a positive control. Likewise, the extract's cytotoxicity was analyzed through 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using varying concentrations of the extract and showed 51% cytotoxicity at 350 µg/mL and 65% inhibition of cell growth at 700 µg/mL, respectively. The bioactive compounds from Streptomyces sp. demonstrated strong antioxidant and iron chelating potentials and can prolong the cell survival in extreme environment.
Collapse
Affiliation(s)
- Imran Shah
- Department of Pharmacy, Comsats University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Zia Uddin
- Department of Pharmacy, Comsats University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Maheer Hussain
- Department of Biological Sciences, National University of Medical Sciences, Punjab, 46000, Pakistan
| | - Atif Ali Khan Khalil
- Department of Pharmacognosy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Arshia Amin
- Department of Biosciences, Capital University of Science and Technology Islamabad, Islamabad, Pakistan
| | - Faisal Hanif
- Army Medical College, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences, Punjab, 46000, Pakistan
| | - Muhammad Imran Amirzada
- Department of Pharmacy, Comsats University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. BOX 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, IbnZohr University, Laayoune, 70000, Morocco
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- School of Life Sciences, Sun Yat-Sen University, Xingang West Road, Guangzhou, 510275, China
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Punjab, 46000, Pakistan.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
6
|
Lin C, Lu P, Ma J, Li Z, Han X, Ji Z, Liu S, Mao J. Transcriptome Analysis Reveals the Variations in Enzyme Production of Saccharopolyspora rosea A22 under Different Temperatures. Foods 2024; 13:2696. [PMID: 39272461 PMCID: PMC11394526 DOI: 10.3390/foods13172696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Saccharopolyspora is a key microorganism in the fermentation of traditional fermented foods, capable of producing saccharifying and liquefying enzymes at elevated temperatures. However, the specific mechanisms and regulatory pathways governing Saccharopolyspora's response to ambient temperatures are not yet fully understood. In this study, the morphological differences in Saccharopolyspora rosea screened from traditional handmade wheat Qu at different temperatures were initially explored. At 37 °C, the mycelium exhibited abundant growth and radiated in a network-like pattern. As the temperature increased, the mycelium aggregated into clusters. At 50 °C, it formed highly aggregated ellipsoidal structures, with the mycelium distributed on the spherical surface. Subsequently, we assessed the biomass, saccharifying enzyme activity and liquefying enzyme activity of Saccharopolyspora rosea cultured at 37 °C, 42 °C and 50 °C. Furthermore, transcriptome analysis demonstrated that Saccharopolyspora rosea employs mechanisms related to the carbon metabolism, the TCA cycle, glycine, serine and threonine metabolisms, and microbial metabolism in diverse environments to coordinate its responses to changes in environmental temperature, as verified by the expression of typical genes. This study enhances our understanding of the differences in high-temperature enzyme production by Saccharopolyspora, and offers valuable guidance for the traditional fermented food industry to drive innovation.
Collapse
Affiliation(s)
- Congyu Lin
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
| | - Peiqi Lu
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Jingqiu Ma
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
| | - Zhihui Li
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 646000, China
| | - Xiao Han
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
| | - Zhongwei Ji
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 646000, China
| | - Shuangping Liu
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 646000, China
| | - Jian Mao
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 646000, China
| |
Collapse
|
7
|
Li X, Yang Y, Fan X, Hu X. Microbial Community Dynamics and Metabolite Changes during Wheat Starch Slurry Fermentation. Foods 2024; 13:2586. [PMID: 39200513 PMCID: PMC11353887 DOI: 10.3390/foods13162586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Wheat starch fermentation slurry is the main substrate for producing Ganmianpi, a traditional Chinese fermented wheat starch-based noodle. In the present work, the microbial population dynamics and metabolite changes in wheat starch fermentation slurry at different fermentation times (0, 1, 2, 3, and 4 days) were measured by using high-throughput sequencing analysis and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-MS) methods. The texture and sensory properties of Ganmianpi made from fermented starch slurry are also evaluated. The results showed that Latilactobacillus curvatus and Leuconostoc citreum were the dominant bacteria in wheat starch fermentation slurry, while Saccharomyces cerevisiae and Kazachstania wufongensis were identified as the main species of fungi. With the extension of fermentation time, the reducing sugar content first increased and then decreased, when the titratable acidity content showed an increasing trend, and the nonvolatile acid was significantly higher than the volatile acid. A total of 62 volatile flavor compounds were identified, and the highest content is alcohols, followed by acids. Fermentation significantly reduced the hardness and chewiness of Ganmianpi, and increased its resilience and cohesiveness. Ganmianpi made from fermented starch slurry for two and three days showed a higher sensory score than other samples. The present study is expected to provide a theoretical basis for exploiting the strains with potential for commercial application as starter cultures and quality improvement of Ganmianpi.
Collapse
Affiliation(s)
- Xiaoping Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China; (Y.Y.); (X.F.); (X.H.)
| | | | | | | |
Collapse
|
8
|
Yan Y, Liang Z, Huo Y, Wu Q, Ni L, Lv X. A Comparative Study of Microbial Communities, Biogenic Amines, and Volatile Profiles in the Brewing Process of Rice Wines with Hongqu and Xiaoqu as Fermentation Starters. Foods 2024; 13:2452. [PMID: 39123642 PMCID: PMC11311568 DOI: 10.3390/foods13152452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 08/12/2024] Open
Abstract
Rice wine is primarily crafted from grains through saccharification and liquification with the help of Qu. Qu plays an important role in the formation of the flavor quality of rice wine. Hongqu and Xiaoqu represent two prevalent varieties of Qu that are typically utilized in the brewing process of rice wine and play a crucial role in its production. In this study, GC, GC-MS, HPLC, and metagenomic sequencing techniques were used to contrast the microbial flora, biogenic amines, and aroma characteristics developed during the fermentation of rice wines, with Hongqu and Xiaoqu being used as initiating agents for the brewing process. The results show that the content of higher alcohols (including n-propanol, isobutanol, 3-methyl-1-butanol, and phenethyl alcohol) in rice wine brewed with Xiaoqu (XQW) was significantly higher than that in rice wine brewed with Hongqu (HQW). Contrarily, the concentration of biogenic amines in HQW surpassed that of XQW by a notable margin, but tyramine was significantly enriched in XQW and not detected in HQW. In addition, a multivariate statistical analysis revealed distinct disparities in the constitution of volatile components between HQW and XQW. Hexanoic acid, ethyl acetate, isoamyl acetate, ethyl caproate, ethyl decanoate, 2-methoxy-4-vinylphenol, etc., were identified as the characteristic aroma-active compounds in HQW and XQW. A microbiome analysis based on metagenomic sequencing showed that HQW and XQW had different dominant microorganisms in the brewing process. Burkholderia, Klebsiella, Leuconostoc, Monascus, and Aspergillus were identified as the primary microbial genera in the HQW fermentation period, while Pediococcus, Enterobacter, Rhizopus, Ascoidea, and Wickerhamomyces were the main microbial genera in the XQW brewing process. A bioinformatics analysis revealed that the concentrations of microbial genes involved in biogenic amines and esters biosynthesis were significantly higher in HQW than those in XQW, while the content of genes relevant to glycolysis, higher alcohol biosynthesis, and fatty acid metabolism was significantly higher in XQW than in HQW, which are the possible reasons for the difference in flavor quality between the two kinds of rice wine from the perspective of microbial functional genes.
Collapse
Affiliation(s)
- Yingyin Yan
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zihua Liang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yujia Huo
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Qi Wu
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Li Ni
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xucong Lv
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
9
|
Wang X, Cai G, Wu D, Lu J. Correlation between the bacterial community succession and purine compound changes during Huangjiu fermentation. Food Microbiol 2024; 121:104522. [PMID: 38637084 DOI: 10.1016/j.fm.2024.104522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/20/2024]
Abstract
Purine is mainly culprit of hyperuricemia (HUA) and gout, which is widely present in Huangjiu in the form of free bases. Bacterial succession plays an important role in quality control in Huangjiu. The correlation between the purine compound content and the bacterial communities during the fermentation process has not yet been evaluated. In this study, high-throughput sequencing (HTS) technology was used to monitor the bacterial community composition of Huangjiu at different fermentation stages. The correlation between the bacterial community and the contents of physicochemical properties and purine compounds were evaluated using the Spearman analysis method. The key enzymes of purine metabolism pathway in the microbial community were analyzed by bioinformatics using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). The results showed that the purine content in Huangjiu increased gradually in 0∼9d of fermentation (21.05-65.71 mg/L), and stabilized gradually in 12∼18d (65.63-69.55 mg/L), while the abundance of lactic acid bacteria (LAB) of bacterial microbial flora were increased (0∼9d) and then stabilized (12∼18d). Moreover, Lactobacillus acetotolerans and Lactobacillus helveticus were highly correlated positively with purine contents, while Limosilactobacillus fermentum and Lactiplantibacillus plantarum were correlated negatively. In addition, the dominant strains of bacteria were involved in the metabolism of purine, and the key enzymes for purine compound synthesis were more abundant than that for purine degradation. This study is helpful to scientifically understand the formation mechanism of purines, providing a basis for screening functional strains of purine degrading to accurately regulate purine level in Huangjiu.
Collapse
Affiliation(s)
- Xianglin Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Guolin Cai
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Dianhui Wu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
10
|
Zhang W, Cao X, Cheng X, Sun D, Wei T, Fang Z, Li J, Chen F, Liu X, Cai Z, Shen C. Discovery of electromagnetic polarization in Asian rice wine deterioration process and its applications. PLoS One 2024; 19:e0302983. [PMID: 38900781 PMCID: PMC11189232 DOI: 10.1371/journal.pone.0302983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/15/2024] [Indexed: 06/22/2024] Open
Abstract
Rice wine, known as yellow wine in China and Japan, possesses considerable nutritional value and holds significant global influence. This study addresses the challenge of preserving rice wine, which is prone to rancidity due to its low alcohol content. Conventional storage techniques employing pottery jars often result in substantial spoilage losses. Through rigorous investigation, this research identifies a polarization phenomenon exhibited by degraded rice wine when subjected to high-frequency microwaves(>60GHz), presenting a pioneering method for detecting spoilage, even within sealed containers. Employing a multi-channel microwave radar apparatus, the study delves into the susceptibility of rice wine to electromagnetic waves across various frequencies, uncovering pronounced polarization traits in deteriorated samples within the E-band microwave spectrum. Furthermore, lab-controlled simulations elucidate a direct correlation between physicochemical alterations and high-frequency Radar Cross Section (RCS) signals during the wine's deterioration process. A novel six-membered Hydrated Cluster hypothesis is proposed, offering insights into the molecular mechanisms underlying this phenomenon. Additionally, dielectric property assessments conducted using vector network analyzers (VNA) reveal noteworthy enhancements in the dielectric constant of deteriorated rice wine, particularly within the high-frequency domain, thereby augmenting detectability. These findings carry implications for refining rice wine preservation techniques and contribute to the advancement of non-destructive testing technologies, enabling the detection of rice wine deterioration or indications thereof, even within sealed vessels.
Collapse
Affiliation(s)
- Weijia Zhang
- Department of Mathematical and Information Sciences, Shaoxing University, Shaoxing, China
- Institute of Artificial Intelligence, Shaoxing University, Shaoxing, China
- Visiting Scholar, Department of AOP Physics, University of Oxford, Oxford, United Kingdom
- National Engineering Research Center for Chinese Rice Wine (Branch Center), Shaoxing University, Shaoxing, China
| | - Xuejing Cao
- Department of Mathematical and Information Sciences, Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Xue Cheng
- Department of Mathematical and Information Sciences, Shaoxing University, Shaoxing, China
| | - Dongqin Sun
- Department of Mathematical and Information Sciences, Shaoxing University, Shaoxing, China
| | - Tianfang Wei
- Department of Mathematical and Information Sciences, Shaoxing University, Shaoxing, China
| | - Zebo Fang
- Department of Mathematical and Information Sciences, Shaoxing University, Shaoxing, China
| | - Jiaju Li
- Department of Mathematical and Information Sciences, Shaoxing University, Shaoxing, China
| | - Feiyu Chen
- Department of Mathematical and Information Sciences, Shaoxing University, Shaoxing, China
| | - Xinghua Liu
- Department of Mathematical and Information Sciences, Shaoxing University, Shaoxing, China
- Yingfu Tech Group Co. Ltd, Hong Kong, China
| | - Zhijian Cai
- Visiting Scholar, Department of AOP Physics, University of Oxford, Oxford, United Kingdom
- Oxford Industrial Holding Group, Hong Kong, China
| | - Chi Shen
- National Engineering Research Center for Chinese Rice Wine (Branch Center), Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
| |
Collapse
|
11
|
Chen X, Song C, Zhao J, Xiong Z, Peng L, Zou L, Shen C, Li Q. Application of Strain Selection Technology in Alcoholic Beverages: A Review. Foods 2024; 13:1396. [PMID: 38731767 PMCID: PMC11083718 DOI: 10.3390/foods13091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The diversity of alcohol beverage microorganisms is of great significance for improving the brewing process and the quality of alcohol beverage products. During the process of making alcoholic beverages, a group of microorganisms, represented by yeast and lactic acid bacteria, conducts fermentation. These microorganisms have complex synergistic or competitive relationships, and the participation of different microorganisms has a major impact on the fermentation process and the flavor and aroma of the product. Strain selection is one of the key steps. Utilizing scientific breeding technology, the relationship between strains can be managed, the composition of the alcoholic beverage microbial community can be improved, and the quality and flavor of the alcoholic beverage products can be increased. Currently, research on the microbial diversity of alcohol beverages has received extensive attention. However, the selection technology for dominant bacteria in alcohol beverages has not yet been systematically summarized. To breed better-quality alcohol beverage strains and improve the quality and characteristics of wine, this paper introduces the microbial diversity characteristics of the world's three major brewing alcohols: beer, wine, and yellow wine, as well as the breeding technologies of related strains. The application of culture selection technology in the study of microbial diversity of brewed wine was reviewed and analyzed. The strain selection technology and alcohol beverage process should be combined to explore the potential application of a diverse array of alcohol beverage strains, thereby boosting the quality and flavor of the alcohol beverage and driving the sustainable development of the alcoholic beverage industry.
Collapse
Affiliation(s)
- Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Chuan Song
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| | - Jian Zhao
- School of Life Sciences, Sichuan University, Chengdu 610041, China;
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Caihong Shen
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| |
Collapse
|
12
|
Wang J, Wang Z, He F, Pan Z, Du Y, Chen Z, He Y, Sun Y, Li M. Effect of microbial communities on flavor profile of Hakka rice wine throughout production. Food Chem X 2024; 21:101121. [PMID: 38292683 PMCID: PMC10824689 DOI: 10.1016/j.fochx.2024.101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Hakka rice wine is produced from grains by co-fermentation with abundant microbes in an open fermentation environment. Indigenous microbiota and enzymes convert the nutrients in grains into flavor compounds through enzymatic biochemical reactions and microbial metabolism. High-throughput sequencing technology revealed that non-Saccharomyces yeasts dominated the traditional fermentation process, with genera such as Kodamaea ohmeri, Candida orthopsilosis, and Trichosporon asteroides forming a dynamic community that highly correlated with the evolution of 80 volatile compounds in Hakka rice wine. Among the 104 volatile compounds detected by GC-MS, 22 aroma-active compounds with relative odor activity values (ROAV) > 1 were quantified, 11 of which made significant contributions (P < 0.05) to the overall aroma and were responsible for the sweet, grainy, and herbal aromas of Hakka rice wine.
Collapse
Affiliation(s)
- Junyi Wang
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Ziyi Wang
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Fangqing He
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhuangguang Pan
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yixuan Du
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhiying Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuxin He
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuanming Sun
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Meiying Li
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
13
|
Yang X, Yao J, Hu Y, Qin Z, Li J. Fungal Community Succession and Volatile Compound Changes during Fermentation of Laobaigan Baijiu from Chinese Hengshui Region. Foods 2024; 13:569. [PMID: 38397546 PMCID: PMC10888106 DOI: 10.3390/foods13040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
To investigate the core fungal community succession and its effects of volatile compound production during different stages (D-1, D-2, D-3, E-4, E-5, and E-6) of Hengshui Laobaigan Baijiu, high-throughput sequencing (HTS) was carried out, accompanied by the identification and quantification of the volatile flavor compounds using headspace solid-phase coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). HTS results demonstrated that the fungal community of stage D-1 was similar to that of E-4 after adding Daqu, while the richness and diversity of the fungal community were most prominent at stage E-6. Moreover, the addition of Daqu at the beginning of Ercha fermentation resulted in a significant increase in the relative abundances of the fungal community at the genus level, setting the stage for the production of volatile compounds. GC-MS analysis revealed the presence of a total of 45 volatile compounds. Combining the GC-MS result with the heat map and principal component analysis (PCA), the concentrations of volatile compounds were highest in stage E-5. Meanwhile, concentrations of esters, especially ethyl acetate, ethyl lactate, isoamyl acetate and ethyl hexanoate, were high in both stages E-5 and E-6. This indicated that stage E-5 was crucial to the fermentation process of Laobaigan Baijiu. Three fungal genera (Saccharomyces, Candida, and Pichia) were indicated as the core microbiota for the production of the main volatile flavor compounds of Laobaigan Baijiu through partial least square (PLS) analysis. The information provided in this study offered valuable insights into the fermentation mechanism of Laobaigan Baijiu, thereby serving as a theoretical framework for enhancing the quality of Baijiu and realizing cost-effective production.
Collapse
Affiliation(s)
- Xuelian Yang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China; (J.Y.); (Y.H.); (Z.Q.); (J.L.)
| | | | | | | | | |
Collapse
|
14
|
Guo J, Zhao X, Shi J. Correlation of microbial community structure and volatile flavor compounds during corn yellow wine fermentation. Biotechnol Prog 2024; 40:e3408. [PMID: 37956144 DOI: 10.1002/btpr.3408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
High-throughput sequencing was used to define microbial community structure and GC-MS to identify volatile flavor substances during fermentation of corn yellow wine, and results were analyzed by multivariate statistical analysis. Seventeen bacterial phyla, 239 bacterial genera, 4 fungal phyla, and 18 fungal genera were found and changes in community structure occurred during fermentation. Twenty-four volatile flavor substances, including 14 esters and 5 alcohols, were detected and changes during fermentation recorded. Sixteen microbial genera correlated with volatile flavor substances and Weissella, Lactobacillus, Pseudomonas, Rhodotorul, and Kwoniella had significant correlation with ethyl esters and higher alcohols. Micro-organisms thus influence flavor development during corn yellow wine fermentation.
Collapse
Affiliation(s)
- Jianhua Guo
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, People's Republic of China
| | - Xiaoxu Zhao
- College of Basic Medicine, Harbin Medical University, Daqing, People's Republic of China
| | - Jie Shi
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, People's Republic of China
| |
Collapse
|
15
|
Yang Q, Liu S, Zhao Y, Han X, Chang R, Mao J. Enzymatic properties and inhibition tolerance analysis of key enzymes in β-phenylethanol anabolic pathway of Saccharomyces cerevisiae HJ. Synth Syst Biotechnol 2023; 8:772-783. [PMID: 38161995 PMCID: PMC10755794 DOI: 10.1016/j.synbio.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Huangjiu is known for its unique aroma, primarily attributed to its high concentration of β-phenylethanol (ranging from 40 to 130 mg/L). Phenylalanine aminotransferase Aro9p and phenylpyruvate decarboxylase Aro10p are key enzymes in the β-phenylethanol synthetic pathway of Saccharomyces cerevisiae HJ. This study examined the enzymatic properties of these two enzymes derived from S. cerevisiae HJ and S288C. After substrate docking, Aro9pHJ (-24.05 kJ/mol) and Aro10pHJ (-14.33 kJ/mol) exhibited lower binding free energies compared to Aro9pS288C (-21.93 kJ/mol) and Aro10pS288C (-12.84 kJ/mol). ARO9 and ARO10 genes were heterologously expressed in E. coli BL21. Aro9p, which was purified via affinity chromatography, showed inhibition by l-phenylalanine (L-PHE), but the reaction rate Vmax(Aro9pHJ: 23.89 μmol·(min∙g)-1) > Aro9pS288C: 21.3 μmol·(min∙g)-1) and inhibition constant Ki values (Aro9pHJ: 0.28 mol L-1>Aro9pS288C 0.26 mol L-1) indicated that Aro9p from S. cerevisiae HJ was more tolerant to substrate stress during Huangjiu fermentation. In the presence of the same substrate phenylpyruvate (PPY), Aro10pHJ exhibited a stronger affinity than Aro10pS288C. Furthermore, Aro9pHJ and Aro10pHJ were slightly more tolerant to the final metabolites β-phenylethanol and ethanol, respectively, compared to those from S288C. The study suggests that the mutations in Aro9pHJ and Aro10pHJ may contribute to the increased β-phenylethanol concentration in Huangjiu. This is the first study investigating enzyme tolerance mechanisms in terms of substrate and product, providing a theoretical basis for the regulation of the β-phenylethanol metabolic pathway.
Collapse
Affiliation(s)
- Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang, 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuzong Zhao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiao Han
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang, 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Rui Chang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang, 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
16
|
Liu S, Zhang ZF, Mao J, Zhou Z, Zhang J, Shen C, Wang S, Marco ML, Mao J. Integrated meta-omics approaches reveal Saccharopolyspora as the core functional genus in huangjiu fermentations. NPJ Biofilms Microbiomes 2023; 9:65. [PMID: 37726290 PMCID: PMC10509236 DOI: 10.1038/s41522-023-00432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
Identification of the core functional microorganisms in food fermentations is necessary to understand the ecological and functional processes for making those foods. Wheat qu, which provides liquefaction and saccharifying power, and affects the flavor quality, is a key ingredient in ancient alcoholic huangjiu fermentation, while core microbiota of them still remains indistinct. In this study, metagenomics, metabolomics, microbial isolation and co-fermentation were used to investigate huangjiu. Although Aspergillus is usually regarded as core microorganism in wheat qu to initiate huangjiu fermentations, our metagenomic analysis showed that bacteria Saccharopolyspora are predominant in wheat qu and responsible for breakdown of starch and cellulose. Metabolic network and correlation analysis showed that Saccharopolyspora rectivirgula, Saccharopolyspora erythraea, and Saccharopolyspora hirsuta made the greatest contributions to huangjiu's metabolites, consisting of alcohols (phenylethanol, isoamylol and isobutanol), esters, amino acids (Pro, Arg, Glu and Ala) and organic acids (lactate, tartrate, acetate and citrate). S. hirsuta J2 isolated from wheat qu had the highest amylase, glucoamylase and protease activities. Co-fermentations of S. hirsuta J2 with S. cerevisiae HJ resulted in a higher fermentation rate and alcohol content, and huangjiu flavors were more similar to that of traditional huangjiu compared to co-fermentations of Aspergillus or Lactiplantibacillus with S. cerevisiae HJ. Genome of S. hirsuta J2 contained genes encoding biogenic amine degradation enzymes. By S. hirsuta J2 inoculation, biogenic amine content was reduced by 45%, 43% and 62% in huangjiu, sausage and soy sauce, respectively. These findings show the utility of Saccharopolyspora as a key functional organism in fermented food products.
Collapse
Affiliation(s)
- Shuangping Liu
- National Engineering Laboratory for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, Zhejiang, 312000, China
| | - Zhi-Feng Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jieqi Mao
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, 117542, Singapore, Singapore
| | - Zhilei Zhou
- National Engineering Laboratory for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, Zhejiang, 312000, China
| | - Jing Zhang
- National Engineering Laboratory for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Caihong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Songtao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, CA, USA.
| | - Jian Mao
- National Engineering Laboratory for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
17
|
Yin S, Huang M, Wang J, Liu B, Ren Q. Microbial Community Dynamics and the Correlation between Specific Bacterial Strains and Higher Alcohols Production in Tartary Buckwheat Huangjiu Fermentation. Foods 2023; 12:2664. [PMID: 37509756 PMCID: PMC10379207 DOI: 10.3390/foods12142664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Tartary buckwheat is a healthy grain rich in nutrients and medicinal ingredients and consequently is commonly used for Huangjiu brewing. In order to reveal the correlation between microbial succession and higher alcohols production, in this study, Huangjiu fermentation was conducted using Tartary buckwheat as the raw material and wheat Qu as the starter culture. Microbial community dynamics analysis indicated that the bacterial diversity initially decreased rapidly to a lower level and then increased and maintained at a higher level during fermentation. Lactococcus was the dominant bacteria and Ralstonia, Acinetobacter, Cyanobacteria, and Oxalobacteraceae were the bacterial genera with higher abundances. In sharp contrast, only 13 fungal genera were detected during fermentation, and Saccharomyces showed the dominant abundance. Moreover, 18 higher alcohol compounds were detected by GC-MS during fermentation. Four compounds (2-phenylethanol, isopentanol, 1-hexadecanol, and 2-phenoxyethanol) were stably detected with high concentrations during fermentation. The compound 2-ethyl-2-methyl-tridecanol was detected to be of the highest concentration in the later period of fermentation. Correlation analysis revealed that the generation of 2-phenylethanol, isopentanol, 1-hexadecanol, and 2-phenoxyethanol were positively correlated with Granulicatella and Pelomonas, Bacteroides, Pseudonocardia and Pedomicrobium, and Corynebacterium, respectively. The verification fermentation experiments indicated that the improved wheat Qu QT3 and QT4 inoculated with Granulicatella T3 and Acidothermus T4 led to significant increases in the contents of 2-phenylethanol and pentanol, as well as isobutanol and isopentanol, respectively, in the Tartary buckwheat Huangjiu. The findings benefit understanding of higher alcohols production and flavor formation mechanisms in Huangjiu fermentation.
Collapse
Affiliation(s)
- Sheng Yin
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
| | - Jiaxuan Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
| | - Bo Liu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
| | - Qing Ren
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
| |
Collapse
|
18
|
Wang K, Wu H, Wang J, Ren Q. Microbiota Composition during Fermentation of Broomcorn Millet Huangjiu and Their Effects on Flavor Quality. Foods 2023; 12:2680. [PMID: 37509772 PMCID: PMC10379140 DOI: 10.3390/foods12142680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Broomcorn millet Huangjiu brewing is usually divided into primary fermentation and post-fermentation. Microbial succession is the major factor influencing the development of the typical Huangjiu flavor. Here, we report the changes in flavor substances and microbial community during the primary fermentation of broomcorn millet Huangjiu. Results indicated that a total of 161 volatile flavor compounds were measured during primary fermentation, and estragole was detected for the first time in broomcorn millet Huangjiu. A total of 82 bacteria genera were identified. Pediococcus, Pantoea, and Weissella were the dominant genera. Saccharomyces and Rhizopus were dominant among the 30 fungal genera. Correlation analysis showed that 102 microorganisms were involved in major flavor substance production during primary fermentation, Lactobacillus, Photobacterium, Hyphodontia, Aquicella, Erysipelothrix, Idiomarina, Paraphaeosphaeria, and Sulfuritalea were most associated with flavoring substances. Four bacteria, Lactobacillus (R1), Photobacterium (R2), Idiomarina (R3), and Pediococcus (R4), were isolated and identified from wheat Qu, which were added to wine Qu to prepare four kinds of fortified Qu (QR1, QR2, QR3, QR4). QR1 and QR2 fermentation can enhance the quality of Huangjiu. This work reveals the correlation between microorganisms and volatile flavor compounds and is beneficial for regulating the micro-ecosystem and flavor of the broomcorn millet Huangjiu.
Collapse
Affiliation(s)
- Ke Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Huijun Wu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jiaxuan Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Qing Ren
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
19
|
Zhao G, Zhou Z, Li Z, Liu S, Shan Z, Cheng F, Zhou W, Mao J. The differences in main components, enzyme activity, and microbial composition between substandard and normal jiuyao. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4293-4302. [PMID: 36750373 DOI: 10.1002/jsfa.12487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Jiuyao is a critical fermenting agent in traditional huangjiu brewing and it affects the quality of huangjiu. To assess and monitor the quality of jiuyao effectively we determined the differences between two common types of substandard jiuyao and normal jiuyao, with emphasis on the comparison of the main components, enzymatic activity, volatile substances, and microbial community structure. RESULTS The water and starch content, acid protease activity, and esterification capability of type I substandard jiuyao were significantly lower than those of the normal jiuyao, and the protein contents, liquefaction capability, glycation capability, and neutral protease activity were substantially higher than those of the normal jiuyao. Type II substandard jiuyao had significantly lower indices than the normal group except for the starch and free amino acid content, which were significantly higher than those of the normal jiuyao. Significant differences were observed between substandard and normal jiuyao in the content of 21 volatile compounds. 2-Pentylfuran could be used as a marker of substandard jiuyao. Type I substandard jiuyao contained a higher abundance of aerobic Pediococcus and Marivita in comparison with the normal jiuyao. Type II substandard jiuyao consisted of a greater abundance of anaerobic Mucor and Staphylococcus. CONCLUSION The quality of jiuyao was significantly affected by the water content. Due to the different abundances of aerobic and anaerobic bacteria in jiuyao, oxygen may also be an important parameter affecting the quality of jiuyao. We believe that the present study offers a theoretical basis for the evaluation and control of the quality of jiuyao. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guoliang Zhao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163000, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu Province, 214000, China
- National Engineering Research Center for Huangjiu, Shaoxing, Zhejiang Province, 312000, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang Province, 312000, China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163000, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu Province, 214000, China
- National Engineering Research Center for Huangjiu, Shaoxing, Zhejiang Province, 312000, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang Province, 312000, China
| | - Zhichu Shan
- Zhejiang Pagoda Brand Shaoxing Rice Wine Co., Ltd, Shaoxing, Zhejiang Province, 312000, China
| | - Fei Cheng
- Zhejiang Pagoda Brand Shaoxing Rice Wine Co., Ltd, Shaoxing, Zhejiang Province, 312000, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Jian Mao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163000, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu Province, 214000, China
- National Engineering Research Center for Huangjiu, Shaoxing, Zhejiang Province, 312000, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang Province, 312000, China
| |
Collapse
|
20
|
Tian S, Li Y, Li Y, Du G. Effect of two starters (Jiu Yao) on Chinese rice wine microbial community and flavour. Int J Food Sci Technol 2023. [DOI: 10.1111/ijfs.16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Shufang Tian
- College of Biological and Food Engineering Anhui Polytechnic University Wuhu 241000 China
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding Anhui Polytechnic University Wuhu Anhui 241000 China
| | - Yanbin Li
- College of Biological and Food Engineering Anhui Polytechnic University Wuhu 241000 China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding Anhui Polytechnic University Wuhu Anhui 241000 China
| | - Yudong Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Guocheng Du
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| |
Collapse
|
21
|
Chen T, Wang H, Su W, Mu Y, Tian Y. Analysis of the formation mechanism of volatile and non-volatile flavor substances in corn wine fermentation based on high-throughput sequencing and metabolomics. Food Res Int 2023; 165:112350. [PMID: 36869445 DOI: 10.1016/j.foodres.2022.112350] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to reveal the relationship between core microorganisms and flavor substances in the fermentation process of corn wine. Microbial diversity, volatile and non-volatile flavor substances were detected by high-throughput sequencing (HTS), headspace solid phase micro-extraction gas chromatography-mass spectrometry (HS-SPME/GC-MS) and gas chromatography time of flight mass spectrometry (GC-TOF-MS). High performance liquid chromatography (HPLC) was used to detect organic acids in corn wine fermentation, and its physiochemical properties were tracked. The results showed that physiochemical factors changed obviously with fermentation time. Bacillus, Prevotella_9, Acinetobacter and Gluconobacter were the predominant bacterial. Rhizopus and Saccharomyces were the dominant fungi. Acetic acid and succinic acid were important organic acids in corn wine. According to variable importance of projection (VIP) > 1 and P < 0.05, 24 volatile flavor substances with significant difference were screened out from 52 volatile flavor substances. Similarly, 25 non-volatile flavor substances with significant differences were screened out from the 97 reliable metabolites identified by 223 chromatographic peaks. Eight key metabolic pathways were enriched from 25 non-volatile flavor substances according to path influence values > 0.1 and P < 0.05. Based on Two-way Orthogonal Partial Least Squares (O2PLS) model and Pearson correlation coefficient, Saccharomyces, Rhizopus, uncultured_bacterium, Aneurinibacillus, Wickerhamomyces and Gluconobacter may be the potential volatile flavor-contributing microorganism genus in corn wine. The Pearson correlation coefficient showed that Saccharomyces was significantly positively correlated with malic acid, oxalic acid, valine and isoleucine, and Rhizopus was positively correlated with glucose-1-phosphate and alanine. These findings enhanced our understanding of the formation mechanism of flavor substances in corn wine and provided the theoretical basis for stabilizing flavor quality of corn wine.
Collapse
Affiliation(s)
- Tianyan Chen
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Hanyu Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Wei Su
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang, China.
| | - Yingchun Mu
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yexin Tian
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
22
|
Yu H, Li Q, Guo W, Chen C, Ai L, Tian H. Dynamic analysis of volatile metabolites and microbial community and their correlations during the fermentation process of traditional Huangjiu (Chinese rice wine) produced around Winter Solstice. Food Chem X 2023; 18:100620. [PMID: 36993869 PMCID: PMC10041457 DOI: 10.1016/j.fochx.2023.100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Traditional Huangjiu produced around Winter Solstice has higher quality and a more harmonious aroma. To investigate the variations of volatile metabolites and microbial communities during fermentation, gas chromatography-ion migration chromatography (GC-IMS), gas chromatography-mass spectroscopy (GC-MS) and high-throughput sequencing were employed. Aroma compounds results showed that alcohols and phenols increased before 45 days of fermentation and then decreased after 45 days, while esters gradually increased. Fungal genera Saccharomyces, Aspergillu, and Rhizomucor were dominant, whereas Staphylococcus, Pediococcus and Weissella were the dominant bacterial genera in the late stage. In addition, 11 genera such as Lactobacillus, Saccharopolyspora and Aspergillus (|r| > 0.6, p < 0.05) may contributed to traditional Huangjiu ecosystem stability. Moreover, correlation analysis indicated the dominant microorganisms (Saccharopolyspora, Staphylococcus, Lactobacillus, Saccharomyces and Aspergillus) were positively correlated with key compounds. These results provided theoretical guidance for further study on the flavor regulation of traditional Huangjiu via microbial community level and microbial augmentation.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Qiaowei Li
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Wei Guo
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
- Corresponding author at: Department of Food Science and Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
23
|
Peng Q, Zheng H, Meng K, Yu H, Xie G, Zhang Y, Yang X, Chen J, Xu Z, Lin Z, Liu S, Elsheery NI, Wu P, Fu J. Quantitative study on core bacteria producing flavor substances in Huangjiu (Chinese yellow rice wine). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Tang J, Chen J, Chen D, Li Z, Huang D, Luo H. Structural Characteristics and Formation Mechanism of Microbiota Related to Fermentation Ability and Alcohol Production Ability in Nongxiang Daqu. Foods 2022; 11:foods11172602. [PMID: 36076788 PMCID: PMC9455232 DOI: 10.3390/foods11172602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Fermentation ability and alcohol production ability are important quality indicators of Chinese liquor Daqu, reflecting microbial growth and metabolic capacity and ethanol production capacity of Daqu microbiota, respectively. However, information on the microbial community related to the fermentation ability and alcohol production ability is unclear. In this study, fermentation functional microbiota (FFM) and alcohol functional microbiota (AFM) were obtained by correlating fermentation ability and alcohol production ability with Daqu microbiota. FFM and AFM consisted of 50 and 49 genera, respectively, which were basically the same at the phylum level but differed at the genus level. Correlation analysis showed that FFM and AFM were mainly affected by moisture, acidity, and humidity in the early stage of Daqu fermentation, and oxygen content was a critical factor for microbial succession in the middle stage of fermentation. FFM and AFM had commensal or synergistic interactions with multiple microbes. Function predictions indicated that fermentation functional bacterial microbiota was active in product synthesis and transport-related metabolic functions, and alcohol functional bacterial microbiota was very active in raw material utilization and its own metabolic synthesis. This study reveals the structural characteristics and formation mechanism of FFM and AFM, which is important for control of Daqu quality.
Collapse
Affiliation(s)
- Jie Tang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Jie Chen
- Yibin Nanxi Wine Co., Ltd., Yibin 644000, China
| | - Deming Chen
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Zijian Li
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin 644000, China
| | - Dan Huang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin 644000, China
| | - Huibo Luo
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin 644000, China
- Correspondence: or
| |
Collapse
|
25
|
Pei J, Liu Z, Huang Y, Geng J, Li X, Ramachandra S, Udeshika AA, Brennan C, Tao Y. Potential Use of Emerging Technologies for Preservation of Rice Wine and Their Effects on Quality: Updated Review. Front Nutr 2022; 9:912504. [PMID: 35811939 PMCID: PMC9261873 DOI: 10.3389/fnut.2022.912504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Rice wine, a critical fermented alcoholic beverage, has a considerable role in different cultures. It contains compounds that may have functional and nutritional health benefits. Bacteria, yeasts, and fungi commonly found in rice wines during fermentation can induce microbial spoilage and deterioration of the quality during its distribution and aging processes. It is possible to control the microbial population of rice wines using different preservation techniques that can ultimately improve their commercial shelf life. This paper reviews the potential techniques that can be used to preserve the microbial safety of rice wines while maintaining their quality attributes and further highlights the advantages and disadvantages of each technique.
Collapse
Affiliation(s)
- Jinjin Pei
- Shaanxi Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
- Northwest Institute of Plateau Biology, Chinese Acadamy of Science, Xining, China
| | - Zhe Liu
- Shaanxi Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Yigang Huang
- Shaanxi Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Jingzhang Geng
- Shaanxi Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Xinsheng Li
- Shaanxi Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Sisitha Ramachandra
- School of Technology, Faculty of Engineering and Technology, Sri Lanka Technological Campus (SLTC), Padukka, Sri Lanka
| | - Amali Alahakoon Udeshika
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Amali Alahakoon Udeshika
| | - Charles Brennan
- Royal Melbourne Institute of Technology, Melbourne, VIC, Australia
| | - Yanduo Tao
- Northwest Institute of Plateau Biology, Chinese Acadamy of Science, Xining, China
- *Correspondence: Yanduo Tao
| |
Collapse
|
26
|
Yan Y, Sun L, Xing X, Wu H, Lu X, Zhang W, Xu J, Ren Q. Microbial succession and exploration of higher alcohols-producing core bacteria in northern Huangjiu fermentation. AMB Express 2022; 12:79. [PMID: 35716260 PMCID: PMC9206695 DOI: 10.1186/s13568-022-01418-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/08/2022] [Indexed: 01/16/2023] Open
Abstract
Higher alcohols (HAs) are abundant compounds that provide important flavors in Huangjiu, but they also cause hangover. Previous studies have shown the production of HAs to be related to yeast, but the correlations between HAs and other microorganisms are rarely reported. In this study, we detected changes in levels of HAs and microbial dynamics during the Huangjiu fermentation process. Relationships were characterized using Pearson’s correlation coefficient. The functional core HA-producing bacteria were selected by bidirectional orthogonal partial least squares (O2PLS). The result showed that 2-methyl-1-propanol, phenethyl alcohol and 3-methyl-1-butanol were the principle HAs present at high levels. Lactococcus and Saccharomyces were predominant at the genus level of bacteria and fungi, respectively. A total of 684 correlations between HAs and microorganisms were established. Five genera were screened as functional core HA-producing bacteria. Our findings might provide some new inspiration for controlling the content of HAs, enhancing international prestige and market expansion of Huangjiu.
Collapse
Affiliation(s)
- Yi Yan
- School of Light Industry, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, 100048, China
| | - Leping Sun
- School of Light Industry, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, 100048, China
| | - Xuan Xing
- School of Light Industry, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, 100048, China
| | - Huijun Wu
- School of Light Industry, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, 100048, China
| | - Xin Lu
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Wei Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jialiang Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China. .,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, 100048, China.
| | - Qing Ren
- School of Light Industry, Beijing Technology and Business University, Beijing, China. .,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, 100048, China.
| |
Collapse
|
27
|
Yang Q, Yao H, Liu S, Mao J. Interaction and Application of Molds and Yeasts in Chinese Fermented Foods. Front Microbiol 2022; 12:664850. [PMID: 35496819 PMCID: PMC9041164 DOI: 10.3389/fmicb.2021.664850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022] Open
Abstract
Fermentation is an ancient food preservation and processing technology with a long history of thousands of years, that is still practiced all over the world. Fermented foods are usually defined as foods or beverages made by controlling the growth of microorganisms and the transformation of raw and auxiliary food components, which provide the human body with many beneficial nutrients or health factors. As fungus widely used in traditional Chinese fermented foods, molds and yeasts play an irreplaceable role in the formation of flavor substances and the production of functional components in fermented foods. The research progress of molds and yeasts in traditional Chinese fermented foods from traditional to modern is reviewed, including the research on the diversity, and population structure of molds and yeasts in fermented foods. The interaction between fermenting mold and yeast and the latest research results and application development prospects of related industries were discussed.
Collapse
Affiliation(s)
- Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China.,National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China.,National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, China
| |
Collapse
|
28
|
Effects of fortified starter culture containing Saccharomyces cerevisiae and Lactobacillus fermentum on microbial community structure and ethyl carbamate. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Tian S, Zeng W, Zhou J, Du G. Correlation between the microbial community and ethyl carbamate generated during Huzhou rice wine fermentation. Food Res Int 2022; 154:111001. [DOI: 10.1016/j.foodres.2022.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/04/2022]
|
30
|
Yan Y, Chen H, Sun L, Zhang W, Lu X, Li Z, Xu J, Ren Q. The changes of microbial diversity and flavor compounds during the fermentation of millet Huangjiu, a traditional Chinese beverage. PLoS One 2022; 17:e0262353. [PMID: 34986204 PMCID: PMC8730391 DOI: 10.1371/journal.pone.0262353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 12/21/2021] [Indexed: 02/01/2023] Open
Abstract
Huangjiu is a national alcoholic beverage in China. Millet has congenital advantages in development and utilization of nutrient. Brewing Huangjiu with millet can increase the value of millet. Microbial community plays crucial roles in millet Huangjiu fermentation. Flavor compounds reflect the quality and health function of Huangjiu. The flavor compounds of Huangjiu are complex and their formation is closely associated with microorganisms, but the relationship between them during fermentation has been unknown. In this research, this relationship during millet Huangjiu fermentation were deeply investigated. Totally 86 volatile compounds were detected. Bacillus, Weissella, Paenibacillus, Klebsiella, Prevotella was investigated as the dominant microbes through high-throughput sequencing. 537 correlations between major flavor compounds and microbes were established to reflect the dynamic change during millet Huangjiu fermentation. The top five dominant genus of flavor producing microbes were Chryseobacterium, Sporolactobacillus, Psychrobacter, Sphingobium and Anoxybacillus. The content of malic acid and citric acid was gradually improved all through the millet Huangjiu fermentation. Malic acid and citric acid generated from millet Huangjiu fermentation shows healthy properties as liver protection and eliminating fatigue. Our research provides essential information on microbial community succession and the flavor formation during millet Huangjiu fermentation, and beneficial for development of Huangjiu products.
Collapse
Affiliation(s)
- Yi Yan
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, China
| | - Haiyan Chen
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, China
| | - Leping Sun
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, China
| | - Wei Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xin Lu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenpeng Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jialiang Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, China
| | - Qing Ren
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, China
| |
Collapse
|
31
|
Tian S, Zeng W, Fang F, Zhou J, Du G. The microbiome of Chinese rice wine (Huangjiu). Curr Res Food Sci 2022; 5:325-335. [PMID: 35198991 PMCID: PMC8844729 DOI: 10.1016/j.crfs.2022.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 12/30/2022] Open
|
32
|
Yang H, Peng Q, Zhang H, Sun J, Shen C, Han X. The volatile profiles and microbiota structures of the wheat Qus used as traditional fermentation starters of Chinese rice wine from Shaoxing region. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
Chen GM, Huang ZR, Wu L, Wu Q, Guo WL, Zhao WH, Liu B, Zhang W, Rao PF, Lv XC, Ni L, Sun JY, Sun BG. Microbial diversity and flavor of Chinese rice wine (Huangjiu): an overview of current research and future prospects. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Xiao C, Wang L, Zhang YG, Tu TY, Wang ST, Shen CH, Yuan HW, Zhong XZ. A comparison of microbial communities and volatile compounds in wheat Qu from different geographic locations. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
Qiu X, Yu L, Wang W, Yan R, Zhang Z, Yang H, Zhu D, Zhu B. Comparative Evaluation of Microbiota Dynamics and Metabolites Correlation Between Spontaneous and Inoculated Fermentations of Nanfeng Tangerine Wine. Front Microbiol 2021; 12:649978. [PMID: 34046021 PMCID: PMC8144288 DOI: 10.3389/fmicb.2021.649978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/31/2021] [Indexed: 01/16/2023] Open
Abstract
Understanding the evolution of microorganisms and metabolites during wine fermentation is essential for controlling its production. The structural composition and functional capacity of the core microbiota determine the quality and quantity of fruit wine. Nanfeng tangerine wine fermentation involves a complex of various microorganisms and a wide variety of metabolites. However, the microbial succession and functional shift of the core microbiota in this product fermentation remain unclear. Therefore, high-throughput sequencing (HTS) and headspace-gas chromatography-mass spectrometry (HS/GC-MS) were employed to reveal the core functional microbiota for the production of volatile flavors during spontaneous fermentation (SF) and inoculated fermentation (IF) with Saccharomyces cerevisiae of Nanfeng tangerine wine. A total of 13 bacterial and 8 fungal genera were identified as the core microbiota; Lactobacillus and Acetobacter were the dominant bacteria in SF and IF, respectively. The main fungal genera in SF and IF were Hanseniaspora, Pichia, and Saccharomyces with a clear succession. In addition, the potential correlations analysis between microbiota succession and volatile flavor dynamics revealed that Lactobacillus, Acetobacter, Hanseniaspora, and Saccharomyces were the major contributors to the production of the volatile flavor of Nanfeng tangerine wine. The results of the present study provide insight into the effects of the core functional microbiota in Nanfeng tangerine wine and can be used to develop effective strategies for improving the quality of fruit wines.
Collapse
Affiliation(s)
- Xiangyu Qiu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Linlin Yu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Weiying Wang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Riming Yan
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Zhibin Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Huilin Yang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bo Zhu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
36
|
Microbial composition and dynamic succession during the Daqu production process of Northern Jiang-flavored liquor in China. 3 Biotech 2021; 11:224. [PMID: 33968569 DOI: 10.1007/s13205-021-02779-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022] Open
Abstract
The microbial community structure and succession regularity of six key periods during high-temperature Daqu production were revealed using high-throughput sequencing to explore the factors affecting the flavor formation of Northern Jiang-flavored Baijiu technology. The results showed that among the six Daqu samples, the bacteria mainly included Firmicutes, Actinobacteriota, and Proteobacteria, of which Proteobacteria was the most dominant. The primary fungus was Ascomycota. At the genus level, the primary bacterial groups were Lactobacillus, Weissella, Bacillus, Delftia, Achromobacter, Saccharopolyspora, Thermoactinomyces, Scopulibacillus, Pseudomonas, and Stenotrophomonas. The main fungal groups in the Daqu were Wickerhamomyces, Saccharomycopsis, Thermoascus, and Thermomyces. During the initial stage of Daqu production, the dominant bacteria were Lactobacillus (20.07%) and Weissella (48.30%). As the fermentation temperature of the Daqu increased, Achromobacter, Stenotrophomonas, and Delftia became the dominant bacteria during the first Daqu flipping period, the second Daqu flipping period, and the dry-fire period. During these three periods, many bacteria were eliminated, decreasing the bacterial diversity, while a decline in temperature was evident during the Daqu exit period. After adapting to the high-temperature environment, the accumulation of Saccharopolyspora (22.07%), Thermoactinomyces (16.73%), Scopulibacillus (27.13%), Kroppenstedtia (9.03%), and Bacillus (6.97%) increased the bacterial diversity during the Daqu exit period. Wickerhamomyces (83.47%) represented the main dominant fungus during the initial production stage but were eliminated with increased temperature. Furthermore, a higher temperature increased the abundance of Saccharomycopsis and Thermoascus, while Thermomyces gradually accumulated in the D, E, and F samples. Thermomyces (79.90%) and Thermoascus (13.83%) became the dominant fungi during the Daqu exit period. In this study, high-throughput sequencing technology was used to reveal the microbial diversity during the high-temperature Daqu production process of Northern Jiang-flavored Baijiu. This provided a scientific basis for improving the production process of this product in the future. Therefore, understanding the formation of the flavor substances and the related microorganisms in Northern Jiang-flavored Baijiu can provide guidance for using them to manipulate the preparation process while implementing microbial control and improving the production procedures. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02779-8.
Collapse
|
37
|
Chen L, Ren L, Li D, Ma X. Analysis of microbiomes in three traditional starters and volatile components of the Chinese rice wines. Food Sci Biotechnol 2021; 30:87-96. [PMID: 33552620 DOI: 10.1007/s10068-020-00839-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/13/2020] [Accepted: 10/14/2020] [Indexed: 01/15/2023] Open
Abstract
To understand the effect of microbial community on the flavor of fermented rice wine, microbiomes in three traditional starters (CMQ, NBQ, and YCQ) from different origins for making Chinese rice wines were evaluated and the volatile components of their rice wines were compared. The results showed that the dominant genera in CMQ were Pantoea, Bacillus, Rhizopus, and Candida, the dominant microorganisms in NBQ were Pediococcus, Lactobacillus, Acetobacter, Weissella, Bacillus, Rhizopus, Candida, and Aspergillus, the dominant microorganisms in YCQ were Pediococcus, Lactobacillus, Leuconostoc, Weissella, Lactococcus, Ochrobactrum, Rhizopus, and Mucor. There were significant differences in sensory properties of the wines brewed by three starters. Although the major aroma components were benzyl alcohol, 2-octanone, benzoic acid, and phenethyl acetate, each rice wine had its own main aroma components include 1-octanol, 1-pentanol, ethyl acetate, etc. The results showed that the different microbial communities in starter results in the significant difference of the aroma components in its fermented rice wine.
Collapse
Affiliation(s)
- Lihua Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Fengxian District, 201418 Shanghai China
| | - Lixia Ren
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Fengxian District, 201418 Shanghai China
| | - Dongna Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Fengxian District, 201418 Shanghai China
| | - Xia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Fengxian District, 201418 Shanghai China
| |
Collapse
|
38
|
Wang HL, Hopfer H, Cockburn DW, Wee J. Characterization of Microbial Dynamics and Volatile Metabolome Changes During Fermentation of Chambourcin Hybrid Grapes From Two Pennsylvania Regions. Front Microbiol 2021; 11:614278. [PMID: 33505380 PMCID: PMC7829364 DOI: 10.3389/fmicb.2020.614278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Microbial diversity present on grapes in wineries, and throughout fermentation has been associated with important metabolites for final wine quality. Although microbiome-metabolome associations have been well characterized and could be used as indicators of wine quality, the impact of regionality on the microbiome and metabolome is not well known. Additionally, studies between microbiome and metabolome have been conducted on single species grape such as Vitis vinifera instead of other species and interspecific hybrids. Although the Pennsylvania wine industry is relatively young compared to California, the industry has been experiencing rapid growth over the past decade and is expected to continue to grow in the future. Pennsylvania's climate of cold winters and high levels of rainfall throughout the growing season favors cultivation of interspecific hybrid grapes such as Vitis ssp. Chambourcin, one of the most commonly grown hybrid varieties in the state. Chambourcin is a prime candidate for studying the impact of regionality on microbiome-metabolome interactions as interspecific hybrid varieties could shape the future of winemaking. Here, we identify for the first time the regional distribution of microbial communities and their interactions with volatile metabolome during fermentation (0-20 days) by integrating high throughput Illumina sequencing (16S and ITS) and headspace-solid phase microextraction-gas chromatography-mass spectrometry. Analyzing 88 samples from nine wineries in the Central and East Pennsylvania regions, we observed high microbial diversity during early stages of fermentation (1-4 days) where non-Saccharomyces yeasts such as Starmerella and Aureobasidium and non-Oenococcus bacteria, Sphingomonas, likely contribute to microbial terroir to the resulting wines. Furthermore, key differentiators between two regions in Pennsylvania, as identified by LEfSe analysis, include the fungal genera Cladosporium and Kazachstania and the bacterial genera Lactococcus and Microbacterium. Moreover, 29 volatile fermentation metabolites were discriminated significantly (variable importance in projection > 1) between the two regions as shown by Partial Least Squares-Discriminant Analysis. Finally, Spearman's correlation identified regional differences of microbial-metabolite associations throughout fermentation that could be used for targeted microbiome manipulation to improve wine quality and preserve regionality. In summary, these results demonstrate the microbial signatures during fermentation and differential microorganisms and metabolites further support impact of regionality on Chambourcin wines in Pennsylvania.
Collapse
Affiliation(s)
- Hung Li Wang
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | - Helene Hopfer
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
- Sensory Evaluation Center, The Pennsylvania State University, State College, PA, United States
| | - Darrell W. Cockburn
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
- Microbiome Center, HUCK Institute for Life Sciences, The Pennsylvania State University, State College, PA, United States
| | - Josephine Wee
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
- Microbiome Center, HUCK Institute for Life Sciences, The Pennsylvania State University, State College, PA, United States
| |
Collapse
|
39
|
Chen L, Li D, Ren L, Song S, Ma X, Rong Y. Effects of simultaneous and sequential cofermentation of Wickerhamomyces anomalus and Saccharomyces cerevisiae on physicochemical and flavor properties of rice wine. Food Sci Nutr 2021; 9:71-86. [PMID: 33473272 PMCID: PMC7802529 DOI: 10.1002/fsn3.1899] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022] Open
Abstract
Microorganism species and inoculation fermentation methods have great influence on physicochemical and flavor properties of rice wine. Thus, this work investigated microbial interactions and physicochemical and aroma changes of rice wine through different inoculation strategies of Wickerhamomyces anomalus (W. anomalus) and Saccharomyces cerevisiae (S. cerevisiae). The results underlined that inoculation strategies and non-Saccharomyces yeasts all affected the volatile acidity, total acidity, and alcohol content of rice wine. The sequential cofermentation consumed relatively more sugar and resulted in the higher ethanol content, causing reduced thiols and increased alcohols, esters, phenylethyls, and terpenes, which was more conducive to improve rice wine flavor than simultaneous cofermentation. Moreover, simultaneous cofermentation increased fatty aroma of rice wine, while sequential cofermentation increased mellow and cereal-like flavor. These results confirmed that sequential cofermentation of S. cerevisiae and W. anomalus was a choice for the future production of rice wine with good flavor and quality.
Collapse
Affiliation(s)
- Lihua Chen
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Dongna Li
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Lixia Ren
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Shiqing Song
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Xia Ma
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Yuzhi Rong
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| |
Collapse
|
40
|
Zheng H, Wei P, Zhang G, Xu W, Li Y. The impact of different Saccharomyces cerevisiae strains on microbial composition and quality of Chinese rice wine fermentations. Yeast 2020; 38:147-156. [PMID: 33125759 DOI: 10.1002/yea.3523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 11/08/2022] Open
Abstract
Chinese rice wine (CRW) is a popular fermented product in China, with complicated microbial composition and flavour compounds. To reveal the effects of different strains of Saccharomyces cerevisiae (N85 and XZ11) on the microbial composition in the process of brewing, metagenomic sequencing approaches were carried out to explore the dynamic changes of bacteria and fungi. Furthermore, the volatile compounds and organic acids in CRW were identified by headspace solid phase microextraction (HS-SPME)/gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) at the end of the brewing. Our results indicated that different S. cerevisiae strains could influence microbial compositions and especially affected the growth of Lactobacillus brevis and Pantoea ananatis. The changes in the microbial community structure contributed to the remarkable difference in the content of lactic acid, esters, alcohols, and aldehydes. Moreover, functional network analysis provided insights into the biological correlations between microbial species and metabolic pathways, that is, Lactobacillus genus had negative effects on metabolic activities. This study expands the idea of improving the quality of CRW by controlling the microbiome.
Collapse
Affiliation(s)
- Helong Zheng
- Department of Biological Engineering, School of Food Science and Biotechnology, Zhejiang Gongshang Univeristy, Hangzhou, China
| | - Ping Wei
- Translational Medicine Center, Sichuan Academy of Traditional Chinese Medicine, Chengdu, China
| | - Guoqing Zhang
- School of Engineering, Westlake University, Hangzhou, China
| | - Wen Xu
- Department of Biological Engineering, School of Food Science and Biotechnology, Zhejiang Gongshang Univeristy, Hangzhou, China
| | - Yudong Li
- Department of Biological Engineering, School of Food Science and Biotechnology, Zhejiang Gongshang Univeristy, Hangzhou, China
| |
Collapse
|
41
|
Liu S, Yang Q, Mao J, Bai M, Zhou J, Han X, Mao J. Feedback inhibition of the prephenate dehydratase from Saccharomyces cerevisiae and its mutation in huangjiu (Chinese rice wine) yeast. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Immunomodulatory activity of a novel polysaccharide extracted from Huangshui on THP-1 cells through NO production and increased IL-6 and TNF-α expression. Food Chem 2020; 330:127257. [DOI: 10.1016/j.foodchem.2020.127257] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 01/09/2023]
|
43
|
Zhao C, Su W, Mu Y, Jiang L, Mu Y. Correlations between microbiota with physicochemical properties and volatile flavor components in black glutinous rice wine fermentation. Food Res Int 2020; 138:109800. [PMID: 33288182 DOI: 10.1016/j.foodres.2020.109800] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Black glutinous rice wine (BGRW) is a popular traditional Chinese rice wine; however, the flavors profiles associated with microbiota changes during its fermentation have not yet been evaluated. In this study, we explored the correlations between microbial communities with physicochemical properties and flavor components during BGRW fermentation. High-throughput sequencing was used to identify the microbial community composition of BGRW at different fermentation stages, and physicochemical properties and volatile flavor compounds (VFCs) were identified via fermentation features testing and headspace solid phase microextraction gas chromatography mass spectrometry. First, we revealed Pantoea and Kosakonia predominated bacterial genera the early stage of BGRW fermentation, Leuconostoc, Pediococcus, Bacillus, and Lactobacillus predominated bacterial genera the later stage, while Rhizopus and Saccharomyces were the predominant fungal genera throughout fermentation. Second, total sugars, titratable acids, pH, ethanol, amino acid nitrogen, and 43 VFCs were detected during fermentation. Twenty-three VFCs were differentially produced according to the linear discriminant analysis effect size method. With the increase of the fermentation time, the kinds and contents of esters and alcohols were also increased, while acids decreased. Moreover, 12 microbial genera, Lactococcus, Pediococcus, Leuconostoc, Lactobacillus, Cronobacter, Pantoea, Weissella, Enterococcus, Rhizopus, Myceliophthora, Cystofilobasidium, and Aspergillus were found to be highly correlated (|ρ| > 0.7 and P < 0.05) with physicochemical properties and VFCs, by redundancy analysis (RDA) and two-way orthogonal partial least squares (O2PLS) analysis. Ultimately, based on the results, a metabolic map of dominant genera in BGRW was established. Our findings provided detailed information on the dynamic changes of physicochemical properties and VFCs and selection of beneficial strains to improve the quality of BGRW.
Collapse
Affiliation(s)
- Chi Zhao
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang 550025, China
| | - Wei Su
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang 550025, China.
| | - Yingchun Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Li Jiang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yu Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang 550025, China
| |
Collapse
|
44
|
Wang F, He JL, Turgun T, Ge DE, Rahman N, Zhou JZ, Liu XL. Effect of Chinese Rice Wine on the Endogenous Protease Activity, Myofibrillar Degradation, and Quality Characteristics in Topmouth Culter ( Culter alburnus). JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1760987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Fan Wang
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jia-Liang He
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Tursunay Turgun
- College of Life Science, Xinjiang Normal University, Urumqi, Xinjiang, China
| | - Da-E Ge
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Nurgul Rahman
- College of Life Science, Xinjiang Normal University, Urumqi, Xinjiang, China
| | - Jian-Zhong Zhou
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Liu
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
45
|
Su C, Zhang KZ, Cao XZ, Yang JG. Effects of Saccharomycopsis fibuligera and Saccharomyces cerevisiae inoculation on small fermentation starters in Sichuan-style Xiaoqu liquor. Food Res Int 2020; 137:109425. [PMID: 33233107 DOI: 10.1016/j.foodres.2020.109425] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 01/15/2023]
Abstract
Xiaoqu liquor is a type of distilled spirit in China prepared on a small scale from a small solid starter culture. Although this liquor is popular in southwestern China, it can have a dull taste, limiting its market. To improve the flavour profile of Xiaoqu liquor, we selected two functional yeast strains (Saccharomycopsis fibuligera and Saccharomyces cerevisiae) from Zaopei (fermented grain) of Baijiu liquor and used them for Xiaoqu liquor fermentation. Compared with traditional Xiaoqu (Starter), bioaugmentation inoculation increased the glucoamylase and acidic protease activities and the ethanol synthesis rate, while decreasing the acidity of the Zaopei (fermented grains) in the early stage of fermentation. By the end of the fermentation process, the alcohol and ester content had also increased by 42.5% and 11.8%, respective, and that of aldehydes and ketones, and heterocyclic compounds decreased by 73.7% and 77.1%, respectively. Traditional isolation and high-throughput sequencing were employed to analyse the microorganisms in the Zaopei. Bioaugmentation inoculation increased the microbial diversity of Xiaoqu liquor during the fermentation process. The dominant fungus during fermentation using the two types of starter cultures was S. cerevisiae, whereas the dominant bacteria was Pseudomonas, followed by Bacillus, Weissella, Lactobacillus, and Bacteroides. Principal component analysis of the bacterial community structure and flavour substances in the Zaopei produced using the two strains revealed that there were few differences between the two liquors and that inoculation with functional yeasts may not change the flavour substances in Xiaoqu liquor. However, correlation analysis showed that Escherichia Shigella, Terrisporobacter, Bacillus, Clostridium, and Prevotellaceae are the main microorganisms in the Xiaoqu liquor fermentation process. These results lay the foundation to improve the quality of Xiaoqu liquor.
Collapse
Affiliation(s)
- Chang Su
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; College of Food Science, Sourthwest University, Chongqing City 400715, China
| | - Kai-Zheng Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Xin-Zhi Cao
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Jian-Gang Yang
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| |
Collapse
|
46
|
Liu S, Hu J, Xu Y, Xue J, Zhou J, Han X, Ji Z, Mao J. Combined use of single molecule real-time DNA sequencing technology and culture-dependent methods to analyze the functional microorganisms in inoculated raw wheat Qu. Food Res Int 2020; 132:109062. [DOI: 10.1016/j.foodres.2020.109062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 12/11/2022]
|
47
|
Bacterial community succession and volatile compound changes during fermentation of shrimp paste from Chinese Jinzhou region. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108998] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Yang H, Yang L, Zhang J, Li H, Tu Z, Wang X. Exploring functional core bacteria in fermentation of a traditional Chinese food, Aspergillus-type douchi. PLoS One 2019; 14:e0226965. [PMID: 31887171 PMCID: PMC6936781 DOI: 10.1371/journal.pone.0226965] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/09/2019] [Indexed: 12/03/2022] Open
Abstract
Douchi is a type of traditional Chinese flavoring food that has been used for thousands of years and is produced by multispecies solid-state fermentation. However, the correlation between the flavor, the microbiota, and the functional core microbiota in Aspergillus-type douchi fermentation remains unclear. In this study, Illumina MiSeq sequencing and chromatography were used to investigate the bacterial community and flavor components in Aspergillus-type douchi fermentation. The dominant phyla were Firmicutes, Proteobacteria, and Actinobacteria, and the dominant genera were Weissella, Bacillus, Anaerosalibacter, Lactobacillus, Staphylococcus, and Enterococcus. A total of 58 flavor components were detected during fermentation, including two alcohols, 14 esters, five pyrazines, three alkanes, four aldehydes, three phenols, six acids, and five other compounds. Bidirectional orthogonal partial least square modeling showed that Corynebacterium_1, Lactococcus, Atopostipes, Peptostreptococcus, norank_o__AKYG1722, Truepera, Gulosibacter, norank_f__Actinomycetaceae, and unclassified_f__Rhodobacteraceae are the functional core microbiota responsible for the formation of the flavor components during douchi fermentation. This is the first study to investigate the functional core microbiota in douchi fermentation using Illumina MiSeq sequencing and chromatographic techniques. Our findings extend our understanding of the relationships between flavor, the microbiota, and the functional core microbiota during Aspergillus-type douchi fermentation.
Collapse
Affiliation(s)
- Huilin Yang
- Key Lab of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Lin Yang
- Key Lab of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Ju Zhang
- Key Lab of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Hao Li
- Key Lab of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Zongcai Tu
- Key Lab of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Xiaolan Wang
- Key Lab of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
- * E-mail:
| |
Collapse
|
49
|
Xie M, Lv F, Ma G, Farooq A, Li H, Du Y, Liu Y. High throughput sequencing of the bacterial composition and dynamic succession in Daqu for Chinese sesame flavour liquor. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.592] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mowen Xie
- University of Science and Technology Beijing; Beijing 100083 China
| | - Fuxia Lv
- University of Science and Technology Beijing; Beijing 100083 China
| | - Guoxing Ma
- University of Science and Technology Beijing; Beijing 100083 China
| | - Asim Farooq
- University of Science and Technology Beijing; Beijing 100083 China
| | - Hehe Li
- Beijing Laboratory of Food Quality and Safety, School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
| | - Yan Du
- University of Science and Technology Beijing; Beijing 100083 China
| | - Yang Liu
- University of Science and Technology Beijing; Beijing 100083 China
| |
Collapse
|
50
|
Ren Q, Sun L, Sun Z, Liu Q, Lu X, Li Z, Xu J. Bacterial succession and the dynamics of flavor compounds in the Huangjiu fermented from corn. Arch Microbiol 2019; 202:299-308. [DOI: 10.1007/s00203-019-01748-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/28/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
|