1
|
Kumar N, Du Z, Amachawadi RG, Guo X, Zhao J, Li Y. Membrane Selectivity Mechanisms of the Antimicrobial Peptide Snakin-Z Against Prokaryotic and Eukaryotic Membrane Models. J Phys Chem B 2025. [PMID: 40280870 DOI: 10.1021/acs.jpcb.5c01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Snakin-Z, a novel cationic antimicrobial peptide (AMP) derived from Zizyphus jujuba fruits, exhibits broad-spectrum antimicrobial activity against bacteria and fungi. Importantly, it displays minimal hemolytic activity toward human red blood cells (RBCs). Elucidating the molecular basis of membrane selectivity of Snakin-Z is essential for its development as a novel antimicrobial agent. In this study, all-atom molecular dynamics (MD) simulations were employed to provide detailed molecular insights into the interactions between Snakin-Z and bacterial, fungal, and RBC membrane models. The simulations revealed a helical-coil conformation for Snakin-Z, with its amphipathic structure, polarity, and residues such as Arg, Lys, Ser, and Tyr playing crucial roles in mediating selective interactions with the microbial membrane models. Specifically, Arg28, Lys29, and Arg3 were identified as playing a crucial role in mediating membrane binding and stability. Snakin-Z was observed to be deeply embedded in the Candida albicans and Bacillus subtilis membrane models, followed by Escherichia coli and RBC membrane models. A considerable thinning and strong disordering of Candida albicans, Bacillus subtilis and Escherichia coli membranes acyl chains were observed. The presence of cholesterol in the RBC membrane contributes to its resistance to Snakin-Z-mediated disruption. This study presents the first comprehensive investigation of the selective mechanism underlying the antimicrobial activity of Snakin-Z against bacterial membrane models. Our findings provide insights into the antimicrobial properties of Snakin-Z at the molecular level, highlighting its significant potential for use in the food and biotechnology industries as a promising alternative to conventional antibiotics and preservatives.
Collapse
Affiliation(s)
- Nandan Kumar
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Zhenjiao Du
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Xiaolong Guo
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jikai Zhao
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
2
|
Palyzová A, Šmrhová T, Kapinusová G, Škrob Z, Uhlík O, Řezanka T. Stereochemistry of phosphatidylglycerols from thermotolerant bacteria isolated thermal springs. J Chromatogr A 2025; 1739:465517. [PMID: 39571264 DOI: 10.1016/j.chroma.2024.465517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/08/2024]
Abstract
Phosphatidylglycerol (1,2-diacyl-sn-glycero-3-phospho-glycerol) (PG) is one of the most abundant lipids in biological membranes. However, the chirality of the carbon atom in glycerol phosphate differs among the three kingdoms: bacteria, archaea, and eukaryotes. It is commonly assumed that archaea, as well as bacteria and eukaryotes, produce only one isomer of PG. Archaeal membranes consist of phospholipids with glycerol-1-phosphate in the S configuration, while the phospholipids of the other two kingdoms contain glycerol-3-phosphate with (R) stereochemistry. Another chiral atom is found in glycerol with non-esterified hydroxy groups. Considering the high temperatures that accompanied the origin of life on Earth, it becomes obvious that it is necessary to clarify the importance of membrane lipids in early evolutionary times. To reconstruct the effect of high temperatures on membrane lipids, it is ideal to use microorganisms originating from a thermophilic environment analogous to the early Earth, such as the thermal groundwater of the famous spa town of Karlovy Vary. Here, we prepared all four isomers of PG, i.e., (R,S, R,R, S,R), and (S,S), by organic synthesis and analyzed the representation of individual molecular species in seven bacteria isolated from the Karlovy Vary thermal springs using chiral chromatography - mass spectrometry. Our results provide evidence that five of these strains produce all four isomers of PG and that this production is highly dependent on the cultivation temperature. Subsequent analysis by chiral chromatography revealed that the ratio of isomers, enantiomers, and diastereoisomers depends on the cultivation temperature of individual strains.
Collapse
Affiliation(s)
- Andrea Palyzová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Tereza Šmrhová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Gabriela Kapinusová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Zdena Škrob
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Ondřej Uhlík
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Tomáš Řezanka
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic.
| |
Collapse
|
3
|
Bakker C, Graham HR, Popescu I, Li M, McMullin DR, Avis TJ. Fungal membrane determinants affecting sensitivity to antifungal cyclic lipopeptides from Bacillus spp. Fungal Biol 2024; 128:2080-2088. [PMID: 39384277 DOI: 10.1016/j.funbio.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/11/2024] [Accepted: 08/14/2024] [Indexed: 10/11/2024]
Abstract
Bacillus spp. produce numerous antimicrobial metabolites. Among these metabolites, cyclic lipopeptides (CLP) including fengycins, iturins, and surfactins are known to have varying antifungal activity against phytopathogenic fungi. The differential activities of CLP have been attributed to diverse mechanisms of action on fungal membranes. However, the precise biochemical determinants driving their antifungal modes of action have not been conclusively identified. In this study, three plant pathogenic fungi of varying lipopeptide sensitivities, Alternaria solani, Cladosporium cucumerinum, and Fusarium sambucinum, were studied to determine how their cell membrane lipid compositions may confer sensitivity and/or tolerance to fengycin, iturin, and surfactin. Results indicated that sensitivity to all three lipopeptides correlated with lower ergosterol content and elevated phospholipid fatty acid unsaturation. Fungal sensitivity to surfactin was also notably different than fengycin and iturin, as surfactin was influenced more by lower phosphatidylethanolamine amounts, higher levels of phosphatidylinositol, and less by phospholipid fatty acyl chain length. Results from this study provide insight into the fungal membrane composition of A. solani, F. sambucinum, and C. cucumerinum and the specific membrane characteristics influencing the antifungal effectiveness of fengycin, iturin, and surfactin. Understanding of these determinants should enable more accurate prediction of sensitivity-tolerance outcomes for other fungal species exposed to these important CLP.
Collapse
Affiliation(s)
- Charlotte Bakker
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Hailey R Graham
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Irina Popescu
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Melody Li
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - David R McMullin
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada; Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Tyler J Avis
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada; Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
4
|
Etemadzadeh SS, Emtiazi G, Soltanian S. Production of biosurfactant by salt-resistant Bacillus in lead-supplemented media: application and toxicity. Int Microbiol 2023; 26:869-880. [PMID: 36810942 DOI: 10.1007/s10123-023-00334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
A group of biosurfactants are lipopeptides that are produced by some microorganisms, especially Bacillus strains. They are new bioactive agents with anticancer, antibacterial, antifungal, and antiviral activities. Also, they are used in sanitation industries. In this study, a lead-resistant strain of Bacillus halotolerans was isolated for lipopeptide production. This isolate exhibited metal resistance (lead, calcium, chromium, nickel, copper, manganese, and mercury), salt tolerance (12%), and antimicrobial activities against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Saccharomyces cerevisiae. The production of lipopeptide was optimized, concentrated, and then extracted from the polyacrylamide gel in a simple way for the first time. The nature of the purified lipopeptide was determined by FTIR, GC/MS, and HPLC analyses. The purified lipopeptide indicated significant antioxidant properties (90.38% at a concentration of 0.8 mg ml-1). Also, it had anticancer activity by apoptosis (flow cytometry analysis) in MCF-7 cells, while it had no cytotoxicity on HEK-293 normal cells. Therefore, Bacillus halotolerans lipopeptide has the potential to be used as an antioxidant, antimicrobial, or anticancer agent in the medical and food industries.
Collapse
Affiliation(s)
- Shekoofeh Sadat Etemadzadeh
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Giti Emtiazi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sara Soltanian
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
5
|
Yaraguppi DA, Bagewadi ZK, Patil NR, Mantri N. Iturin: A Promising Cyclic Lipopeptide with Diverse Applications. Biomolecules 2023; 13:1515. [PMID: 37892197 PMCID: PMC10604914 DOI: 10.3390/biom13101515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
This comprehensive review examines iturin, a cyclic lipopeptide originating from Bacillus subtilis and related bacteria. These compounds are structurally diverse and possess potent inhibitory effects against plant disease-causing bacteria and fungi. Notably, Iturin A exhibits strong antifungal properties and low toxicity, making it valuable for bio-pesticides and mycosis treatment. Emerging research reveals additional capabilities, including anticancer and hemolytic features. Iturin finds applications across industries. In food, iturin as a biosurfactant serves beyond surface tension reduction, enhancing emulsions and texture. Biosurfactants are significant in soil remediation, agriculture, wound healing, and sustainability. They also show promise in Microbial Enhanced Oil Recovery (MEOR) in the petroleum industry. The pharmaceutical and cosmetic industries recognize iturin's diverse properties, such as antibacterial, antifungal, antiviral, anticancer, and anti-obesity effects. Cosmetic applications span emulsification, anti-wrinkle, and antibacterial use. Understanding iturin's structure, synthesis, and applications gains importance as biosurfactant and lipopeptide research advances. This review focuses on emphasizing iturin's structural characteristics, production methods, biological effects, and applications across industries. It probes iturin's antibacterial, antifungal potential, antiviral efficacy, and cancer treatment capabilities. It explores diverse applications in food, petroleum, pharmaceuticals, and cosmetics, considering recent developments, challenges, and prospects.
Collapse
Affiliation(s)
- Deepak A. Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubballi 580031, Karnataka, India;
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi 580031, Karnataka, India;
| | - Ninganagouda R. Patil
- Department of Physics, B. V Bhoomaraddi College of Engineering and Technology, Hubballi 580031, Karnataka, India;
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
6
|
Mao W, Renner LD, Cornilleau C, Li de la Sierra-Gallay I, Afensiss S, Benlamara S, Ah-Seng Y, Van Tilbeurgh H, Nessler S, Bertin A, Chastanet A, Carballido-Lopez R. On the role of nucleotides and lipids in the polymerization of the actin homolog MreB from a Gram-positive bacterium. eLife 2023; 12:e84505. [PMID: 37818717 PMCID: PMC10718530 DOI: 10.7554/elife.84505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/08/2023] [Indexed: 10/12/2023] Open
Abstract
In vivo, bacterial actin MreB assembles into dynamic membrane-associated filamentous structures that exhibit circumferential motion around the cell. Current knowledge of MreB biochemical and polymerization properties in vitro remains limited and is mostly based on MreB proteins from Gram-negative species. In this study, we report the first observation of organized protofilaments by electron microscopy and the first 3D-structure of MreB from a Gram-positive bacterium. We show that Geobacillus stearothermophilus MreB forms straight pairs of protofilaments on lipid surfaces in the presence of ATP or GTP, but not in the presence of ADP, GDP or non-hydrolysable ATP analogs. We demonstrate that membrane anchoring is mediated by two spatially close short hydrophobic sequences while electrostatic interactions also contribute to lipid binding, and show that the population of membrane-bound protofilament doublets is in steady-state. In solution, protofilament doublets were not detected in any condition tested. Instead, MreB formed large sheets regardless of the bound nucleotide, albeit at a higher critical concentration. Altogether, our results indicate that both lipids and ATP are facilitators of MreB polymerization, and are consistent with a dual effect of ATP hydrolysis, in promoting both membrane binding and filaments assembly/disassembly.
Collapse
Affiliation(s)
- Wei Mao
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Lars D Renner
- Leibniz Institute of Polymer Research, and the Max-Bergmann-Center of BiomaterialsDresdenGermany
| | - Charlène Cornilleau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Ines Li de la Sierra-Gallay
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Sana Afensiss
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Sarah Benlamara
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Yoan Ah-Seng
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Herman Van Tilbeurgh
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Sylvie Nessler
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Aurélie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Sorbonne Université, 75005ParisFrance
| | - Arnaud Chastanet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Rut Carballido-Lopez
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| |
Collapse
|
7
|
Walaszczyk A, Jasińska A, Bernat P, Płaza G, Paraszkiewicz K. Microplastics influence on herbicides removal and biosurfactants production by a Bacillus sp. strain active against Fusarium culmorum. Sci Rep 2023; 13:14618. [PMID: 37670040 PMCID: PMC10480202 DOI: 10.1038/s41598-023-41210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023] Open
Abstract
The amounts of anthropogenic pollutants, e.g., microplastics (MPs) and pesticides, in terrestrial and aquatic ecosystems have been increasing. The aim of this study was to assess the influence of MPs on the removal of herbicides (metolachlor, MET; 2,4-dichlorophenoxyacetic acid, 2,4-D) and the production of biosurfactants (surfactin and iturin) by Bacillus sp. Kol L6 active against Fusarium culmorum. The results showed that Kol L6 eliminated 40-55% MET and 2,4-D from liquid cultures, but this process was inhibited in the presence of MPs. Although the pollutants did not strongly limit the production of surfactin, iturin secretion was found to decrease by more than 70% in the presence of all three pollutants. Interestingly, the strongest modification in the profile of iturin homologues was calculated for the cultures containing MET + MP and 2,4-D + MET + MP. The bacteria significantly limited the growth of the phytopathogenic F. culmorum DSM1094F in the presence of individual pollutants and their two-component mixtures. However, in the presence of all three tested pollutants, the growth of the fungus was limited only partially (by no more than 40%). The presented results are a starting point for further research on bacteria-fungi-plants interactions in the soil environment in the presence of multiple pollutants.
Collapse
Affiliation(s)
- Aleksandra Walaszczyk
- Doctoral School of Exact and Natural Sciences, Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Anna Jasińska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Grażyna Płaza
- Faculty of Organization and Management, Silesian University of Technology, Zabrze, Poland
| | - Katarzyna Paraszkiewicz
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
8
|
Mitchison-Field LM, Belin BJ. Bacterial lipid biophysics and membrane organization. Curr Opin Microbiol 2023; 74:102315. [PMID: 37058914 PMCID: PMC10523990 DOI: 10.1016/j.mib.2023.102315] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
The formation of lateral microdomains is emerging as a central organizing principle in bacterial membranes. These microdomains are targets of antibiotic development and have the potential to enhance natural product synthesis, but the rules governing their assembly are unclear. Previous studies have suggested that microdomain formation is promoted by lipid phase separation, particularly by cardiolipin (CL) and isoprenoid lipids, and there is strong evidence that CL biosynthesis is required for recruitment of membrane proteins to cell poles and division sites. New work demonstrates that additional bacterial lipids may mediate membrane protein localization and function, opening the field for mechanistic evaluation of lipid-driven membrane organization in vivo.
Collapse
Affiliation(s)
- Lorna My Mitchison-Field
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Brittany J Belin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Zammuto V, Rizzo MG, De Pasquale C, Ferlazzo G, Caccamo MT, Magazù S, Guglielmino SPP, Gugliandolo C. Lichenysin-like Polypeptide Production by Bacillus licheniformis B3-15 and Its Antiadhesive and Antibiofilm Properties. Microorganisms 2023; 11:1842. [PMID: 37513014 PMCID: PMC10384595 DOI: 10.3390/microorganisms11071842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
We report the ability of the crude biosurfactant (BS B3-15), produced by the marine, thermotolerant Bacillus licheniformis B3-15, to hinder the adhesion and biofilm formation of Pseudomonas aeruginosa ATCC 27853 and Staphylococcus aureus ATCC 29213 to polystyrene and human cells. First, we attempted to increase the BS yield, optimizing the culture conditions, and evaluated the surface-active properties of cell-free supernatants. Under phosphate deprivation (0.06 mM) and 5% saccharose, the yield of BS (1.5 g/L) increased by 37%, which could be explained by the earlier (12 h) increase in lchAA expression compared to the non-optimized condition (48 h). Without exerting any anti-bacterial activity, BS (300 µg/mL) prevented the adhesion of P. aeruginosa and S. aureus to polystyrene (47% and 36%, respectively) and disrupted the preformed biofilms, being more efficient against S. aureus (47%) than P. aeruginosa (26%). When added to human cells, the BS reduced the adhesion of P. aeruginosa and S. aureus (10× and 100,000× CFU/mL, respectively) without altering the epithelial cells' viability. As it is not cytotoxic, BS B3-15 could be useful to prevent or remove bacterial biofilms in several medical and non-medical applications.
Collapse
Affiliation(s)
- Vincenzo Zammuto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
- Research Centre for Extreme Environments and Extremophiles, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
- ATHENA Green Solutions S.r.l., Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Claudia De Pasquale
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, Via Consolare Valeria, 1, 98124 Messina, Italy
| | - Guido Ferlazzo
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genova, Italy
- Unit of Experimental Pathology and Immunology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Maria Teresa Caccamo
- Research Centre for Extreme Environments and Extremophiles, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Magazù
- Research Centre for Extreme Environments and Extremophiles, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
- ATHENA Green Solutions S.r.l., Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Pietro Paolo Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Concetta Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
- Research Centre for Extreme Environments and Extremophiles, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
10
|
Iqbal S, Begum F, Rabaan AA, Aljeldah M, Al Shammari BR, Alawfi A, Alshengeti A, Sulaiman T, Khan A. Classification and Multifaceted Potential of Secondary Metabolites Produced by Bacillus subtilis Group: A Comprehensive Review. Molecules 2023; 28:molecules28030927. [PMID: 36770594 PMCID: PMC9919246 DOI: 10.3390/molecules28030927] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Despite their remarkable biosynthetic potential, Bacillus subtilis have been widely overlooked. However, their capability to withstand harsh conditions (extreme temperature, Ultraviolet (UV) and γ-radiation, and dehydration) and the promiscuous metabolites they synthesize have created increased commercial interest in them as a therapeutic agent, a food preservative, and a plant-pathogen control agent. Nevertheless, the commercial-scale availability of these metabolites is constrained due to challenges in their accessibility via synthesis and low fermentation yields. In the context of this rising in interest, we comprehensively visualized the antimicrobial peptides produced by B. subtilis and highlighted their prospective applications in various industries. Moreover, we proposed and classified these metabolites produced by the B. subtilis group based on their biosynthetic pathways and chemical structures. The biosynthetic pathway, bioactivity, and chemical structure are discussed in detail for each class. We believe that this review will spark a renewed interest in the often disregarded B. subtilis and its remarkable biosynthetic capabilities.
Collapse
Affiliation(s)
- Sajid Iqbal
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
- Correspondence: or
| | - Farida Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Pakistan
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Alam Khan
- Department of Life Sciences, Abasyn University Islamabad Campus, Islamabad 44000, Pakistan
| |
Collapse
|
11
|
In vitro study of the ecotoxicological risk of methylisothiazolinone and chloroxylenol towards soil bacteria. Sci Rep 2022; 12:19068. [PMID: 36352006 PMCID: PMC9645328 DOI: 10.1038/s41598-022-22981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Methylisothiazolinone (MIT) and chloroxylenol (PCMX) are popular disinfectants often used in personal care products (PCPs). The unregulated discharge of these micropollutants into the environment, as well as the use of sewage sludge as fertilizer and reclaimed water in agriculture, poses a serious threat to ecosystems. However, research into their ecotoxicity towards nontarget organisms is very limited. In the present study, for the first time, the ecotoxicity of biocides to Pseudomonas putida, Pseudomonas moorei, Sphingomonas mali, and Bacillus subtilis was examined. The toxicity of MIT and PCMX was evaluated using the microdilution method, and their influence on the viability of bacterial cells was investigated by the AlamarBlue® test. The ability of the tested bacteria to form biofilms was examined by a microtiter plate assay. Intracellular reactive oxygen species (ROS) production was measured with CM-H2DCFDA. The effect of MIT and PCMX on phytohormone indole-3-acetic acid (IAA) production was determined by spectrophotometry and LC‒MS/MS techniques. The permeability of bacterial cell membranes was studied using the SYTOX Green assay. Changes in the phospholipid profile were analysed using LC‒MS/MS. The minimal inhibitory concentrations (MICs) values ranged from 3.907 to 15.625 mg L-1 for MIT and 62.5 to 250 mg L-1 for PCMX, indicating that MIT was more toxic. With increasing concentrations of MIT and PCMX, the cell viability, biofilm formation ability and phytohormone synthesis were maximally inhibited. Moreover, the growth of bacterial cell membrane permeability and a significantly increased content of ROS were observed, indicating that the exposure caused serious oxidative stress and homeostasis disorders. Additionally, modifications in the phospholipid profile were observed in response to the presence of sublethal concentrations of the chemicals. These results prove that the environmental threat posed by MIT and PCMX must be carefully monitored, especially as their use in PCPs is still growing.
Collapse
|
12
|
Comparison of Antifungal Activity of Bacillus Strains against Fusarium graminearum In Vitro and In Planta. PLANTS 2022; 11:plants11151999. [PMID: 35956478 PMCID: PMC9370729 DOI: 10.3390/plants11151999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
Fusarium graminearum (Fg) causes Fusarium head blight (FHB) disease in wheat and barley. This pathogen produces mycotoxins including deoxynivalenol (DON), the T-2 and fumorisin B1. Translocation of the mycotoxins in grains causes important losses in yields and contributes to serious health problems in humans and livestock. We tested the Bacillus strains, two commercial, QST713 (Serenade®) and FZB24 (TAEGRO®) and one non-commercial strain EU07 as microbial biological control agents against the F. graminearum strain Fg-K1-4 both in vitro and in planta. The EU07 strain showed better performance in suppressing the growth of Fg-K1-4. Cell-free bacterial cultures displayed significant antagonistic activity on Fg-K1-4. Remarkably, heat and proteinase K treatment of bacterial broths did not reduce the antagonistic activity of Bacillus cultures. DON assays showed that Bacillus strain was not affected by the presence of DON in the media. Leaf and head infection assays using Brachypodium distachyon (Bd-21) indicated that EU07 inhibits Fg-K1-4 growth in vivo and promotes plant growth. Overall, the EU07 strain performed better, indicating that it could be explored for the molecular investigations and protection of cereal crops against FHB disease.
Collapse
|
13
|
Pogozheva ID, Armstrong GA, Kong L, Hartnagel TJ, Carpino CA, Gee SE, Picarello DM, Rubin AS, Lee J, Park S, Lomize AL, Im W. Comparative Molecular Dynamics Simulation Studies of Realistic Eukaryotic, Prokaryotic, and Archaeal Membranes. J Chem Inf Model 2022; 62:1036-1051. [PMID: 35167752 DOI: 10.1021/acs.jcim.1c01514] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present a comparative all-atom molecular dynamics simulation study of 18 biomembrane systems with lipid compositions corresponding to eukaryotic, bacterial, and archaebacterial membranes together with three single-component lipid bilayers. A total of 105 lipid types used in this study include diverse sterols and glycerol-based lipids with acyl chains of various lengths, unsaturation degrees, and branched or cyclic moieties. Our comparative analysis provides deeper insight into the influences of sterols and lipid unsaturation on the structural and mechanical properties of these biomembranes, including water permeation into the membrane hydrocarbon core. For sterol-containing membranes, sterol fraction is correlated with the membrane thickness, the area compressibility modulus, and lipid order but anticorrelated with the area per lipid and sterol tilt angles. Similarly, for all 18 biomembranes, lipid order is correlated with the membrane thickness and area compressibility modulus. Sterols and lipid unsaturation produce opposite effects on membrane thickness, but only sterols influence water permeation into the membrane. All membrane systems are accessible for public use in CHARMM-GUI Archive. They can be used as templates to expedite future modeling of realistic cell membranes with transmembrane and peripheral membrane proteins to study their structure, dynamics, molecular interactions, and function in a nativelike membrane environment.
Collapse
Affiliation(s)
- Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Grant A Armstrong
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Lingyang Kong
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Timothy J Hartnagel
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Carly A Carpino
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Stephen E Gee
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Danielle M Picarello
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Amanda S Rubin
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jumin Lee
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Soohyung Park
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Andrei L Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States.,Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States.,Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
14
|
Nephali L, Steenkamp P, Burgess K, Huyser J, Brand M, van der Hooft JJJ, Tugizimana F. Mass Spectral Molecular Networking to Profile the Metabolome of Biostimulant Bacillus Strains. FRONTIERS IN PLANT SCIENCE 2022; 13:920963. [PMID: 35755693 PMCID: PMC9218640 DOI: 10.3389/fpls.2022.920963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/18/2022] [Indexed: 05/17/2023]
Abstract
Beneficial soil microbes like plant growth-promoting rhizobacteria (PGPR) significantly contribute to plant growth and development through various mechanisms activated by plant-PGPR interactions. However, a complete understanding of the biochemistry of the PGPR and microbial intraspecific interactions within the consortia is still enigmatic. Such complexities constrain the design and use of PGPR formulations for sustainable agriculture. Therefore, we report the application of mass spectrometry (MS)-based untargeted metabolomics and molecular networking (MN) to interrogate and profile the intracellular chemical space of PGPR Bacillus strains: B. laterosporus, B. amyloliquefaciens, B. licheniformis 1001, and B. licheniformis M017 and their consortium. The results revealed differential and diverse chemistries in the four Bacillus strains when grown separately, and also differing from when grown as a consortium. MolNetEnhancer networks revealed 11 differential molecular families that are comprised of lipids and lipid-like molecules, benzenoids, nucleotide-like molecules, and organic acids and derivatives. Consortium and B. amyloliquefaciens metabolite profiles were characterized by the high abundance of surfactins, whereas B. licheniformis strains were characterized by the unique presence of lichenysins. Thus, this work, applying metabolome mining tools, maps the microbial chemical space of isolates and their consortium, thus providing valuable insights into molecular information of microbial systems. Such fundamental knowledge is essential for the innovative design and use of PGPR-based biostimulants.
Collapse
Affiliation(s)
- Lerato Nephali
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Paul Steenkamp
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Karl Burgess
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry, and Biotechnology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Johan Huyser
- International Research and Development Division, Omnia Group, Ltd., Johannesburg, South Africa
| | - Margaretha Brand
- International Research and Development Division, Omnia Group, Ltd., Johannesburg, South Africa
| | - Justin J. J. van der Hooft
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
- *Correspondence: Justin J. J. van der Hooft,
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
- International Research and Development Division, Omnia Group, Ltd., Johannesburg, South Africa
- Fidele Tugizimana,
| |
Collapse
|
15
|
van Tilburg AY, Warmer P, van Heel AJ, Sauer U, Kuipers OP. Membrane composition and organization of Bacillus subtilis 168 and its genome-reduced derivative miniBacillus PG10. Microb Biotechnol 2021; 15:1633-1651. [PMID: 34856064 PMCID: PMC9049611 DOI: 10.1111/1751-7915.13978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/13/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022] Open
Abstract
A form of lateral membrane compartmentalization in bacteria is represented by functional membrane microdomains (FMMs). FMMs are important for various cellular processes and offer application possibilities in microbial biotechnology. We designed a lipidomics method to directly measure relative abundances of lipids in detergent‐resistant and detergent‐sensitive membrane fractions of the model bacterium Bacillus subtilis 168 and the biotechnologically attractive miniBacillus PG10 strain. Our study supports previous work suggesting that cardiolipin and prenol lipids are enriched in FMMs of B. subtilis. Additionally, structural analysis of acyl chains of major phospholipids indicated that FMMs display increased order and thickness compared with the surrounding bilayer. Despite the 36% genome reduction, membrane and FMM integrity are largely preserved in miniBacillus PG10, as supported by analysis of membrane fluidity, flotillin distribution and gene expression data. The novel insights in FMM architecture reported here will contribute to further explore the biological significance of FMMs and the means by which FMMs can be exploited as heterologous production platforms. Moreover, our lipidomics method enables comparative FMM lipid profiling between different bacteria.
Collapse
Affiliation(s)
- Amanda Y van Tilburg
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Philipp Warmer
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland.,Life Science Zürich PhD Program on Systems Biology, Zürich, Switzerland
| | - Auke J van Heel
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Laydevant F, Mahabadi M, Llido P, Bourgouin JP, Caron L, Arnold AA, Marcotte I, Warschawski DE. Growth-phase dependence of bacterial membrane lipid profile and labeling for in-cell solid-state NMR applications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1864:183819. [PMID: 34800428 DOI: 10.1016/j.bbamem.2021.183819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Cell labeling is a preliminary step in multiple biophysical approaches, including the solid-state nuclear magnetic resonance (NMR) study of bacteria in vivo. Deuterium solid-state NMR has been used in the past years to probe bacterial membranes and their interactions with antimicrobial peptides, following a standard labeling protocol. Recent results from our laboratory on a slow-growing bacterium has shown the need to optimize this protocol, especially the bacterial growth time before harvest and the concentration of exogenous labeled fatty acids to be used for both Escherichia coli and Bacillus subtilis. It is also essential for the protocol to remain harmless to cells while providing optimal labeling. We have therefore developed a fast and facile approach to monitor the lipid composition of bacterial membranes under various growth conditions, combining solution 31P NMR and GCMS. Using this approach, the optimized labeling conditions of Escherichia coli and Bacillus subtilis with deuterated palmitic acid were determined. Our results show a modification of B. subtilis phospholipid profile as a function of the growth stage, as opposed to E. coli. Our protocol recommends low concentrations of exogenous palmitic acid in the growth medium, and bacteria harvest after the exponential phase.
Collapse
Affiliation(s)
- Florent Laydevant
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada
| | - Mahsa Mahabadi
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada
| | - Pierre Llido
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada
| | - Jean-Philippe Bourgouin
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada
| | - Laurence Caron
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada
| | - Alexandre A Arnold
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.
| | - Dror E Warschawski
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada; Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, École normale supérieure, PSL University, 75005 Paris, France.
| |
Collapse
|
17
|
Cavalini L, Jankoski P, Correa APF, Brandelli A, Motta ASDA. Characterization of the antimicrobial activity produced by Bacillus sp. isolated from wetland sediment. AN ACAD BRAS CIENC 2021; 93:e20201820. [PMID: 34730619 DOI: 10.1590/0001-3765202120201820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Bacteria of the genus Bacillus sp. present the potential for inhibiting various pathogens, making them a promising starting point in the search for new antimicrobial substances. In this study, bacteria were isolated from sediment samples from humid areas of a Natural Conservation Unit in the state of Rio Grande do Sul, Brazil. The isolate Bacillus sp. sed 1.4 was selected for production of antimicrobial activity, and was characterized by MALDI-TOF and 16S rDNA sequencing. Phylogenetic analysis showed that Bacillus sed 1.4 was closely related to Bacillus altitudinis and Bacillus pumilus. The cell-free supernatant was partially purified using ammonium sulfate precipitation, gel filtration chromatography (Sephadex G-200) and an ultrafiltration membrane. Partial purification resulted in specific activity of 769.23 AU/mg, with a molecular mass of approximately 148 kDa. This antimicrobial substance showed stability at 100°C for 5 min, and was inactivated by proteolytic enzymes. An antimicrobial effect against Listeria species was observed. Considering the importance of the Listeria genus in the area of food safety, this antimicrobial activity should be further explored, specifically in the field of dairy products and with a focus on food biopreservation studies.
Collapse
Affiliation(s)
- Luciani Cavalini
- Universidade Federal do Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto das Ciências Básicas da Saúde, Rua Sarmento Leite 500, Sala 216, 90050-170 Porto Alegre, RS, Brazil
| | - Priscila Jankoski
- Universidade Federal do Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto das Ciências Básicas da Saúde, Rua Sarmento Leite 500, Sala 216, 90050-170 Porto Alegre, RS, Brazil
| | - Ana Paula F Correa
- Universidade Federal de Roraima, Programa de Pós-graduação em Recursos Naturais-PRONAT, Av. Ene Garcez, 2413, Bairro Aeroporto, 69304-000 Boa Vista, RR, Brazil
| | - Adriano Brandelli
- Universidade Federal do Rio Grande do Sul, Departamento de Ciência dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Av. Bento Gonçalves, 9500, Campus do Vale, Prédio 43.212, 91501-970 Porto Alegre, RS, Brazil
| | - Amanda S DA Motta
- Universidade Federal do Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto das Ciências Básicas da Saúde, Rua Sarmento Leite 500, Sala 216, 90050-170 Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Hilton KLF, Manwani C, Boles JE, White LJ, Ozturk S, Garrett MD, Hiscock JR. The phospholipid membrane compositions of bacterial cells, cancer cell lines and biological samples from cancer patients. Chem Sci 2021; 12:13273-13282. [PMID: 34777745 PMCID: PMC8529332 DOI: 10.1039/d1sc03597e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
While cancer now impacts the health and well-being of more of the human population than ever before, the exponential rise in antimicrobial resistant (AMR) bacterial infections means AMR is predicted to become one of the greatest future threats to human health. It is therefore vital that novel therapeutic strategies are developed that can be used in the treatment of both cancer and AMR infections. Whether the target of a therapeutic agent be inside the cell or in the cell membrane, it must either interact with or cross this phospholipid barrier to elicit the desired cellular effect. Here we summarise findings from published research into the phospholipid membrane composition of bacterial and cancer cell lines and biological samples from cancer patients. These data not only highlight key differences in the membrane composition of these biological samples, but also the methods used to elucidate and report the results of this analogous research between the microbial and cancer fields.
Collapse
Affiliation(s)
- Kira L F Hilton
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| | - Chandni Manwani
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
- School of Biosciences, University of Kent Canterbury Kent CT2 7NJ UK
| | - Jessica E Boles
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| | - Lisa J White
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| | - Sena Ozturk
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| | | | - Jennifer R Hiscock
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| |
Collapse
|
19
|
Englerová K, Bedlovičová Z, Nemcová R, Király J, Maďar M, Hajdučková V, Styková E, Mucha R, Reiffová K. Bacillus amyloliquefaciens-Derived Lipopeptide Biosurfactants Inhibit Biofilm Formation and Expression of Biofilm-Related Genes of Staphylococcus aureus. Antibiotics (Basel) 2021; 10:1252. [PMID: 34680832 PMCID: PMC8532693 DOI: 10.3390/antibiotics10101252] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/24/2022] Open
Abstract
Biosurfactants (BSs) are surface-active compounds produced by diverse microorganisms, including the genus Bacillus. These bioactive compounds possess biological activities such as antiadhesive, antimicrobial and antibiofilm effects that can lead to important applications in combating many infections. Based on these findings, we decided to investigate the antibiofilm activity of BSs from the marine Bacillus amyloliquefaciens against Staphylococcus aureus CCM 4223. Expression of biofilm-related genes was also evaluated using qRT-PCR. Isolated and partially purified BSs were identified and characterized by molecular tools and by UHPLC-DAD and MALDI-TOF/MS. Bacillus amyloliquefaciens 3/22, that exhibited surfactant activity evaluated by oil spreading assay, was characterized using the 16S rRNA sequencing method. Screening by PCR detected the presence of the sfp, srfAA, fenD and ituD genes, suggesting production of the lipopeptides (LPs) surfactin, fengycin and iturin. The above findings were further supported by the results of UHPLC-DAD and MALDI-TOF/MS. As quantified by the crystal violet method, the LPs significantly (p < 0.001) reduced biofilm formation of S. aureus in a dose-dependent manner and decreased expression of biofilm-related genes fnbA, fnbB, sortaseA and icaADBC operon. Data from our investigation indicate a promising therapeutic application for LPs isolated from B. amyloliquefaciens toward prevention of S. aureus biofilm infections.
Collapse
Affiliation(s)
- Karolína Englerová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (K.E.); (R.N.); (J.K.); (M.M.); (V.H.)
| | - Zdenka Bedlovičová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Radomíra Nemcová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (K.E.); (R.N.); (J.K.); (M.M.); (V.H.)
| | - Ján Király
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (K.E.); (R.N.); (J.K.); (M.M.); (V.H.)
| | - Marián Maďar
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (K.E.); (R.N.); (J.K.); (M.M.); (V.H.)
| | - Vanda Hajdučková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (K.E.); (R.N.); (J.K.); (M.M.); (V.H.)
| | - Eva Styková
- Equine Clinic, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Rastislav Mucha
- Institute of Neurobiology BMC, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovakia;
| | - Katarína Reiffová
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesová 11, 041 54 Košice, Slovakia;
| |
Collapse
|
20
|
Singh P, Xie J, Qi Y, Qin Q, Jin C, Wang B, Fang W. A Thermotolerant Marine Bacillus amyloliquefaciens S185 Producing Iturin A5 for Antifungal Activity against Fusarium oxysporum f. sp. cubense. Mar Drugs 2021; 19:md19090516. [PMID: 34564178 PMCID: PMC8472358 DOI: 10.3390/md19090516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Fusarium wilt of banana (also known as Panama disease), is a severe fungal disease caused by soil-borne Fusarium oxysporum f. sp. cubense (Foc). In recent years, biocontrol strategies using antifungal microorganisms from various niches and their related bioactive compounds have been used to prevent and control Panama disease. Here, a thermotolerant marine strain S185 was identified as Bacillus amyloliquefaciens, displaying strong antifungal activity against Foc. The strain S185 possesses multiple plant growth-promoting (PGP) and biocontrol utility properties, such as producing indole acetic acid (IAA) and ammonia, assimilating various carbon sources, tolerating pH of 4 to 9, temperature of 20 to 50 °C, and salt stress of 1 to 5%. Inoculation of S185 colonized the banana plants effectively and was mainly located in leaf and root tissues. To further investigate the antifungal components, compounds were extracted, fractionated, and purified. One compound, inhibiting Foc with minimum inhibitory concentrations (MICs) of 25 μg/disk, was identified as iturin A5 by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and nuclear magnetic resonance (NMR). The isolated iturin, A5, resulted in severe morphological changes during spore germination and hyphae growth of Foc. These results specify that B. amyloliquefaciens S185 plays a key role in preventing the Foc pathogen by producing the antifungal compound iturin A5, and possesses potential as a cost-effective and sustainable biocontrol strain for Panama disease in the future. This is the first report of isolation of the antifungal compound iturin A5 from thermotolerant marine B. amyloliquefaciens S185.
Collapse
Affiliation(s)
- Pratiksha Singh
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Jin Xie
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Yanhua Qi
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Qijian Qin
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Cheng Jin
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Wang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
- Correspondence: (B.W.); (W.F.)
| | - Wenxia Fang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
- Correspondence: (B.W.); (W.F.)
| |
Collapse
|
21
|
Paraszkiewicz K, Moryl M, Płaza G, Bhagat D, K Satpute S, Bernat P. Surfactants of microbial origin as antibiofilm agents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:401-420. [PMID: 31509014 DOI: 10.1080/09603123.2019.1664729] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The microbial world provides new energy sources and many various 'green' chemicals. One type of chemicals produced by microorganisms is the biosurfactant group. Biosurfactants are universal molecules, exhibiting surface properties often accompanied by desired biological activity. Biosurfactants are considered to be environmentally 'friendly' due to their low toxicity and biodegradable nature. These compounds have unique features and therefore they can find potential applications in many different industries, ranging from biotechnology to environmental remediation technologies. Antibacterial and antifungal activities make them relevant for applications as inhibitory agents against microbial biofilm. This review covers the current knowledge and the recent advances in the field of biosurfactants as antibiofilm agents.
Collapse
Affiliation(s)
- Katarzyna Paraszkiewicz
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Magdalena Moryl
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Grażyna Płaza
- Institute of Production Engineering, Faculty of Organization and Management, Silesian University of Technology, Zabrze, Poland
| | - Diksha Bhagat
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Surekha K Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| |
Collapse
|
22
|
Herschede SR, Gneid H, Dent T, Jaeger EB, Lawson LB, Busschaert N. Bactericidal urea crown ethers target phosphatidylethanolamine membrane lipids. Org Biomol Chem 2021; 19:3838-3843. [PMID: 33949594 DOI: 10.1039/d1ob00263e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An increasing number of people are infected with antibiotic-resistant bacteria each year, sometimes with fatal consequences. In this manuscript, we report a novel urea-functionalized crown ether that can bind to the bacterial lipid phosphatidylethanolamine (PE), facilitate PE flip-flop and displays antibacterial activity against the Gram-positive bacterium Bacillus cereus with a minimum inhibitory concentration comparable to that of the known PE-targeting lantibiotic duramycin.
Collapse
Affiliation(s)
- Sarah R Herschede
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Hassan Gneid
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Taylor Dent
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Ellen B Jaeger
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Louise B Lawson
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Nathalie Busschaert
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| |
Collapse
|
23
|
Etemadzadeh SS, Emtiazi G. In vitro identification of antimicrobial hemolytic lipopeptide from halotolerant Bacillus by Zymogram, FTIR, and GC mass analysis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:666-674. [PMID: 34249269 PMCID: PMC8244604 DOI: 10.22038/ijbms.2021.53419.12022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/13/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The multi-drug resistant bacteria and clinical infections are some of the biggest global concerns, so new drugs are needed. Antimicrobial peptides and lipopeptides are new bioactive agents with great potential that can become a new strategy for clinical applications. MATERIALS AND METHODS Some Bacillus strains were isolated based on hemolytic antimicrobial production from the soil. The extracellular proteins were extracted by acidic precipitation and chloroform/methanol method and analyzed by SDS-PAGE electrophoresis and stained with Sudan black. The black fragment was purified and characterized by FTIR, GC/MS, and HPLC analysis to demonstrate the presence of lipids and proteins. The anti-microbial ability and stability of the purified lipopeptide were assayed by the Kirby-Bauer method. Also, it was examined for metal removal. RESULTS A new Bacillus halotolerans strain SCM 034 with hemolytic antimicrobial production was isolated. According to GC/MS (detecting C16, C17) and HPLC (detecting leucine, glutamic acid, valine, arginine, glycine, and aspartic acid) data, the black fragment was lipopeptide. Polyacrylamide hydrogel containing lipopeptide and gel purified lipopeptide showed anti-microbial activities against S. aureus and S. cerevisiae that were stable for a few months. Also, the lipopeptide was useful for cation removal and decreased cobalt, nickel, and calcium by 10.81 %, 24.39 %, and 34 %, respectively. CONCLUSION Production of antibacterial lipopeptide hemolysin from this strain is reported for the first time and according to the results, lipopeptides have unique properties with biomedical and pharmaceutical applications. Also, polyacrylamide hydrogel lipopeptide is a promising candidate for wound healing.
Collapse
Affiliation(s)
- Shekoofeh Sadat Etemadzadeh
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Giti Emtiazi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
24
|
Muszewska A, Okrasińska A, Steczkiewicz K, Drgas O, Orłowska M, Perlińska-Lenart U, Aleksandrzak-Piekarczyk T, Szatraj K, Zielenkiewicz U, Piłsyk S, Malc E, Mieczkowski P, Kruszewska JS, Bernat P, Pawłowska J. Metabolic Potential, Ecology and Presence of Associated Bacteria Is Reflected in Genomic Diversity of Mucoromycotina. Front Microbiol 2021; 12:636986. [PMID: 33679672 PMCID: PMC7928374 DOI: 10.3389/fmicb.2021.636986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Mucoromycotina are often considered mainly in pathogenic context but their biology remains understudied. We describe the genomes of six Mucoromycotina fungi representing distant saprotrophic lineages within the subphylum (i.e., Umbelopsidales and Mucorales). We selected two Umbelopsis isolates from soil (i.e., U. isabellina, U. vinacea), two soil-derived Mucor isolates (i.e., M. circinatus, M. plumbeus), and two Mucorales representatives with extended proteolytic activity (i.e., Thamnidium elegans and Mucor saturninus). We complement computational genome annotation with experimental characteristics of their digestive capabilities, cell wall carbohydrate composition, and extensive total lipid profiles. These traits inferred from genome composition, e.g., in terms of identified encoded enzymes, are in accordance with experimental results. Finally, we link the presence of associated bacteria with observed characteristics. Thamnidium elegans genome harbors an additional, complete genome of an associated bacterium classified to Paenibacillus sp. This fungus displays multiple altered traits compared to the remaining isolates, regardless of their evolutionary distance. For instance, it has expanded carbon assimilation capabilities, e.g., efficiently degrades carboxylic acids, and has a higher diacylglycerol:triacylglycerol ratio and skewed phospholipid composition which suggests a more rigid cellular membrane. The bacterium can complement the host enzymatic capabilities, alter the fungal metabolism, cell membrane composition but does not change the composition of the cell wall of the fungus. Comparison of early-diverging Umbelopsidales with evolutionary younger Mucorales points at several subtle differences particularly in their carbon source preferences and encoded carbohydrate repertoire. Nevertheless, all tested Mucoromycotina share features including the ability to produce 18:3 gamma-linoleic acid, use TAG as the storage lipid and have fucose as a cell wall component.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Alicja Okrasińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Olga Drgas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Katarzyna Szatraj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Malc
- High Throughput Sequencing Facility of UNC, Chapel Hill, NC, United States
| | - Piotr Mieczkowski
- High Throughput Sequencing Facility of UNC, Chapel Hill, NC, United States
| | - Joanna S. Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Julia Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Nazareth TC, Zanutto CP, Tripathi L, Juma A, Maass D, de Souza AAU, de Arruda Guelli Ulson de Souza SM, Banat IM. The use of low-cost brewery waste product for the production of surfactin as a natural microbial biocide. BIOTECHNOLOGY REPORTS 2020; 28:e00537. [PMID: 33145189 PMCID: PMC7591730 DOI: 10.1016/j.btre.2020.e00537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/29/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022]
Abstract
For the first time Bacillus subtilis was able to grow in a culture medium containing Brewery waste (Trub) and produced surfactin. Surfactin showed bactericidal effect against Pseudomonas aeruginosa. P. aeruginosa biofilm was inhibited (79.8%) when co-incubated with surfactin. Surfactin showed anti-adhesive activity on polystyrene surfaces. P. aeruginosa biofilm was disrupted (44.9%) when treated with surfactin (700 μg/mL).
Surfactin has potential as next generation antibiofilm agent to combat antimicrobial resistance against emerging pathogens. However, the widespread industrial applications of surfactin is hampered by its high production cost. In this work, surfactin was produced from Bacillus subtilis using a low-cost brewery waste as a carbon source. The strain produced 210.11 mg L−1 after 28 h. The antimicrobial activity was observed against all tested strains, achieving complete inhibition for Pseudomonas aeruginosa, at 500 μg mL−1. A growth log reduction of 3.91 was achieved for P. aeruginosa while, Staphylococcus aureus and Staphylococcus epidermidis showed between 1 and 2 log reductions. In the anti-biofilm assays against P. aeruginosa, the co-incubation, anti-adhesive and disruption showed inhibition, where the greatest inhibition was observed in the co-incubation assay (79.80%). This study provides evidence that surfactin produced from a low-cost substrate can be a promising biocide due to its antimicrobial and anti-biofilm abilities against pathogens.
Collapse
|
26
|
Toushik SH, Mizan MFR, Hossain MI, Ha SD. Fighting with old foes: The pledge of microbe-derived biological agents to defeat mono- and mixed-bacterial biofilms concerning food industries. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Bernat P, Nesme J, Paraszkiewicz K, Schloter M, Płaza G. Characterization of Extracellular Biosurfactants Expressed by a Pseudomonas putida Strain Isolated from the Interior of Healthy Roots from Sida hermaphrodita Grown in a Heavy Metal Contaminated Soil. Curr Microbiol 2019; 76:1320-1329. [PMID: 31432210 DOI: 10.1007/s00284-019-01757-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/11/2019] [Accepted: 08/09/2019] [Indexed: 10/26/2022]
Abstract
Pseudomonas putida E41 isolated from root interior of Sida hermaphrodita (grown on a field contaminated with heavy metals) showed high biosurfactant activity. In this paper, we describe data from mass spectrometry and genome analysis, to improve our understanding on the phenotypic properties of the strain. Supernatant derived from P. putida E41 liquid culture exhibited a strong decrease in the surface tension accompanied by the ability for emulsion stabilization. We identified extracellular lipopeptides, putisolvin I and II expression but did not detect rhamnolipids. Their presence was confirmed by matrix-assisted laser desorption and ionization (MALDI) TOF/TOF technique. Moreover, ten phospholipids (mainly phosphatidylethanolamines PE 33:1 and PE 32:1) which were excreted by vesicles were also detected. In contrast the bacterial cell pellet was dominated by phosphatidylglycerols (PGs), which were almost absent in the supernatant. It seems that the composition of extracellular (secreted to the environment) and cellular lipids in this strain differs. Long-read sequencing and complete genome reconstruction allowed the identification of a complete putisolvin biosynthesis pathway. In the genome of P. putida E41 were also found all genes involved in glycerophospholipid biosynthesis, and they are likely responsible for the production of detected phospholipids. Overall this is the first report describing the expression of extracellular lipopeptides (identified as putisolvins) and phospholipids by a P. putida strain, which might be explained by the need to adapt to the highly contaminated environment.
Collapse
Affiliation(s)
- Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16 street, 90-237, Łódź, Poland
| | - Joseph Nesme
- Comparative Microbiome Analysis, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Katarzyna Paraszkiewicz
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16 street, 90-237, Łódź, Poland
| | - Michael Schloter
- Comparative Microbiome Analysis, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Grażyna Płaza
- Institute for Ecology of Industrial Areas, Unit of Environmental Microbiology, Kossutha 6, 40-844, Katowice, Poland.
| |
Collapse
|
28
|
Cortés-Sánchez ADJ. Legionella, water and biotechnology. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Legionella spp. are microorganisms that are generally found in the aquatic environment (rivers, streams, lakes, among others). The importance in public health is in the fact that this bacterium is capable of multiplying and propagating in artificial aquatic systems (piping systems, storage tanks, fountains, and cooling towers), giving rise to diseases in humans called legionellosis, transmitted by inhalation of contaminated water droplets or aerosols and whose complications can lead to the death of the patient. Legionellosis is of worldwide distribution, Legionella pneumophila being the most commonly involved species in outbreaks and reported cases. The people most at risk are the elderly, people with weakened immune systems, and people with a history of smoking. Around the world, regulatory agencies and health organizations have issued and established recommendations with the purpose of controlling and preventing the risk of contracting this disease, which include the sanitation of water supplies, maintenance through regular cleaning and disinfection of facilities and devices for reducing the presence of this pathogen. The main objective of this review is to present in a general manner, aspects related to the disease known as legionellosis, its casual agents, habitat, transmission form, and phenotypic and metabolic characteristics. Likewise, the methods of control and prevention of these pathogens are presented, including a potential biotechnological alternative that can contribute to actions in favour of the protection of public health through the use of compounds with surface activity called biosurfactants.
Collapse
|
29
|
Dang Y, Zhao F, Liu X, Fan X, Huang R, Gao W, Wang S, Yang C. Enhanced production of antifungal lipopeptide iturin A by Bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization. Microb Cell Fact 2019; 18:68. [PMID: 30971238 PMCID: PMC6457013 DOI: 10.1186/s12934-019-1121-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/05/2019] [Indexed: 01/24/2023] Open
Abstract
Background Iturins, which belong to antibiotic cyclic lipopeptides mainly produced by Bacillus sp., have the potential for application in biomedicine and biocontrol because of their hemolytic and antifungal properties. Bacillus amyloliquefaciens LL3, isolated previously by our lab, possesses a complete iturin A biosynthetic pathway as shown by genomic analysis. Nevertheless, iturin A could not be synthesized by strain LL3, possibly resulting from low transcription level of the itu operon. Results In this work, enhanced transcription of the iturin A biosynthetic genes was implemented by inserting a strong constitutive promoter C2up into upstream of the itu operon, leading to the production of iturin A with a titer of 37.35 mg l−1. Liquid chromatography-mass spectrometry analyses demonstrated that the strain produced four iturin A homologs with molecular ion peaks at m/z 1044, 1058, 1072 and 1086 corresponding to [C14 + 2H]2+, [C15 + 2H]2+, [C16 + 2H]2+ and [C17 + 2H]2+. The iturin A extract exhibited strong inhibitory activity against several common plant pathogens. The yield of iturin A was improved to 99.73 mg l−1 by the optimization of the fermentation conditions using a response surface methodology. Furthermore, the yield of iturin A was increased to 113.1 mg l−1 by overexpression of a pleiotropic regulator DegQ. Conclusions To our knowledge, this is the first report on simultaneous production of four iturin A homologs (C14–C17) by a Bacillus strain. In addition, this study suggests that metabolic engineering in combination with culture conditions optimization may be a feasible method for enhanced production of bacterial secondary metabolites. Electronic supplementary material The online version of this article (10.1186/s12934-019-1121-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yulei Dang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Fengjie Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiangsheng Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xu Fan
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Rui Huang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Weixia Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
30
|
Lipidomic signature of Bacillus licheniformis I89 during the different growth phases unravelled by high-resolution liquid chromatography-mass spectrometry. Arch Biochem Biophys 2019; 663:83-94. [DOI: 10.1016/j.abb.2018.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/04/2018] [Accepted: 12/21/2018] [Indexed: 11/19/2022]
|
31
|
Pramudito TE, Agustina D, Nguyen TKN, Suwanto A. A Novel Variant of Narrow-Spectrum Antifungal Bacterial Lipopeptides That Strongly Inhibit Ganoderma boninense. Probiotics Antimicrob Proteins 2018; 10:110-117. [PMID: 29101528 DOI: 10.1007/s12602-017-9334-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial antifungal cyclic lipopeptides (ACLs) have become a promising alternative to synthetic fungicide to control pathogenic fungi. Bacillus sp. is known to produce three families of ACL, namely iturin, surfactin, and fengycin. In this paper, we characterized the ACLs produced by B. methylotrophicus HC51 (referred as HC51) mainly regarding its composition and effectivity against fungal plant pathogen. HC51 culture was tested against various pathogenic fungi and the ACLs were extracted and analyzed using liquid chromatography-electrospray ionization mass spectrometry. HC51 showed strong antifungal activity against the plant pathogens Ganoderma sp. and Fusarium sp. Cell-free methanol extract of HC51 contains iturin A and various variants of fengycin. C16 fengycin A was present in four fractions which indicates it as a major component of ACL from HC51. Five variants of fengycin were detected, four of which had been previously reported. We found a novel C17 fengycin F that is characterized by a substitution of L-ornithine into lysine. Considering that L-ornithine is an important building block of fengycin, this substitution suggests the possibility of an alternative pathway for fengycin biosynthesis.
Collapse
Affiliation(s)
- Theodorus Eko Pramudito
- Biotechnology Research and Development, PT Wilmar Benih Indonesia, Bekasi, Jawa Barat, 17530, Indonesia
| | - Delia Agustina
- Biotechnology Research and Development, PT Wilmar Benih Indonesia, Bekasi, Jawa Barat, 17530, Indonesia
| | | | - Antonius Suwanto
- Biotechnology Research and Development, PT Wilmar Benih Indonesia, Bekasi, Jawa Barat, 17530, Indonesia.
| |
Collapse
|
32
|
Masum MMI, Liu L, Yang M, Hossain MM, Siddiqa MM, Supty ME, Ogunyemi SO, Hossain A, An Q, Li B. Halotolerant bacteria belonging to operational group Bacillus amyloliquefaciens in biocontrol of the rice brown stripe pathogen Acidovorax oryzae. J Appl Microbiol 2018; 125:1852-1867. [PMID: 30146698 DOI: 10.1111/jam.14088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/03/2018] [Accepted: 08/22/2018] [Indexed: 12/21/2022]
Abstract
AIMS The aim of this study was to evaluate the antagonistic activity of halotolerant bacteria against rice brown stripe pathogen Acidovorax oryzae. METHODS AND RESULTS Fifteen of 136 isolates of halotolerant bacteria exhibited strong in vitro and in vivo antagonistic activity against both strains of A. oryzae. The 15 antagonistic isolates were identified as 'operational group Bacillus amyloliquefaciens' based on physiological and biochemical features, fatty acid profiles as well as sequence analysis of 16S rRNA, gyrA and rpoB genes. Furthermore, this result indicated that the most effective antagonistic isolates K5-3 and PPB6 could produce siderophore in iron-limiting medium, and four kinds of secondary metabolites based on MALDI-TOF analysis. In addition, the culture filtrates of isolates K5-3 and PPB6 caused the damage of cell membrane evidenced by the TEM images, and resulted in 73-80% reduction in cell numbers, 55-65% reduction in biofilm formation, and 42-50% reduction in swimming ability of both strains of A. oryzae. CONCLUSIONS These isolates in particular K5-3 and PPB6 of halotolerant bacteria markedly inhibited the growth of A. oryzae. SIGNIFICANCE AND IMPACT OF THE STUDY To our knowledge, this is the first report on biological control of halotolerant bacteria against bacterial brown stripe of rice.
Collapse
Affiliation(s)
- M M I Masum
- State Key laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - L Liu
- State Key laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - M Yang
- State Key laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - M M Hossain
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M M Siddiqa
- Department of Botany, Jagannath University, Dhaka, Bangladesh
| | - M E Supty
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - S O Ogunyemi
- State Key laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - A Hossain
- State Key laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Q An
- State Key laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - B Li
- State Key laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Joanna C, Marcin L, Ewa K, Grażyna P. A nonspecific synergistic effect of biogenic silver nanoparticles and biosurfactant towards environmental bacteria and fungi. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:352-359. [PMID: 29411207 PMCID: PMC5859040 DOI: 10.1007/s10646-018-1899-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/12/2018] [Indexed: 05/31/2023]
Abstract
The present study focused on the evaluation of a nonspecific synergistic effect of biogenic silver nanoparticles (AgNPs) in combination with biosurfactants against environmental bacteria and fungi. The AgNPs were synthesized in the culture supernatants of the biosurfactant producer Bacillus subtilis grown in brewery effluent, molasses or Luria-Bertani media. Antibacterial activities were tested against Gram-positive and Gram-negative bacteria, while the antifungal activity was tested against phytopathogens. The interactions between biogenic AgNPs and DNA were investigated using a cryo-TEM technique. The presence of biosurfactant significantly increased the stability of biogenic AgNPs and enhanced their antimicrobial activities. The physical properties and antimicrobial activity of biogenic AgNPs were compared with chemically synthesized Ag nanoparticles. Biogenic silver nanoparticles showed a broad spectrum of activity against bacteria and fungi. They were most active against phytopathogenic fungi and Gram-positive bacteria and less active against Gram-negative bacteria. The nonspecific synergistic effect of biogenic AgNPs and biosurfactant on the phytopathogenic fungi was especially observed. In this report, the new roles of biosurfactants as a biogenic AgNPs stabilizer and enhancer of their antimicrobial properties are presented. Our results revealed that the biologically synthesized AgNPs by the biosurfactant-producing bacterium Bacillus subtilis grown on agro-industrial wastes, such as molasses and brewery effluent, could be used as a promising new nanoagent against microbes.
Collapse
Affiliation(s)
- Chojniak Joanna
- Institute for Ecology of Industrial Areas, Environmental Microbiology Unit, 40-844, Katowice, Kossutha 6, Poland
| | - Libera Marcin
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, Katowice, 40-006, Poland
| | - Król Ewa
- Department of Phytopathology and Mycology, University of Life Sciences, 20-069, Lublin, Poland
| | - Płaza Grażyna
- Institute for Ecology of Industrial Areas, Environmental Microbiology Unit, 40-844, Katowice, Kossutha 6, Poland.
| |
Collapse
|
34
|
Paraszkiewicz K, Bernat P, Kuśmierska A, Chojniak J, Płaza G. Structural identification of lipopeptide biosurfactants produced by Bacillus subtilis strains grown on the media obtained from renewable natural resources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 209:65-70. [PMID: 29275286 DOI: 10.1016/j.jenvman.2017.12.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 05/27/2023]
Abstract
The aim of the study was to identify and characterize lipopeptide (LP) biosurfactants produced by two Bacillus subtilis strains (KP7 and I'-1a) grown on various media prepared from renewable natural resources: two different brewery wastewaters (BW#4 and BW#6), 2% beet molasses (M), apple peels extract (APE) supplemented with 0.25% of yeast extract (YE) or 0.25% peptone (P), and similarly supplemented carrot peels extract (CPE). In all used media both strains retained their individual LP production signature characterized by surfactin and iturin overproduction exhibited by KP7 and I'-1a strain, respectively. The production level and the structural diversity of synthesized LPs were dependent on the medium composition. In the CPE+YE medium it was higher than the yield obtained in Luria-Bertani (140.6 and 100.3 mg L-1, respectively). Surfactins were produced by both strains as a mixture of four homologues (C13-C16) with the domination of variant C14. All other broths prepared from renewable resources strongly stimulated the iturin production by I'-1a strain with the exception of BW media. The highest iturin concentration (428.7 mg L-1) obtained in the CPE+P culture of I'-1a strain was about seven-fold higher than in LB. In all cultures only iturin A was identified. Among four iturin homologues (C13-16) produced by I'-1a strain, the highest relative contents of C16 variant (70-80%) were calculated for samples obtained from APE+P and CPE+P media. The obtained data indicate that the waste composition has an influence on both the types and amounts of biosurfactants produced by studied B. subtilis strains.
Collapse
Affiliation(s)
- Katarzyna Paraszkiewicz
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Łódz, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Łódz, Poland
| | - Anna Kuśmierska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Łódz, Poland
| | - Joanna Chojniak
- Institute for Ecology of Industrial Areas, Environmental Microbiology Unit, Kossutha Street 6, 40-844, Katowice, Poland
| | - Grażyna Płaza
- Institute for Ecology of Industrial Areas, Environmental Microbiology Unit, Kossutha Street 6, 40-844, Katowice, Poland.
| |
Collapse
|
35
|
Cordeiro RDA, Weslley Caracas Cedro E, Raquel Colares Andrade A, Serpa R, José de Jesus Evangelista A, Sales de Oliveira J, Santos Pereira V, Pereira Alencar L, Bruna Leite Mendes P, Cibelle Soares Farias B, Maria Maciel Melo V, Pires de Camargo Z, de Souza Collares Maia Castelo-Branco D, Sâmia Nogueira Brilhante R, Júlio Costa Sidrim J, Fábio Gadelha Rocha M. Inhibitory effect of a lipopeptide biosurfactant produced by Bacillus subtilis on planktonic and sessile cells of Trichosporon spp. BIOFOULING 2018; 34:309-319. [PMID: 29560729 DOI: 10.1080/08927014.2018.1437617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
The present study aimed to investigate the inhibitory effect of a bacterial biosurfactant (TIM96) on clinical strains of Trichosporon. Additionally, the effect of TIM96 on the ergosterol content, cell membrane integrity, and the hydrophobicity of planktonic cells was assessed. The inhibitory activity of TIM96 against Trichosporon biofilms was evaluated by analyzing metabolic activity, biomass and morphology. MIC values ranged from 78.125 to 312.5 μg ml-1 for TIM96; time-kill curves revealed that the decline in the number of fungal cells started after incubation for 6 h with TIM96 at both MIC and 2×MIC. The biosurfactant reduced the cellular ergosterol content and altered the membrane permeability and the surface hydrophobicity of planktonic cells. Incubation at 10×MIC TIM96 reduced cell adhesion by up to 96.89%, thus interfering with biofilm formation. This concentration also caused up to a 99.2% reduction in the metabolic activity of mature biofilms. The results indicate potential perspectives for the development of new antifungal strategies.
Collapse
Affiliation(s)
| | | | | | - Rosana Serpa
- b Department of Pathology and Legal Medicine , Federal University of Santa Catarina , Fortaleza , Brazil
| | | | | | | | - Lucas Pereira Alencar
- a Department of Pathology and Legal Medicine , Federal University of Ceará , Fortaleza , Brazil
| | | | | | - Vânia Maria Maciel Melo
- c Laboratory of Microbial Ecology and Biotechnology , Federal University of Ceará , Fortaleza , Brazil
| | - Zoilo Pires de Camargo
- d Department of Microbiology, Immunology and Parasitology , Federal University of São Paulo , São Paulo , Brazil
| | | | - Raimunda Sâmia Nogueira Brilhante
- a Department of Pathology and Legal Medicine , Federal University of Ceará , Fortaleza , Brazil
- b Department of Pathology and Legal Medicine , Federal University of Santa Catarina , Fortaleza , Brazil
| | - José Júlio Costa Sidrim
- a Department of Pathology and Legal Medicine , Federal University of Ceará , Fortaleza , Brazil
| | - Marcos Fábio Gadelha Rocha
- a Department of Pathology and Legal Medicine , Federal University of Ceará , Fortaleza , Brazil
- e School of Veterinary , State University of Ceará , Fortaleza , Brazil
| |
Collapse
|
36
|
CALCIUM AND MAGNESIUM CATIONS INFLUENCE ON ANTIMICROBIAL AND ANTIADHESIVE ACTIVITY OF ACINETOBACTER CALCOACETICUS ІMV B-7241 SURFACTANTS. BIOTECHNOLOGIA ACTA 2016. [DOI: 10.15407/biotech9.06.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|