1
|
Jamali F, Mousavi S, Homayouni-Rad A, Meshkini A, Alikhah H, Houshyar J, Kamalledin Moghadam S, Yaghoubi SM, Motlagh Asghari K, Torbati Ilkhchi M, Naseri Alavi SA. Exploring Innovative Approaches for Managing Spinal Cord Injury: A Comprehensive Review of Promising Probiotics and Postbiotics. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10513-6. [PMID: 40232596 DOI: 10.1007/s12602-025-10513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 04/16/2025]
Abstract
Spinal cord injury (SCI) affects millions of people worldwide annually, presenting significant challenges in functional recovery despite therapeutic advancements. Current treatment strategies predominantly focus on stabilizing the spinal cord and facilitating neural repair, yet their effectiveness remains uncertain and controversial. Recent scientific investigations have explored the potential of probiotics and postbiotics to modulate inflammation, influence neurotransmitters, and aid in tissue repair, marking a potential paradigm shift in SCI management. This review critically evaluates these innovative approaches, emphasizing their ability to harness the natural properties of microorganisms within the body to potentially enhance outcomes in SCI treatment. By analyzing the latest research findings, this review provides valuable insights into how probiotics and postbiotics can revolutionize inflammation management and neurological recovery following SCI, underscoring their promising role in future therapeutic strategies aimed at improving the quality of life of SCI patients globally.
Collapse
Affiliation(s)
- Fereshteh Jamali
- Neurosurgery Department, Children'S Hospital at Montefiore, New York City, USA
| | - Safa Mousavi
- Department of Public Health, College of Health and Human Services, California State University, Fresno, CA, USA
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Meshkini
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Jalil Houshyar
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Kamalledin Moghadam
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Kimia Motlagh Asghari
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
2
|
Shiwal A, Nibrad D, Tadas M, Katariya R, Kale M, Wankhede N, Kotagale N, Umekar M, Taksande B. Polyamines signalling pathway: A key player in unveiling the molecular mechanisms underlying Huntington's disease. Neuroscience 2025; 570:213-224. [PMID: 39986431 DOI: 10.1016/j.neuroscience.2025.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Polyaminesare essential organic cations found in all eukaryotic cells and play an important role in many cellular processes including growth, differentiation, andneuroprotection. This review explores the complex relationship between polyamine signaling and Huntington's disease (HD), an autosomal-dominant neurodegenerative disorder characterized by the progressive degeneration of medium-spiny neurons in the striatum and cortex due to mutations in the huntingtin gene. We provide a comprehensive overview of how polyamines, specificallyputrescine,spermidine, andspermine, regulate important cellular functions such as gene expression, protein synthesis, membrane stability, and ion channel regulation with implications for HD. Dysfunction in polyamine metabolism in HD, reveals how changes in these molecules promote oxidative stress, mitochondrial dysfunction, andexcitotoxicity. Importantly, polyamines interact with mutanthuntingtin protein (mHTT) to affect its aggregationand neurotoxicity. This effect may contribute to the pathophysiological mechanisms underlying HD, suggesting that polyamines may act as potential biomarkers of disease progression. Additionally, we discuss the therapeutic implications of targeting the polyamine signaling pathway to alleviate HD symptoms. By enhancing autophagy and modulating neurotransmitter systems, polyamines mayprovideneuroprotectionagainstmHTT-inducedtoxicity. Moreover, the present review provides new insight into the role of polyamines in the pathogenesis of HDand suggests that regulation of polyamine metabolism may represent a promising therapy to slow the disease progression. Besides this, the review highlights the need for further investigation of the diverse roles of polyamines in neurodegenerative diseases, including HD, paving the way for novel interventions to improve cellular homeostasis andpatient outcomes.
Collapse
Affiliation(s)
- Amit Shiwal
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Dhanshree Nibrad
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Manasi Tadas
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Nitu Wankhede
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, MS 444 604, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India.
| |
Collapse
|
3
|
Leonarski F, Henning-Knechtel A, Kirmizialtin S, Ennifar E, Auffinger P. Principles of ion binding to RNA inferred from the analysis of a 1.55 Å resolution bacterial ribosome structure - Part I: Mg2. Nucleic Acids Res 2025; 53:gkae1148. [PMID: 39791453 PMCID: PMC11724316 DOI: 10.1093/nar/gkae1148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 11/01/2024] [Indexed: 01/12/2025] Open
Abstract
The importance of Mg2+ ions for RNA structure and function cannot be overstated. Several attempts were made to establish a comprehensive Mg2+ binding site classification. However, such descriptions were hampered by poorly modelled ion binding sites as observed in a recent cryo-EM 1.55 Å Escherichia coli ribosome structure where incomplete ion assignments blurred our understanding of their binding patterns. We revisited this model to establish general binding principles applicable to any RNA of sufficient resolution. These principles rely on the 2.9 Å distance separating two water molecules bound in cis to Mg2+. By applying these rules, we could assign all Mg2+ ions bound with 2-4 non-water oxygens. We also uncovered unanticipated motifs where up to five adjacent nucleotides wrap around a single ion. The formation of such motifs involves a hierarchical Mg2+ ion dehydration process that plays a significant role in ribosome biogenesis and in the folding of large RNAs. Besides, we established a classification of the Mg2+…Mg2+ and Mg2+…K+ ion pairs observed in this ribosome. Overall, the uncovered binding principles enhance our understanding of the roles of ions in RNA structure and will help refining the solvation shell of other RNA systems.
Collapse
Affiliation(s)
- Filip Leonarski
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI 5232, Switzerland
| | - Anja Henning-Knechtel
- Chemistry Program, Science Division, New York University Abu Dhabi, Saadiyat Island, 129188 Abu Dhabi, United Arab Emirates
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University Abu Dhabi, Saadiyat Island, 129188 Abu Dhabi, United Arab Emirates
- Department of Chemistry, New York University, USA
| | - Eric Ennifar
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 Allée Konrad Roentgen, 67084 Strasbourg, France
| | - Pascal Auffinger
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 Allée Konrad Roentgen, 67084 Strasbourg, France
| |
Collapse
|
4
|
Wang D, Meng L, Zhang H, Liu R, Zhu Y, Tan X, Wu Y, Gao Q, Ren X, Kong Q. Exogenous L-Arginine Enhances Pathogenicity of Alternaria alternata on Kiwifruit by Regulating Metabolisms of Nitric Oxide, Polyamines, Reactive Oxygen Species (ROS), and Cell Wall Modification. J Fungi (Basel) 2024; 10:801. [PMID: 39590720 PMCID: PMC11595605 DOI: 10.3390/jof10110801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Black spot, one of the major diseases of kiwifruit, is caused by Alternaria alternata. A comprehensive investigation into its pathogenicity mechanism is imperative in order to propose a targeted and effective control strategy. The effect of L-arginine on the pathogenicity of A. alternata and the underlying mechanisms were investigated. The results showed that treatment with 5 mM L-1 of L-arginine promoted spore germination and increased the colony diameter and lesion diameter of A. alternata in vivo and in vitro, which were 23.1% and 9.3% higher than that of the control, respectively. Exogenous L-arginine treatment also induced endogenous L-arginine and nitric oxide (NO) accumulation by activating nitric oxide synthase (NOS), arginine decarboxylase (ADC) and ornithine decarboxylase (ODC). In addition, exogenous L-arginine triggered an increase in reactive oxygen species (ROS) levels by activating the activity and inducing gene expression upregulation of NADPH oxidase. The hydrogen peroxide (H2O2) and superoxide anion (O2.-) levels were 15.9% and 2.2 times higher, respectively, than in the control group on the second day of L-arginine treatment. Meanwhile, antioxidant enzyme activities and gene expression levels were enhanced, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione reductase (GR). In addition, exogenous L-arginine stimulated cell wall-degrading enzymes in vivo and in vitro by activating gene expression. These results suggested that exogenous L-arginine promoted the pathogenicity of A. alternata by inducing the accumulation of polyamines, NO, and ROS, and by activating systems of antioxidants and cell wall-degrading enzymes. The present study not only revealed the mechanism by which low concentrations of L-arginine increase the pathogenicity of A. alternata, but also provided a theoretical basis for the exclusive and precise targeting of A. alternata in kiwifruit.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xueyan Ren
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.)
| | - Qingjun Kong
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.)
| |
Collapse
|
5
|
Chang YC, Lee PH, Hsu CL, Wang WD, Chang YL, Chuang HW. Decoding the Impact of a Bacterial Strain of Micrococcus luteus on Arabidopsis Growth and Stress Tolerance. Microorganisms 2024; 12:2283. [PMID: 39597672 PMCID: PMC11596720 DOI: 10.3390/microorganisms12112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Microbes produce various bioactive metabolites that can influence plant growth and stress tolerance. In this study, a plant growth-promoting rhizobacterium (PGPR), strain S14, was identified as Micrococcus luteus (designated as MlS14) using de novo whole-genome assembly. The MlS14 genome revealed major gene clusters for the synthesis of indole-3-acetic acid (IAA), terpenoids, and carotenoids. MlS14 produced significant amounts of IAA, and its volatile organic compounds (VOCs), specifically terpenoids, exhibited antifungal activity, suppressing the growth of pathogenic fungi. The presence of yellow pigment in the bacterial colony indicated carotenoid production. Treatment with MlS14 activated the expression of β-glucuronidase (GUS) driven by a promoter containing auxin-responsive elements. The application of MlS14 reshaped the root architecture of Arabidopsis seedlings, causing shorter primary roots, increased lateral root growth, and longer, denser root hairs; these characteristics are typically controlled by elevated exogenous IAA levels. MlS14 positively regulated seedling growth by enhancing photosynthesis, activating antioxidant enzymes, and promoting the production of secondary metabolites with reactive oxygen species (ROS) scavenging activity. Pretreatment with MlS14 reduced H2O2 and malondialdehyde (MDA) levels in seedlings under drought and heat stress, resulting in greater fresh weight during the post-stress period. Additionally, exposure to MlS14 stabilized chlorophyll content and growth rate in seedlings under salt stress. MlS14 transcriptionally upregulated genes involved in antioxidant defense and photosynthesis. Furthermore, genes linked to various hormone signaling pathways, such as abscisic acid (ABA), auxin, jasmonic acid (JA), and salicylic acid (SA), displayed increased expression levels, with those involved in ABA synthesis, using carotenoids as precursors, being the most highly induced. Furthermore, MlS14 treatment increased the expression of several transcription factors associated with stress responses, with DREB2A showing the highest level of induction. In conclusion, MlS14 played significant roles in promoting plant growth and stress tolerance. Metabolites such as IAA and carotenoids may function as positive regulators of plant metabolism and hormone signaling pathways essential for growth and adaptation to abiotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Huey-wen Chuang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan; (Y.-C.C.); (P.-H.L.); (C.-L.H.); (W.-D.W.); (Y.-L.C.)
| |
Collapse
|
6
|
McCarlie S, Bragg RR. Impact of the Stress Response on Quaternary Ammonium Compound Disinfectant Susceptibility in Serratia Species. Microorganisms 2024; 12:2240. [PMID: 39597629 PMCID: PMC11596051 DOI: 10.3390/microorganisms12112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
The well-known problem of antibiotic resistance foreshadows a similar threat posed by microbial resistance to biocides such as disinfectants and antiseptics. These products are vital for infection control, yet their overuse during the COVID-19 pandemic has accelerated the development of resistant microorganisms. This study investigates the molecular mechanisms underlying disinfectant resistance in Serratia sp. HRI. The transcriptomic responses of Serratia sp. HRI were used to identify significant gene expression changes during exposure to QACs and revealed increased methionine transport and polyamine synthesis. Polyamines, crucial in cellular stress responses, were notably upregulated, suggesting a pivotal role of the stress response in disinfectant resistance. Further, our susceptibility tests revealed a marked decrease in susceptibility to QACs under various stress conditions, supporting the hypothesis that stress responses, mediated by polyamines, decrease susceptibility to QACs. This research highlights polyamines as key players in disinfectant resistance, offering novel insights into resistance mechanisms and antimicrobial susceptibility. Our findings emphasise the need for continued investigation into disinfectant resistance and the role of stress responses, particularly polyamine-mediated mechanisms, to direct strategies for preserving disinfectant efficacy and developing future antimicrobial agents.
Collapse
Affiliation(s)
| | - Robert R. Bragg
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9301, South Africa;
| |
Collapse
|
7
|
Graf LG, Moreno-Yruela C, Qin C, Schulze S, Palm GJ, Schmöker O, Wang N, Hocking DM, Jebeli L, Girbardt B, Berndt L, Dörre B, Weis DM, Janetzky M, Albrecht D, Zühlke D, Sievers S, Strugnell RA, Olsen CA, Hofmann K, Lammers M. Distribution and diversity of classical deacylases in bacteria. Nat Commun 2024; 15:9496. [PMID: 39489725 PMCID: PMC11532494 DOI: 10.1038/s41467-024-53903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Classical Zn2+-dependent deac(et)ylases play fundamental regulatory roles in life and are well characterized in eukaryotes regarding their structures, substrates and physiological roles. In bacteria, however, classical deacylases are less well understood. We construct a Generalized Profile (GP) and identify thousands of uncharacterized classical deacylases in bacteria, which are grouped into five clusters. Systematic structural and functional characterization of representative enzymes from each cluster reveal high functional diversity, including polyamine deacylases and protein deacylases with various acyl-chain type preferences. These data are supported by multiple crystal structures of enzymes from different clusters. Through this extensive analysis, we define the structural requirements of substrate selectivity, and discovered bacterial de-D-/L-lactylases and long-chain deacylases. Importantly, bacterial deacylases are inhibited by archetypal HDAC inhibitors, as supported by co-crystal structures with the inhibitors SAHA and TSA, and setting the ground for drug repurposing strategies to fight bacterial infections. Thus, we provide a systematic structure-function analysis of classical deacylases in bacteria and reveal the basis of substrate specificity, acyl-chain preference and inhibition.
Collapse
Affiliation(s)
- Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences (SB), EPFL, Lausanne, Switzerland
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Gottfried J Palm
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Ole Schmöker
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Nancy Wang
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Dianna M Hocking
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Leila Jebeli
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Britta Girbardt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Leona Berndt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Babett Dörre
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Daniel M Weis
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Markus Janetzky
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dirk Albrecht
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Richard A Strugnell
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
8
|
Wu Z, Chen T, Sun W, Chen Y, Ying H. Optimizing Escherichia coli strains and fermentation processes for enhanced L-lysine production: a review. Front Microbiol 2024; 15:1485624. [PMID: 39430105 PMCID: PMC11486702 DOI: 10.3389/fmicb.2024.1485624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
lysine is an essential amino acid with significant importance, widely used in the food, feed, and pharmaceutical industries. To meet the increasing demand, microbial fermentation has emerged as an effective and sustainable method for L-lysine production. Escherichia coli has become one of the primary microorganisms for industrial L-lysine production due to its rapid growth, ease of genetic manipulation, and high production efficiency. This paper reviews the recent advances in E. coli strain engineering and fermentation process optimization for L-lysine production. Additionally, it discusses potential technological breakthroughs and challenges in E. coli-based L-lysine production, offering directions for future research to support industrial-scale production.
Collapse
Affiliation(s)
- Zijuan Wu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Tianpeng Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenjun Sun
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hanjie Ying
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Soochow University, Suzhou, China
| |
Collapse
|
9
|
Mani A, Haddad F, Barreda DR, Salinas I. The telencephalon is a neuronal substrate for systemic inflammatory responses in teleosts via polyamine metabolism. Proc Natl Acad Sci U S A 2024; 121:e2404781121. [PMID: 39284055 PMCID: PMC11441480 DOI: 10.1073/pnas.2404781121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/12/2024] [Indexed: 10/02/2024] Open
Abstract
Systemic inflammation elicits sickness behaviors and fever by engaging a complex neuronal circuitry that begins in the preoptic area of the hypothalamus. Ectotherms such as teleost fish display sickness behaviors in response to infection or inflammation, seeking warmer temperatures to enhance survival via behavioral fever responses. To date, the hypothalamus is the only brain region implicated in sickness behaviors and behavioral fever in teleosts. Yet, the complexity of neurobehavioral manifestations underlying sickness responses in teleosts suggests engagement of higher processing areas of the brain. Using in vivo models of systemic inflammation in rainbow trout, we find canonical pyrogenic cytokine responses in the hypothalamus whereas in the telencephalon and the optic tectum il-1b and tnfa expression is decoupled from il-6 expression. Polyamine metabolism changes, characterized by accumulation of putrescine and decreases in spermine and spermidine, are recorded in the telencephalon but not hypothalamus upon systemic injection of bacteria. While systemic inflammation causes canonical behavioral fever in trout, blockade of bacterial polyamine metabolism prior to injection abrogates behavioral fever, polyamine responses, and telencephalic but not hypothalamic cytokine responses. Combined, our work identifies the telencephalon as a neuronal substrate for brain responses to systemic inflammation in teleosts and uncovers the role of polyamines as critical chemical mediators in sickness behaviors.
Collapse
Affiliation(s)
- Amir Mani
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM87131
| | - Farah Haddad
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM87131
| |
Collapse
|
10
|
Bhagwat AC, Saroj SD. Polyamine as a microenvironment factor in resistance to antibiotics. Crit Rev Microbiol 2024; 50:504-513. [PMID: 37339480 DOI: 10.1080/1040841x.2023.2223277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
One of the main issues in modern medicine is the decrease in the efficacy of antibiotic therapy against resistant microorganisms. The advent of antimicrobial resistance has added significantly to the impact of infectious diseases, in number of infections, as well as added healthcare costs. The development of antibiotic tolerance and resistance is influenced by a variety of environmental variables, and it is important to identify these environmental factors as part of any strategy for combating antibiotic resistance. The review aims to emphasize that biogenic polyamines are one of such environmental cues that impacts the antibiotic resistance in bacteria. The biogenic polyamines can help bacteria acquire resistance to antibiotics either by regulating the level of number of porin channels in the outer membrane, by modifying the outer membrane liposaccharides or by protecting macromolecule from antibiotic stress. Thus, understanding the way polyamines function in bacteria can thus be beneficial while designing the drugs to combat diseases.
Collapse
Affiliation(s)
- Amrita C Bhagwat
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
| |
Collapse
|
11
|
Abreu S, Lejeune C, David M, Chaminade P, Virolle MJ. Impact of the Deletion of Genes of the Nitrogen Metabolism on Triacylglycerol, Cardiolipin and Actinorhodin Biosynthesis in Streptomyces coelicolor. Microorganisms 2024; 12:1560. [PMID: 39203402 PMCID: PMC11356632 DOI: 10.3390/microorganisms12081560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Since nitrogen limitation is known to be an important trigger of triacylglycerol (TAG) accumulation in most microorganisms, we first assessed the global lipid content of 21 strains derived from Streptomyces coelicolor M145 deleted for genes involved in nitrogen metabolism. Seven of these strains deleted for genes encoding proteins involved in polyamine (GlnA2/SCO2241, GlnA3/SCO6962, GlnA4/SCO1613), or protein (Pup/SCO1646) degradation, in the regulation of nitrogen metabolism (GlnE/SCO2234 and GlnK/SCO5584), or the global regulator DasR/SCO5231 that controls negatively the degradation of N-acetylglucosamine, a constituent of peptidoglycan, had a higher TAG content than the original strain, whereas five of these strains (except the glnA2 and pup mutants) had a lower cardiolipin (CL) content. The production of the blue polyketide actinorhodin (ACT) was totally abolished in the dasR mutant in both Pi conditions, whereas the deletion of pup, glnA2, glnA3, and glnA4 was correlated with a significant increase in total ACT production, but mainly in Pi limitation. Unexpectedly, ACT production was strongly reduced in the glnA3 mutant in Pi proficiency. Altogether, our data suggest that high TAG and ACT biosynthesis and low CL biosynthesis might all contribute to the lowering of oxidative stress resulting from nitrogen limitation or from other causes.
Collapse
Affiliation(s)
- Sonia Abreu
- Lip (Sys)2 (Lipides Systèmes Analytiques et Biologiques), UFR Pharmacie-Bâtiment Henri Moissan, CNRS, CEA, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France; (S.A.); (P.C.)
| | - Clara Lejeune
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CNRS, CEA, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France (M.D.)
| | - Michelle David
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CNRS, CEA, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France (M.D.)
| | - Pierre Chaminade
- Lip (Sys)2 (Lipides Systèmes Analytiques et Biologiques), UFR Pharmacie-Bâtiment Henri Moissan, CNRS, CEA, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France; (S.A.); (P.C.)
| | - Marie-Joelle Virolle
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CNRS, CEA, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France (M.D.)
| |
Collapse
|
12
|
Murai H, Kuboniwa M, Kakiuchi M, Matsumura R, Hirata Y, Amano A. Curcumin inhibits growth of Porphyromonas gingivalis by arrest of bacterial dipeptidyl peptidase activity. J Oral Microbiol 2024; 16:2373040. [PMID: 38974504 PMCID: PMC11225630 DOI: 10.1080/20002297.2024.2373040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 06/23/2024] [Indexed: 07/09/2024] Open
Abstract
Background Curcumin is a multi-functional polyphenol with anti-bacterial and anti-inflammatory effects and may have potential for treatment of periodontal diseases. The present study was conducted to examine the molecular basis of the anti-bacterial effect of curcumin against Porphyromonas gingivalis using metabolome analysis. Materials and Methods P. gingivalis were incubated with 10 µg/mL curcumin, and then metabolites were analyzed with CE-TOF/MS. Expression levels of sigma factors were also evaluated using RT-PCR assays. The activities of dipeptidyl peptidases (DPPs) were assessed by examining the degradation reactions of MCA-labeled peptides. Results The relative amounts of various glycogenic amino acids were significantly decreased when P. gingivalis was incubated with curcumin. Furthermore, the metabolites on the amino acid degradation pathway, including high-energy compounds such as ATP, various intermediate metabolites of RNA/DNA synthesis, nucleoside sugars and amino sugars were also decreased. Additionally, the expression levels of sigma-54 and sigma-70 were significantly decreased, and the same results as noted following nutrient starvation. Curcumin also significantly suppressed the activities of some DPPs, while the human DPP-4 inhibitors markedly inhibited the growth of P. gingivalis and activities of the DPPs. Conclusions Curcumin suppresses the growth of P. gingivalis by inhibiting DPPs and also interferes with nucleic acid synthesis and central metabolic pathways, beginning with amino acid metabolism.
Collapse
Affiliation(s)
- Hiroki Murai
- Joint Research Laboratory for Advanced Oral Environmental Science (SARAYA), Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
- Saraya Research Institute, Saraya Co., Ltd, Osaka, Kashiwara, Japan
| | - Masae Kuboniwa
- Joint Research Laboratory for Advanced Oral Environmental Science (SARAYA), Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
| | - Miho Kakiuchi
- Joint Research Laboratory for Advanced Oral Environmental Science (SARAYA), Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
| | - Reiko Matsumura
- Joint Research Laboratory for Advanced Oral Environmental Science (SARAYA), Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
- Saraya Research Institute, Saraya Co., Ltd, Osaka, Kashiwara, Japan
| | - Yoshihiko Hirata
- Joint Research Laboratory for Advanced Oral Environmental Science (SARAYA), Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
- Saraya Research Institute, Saraya Co., Ltd, Osaka, Kashiwara, Japan
| | - Atsuo Amano
- Joint Research Laboratory for Advanced Oral Environmental Science (SARAYA), Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
| |
Collapse
|
13
|
Schaible GA, Jay ZJ, Cliff J, Schulz F, Gauvin C, Goudeau D, Malmstrom RR, Ruff SE, Edgcomb V, Hatzenpichler R. Multicellular magnetotactic bacteria are genetically heterogeneous consortia with metabolically differentiated cells. PLoS Biol 2024; 22:e3002638. [PMID: 38990824 PMCID: PMC11239054 DOI: 10.1371/journal.pbio.3002638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/24/2024] [Indexed: 07/13/2024] Open
Abstract
Consortia of multicellular magnetotactic bacteria (MMB) are currently the only known example of bacteria without a unicellular stage in their life cycle. Because of their recalcitrance to cultivation, most previous studies of MMB have been limited to microscopic observations. To study the biology of these unique organisms in more detail, we use multiple culture-independent approaches to analyze the genomics and physiology of MMB consortia at single-cell resolution. We separately sequenced the metagenomes of 22 individual MMB consortia, representing 8 new species, and quantified the genetic diversity within each MMB consortium. This revealed that, counter to conventional views, cells within MMB consortia are not clonal. Single consortia metagenomes were then used to reconstruct the species-specific metabolic potential and infer the physiological capabilities of MMB. To validate genomic predictions, we performed stable isotope probing (SIP) experiments and interrogated MMB consortia using fluorescence in situ hybridization (FISH) combined with nanoscale secondary ion mass spectrometry (NanoSIMS). By coupling FISH with bioorthogonal noncanonical amino acid tagging (BONCAT), we explored their in situ activity as well as variation of protein synthesis within cells. We demonstrate that MMB consortia are mixotrophic sulfate reducers and that they exhibit metabolic differentiation between individual cells, suggesting that MMB consortia are more complex than previously thought. These findings expand our understanding of MMB diversity, ecology, genomics, and physiology, as well as offer insights into the mechanisms underpinning the multicellular nature of their unique lifestyle.
Collapse
Affiliation(s)
- George A. Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Zackary J. Jay
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
| | - John Cliff
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Colin Gauvin
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Rex R. Malmstrom
- Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - S. Emil Ruff
- Ecosystems Center and Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Virginia Edgcomb
- Woods Hole Oceanographic Institution, Falmouth, Massachusetts, United States of America
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
14
|
Lee JH, Ayoola MB, Shack LA, Swiatlo E, Nanduri B. Characterization of an Arginine Decarboxylase from Streptococcus pneumoniae by Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. Biomolecules 2024; 14:463. [PMID: 38672479 PMCID: PMC11048482 DOI: 10.3390/biom14040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Polyamines are polycations derived from amino acids that play an important role in proliferation and growth in almost all living cells. In Streptococcus pneumoniae (the pneumococcus), modulation of polyamine metabolism not only plays an important regulatory role in central metabolism, but also impacts virulence factors such as the capsule and stress responses that affect survival in the host. However, functional annotation of enzymes from the polyamine biosynthesis pathways in the pneumococcus is based predominantly on computational prediction. In this study, we cloned SP_0166, predicted to be a pyridoxal-dependent decarboxylase, from the Orn/Lys/Arg family pathway in S. pneumoniae TIGR4 and expressed and purified the recombinant protein. We performed biochemical characterization of the recombinant SP_0166 and confirmed the substrate specificity. For polyamine analysis, we developed a simultaneous quantitative method using hydrophilic interaction liquid chromatography (HILIC)-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) without derivatization. SP_0166 has apparent Km, kcat, and kcat/Km values of 11.3 mM, 715,053 min-1, and 63,218 min-1 mM-1, respectively, with arginine as a substrate at pH 7.5. We carried out inhibition studies of SP_0166 enzymatic activity with arginine as a substrate using chemical inhibitors DFMO and DFMA. DFMO is an irreversible inhibitor of ornithine decarboxylase activity, while DFMA inhibits arginine decarboxylase activity. Our findings confirm that SP_0166 is inhibited by DFMA and DFMO, impacting agmatine production. The use of arginine as a substrate revealed that the synthesis of putrescine by agmatinase and N-carbamoylputrescine by agmatine deiminase were both affected and inhibited by DFMA. This study provides experimental validation that SP_0166 is an arginine decarboxylase in pneumococci.
Collapse
Affiliation(s)
- Jung Hwa Lee
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Moses B. Ayoola
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Leslie A. Shack
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Edwin Swiatlo
- Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70112, USA
| | - Bindu Nanduri
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
15
|
Ji J, Zhang J, Wang X, Song W, Ma B, Wang R, Li T, Wang G, Guan C, Gao X. The alleviation of salt stress on rice through increasing photosynthetic capacity, maintaining redox homeostasis and regulating soil enzyme activities by Enterobacter sp. JIV1 assisted with putrescine. Microbiol Res 2024; 280:127590. [PMID: 38142517 DOI: 10.1016/j.micres.2023.127590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The detrimental impact of soil salinization on crop productivity and agricultural economy has garnered significant attention. A rhizosphere bacterium with favorable salt tolerance and plant growth-promoting (PGP) functions was isolated in this work. The bacterium was identified as Enterobacter through 16 S rDNA sequencing analysis and designated as Enterobacter sp. JIV1. Interestingly, the presence of putrescine (Put), which had been shown to contribute in reducing abiotic stress damage to plants, significantly promoted strain JIV1 to generate 1-aminocyclopropane-1-carboxylic (ACC) deaminase, dissolve phosphorus and secrete indole-3-acetic acid (IAA). However, the synergy of plant growth promoting rhizobacteria (PGPR) and Put in improving plant salt resistance has not been extensively studied. In this study, strain JIV1 and exogenous Put effectively mitigated the inhibitory impact of salt stress simulated by 200 mM NaCl on rice (Oryza sativa L.) growth. The chlorophyll accumulation, photosynthetic efficiency and antioxidant capacity of rice were also significantly strengthened. Notably, the combined application of strain JIV1 and Put outperformed individual treatments. Moreover, the co-addition of strain JIV1 and Put increased soil protease and urease activities by 451.97% and 51.70% compared to that of salt treatment group. In general, Put-assisted PGPR JIV1 provides a new perspective on alleviating the salt-induced negative impacts on plants.
Collapse
Affiliation(s)
- Jing Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqi Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xinya Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenju Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Baoying Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Runzhong Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tiange Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Xiaoping Gao
- Fuzhou Planning Design Research Institute, Fuzhou 350108, China.
| |
Collapse
|
16
|
Malaisamy V, Alagesan K, Nagarajan H, Jayaraman M, Vetrivel U, Jeyaraman J. Biochemical and biophysical characterization of biosynthetic arginine decarboxylase from Thermus thermophilus. J Biomol Struct Dyn 2024:1-18. [PMID: 38344920 DOI: 10.1080/07391102.2024.2314753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/29/2024] [Indexed: 03/11/2025]
Abstract
The biosynthetic arginine decarboxylase in Thermus thermophilus is responsible for producing spermidine, a polyamine with numerous biological applications in humans. The arginine decarboxylase has significant applications in biotechnology industries, suggesting the need to evaluate its biochemical and biophysical characteristics at the molecular level. In this study, both in vitro and in silico methods were employed to investigate the structural and functional behavior of the arginine decarboxylase protein. In in vitro, MALDI-TOF, size exclusion, and assay studies were performed to examine the nature and activity of the protein. The MALDI-TOF analysis confirmed the purified protein as biosynthetic arginine decarboxylase. The assay results revealed that the Pyridoxal 5'-Phosphate (PLP) cofactor plays a crucial role in enhancing enzyme activity by producing agmatine (a by-product of spermidine). Further, optimum enzyme activity was observed at 50 °C, suggesting the extremophilic nature of the enzyme. Unlike other proteins, this enzyme displayed optimal activity at both acidic and basic pH, demonstrating its sensitivity to pH changes. Furthermore, the addition of divalent ions like Mg 2+ increased the rate of reaction. In in silico, structure modeling, and comparative molecular dynamics simulation studies were used to assess the protein stability and behavior at different pH and temperature conditions. The findings of this study could be applied to improve enzyme production in the industry.
Collapse
Affiliation(s)
- Veerapandiyan Malaisamy
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Karthika Alagesan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Hemavathy Nagarajan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
- Centre for Bioinformatics, Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Manikandan Jayaraman
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Umashankar Vetrivel
- ICMR-Department of Virology and Biotechnology/Bioinformatics Division, National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
| | - Jeyakanthan Jeyaraman
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
17
|
Huang X, Yan X, Gao L, Luo Y, Liao H, Long M, Duan L, Xia X. In-situ substitution and community dynamics modeling for enhanced safety in Chinese rice wine brewing. Food Res Int 2024; 176:113824. [PMID: 38163724 DOI: 10.1016/j.foodres.2023.113824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
This research paper focuses on the application of the "Design-Build-Test-Learn" framework to design and evaluate a synthetic microbial community aimed at studying the impact of Lactic Acid Bacteria (LAB) interactions and fitness on the formation of biogenic amines (BAs) in Chinese rice wine (CRW). The study reveals a close correlation between the assembly model of LAB and the accumulation of BAs in CRW, and multiple interactions were observed between amine-producing and non-amine-producing LAB, including commensalism, amensalism, and competition. The commensalism among amine-producing LAB was found to promote BAs accumulation through metabolic cross-feeding of amino acids. Moreover, the higher-order interaction community was designed to regulate the BAs formation effectively. For instance, the interference of Lactiplantibacillus plantarum (ACBC271) resulted in the elimination of amine-producing LAB viability, resulting in a 22% decrease (not exceeding 43.54 mg/L) in the total amount of BAs. Simulation of community dynamics models further suggests that LAB with quantitative social interactions can effectively control LAB accumulation in CRW by forecasting fluctuation in BAs generation through fitness competition and metabolic interference. Overall, this study provides valuable insights into the complex interaction networks within microbial communities in traditional fermentation ecosystems. It also proposes a novel approach for quality control of nitrogen food safety factors in fermented foods.
Collapse
Affiliation(s)
- Xinlei Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Xinyuan Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Ling Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Yi Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Hui Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Mengfei Long
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Liangjie Duan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China.
| |
Collapse
|
18
|
Detert K, Währer J, Nieselt K, Schmidt H. Broad time-dependent transcriptional activity of metabolic genes of E. coli O104:H4 strain C227/11Φcu in a soil microenvironment at low temperature. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:582-596. [PMID: 37644642 PMCID: PMC10667640 DOI: 10.1111/1758-2229.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
In the current study, metabolic genes and networks that influence the persistence of pathogenic Escherichia coli O104:H4 strain C227/11Φcu in agricultural soil microenvironments at low temperature were investigated. The strain was incubated in alluvial loam (AL) and total RNA was prepared from samples at time point 0, and after 1 and 4 weeks. Differential transcriptomic analysis was performed by RNA sequencing analysis and values obtained at weeks 1 and 4 were compared to those of time point 0. We found differential expression of more than 1500 genes for either time point comparison. The two lists of differentially expressed genes were then subjected to gene set enrichment of Gene Ontology terms. In total, 17 GO gene sets and 3 Pfam domains were found to be enriched after 1 week. After 4 weeks, 17 GO gene sets and 7 Pfam domains were statistically enriched. Especially stress response genes and genes of the primary metabolism were particularly affected at both time points. Genes and gene sets for uptake of carbohydrates, amino acids were strongly upregulated, indicating adjustment to a low nutrient environment. The results of this transcriptome analysis show that persistence of C227/11Φcu in soils is associated with a complex interplay of metabolic networks.
Collapse
Affiliation(s)
- Katharina Detert
- Department of Food Microbiology and Hygiene, Institute of Food Science and BiotechnologyUniversity of HohenheimStuttgartGermany
| | - Jonathan Währer
- Institute for Bioinformatics and Medical InformaticsUniversity of TübingenTübingenGermany
| | - Kay Nieselt
- Institute for Bioinformatics and Medical InformaticsUniversity of TübingenTübingenGermany
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and BiotechnologyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
19
|
Schaible GA, Jay ZJ, Cliff J, Schulz F, Gauvin C, Goudeau D, Malmstrom RR, Emil Ruff S, Edgcomb V, Hatzenpichler R. Multicellular magnetotactic bacterial consortia are metabolically differentiated and not clonal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568837. [PMID: 38076927 PMCID: PMC10705294 DOI: 10.1101/2023.11.27.568837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Consortia of multicellular magnetotactic bacteria (MMB) are currently the only known example of bacteria without a unicellular stage in their life cycle. Because of their recalcitrance to cultivation, most previous studies of MMB have been limited to microscopic observations. To study the biology of these unique organisms in more detail, we use multiple culture-independent approaches to analyze the genomics and physiology of MMB consortia at single cell resolution. We separately sequenced the metagenomes of 22 individual MMB consortia, representing eight new species, and quantified the genetic diversity within each MMB consortium. This revealed that, counter to conventional views, cells within MMB consortia are not clonal. Single consortia metagenomes were then used to reconstruct the species-specific metabolic potential and infer the physiological capabilities of MMB. To validate genomic predictions, we performed stable isotope probing (SIP) experiments and interrogated MMB consortia using fluorescence in situ hybridization (FISH) combined with nano-scale secondary ion mass spectrometry (NanoSIMS). By coupling FISH with bioorthogonal non-canonical amino acid tagging (BONCAT) we explored their in situ activity as well as variation of protein synthesis within cells. We demonstrate that MMB consortia are mixotrophic sulfate reducers and that they exhibit metabolic differentiation between individual cells, suggesting that MMB consortia are more complex than previously thought. These findings expand our understanding of MMB diversity, ecology, genomics, and physiology, as well as offer insights into the mechanisms underpinning the multicellular nature of their unique lifestyle.
Collapse
Affiliation(s)
- George A. Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
| | - Zackary J. Jay
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - John Cliff
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - Colin Gauvin
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - Rex R. Malmstrom
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - S. Emil Ruff
- Ecosystems Center and Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543
| | | | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717
| |
Collapse
|
20
|
Xia K, Feng Z, Zhang X, Zhou Y, Zhu H, Yao Q. Potential functions of the shared bacterial taxa in the citrus leaf midribs determine the symptoms of Huanglongbing. FRONTIERS IN PLANT SCIENCE 2023; 14:1270929. [PMID: 38034569 PMCID: PMC10682189 DOI: 10.3389/fpls.2023.1270929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Instruction Citrus is a globally important fruit tree whose microbiome plays a vital role in its growth, adaptability, and resistance to stress. Methods With the high throughput sequencing of 16S rRNA genes, this study focused on analyzing the bacterial community, especially in the leaf midribs, of healthy and Huanglongbing (HLB)-infected plants. Results We firstly identified the shared bacterial taxa in the midribs of both healthy and HLB-infected plants, and then analyzed their functions. Results showed that the shared bacterial taxa in midribs belonged to 62 genera, with approximately 1/3 of which modified in the infected samples. Furthermore, 366 metabolic pathways, 5851 proteins, and 1833 enzymes in the shared taxa were predicted. Among these, three metabolic pathways and one protein showed significant importance in HLB infection. With the random forest method, six genera were identified to be significantly important for HLB infection. Notably, four of these genera were also among the significantly different shared taxa. Further functional characterization of these four genera revealed that Pseudomonas and Erwinia likely contributed to plant defense against HLB, while Streptomyces might have implications for plant defense against HLB or the pathogenicity of Candidatus Liberibacter asiaticus (CLas). Disccusion Overall, our study highlights that the functions of the shared taxa in leaf midribs are distinguished between healthy and HLB-infected plants, and these microbiome-based findings can contribute to the management and protection of citrus crops against CLas.
Collapse
Affiliation(s)
- Kaili Xia
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zengwei Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianjiao Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qing Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Xi H, Nie X, Gao F, Liang X, Li H, Zhou H, Cai Y, Yang C. A bacterial spermidine biosynthetic pathway via carboxyaminopropylagmatine. SCIENCE ADVANCES 2023; 9:eadj9075. [PMID: 37878710 PMCID: PMC10599626 DOI: 10.1126/sciadv.adj9075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Spermidine, a ubiquitous polyamine, is known to be required for critical physiological functions in bacteria. Two principal pathways are known for spermidine biosynthesis, both of which involve aminopropylation of putrescine. Here, we identified a spermidine biosynthetic pathway via a previously unknown metabolite, carboxyaminopropylagmatine (CAPA), in a model cyanobacterium Synechocystis sp. PCC 6803 through an approach combining 13C and 15N tracers, metabolomics, and genetic and biochemical characterization. The CAPA pathway starts with reductive condensation of agmatine and l-aspartate-β-semialdehyde into CAPA by a previously unknown CAPA dehydrogenase, followed by decarboxylation of CAPA to form aminopropylagmatine, and ends with conversion of aminopropylagmatine to spermidine by an aminopropylagmatine ureohydrolase. Thus, the pathway does not involve putrescine and depends on l-aspartate-β-semialdehyde as the aminopropyl group donor. Genomic, biochemical, and metagenomic analyses showed that the CAPA-pathway genes are widespread in 15 different phyla of bacteria distributed in marine, freshwater, and other ecosystems.
Collapse
Affiliation(s)
- Huachao Xi
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqun Nie
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Fang Gao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xinxin Liang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Hu Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
22
|
Kim KH, Kim JM, Jin HM, Hao L, Jeon CO. Alishewanella maricola sp. nov., isolated from seawater of the Yellow Sea. Int J Syst Evol Microbiol 2023; 73. [PMID: 37877986 DOI: 10.1099/ijsem.0.005807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
A Gram-stain-negative and facultative aerobic bacterium, strain 16-MAT, was isolated from seawater of Yellow Sea in South Korea. Cells were catalase- and oxidase-positive and non-motile rods. Growth occurred at 4-37 °C (optimum, 30 °C) and pH 6.0-11.0 (optimum, 8.0), and in the presence of 0-7.0% NaCl (optimum, 3 %). Strain 16-MAT contained ubiquinone-8 as the sole isoprenoid quinone, C16 : 0 and summed feature three as the major fatty acids (>10 %), and phosphatidylglycerol, phosphatidylethanolamine, an unidentified phospholipid, an unidentified aminophospholipid, and an unidentified polar lipid as the major polar lipids. The genome size and DNA G+C content of strain 16-MAT were 3.69 Mb and 46.0 mol%, respectively. Strain 16-MAT was most closely related to Alishewanella alkalitolerans LNK-7.1T with a 97.9 % 16S rRNA gene sequence similarity. A phylogenomic tree based on whole genome sequences showed that strain 16-MAT formed a phylogenetic lineage within the genus Alishewanella. Based on the phenotypic, chemotaxonomic, and molecular analyses, strain 16-MAT represents a novel species of the genus Alishewanella, for which the name Alishewanella maricola is proposed. The type strain is 16-MAT (=KACC 22238T =JCM 34596T).
Collapse
Affiliation(s)
- Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Biological Sciences and Biotechnology, Hannam University, Daejon 34054, Republic of Korea
| | - Jeong Min Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Mi Jin
- Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Gyeongsangbuk-do 37242, Republic of Korea
| | - Lujiang Hao
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
23
|
Getino L, Chamizo-Ampudia A, Martín JL, Luengo JM, Barreiro C, Olivera ER. Specific Gene Expression in Pseudomonas Putida U Shows New Alternatives for Cadaverine and Putrescine Catabolism. Genes (Basel) 2023; 14:1897. [PMID: 37895246 PMCID: PMC10606097 DOI: 10.3390/genes14101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Pseudomonas putida strain U can be grown using, as sole carbon sources, the biogenic amines putrescine or cadaverine, as well as their catabolic intermediates, ɣ-aminobutyrate or δ-aminovalerate, respectively. Several paralogs for the genes that encode some of the activities involved in the catabolism of these compounds, such as a putrescine-pyruvate aminotransferase (spuC1 and spuC2 genes) and a ɣ-aminobutyrate aminotransferase (gabT1 and gabT2 genes) have been identified in this bacterium. When the expression pattern of these genes is analyzed by qPCR, it is drastically conditioned by supplying the carbon sources. Thus, spuC1 is upregulated by putrescine, whereas spuC2 seems to be exclusively induced by cadaverine. However, gabT1 increases its expression in response to different polyamines or aminated catabolic derivatives from them (i.e., ɣ-aminobutyrate or δ-aminovalerate), although gabT2 does not change its expression level concerning no-amine unrelated carbon sources (citrate). These results reveal differences between the mechanisms proposed for polyamine catabolism in P. aeruginosa and Escherichia coli concerning P. putida strain U, as well as allow a deeper understanding of the enzymatic systems used by this last strain during polyamine metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Elías R. Olivera
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain; (L.G.); (A.C.-A.); (J.L.M.); (J.M.L.); (C.B.)
| |
Collapse
|
24
|
Sadiq S, Hussain M, Iqbal S, Shafiq M, Balal RM, Seleiman MF, Chater J, Shahid MA. Genome-Wide Identification and Characterization of the Biosynthesis of the Polyamine Gene Family in Citrus unshiu. Genes (Basel) 2023; 14:1527. [PMID: 37628578 PMCID: PMC10454681 DOI: 10.3390/genes14081527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Polyamines (PAs) contribute to diverse plant processes, environmental interaction, and stress responses. In citrus, the mechanism underlying the biosynthesis of polyamines is poorly understood. The present study aims to identify the biosynthesis of PA gene family members in satsuma mandarin (Citrus unshiu) and investigate their response against various stresses. The identified biosynthesis of PA genes in C. unshiu showed clustering in six groups, i.e., SPMS, SPDS, ACL5, ADC, ODC, and SAMDC. Syntenic analysis revealed that segmental duplication was prevalent among the biosynthesis of PA genes compared to tandem duplication. Thus, it might be the main reason for diversity in the gene family in C. unshiu. Almost all biosynthesis of PA gene family members in C. unshiu showed syntenic blocks in the genome of Arabidopsis, Citrus sinensis, Poncirus trifoliata, and Citrus reticulata. Analysis of Cis-regulatory elements (CREs) indicated the occurrence of hormones, light, defense, and environmental stress responses as well as the development and other plant mechanisms-related elements in the upstream sequence of the biosynthesis of PA genes. Expression profiling revealed that the biosynthesis of PA gene expression modulates in different organs during various developmental stages and stress in C. unshiu. This information will provide a deep understanding of genomic information and its expression in multiple tissues to better understand its potential application in functional genomics.
Collapse
Affiliation(s)
- Saleha Sadiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Mujahid Hussain
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA
| | - Shahid Iqbal
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Rashad Mukhtar Balal
- Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Mahmoud F. Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - John Chater
- Horticultural Science Department, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA
| |
Collapse
|
25
|
Pérez-Lara G, Olivares-Yañez C, van Bakel H, Larrondo LF, Canessa P. Genome-Wide Characterization of Light-Regulated Gene Expression in Botrytis cinerea Reveals Underlying Complex Photobiology. Int J Mol Sci 2023; 24:8705. [PMID: 37240051 PMCID: PMC10218500 DOI: 10.3390/ijms24108705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Botrytis cinerea is a necrotrophic fungus characterized mainly by its wide host range of infected plants. The deletion of the white-collar-1 gene (bcwcl1), which encodes for a blue-light receptor/transcription factor, causes a decrease in virulence, particularly when assays are conducted in the presence of light or photocycles. However, despite ample characterization, the extent of the light-modulated transcriptional responses regulated by BcWCL1 remains unknown. In this study, pathogen and pathogen:host RNA-seq analyses, conducted during non-infective in vitro plate growth and when infecting Arabidopsis thaliana leaves, respectively, informed on the global gene expression patterns after a 60 min light pulse on the wild-type B05.10 or ∆bcwcl1 B. cinerea strains. The results revealed a complex fungal photobiology, where the mutant did not react to the light pulse during its interaction with the plant. Indeed, when infecting Arabidopsis, no photoreceptor-encoding genes were upregulated upon the light pulse in the ∆bcwcl1 mutant. Differentially expressed genes (DEGs) in B. cinerea under non-infecting conditions were predominantly related to decreased energy production in response to the light pulse. In contrast, DEGs during infection significantly differ in the B05.10 strain and the ∆bcwcl1 mutant. Upon illumination at 24 h post-infection in planta, a decrease in the B. cinerea virulence-associated transcripts was observed. Accordingly, after a light pulse, biological functions associated with plant defense appear enriched among light-repressed genes in fungus-infected plants. Taken together, our results show the main transcriptomic differences between wild-type B. cinerea B05.10 and ∆bcwcl1 after a 60 min light pulse when growing saprophytically on a Petri dish and necrotrophically over A. thaliana.
Collapse
Affiliation(s)
- Gabriel Pérez-Lara
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
| | - Consuelo Olivares-Yañez
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Luis F. Larrondo
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
- Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago 8331150, Chile
| | - Paulo Canessa
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
| |
Collapse
|
26
|
Kim S, Chang JH. Structural Analysis of Spermidine Synthase from Kluyveromyces lactis. Molecules 2023; 28:molecules28083446. [PMID: 37110680 PMCID: PMC10146546 DOI: 10.3390/molecules28083446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Spermidine is a polyamine molecule that performs various cellular functions, such as DNA and RNA stabilization, autophagy modulation, and eIF5A formation, and is generated from putrescine by aminopropyltransferase spermidine synthase (SpdS). During synthesis, the aminopropyl moiety is donated from decarboxylated S-adenosylmethionine to form putrescine, with 5'-deoxy-5'-methylthioadenosine being produced as a byproduct. Although the molecular mechanism of SpdS function has been well-established, its structure-based evolutionary relationships remain to be fully understood. Moreover, only a few structural studies have been conducted on SpdS from fungal species. Here, we determined the crystal structure of an apo-form of SpdS from Kluyveromyces lactis (KlSpdS) at 1.9 Å resolution. Structural comparison with its homologs revealed a conformational change in the α6 helix linked to the gate-keeping loop, with approximately 40° outward rotation. This change caused the catalytic residue Asp170 to move outward, possibly due to the absence of a ligand in the active site. These findings improve our understanding of the structural diversity of SpdS and provide a missing link that expands our knowledge of the structural features of SpdS in fungal species.
Collapse
Affiliation(s)
- Seongjin Kim
- Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Science Education Research Institute, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
27
|
Pederick JL, Klose J, Jovcevski B, Pukala TL, Bruning JB. Escherichia coli YgiC and YjfC Possess Peptide─Spermidine Ligase Activity. Biochemistry 2023; 62:899-911. [PMID: 36745518 DOI: 10.1021/acs.biochem.2c00592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyamines and polyamine-containing metabolites are involved in many cellular processes related to bacterial cell growth and survival. In Escherichia coli, the bifunctional enzyme glutathionylspermidine synthetase/amidase (GspSA) controls the production of glutathionylspermidine, which has a protective role against oxidative stress. E. coli also encodes two enzymes with homology to the synthetase domain of GspSA, YgiC, and YjfC; however, these do not catalyze the formation of glutathionylspermidine, and their catalytic function remained unknown. Here, we detail the structural and functional characterization of YgiC and YjfC. Using X-ray crystallography, the high-resolution crystal structures of YgiC and YjfC were obtained. This revealed that YgiC and YjfC possess multiple substitutions in key residues required for binding of glutathione in GspSA. Despite this difference, these enzymes share a similar active site structure to GspSA, suggesting that they catalyze the formation of an alternate peptide─spermidine conjugate. As the physiological substrates of YgiC and YjfC are unknown, this was probed using the peptide triglycine as a model substrate. A combination of enzyme activity assays and mass spectrometry revealed that YgiC and YjfC can function as peptide-spermidine ligases, forming a triglycine-spermidine conjugate. For both enzymes, conjugate formation was only observed in the presence of spermidine, but not other common polyamines, supporting that spermidine or a spermidine derivative is the physiological substrate. Importantly, since YgiC and YjfC are widely distributed in Gram-negative bacterial species, this suggests that these enzymes function in a conserved cellular process, representing a currently unknown aspect of bacterial polyamine metabolism.
Collapse
Affiliation(s)
- Jordan L Pederick
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia5005, Australia
| | - Jack Klose
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia5005, Australia
| | - Blagojce Jovcevski
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia5005, Australia.,School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, South Australia5005, Australia
| | - Tara L Pukala
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia5005, Australia
| | - John B Bruning
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia5005, Australia
| |
Collapse
|
28
|
Turchetti B, Buzzini P, Baeza M. A genomic approach to analyze the cold adaptation of yeasts isolated from Italian Alps. Front Microbiol 2022; 13:1026102. [DOI: 10.3389/fmicb.2022.1026102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Microorganisms including yeasts are responsible for mineralization of organic matter in cold regions, and their characterization is critical to elucidate the ecology of such environments on Earth. Strategies developed by yeasts to survive in cold environments have been increasingly studied in the last years and applied to different biotechnological applications, but their knowledge is still limited. Microbial adaptations to cold include the synthesis of cryoprotective compounds, as well as the presence of a high number of genes encoding the synthesis of proteins/enzymes characterized by a reduced proline content and highly flexible and large catalytic active sites. This study is a comparative genomic study on the adaptations of yeasts isolated from the Italian Alps, considering their growth kinetics. The optimal temperature for growth (OTG), growth rate (Gr), and draft genome sizes considerably varied (OTG, 10°C–20°C; Gr, 0.071–0.0726; genomes, 20.7–21.5 Mpb; %GC, 50.9–61.5). A direct relationship was observed between calculated protein flexibilities and OTG, but not for Gr. Putative genes encoding for cold stress response were found, as well as high numbers of genes encoding for general, oxidative, and osmotic stresses. The cold response genes found in the studied yeasts play roles in cell membrane adaptation, compatible solute accumulation, RNA structure changes, and protein folding, i.e., dihydrolipoamide dehydrogenase, glycogen synthase, omega-6 fatty acid, stearoyl-CoA desaturase, ATP-dependent RNA helicase, and elongation of very-long-chain fatty acids. A redundancy for several putative genes was found, higher for P-loop containing nucleoside triphosphate hydrolase, alpha/beta hydrolase, armadillo repeat-containing proteins, and the major facilitator superfamily protein. Hundreds of thousands of small open reading frames (SmORFs) were found in all studied yeasts, especially in Phenoliferia glacialis. Gene clusters encoding for the synthesis of secondary metabolites such as terpene, non-ribosomal peptide, and type III polyketide were predicted in four, three, and two studied yeasts, respectively.
Collapse
|
29
|
The NPR/Hal family of protein kinases in yeasts: biological role, phylogeny and regulation under environmental challenges. Comput Struct Biotechnol J 2022; 20:5698-5712. [PMID: 36320937 PMCID: PMC9596735 DOI: 10.1016/j.csbj.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
Abstract
Protein phosphorylation is the most common and versatile post-translational modification occurring in eukaryotes. In yeast, protein phosphorylation is fundamental for maintaining cell growth and adapting to sudden changes in environmental conditions by regulating cellular processes and activating signal transduction pathways. Protein kinases catalyze the reversible addition of phosphate groups to target proteins, thereby regulating their activity. In Saccharomyces cerevisiae, kinases are classified into six major groups based on structural and functional similarities. The NPR/Hal family of kinases comprises nine fungal-specific kinases that, due to lack of similarity with the remaining kinases, were classified to the “Other” group. These kinases are primarily implicated in regulating fundamental cellular processes such as maintaining ion homeostasis and controlling nutrient transporters’ concentration at the plasma membrane. Despite their biological relevance, these kinases remain poorly characterized and explored. This review provides an overview of the information available regarding each of the kinases from the NPR/Hal family, including their known biological functions, mechanisms of regulation, and integration in signaling pathways in S. cerevisiae. Information gathered for non-Saccharomyces species of biotechnological or clinical relevance is also included.
Collapse
|
30
|
Krysenko S, Wohlleben W. Polyamine and Ethanolamine Metabolism in Bacteria as an Important Component of Nitrogen Assimilation for Survival and Pathogenicity. Med Sci (Basel) 2022; 10:40. [PMID: 35997332 PMCID: PMC9397018 DOI: 10.3390/medsci10030040] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Nitrogen is an essential element required for bacterial growth. It serves as a building block for the biosynthesis of macromolecules and provides precursors for secondary metabolites. Bacteria have developed the ability to use various nitrogen sources and possess two enzyme systems for nitrogen assimilation involving glutamine synthetase/glutamate synthase and glutamate dehydrogenase. Microorganisms living in habitats with changeable availability of nutrients have developed strategies to survive under nitrogen limitation. One adaptation is the ability to acquire nitrogen from alternative sources including the polyamines putrescine, cadaverine, spermidine and spermine, as well as the monoamine ethanolamine. Bacterial polyamine and monoamine metabolism is not only important under low nitrogen availability, but it is also required to survive under high concentrations of these compounds. Such conditions can occur in diverse habitats such as soil, plant tissues and human cells. Strategies of pathogenic and non-pathogenic bacteria to survive in the presence of poly- and monoamines offer the possibility to combat pathogens by using their capability to metabolize polyamines as an antibiotic drug target. This work aims to summarize the knowledge on poly- and monoamine metabolism in bacteria and its role in nitrogen metabolism.
Collapse
Affiliation(s)
- Sergii Krysenko
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
31
|
Liu D, Shi H, Chen G, Zhang X, Gu T, Zhu M, Tan W. Strategies for anti-oxidative stress and anti-acid stress in bioleaching of LiCoO 2 using an acidophilic microbial consortium. Extremophiles 2022; 26:22. [PMID: 35767155 DOI: 10.1007/s00792-022-01270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/17/2022] [Indexed: 11/04/2022]
Abstract
High metal ion concentrations and low pH cause severely inhibit the activity of an acidophilic microbial consortium (AMC) in bioleaching. This work investigated the effects of exogenous spermine on biofilm formation and the bioleaching efficiency of LiCoO2 by AMC in 9K medium. After the addition of 1 mM spermine, the activities of glutathione peroxidase and catalase increased, while the amount of H2O2, intracellular reactive oxygen species (ROS) and malondialdehyde in AMC decreased. These results indicated that the ability of AMC biofilm to resist oxidative stress introduced by 3.5 g/L Li+ and 30.1 g/L Co2+ was improved by spermine. The activity of glutamate decarboxylase was promoted to restore the intracellular pH buffering ability of AMC. Electrochemical measurements showed that the oxidation rate of pyrite was increased by exogenous spermine. As a result, high bioleaching efficiencies of 97.1% for Li+ and 96.1% for Co2+ from a 5.0% (w v-1) lithium cobalt oxide powder slurry were achieved. This work demonstrated that Tafel polarization can be used to monitor the AMC biofilm's ability of uptaking electrons from pyrite during bioleaching. The corrosion current density increased with 1 mM spermine, indicating enhanced electron uptake by the biofilm from pyrite.
Collapse
Affiliation(s)
- Dehong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongjie Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guanglin Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, USA.
| | - Minglong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
32
|
Nasser A, Mosadegh M, Azimi T, Shariati A. Molecular mechanisms of Shigella effector proteins: a common pathogen among diarrheic pediatric population. Mol Cell Pediatr 2022; 9:12. [PMID: 35718793 PMCID: PMC9207015 DOI: 10.1186/s40348-022-00145-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
Different gastrointestinal pathogens cause diarrhea which is a very common problem in children aged under 5 years. Among bacterial pathogens, Shigella is one of the main causes of diarrhea among children, and it accounts for approximately 11% of all deaths among children aged under 5 years. The case-fatality rates for Shigella among the infants and children aged 1 to 4 years are 13.9% and 9.4%, respectively. Shigella uses unique effector proteins to modulate intracellular pathways. Shigella cannot invade epithelial cells on the apical site; therefore, it needs to pass epithelium through other cells rather than the epithelial cell. After passing epithelium, macrophage swallows Shigella, and the latter should prepare itself to exhibit at least two types of responses: (I) escaping phagocyte and (II) mediating invasion of and injury to the recurrent PMN. The presence of PMN and invitation to a greater degree resulted in gut membrane injuries and greater bacterial penetration. Infiltration of Shigella to the basolateral space mediates (A) cell attachment, (B) cell entry, (C) evasion of autophagy recognition, (D) vacuole formation and and vacuole rapture, (E) intracellular life, (F) Shiga toxin, and (G) immune response. In this review, an attempt is made to explain the role of each factor in Shigella infection.
Collapse
Affiliation(s)
- Ahmad Nasser
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aref Shariati
- Molecular and medicine research center, Khomein University of Medical Sciences, Khomein, Iran
| |
Collapse
|
33
|
Solmi L, Rosli HG, Pombo MA, Stalder S, Rossi FR, Romero FM, Ruiz OA, Gárriz A. Inferring the Significance of the Polyamine Metabolism in the Phytopathogenic Bacteria Pseudomonas syringae: A Meta-Analysis Approach. Front Microbiol 2022; 13:893626. [PMID: 35602047 PMCID: PMC9120772 DOI: 10.3389/fmicb.2022.893626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
To succeed in plant invasion, phytopathogenic bacteria rely on virulence mechanisms to subvert plant immunity and create favorable conditions for growth. This process requires a precise regulation in the production of important proteins and metabolites. Among them, the family of compounds known as polyamines have attracted considerable attention as they are involved in important cellular processes, but it is not known yet how phytopathogenic bacteria regulate polyamine homeostasis in the plant environment. In the present study, we performed a meta-analysis of publicly available transcriptomic data from experiments conducted on bacteria to begin delving into this topic and better understand the regulation of polyamine metabolism and its links to pathogenicity. We focused our research on Pseudomonas syringae, an important phytopathogen that causes disease in many economically valuable plant species. Our analysis discovered that polyamine synthesis, as well as general gene expression activation and energy production are induced in the early stages of the disease. On the contrary, synthesis of these compounds is inhibited whereas its transport is upregulated later in the process, which correlates with the induction of virulence genes and the metabolism of nitrogen and carboxylic acids. We also found that activation of plant defense mechanisms affects bacterial polyamine synthesis to some extent, which could reduce bacterial cell fitness in the plant environment. Furthermore, data suggest that a proper bacterial response to oxidative conditions requires a decrease in polyamine production. The implications of these findings are discussed.
Collapse
Affiliation(s)
- Leandro Solmi
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Hernán G. Rosli
- Laboratorio de Interacciones Planta Patógeno-Instituto de Fisiología Vegetal (INFIVE), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de La Plata (CONICET-UNLP), La Plata, Argentina
| | - Marina A. Pombo
- Laboratorio de Interacciones Planta Patógeno-Instituto de Fisiología Vegetal (INFIVE), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de La Plata (CONICET-UNLP), La Plata, Argentina
| | - Santiago Stalder
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Franco R. Rossi
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Fernando M. Romero
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Oscar A. Ruiz
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Andrés Gárriz
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
- *Correspondence: Andrés Gárriz,
| |
Collapse
|
34
|
Kim KH, Kristyanto S, Kim HM, Kim KR, Jeon CO. Nitratireductor rhodophyticola sp. nov., isolated from marine red algae. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain-negative, strictly aerobic bacteria, strains L1-7-SET and R6, isolated from marine red algae, were characterized. They shared 99.9 % 16S rRNA gene sequence similarity and a 100 % digital DNA–DNA hybridization (DDH) value, representing members of a single species. Cells of strains L1-7-SET and R6 were catalase- and oxidase-positive motile rods with a single polar flagellum. Strains L1-7-SET and R6 optimally grew at 30–35 °C, pH 7.0–8.0 and with 1.0–2.0 % (w/v) NaCl. Ubiquinone-10 was the sole isoprenoid quinone and C19 : 0 cyclo ω8c and summed feature 8 (comprising C18 : 1
ω7c and/or C18 : 1
ω6c) were detected as the major cellular fatty acids. The DNA G+C contents of strains L1-7-SET and R6 were both 61.62 mol%. The polar lipids of strain L1-7-SET consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, an unidentified aminolipid, an unidentified phospholipid and two unidentified polar lipids. Phylogenetic analyses based on 16S rRNA gene and 120 protein marker sequences revealed that strains L1-7-SET and R6 formed a phyletic lineage within the genus
Nitratireductor
and they were most closely related to
Nitratireductor aquibiodomus
NL21T and
Nitratireductor kimnyeongensis
KY 101T with both 98.8 % 16S rRNA gene sequence similarities. Digital DDH values between strain L1-7-SET and the type strains of
N. aquibiodomus
and
N. kimnyeongensis
were 60.3 and 29.5 %, respectively. The phenotypic, chemotaxonomic and molecular features support that strains L1-7-SET and R6 represents a novel species of the genus
Nitratireductor
, for which the name Nitratireductor rhodophyticola sp. nov. is proposed. The type strain is L1-7-SET (=KACC 19076T=KCTC 92231T=JCM 31802T).
Collapse
Affiliation(s)
- Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sylvia Kristyanto
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyung Min Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kyeong Ryeol Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
35
|
Navakoudis E, Kotzabasis K. Polyamines: Α bioenergetic smart switch for plant protection and development. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153618. [PMID: 35051689 DOI: 10.1016/j.jplph.2022.153618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 05/27/2023]
Abstract
The present review highlights the bioenergetic role of polyamines in plant protection and development and proposes a universal model for describing polyamine-mediated stress responses. Any stress condition induces an excitation pressure on photosystem II by reforming the photosynthetic apparatus. To control this phenomenon, polyamines act directly on the molecular structure and function of the photosynthetic apparatus as well as on the components of the chemiosmotic proton-motive force (ΔpH/Δψ), thus regulating photochemical (qP) and non-photochemical quenching (NPQ) of energy. The review presents the mechanistic characteristics that underline the key role of polyamines in the structure, function, and bioenergetics of the photosynthetic apparatus upon light adaptation and/or under stress conditions. By following this mechanism, it is feasible to make stress-sensitive plants to be tolerant by simply altering their polyamine composition (especially the ratio of putrescine to spermine), either chemically or by light regulation.
Collapse
Affiliation(s)
- Eleni Navakoudis
- Department of Biology, University of Crete, Voutes University Campus, 70013, Heraklion, Greece; Department of Chemical Engineering, Cyprus University of Technology, 3603, Limassol, Cyprus
| | - Kiriakos Kotzabasis
- Department of Biology, University of Crete, Voutes University Campus, 70013, Heraklion, Greece.
| |
Collapse
|
36
|
Przepiora T, Figaj D, Bogucka A, Fikowicz-Krosko J, Czajkowski R, Hugouvieux-Cotte-Pattat N, Skorko-Glonek J. The Periplasmic Oxidoreductase DsbA Is Required for Virulence of the Phytopathogen Dickeya solani. Int J Mol Sci 2022; 23:ijms23020697. [PMID: 35054882 PMCID: PMC8775594 DOI: 10.3390/ijms23020697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
In bacteria, the DsbA oxidoreductase is a crucial factor responsible for the introduction of disulfide bonds to extracytoplasmic proteins, which include important virulence factors. A lack of proper disulfide bonds frequently leads to instability and/or loss of protein function; therefore, improper disulfide bonding may lead to avirulent phenotypes. The importance of the DsbA function in phytopathogens has not been extensively studied yet. Dickeya solani is a bacterium from the Soft Rot Pectobacteriaceae family which is responsible for very high economic losses mainly in potato. In this work, we constructed a D. solani dsbA mutant and demonstrated that a lack of DsbA caused a loss of virulence. The mutant bacteria showed lower activities of secreted virulence determinants and were unable to develop disease symptoms in a potato plant. The SWATH-MS-based proteomic analysis revealed that the dsbA mutation led to multifaceted effects in the D. solani cells, including not only lower levels of secreted virulence factors, but also the induction of stress responses. Finally, the outer membrane barrier seemed to be disturbed by the mutation. Our results clearly demonstrate that the function played by the DsbA oxidoreductase is crucial for D. solani virulence, and a lack of DsbA significantly disturbs cellular physiology.
Collapse
Affiliation(s)
- Tomasz Przepiora
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (T.P.); (D.F.)
| | - Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (T.P.); (D.F.)
| | - Aleksandra Bogucka
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-807 Gdansk, Poland;
| | - Jakub Fikowicz-Krosko
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-807 Gdansk, Poland; (J.F.-K.); (R.C.)
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-807 Gdansk, Poland; (J.F.-K.); (R.C.)
| | - Nicole Hugouvieux-Cotte-Pattat
- Microbiologie Adaptation et Pathogénie, Université Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Campus LyonTech-la Doua Bâtiment André Lwoff 10 rue Raphaël Dubois 69622, F69622 Villeurbanne, France;
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (T.P.); (D.F.)
- Correspondence:
| |
Collapse
|
37
|
Three Microbial Musketeers of the Seas: Shewanella baltica, Aliivibrio fischeri and Vibrio harveyi, and Their Adaptation to Different Salinity Probed by a Proteomic Approach. Int J Mol Sci 2022; 23:ijms23020619. [PMID: 35054801 PMCID: PMC8775919 DOI: 10.3390/ijms23020619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Osmotic changes are common challenges for marine microorganisms. Bacteria have developed numerous ways of dealing with this stress, including reprogramming of global cellular processes. However, specific molecular adaptation mechanisms to osmotic stress have mainly been investigated in terrestrial model bacteria. In this work, we aimed to elucidate the basis of adjustment to prolonged salinity challenges at the proteome level in marine bacteria. The objects of our studies were three representatives of bacteria inhabiting various marine environments, Shewanella baltica, Vibrio harveyi and Aliivibrio fischeri. The proteomic studies were performed with bacteria cultivated in increased and decreased salinity, followed by proteolytic digestion of samples which were then subjected to liquid chromatography with tandem mass spectrometry analysis. We show that bacteria adjust at all levels of their biological processes, from DNA topology through gene expression regulation and proteasome assembly, to transport and cellular metabolism. The finding that many similar adaptation strategies were observed for both low- and high-salinity conditions is particularly striking. The results show that adaptation to salinity challenge involves the accumulation of DNA-binding proteins and increased polyamine uptake. We hypothesize that their function is to coat and protect the nucleoid to counteract adverse changes in DNA topology due to ionic shifts.
Collapse
|
38
|
Hu J, Guo P, Mao R, Ren Z, Wen J, Yang Q, Yan T, Yu J, Zhang T, Liu Y. Gut Microbiota Signature of Obese Adults Across Different Classifications. Diabetes Metab Syndr Obes 2022; 15:3933-3947. [PMID: 36601354 PMCID: PMC9807070 DOI: 10.2147/dmso.s387523] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/28/2022] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Obesity is currently a major global public health issue. It has been shown by many that gut microbiota and microbial factors regulate the pathogenesis of obesity and metabolic abnormalities, but little is known about their roles in the different degrees of obesity. Here, we sought to investigate the microbial signatures of obesity of various severities. PATIENTS AND METHODS We did this by characterizing the intestinal microbiome signature in a Chinese cohort of obese patients and healthy controls using 16S rRNA gene sequencing. To this end, obesity was sub-divided into four subgroups, including "Overweight", Class I, Class II, and Class III obesity, based on body mass index (BMI). RESULTS Microbial diversity decreased in obese subjects, and the reduction trend was correlated with the severity of obesity. We detected an expansion of Escherichia shigella in obese patients compared to healthy controls. The family Eubacterium coprostanoligenes and Tannerellaceae, the genera Eubacterium coprostanoligenes, Lachnospiraceae NK4A136, Parabacteroides, and Akkermansia, and the species Prevotella copri were microbial biomarkers of healthy people. Gammaproteobacteria and Enterobacterales were biomarkers of being "Overweight". Erysipelatoclostridiaceae was a biomarker of Class I obesity. The class Bacilli and the order Lactobacillales were both biomarkers of Class II obesity. Negativicutes was a biomarker of Class III obesity. We further established relationships between this microbiome data and other biochemical data, including albumin, low-density lipoprotein (LDL), high-density lipoprotein (HDL), vitamin folic acid (FA) and vitamin B12 (VB12), and Interleukin-6 (IL-6) levels. Function prediction results showed a marked energy metabolism dysbiosis in obesity, especially in patients with Class III obesity. CONCLUSION These results suggested that people with different levels of obesity had distinct gut microbial signatures. Decreased microbial diversity, depletion of some specific taxa, and deviation in potential functions mirrored the severity of obesity in this cohort.
Collapse
Affiliation(s)
- Junqing Hu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, People’s Republic of China
- Medical Research Center, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, People’s Republic of China
| | - Pengsen Guo
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, People’s Republic of China
| | - Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Zhengyun Ren
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, People’s Republic of China
- College of Medicine, Southwest Jiaotong University, Chengdu, People’s Republic of China
| | - Jun Wen
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, People’s Republic of China
- College of Medicine, Southwest Jiaotong University, Chengdu, People’s Republic of China
| | - Qin Yang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, People’s Republic of China
- Department of General Surgery, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, People’s Republic of China
| | - Tong Yan
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, People’s Republic of China
| | - Jiahui Yu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, People’s Republic of China
| | - Tongtong Zhang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, People’s Republic of China
- Medical Research Center, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, People’s Republic of China
- Correspondence: Tongtong Zhang, Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, & Medical Research Center, the Third People’s Hospital of Chengdu, Chengdu, People’s Republic of China, Email ; Yanjun Liu, Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, the Third People’s Hospital of Chengdu, No. 82, Qinglong Street, Qingyang District, Chengdu, 610031, People’s Republic of China, Emai
| | - Yanjun Liu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, People’s Republic of China
| |
Collapse
|
39
|
Performance of halotolerant bacteria associated with Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L. ameliorate tomato plant growth and tolerance to saline stress: from selective isolation to genomic analysis of potential determinants. World J Microbiol Biotechnol 2021; 38:16. [PMID: 34897563 DOI: 10.1007/s11274-021-03203-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022]
Abstract
The use of halotolerant beneficial plant-growth-promoting (PGP) bacteria is considered as a promising eco-friendly approach to improve the salt tolerance of cash crops. One strategy to enhance the possibility of obtaining stress-alleviating bacteria is to screen salt impacted soils. In this study, amongst the 40 endophytic bacteria isolated from the roots of Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L., 8 showed interesting NaCl tolerance in vitro. Their evaluation, through different tomato plant trials, permitted the isolate IS26 to be distinguished as the most effective seed inoculum for both plant growth promotion and mitigation of salt stress. On the basis of 16S rRNA gene sequence, the isolate was closely related to Stenotrophomonas rhizophila. It was then screened in vitro for multiple PGP traits and the strain-complete genome was sequenced and analysed to further decipher the genomic basis of the putative mechanisms underlying its osmoprotective and plant growth abilities. A remarkable number of genes putatively involved in mechanisms responsible for rhizosphere colonization, plant association, strong competition for nutrients, and the production of important plant growth regulator compounds, such as AIA and spermidine, were highlighted, as were substances protecting against stress, including different osmolytes like trehalose, glucosylglycerol, proline, and glycine betaine. By having genes related to complementary mechanisms of osmosensing, osmoregulation and osmoprotection, the strain confirmed its great capacity to adapt to highly saline environments. Moreover, the presence of various genes potentially related to multiple enzymatic antioxidant processes, able to reduce salt-induced overproduction of ROS, was also detected.
Collapse
|
40
|
Baggio G, Groves RA, Chignola R, Piacenza E, Presentato A, Lewis IA, Lampis S, Vallini G, Turner RJ. Untargeted Metabolomics Investigation on Selenite Reduction to Elemental Selenium by Bacillus mycoides SeITE01. Front Microbiol 2021; 12:711000. [PMID: 34603239 PMCID: PMC8481872 DOI: 10.3389/fmicb.2021.711000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Bacillus mycoides SeITE01 is an environmental isolate that transforms the oxyanion selenite (SeO 3 2 - ) into the less bioavailable elemental selenium (Se0) forming biogenic selenium nanoparticles (Bio-SeNPs). In the present study, the reduction of sodium selenite (Na2SeO3) by SeITE01 strain and the effect ofSeO 3 2 - exposure on the bacterial cells was examined through untargeted metabolomics. A time-course approach was used to monitor both cell pellet and cell free spent medium (referred as intracellular and extracellular, respectively) metabolites in SeITE01 cells treated or not withSeO 3 2 - . The results show substantial biochemical changes in SeITE01 cells when exposed toSeO 3 2 - . The initial uptake ofSeO 3 2 - by SeITE01 cells (3h after inoculation) shows both an increase in intracellular levels of 4-hydroxybenzoate and indole-3-acetic acid, and an extracellular accumulation of guanosine, which are metabolites involved in general stress response adapting strategies. Proactive and defensive mechanisms againstSeO 3 2 - are observed between the end of lag (12h) and beginning of exponential (18h) phases. Glutathione and N-acetyl-L-cysteine are thiol compounds that would be mainly involved in Painter-type reaction for the reduction and detoxification ofSeO 3 2 - to Se0. In these growth stages, thiol metabolites perform a dual role, both acting against the toxic and harmful presence of the oxyanion and as substrate or reducing sources to scavenge ROS production. Moreover, detection of the amino acids L-threonine and ornithine suggests changes in membrane lipids. Starting from stationary phase (24 and 48h), metabolites related to the formation and release of SeNPs in the extracellular environment begin to be observed. 5-hydroxyindole acetate, D-[+]-glucosamine, 4-methyl-2-oxo pentanoic acid, and ethanolamine phosphate may represent signaling strategies following SeNPs release from the cytoplasmic compartment, with consequent damage to SeITE01 cell membranes. This is also accompanied by intracellular accumulation of trans-4-hydroxyproline and L-proline, which likely represent osmoprotectant activity. The identification of these metabolites suggests the activation of signaling strategies that would protect the bacterial cells fromSeO 3 2 - toxicity while it is converting into SeNPs.
Collapse
Affiliation(s)
- Greta Baggio
- Department of Biotechnology, University of Verona, Verona, Italy
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ryan A. Groves
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elena Piacenza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Ian A. Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
41
|
Xu K, Lin L, Shen D, Chou SH, Qian G. Clp is a "busy" transcription factor in the bacterial warrior, Lysobacter enzymogenes. Comput Struct Biotechnol J 2021; 19:3564-3572. [PMID: 34257836 PMCID: PMC8246147 DOI: 10.1016/j.csbj.2021.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cyclic AMP receptor protein (CRP) is a well-characterized group of global transcription factors in bacteria. They are known to regulate numerous cellular processes by binding DNA and/or cAMP (a ligand called bacterial second messenger) to control target gene expression. Gram-negative Lysobacter enzymogenes is a soilborne, plant-beneficial bacterium without flagella that can fight against filamentous fungi and oomycete. Driven by the type IV pilus (T4P) system, this bacterium moves to nearby pathogens and uses a “mobile-attack” antifungal strategy to kill them via heat-stable antifungal factor (HSAF) and abundant lyases. This strategy is controlled by a unique “busy” transcription factor Clp, which is a CRP-like protein that is inactivated by binding of c-di-GMP, another ubiquitous second messenger of bacteria. In this review, we summarize the current progress in how Clp initiates a “mobile-attack” strategy through a series of previously uncharacterized mechanisms, including binding to DNA in a unique pattern, directly interacting with or responding to various small molecules, and interacting specifically with proteins adopting distinct structure. Together, these characteristics highlight the multifunctional roles of Clp in L. enzymogenes, a powerful bacterial warrior against fungal pathogens.
Collapse
Affiliation(s)
- Kangwen Xu
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Long Lin
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Danyu Shen
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Guoliang Qian
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
42
|
Jiang J, Wang W, Sun F, Zhang Y, Liu Q, Yang D. Bacterial infection reinforces host metabolic flux from arginine to spermine for NLRP3 inflammasome evasion. Cell Rep 2021; 34:108832. [PMID: 33691113 DOI: 10.1016/j.celrep.2021.108832] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/11/2021] [Accepted: 02/16/2021] [Indexed: 11/27/2022] Open
Abstract
Hosts recognize cytosolic microbial infection via the nucleotide-binding domain-like receptor (NLR) protein family, triggering inflammasome complex assembly to provoke pyroptosis or cytokine-related caspase-1-dependent antimicrobial responses. Pathogens have evolved diverse strategies to antagonize inflammasome activation. Here, Edwardsiella piscicida gene-defined transposon library screening for lactate dehydrogenase (LDH) release in nlrc4-/- bone marrow-derived macrophages (BMDMs) demonstrates that genes clustered in the bacterial arginine metabolism pathway participate in NLRP3 inflammasome inhibition. Blocking arginine uptake or putrescine export significantly relieves NLRP3 inflammasome inhibition, indicating that this bacterium rewires its arginine metabolism network during infection. Moreover, intracellular E. piscicida recruits the host arginine importer (mCAT-1) and putrescine exporter (Oct-2) to bacterium-containing vacuoles, accompanied by reduced arginine and accumulated cytosolic spermine. Neutralizing E. piscicida-induced cytosolic spermine enhancement by spermine synthetase or extracellular spermine significantly alters NLRP3 inflammasome activation. Importantly, accumulated cytosolic spermine inhibits K+ efflux-dependent NLRP3 inflammasome activation. These data highlight the mechanism of bacterial gene-mediated arginine metabolism control for NLRP3 inflammasome evasion.
Collapse
Affiliation(s)
- Jiatiao Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China.
| |
Collapse
|
43
|
Sun X, Li R, Wan G, Peng W, Lin S, Deng Z, Liang R. Spot 42 RNA regulates putrescine catabolism in Escherichia coli by controlling the expression of puuE at the post-transcription level. J Microbiol 2021; 59:175-185. [PMID: 33527317 DOI: 10.1007/s12275-021-0421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/16/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Putrescine, a typical polyamine compound important for cell growth and stress resistance, can be utilized as an energy source. However, the regulation of its catabolism is unclear. Here the small RNA (sRNA) Spot 42, an essential regulator of carbon catabolite repression (CCR), was confirmed to participate in the post-transcriptional regulation of putrescine catabolism in Escherichia coli. Its encoding gene spf exclusively exists in the γ-proteobacteria and contains specific binding sites to the 5'-untranslated regions of the puuE gene, which encodes transaminase in the glutamylated putrescine pathway of putrescine catabolism converting γ-aminobutyrate (GABA) into succinate semialdehyde (SSA). The transcription of the spf gene was induced by glucose, inhibited by putrescine, and unaffected by PuuR, the repressor of puu genes. Excess Spot 42 repressed the expression of PuuE significantly in an antisense mechanism through the direct and specific base-pairing between the 51`-57 nt of Spot 42 and the 5'-UTR of puuE. Interestingly, Spot 42 mainly influenced the stability of the puuCBE transcript. This work revealed the regulatory role of Spot 42 in putrescine catabolism, in the switch between favorable and non-favorable carbon source utilization, and in the balance of metabolism of carbon and nitrogen sources.
Collapse
Affiliation(s)
- Xin Sun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruyan Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guochen Wan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wanli Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
44
|
The Roles of Microbial Cell-Cell Chemical Communication Systems in the Modulation of Antimicrobial Resistance. Antibiotics (Basel) 2020; 9:antibiotics9110779. [PMID: 33171916 PMCID: PMC7694446 DOI: 10.3390/antibiotics9110779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 01/25/2023] Open
Abstract
Rapid emergence of antimicrobial resistance (AMR) has become a critical challenge worldwide. It is of great importance to understand how AMR is modulated genetically in order to explore new antimicrobial strategies. Recent studies have unveiled that microbial communication systems, which are known to play key roles in regulation of bacterial virulence, are also associated with the formation and regulation of AMR. These microbial cell-to-cell chemical communication systems, including quorum sensing (QS) and pathogen-host communication mechanisms, rely on detection and response of various chemical signal molecules, which are generated either by the microbe itself or host cells, to activate the expression of virulence and AMR genes. This article summarizes the generic signaling mechanisms of representative QS and pathogen-host communications systems, reviews the current knowledge regarding the roles of these chemical communication systems in regulation of AMR, and describes the strategies developed over the years for blocking bacterial chemical communication systems in disease control. The research progress in this field suggests that the bacterial cell-cell communication systems are a promising target not only for disease control but also for curbing the problem of microbial drug resistance.
Collapse
|
45
|
Duprey A, Groisman EA. DNA supercoiling differences in bacteria result from disparate DNA gyrase activation by polyamines. PLoS Genet 2020; 16:e1009085. [PMID: 33125364 PMCID: PMC7598504 DOI: 10.1371/journal.pgen.1009085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/27/2020] [Indexed: 11/19/2022] Open
Abstract
DNA supercoiling is essential for all living cells because it controls all processes involving DNA. In bacteria, global DNA supercoiling results from the opposing activities of topoisomerase I, which relaxes DNA, and DNA gyrase, which compacts DNA. These enzymes are widely conserved, sharing >91% amino acid identity between the closely related species Escherichia coli and Salmonella enterica serovar Typhimurium. Why, then, do E. coli and Salmonella exhibit different DNA supercoiling when experiencing the same conditions? We now report that this surprising difference reflects disparate activation of their DNA gyrases by the polyamine spermidine and its precursor putrescine. In vitro, Salmonella DNA gyrase activity was sensitive to changes in putrescine concentration within the physiological range, whereas activity of the E. coli enzyme was not. In vivo, putrescine activated the Salmonella DNA gyrase and spermidine the E. coli enzyme. High extracellular Mg2+ decreased DNA supercoiling exclusively in Salmonella by reducing the putrescine concentration. Our results establish the basis for the differences in global DNA supercoiling between E. coli and Salmonella, define a signal transduction pathway regulating DNA supercoiling, and identify potential targets for antibacterial agents.
Collapse
Affiliation(s)
- Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States of America
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States of America
- Yale Microbial Sciences Institute, West Haven, CT, United States of America
| |
Collapse
|
46
|
Ayoola MB, Nakamya MF, Shack LA, Park S, Lim J, Lee JH, Ross MK, Eoh H, Nanduri B. SP_0916 Is an Arginine Decarboxylase That Catalyzes the Synthesis of Agmatine, Which Is Critical for Capsule Biosynthesis in Streptococcus pneumoniae. Front Microbiol 2020; 11:578533. [PMID: 33072045 PMCID: PMC7531197 DOI: 10.3389/fmicb.2020.578533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022] Open
Abstract
The global burden of invasive pneumococcal diseases, including pneumonia and sepsis, caused by Streptococcus pneumoniae, a Gram-positive bacterial pathogen, remains a major global health risk. The success of pneumococcus as a pathogen can be attributed to its ability to regulate the synthesis of capsular polysaccharide (CPS) during invasive disease. We previously reported that deletion of a putative lysine decarboxylase (LDC; ΔSP_0916) in pneumococcal serotype 4 (TIGR4) results in reduced CPS. SP_0916 locus is annotated as either an arginine or a LDC in pneumococcal genomes. In this study, by biochemical characterization of the recombinant SP_0916, we determined the substrate specificity of SP_0916 and show that it is an arginine decarboxylase (speA/ADC). We also show that deletion of the polyamine transporter (potABCD) predicted to import putrescine and spermidine results in reduced CPS, while deletion of spermidine synthase (speE) for the conversion of putrescine to spermidine had no impact on the capsule. Targeted metabolomics identified a correlation between reduced levels of agmatine and loss of capsule in ΔspeA and ΔpotABCD, while agmatine levels were comparable between the encapsulated TIGR4 and ΔspeE. Exogenous supplementation of agmatine restored CPS in both ΔpotABCD and ΔspeA. These results demonstrate that agmatine is critical for regulating the CPS, a predominant virulence factor in pneumococci.
Collapse
Affiliation(s)
- Moses B Ayoola
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Mary F Nakamya
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Leslie A Shack
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Seongbin Park
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Juhyeon Lim
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Jung Hwa Lee
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Matthew K Ross
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Hyungjin Eoh
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
47
|
Lozano-Amado D, Ávila-López PA, Hernández-Montes G, Briseño-Díaz P, Vargas M, Lopez-Rubio JJ, Carrero JC, Hernández-Rivas R. A class I histone deacetylase is implicated in the encystation of Entamoeba invadens. Int J Parasitol 2020; 50:1011-1022. [PMID: 32822677 DOI: 10.1016/j.ijpara.2020.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/29/2022]
Abstract
Epigenetic mechanisms such as histone acetylation and deacetylation participate in regulation of the genes involved in encystation of Entamoeba invadens. However, the histones and target residues involved, and whether the acetylation and deacetylation of the histones leads to the regulation of gene expression associated with the encystation of this parasite, remain unknown. In this study, we found that E. invadens histone H4 is acetylated in both stages of the parasite and is more highly acetylated during the trophozoite stage than in the cyst. Histone hyperacetylation induced by Trichostatin A negatively affects the encystation of E. invadens, and this inhibition is associated with the downregulation of the expression of genes implicated in the synthesis of chitin, polyamines, gamma-aminobutyric acid pathways and cyst wall proteins, all of which are important in the formation of cysts. Finally, in silico analysis and activity assays suggest that a class I histone deacetylase (EiHDAC3) could be involved in control of the expression of a subset of genes that are important in several pathways during encystation. Therefore, the identification of enzymes that acetylate and/or deacetylate histones that control encystation in E. invadens could be a promising therapeutic target for preventing transmission of other amoebic parasites such as E. histolytica, the causative agent of amoebiasis in humans.
Collapse
Affiliation(s)
- Daniela Lozano-Amado
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Pedro Antonio Ávila-López
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Georgina Hernández-Montes
- Coordinación de la Investigación Científica, Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Paola Briseño-Díaz
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Miguel Vargas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Jose-Juan Lopez-Rubio
- LPHI - Laboratory of Pathogen Host Interactions - UMR5235, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Rosaura Hernández-Rivas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico.
| |
Collapse
|
48
|
Nesterova LY, Tsyganov IV, Tkachenko AG. Biogenic Polyamines Influence the Antibiotic Susceptibility and Cell-Surface Properties of Mycobacterium smegmatis. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820040110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Joshi C, Patel P, Godatwar P, Sharma S, Kothari V. Identifying the Molecular Targets of an Anti-pathogenic Hydroalcoholic Extract of Punica granatum Peel Against Multidrug-resistant Serratia marcescens. Curr Drug Discov Technol 2020; 18:391-404. [PMID: 32316896 DOI: 10.2174/1568009620666200421083120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antibiotic-resistant members of the family Enterobacteriaceae are among the serious threats to human health globally. This study reports the anti-pathogenic activity of Punica granatum peel extract (PGPE) against a multi-drug resistant, beta-lactamase producing member of this family i.e. Serratia marcescens. OBJECTIVE This study aimed at assessing the anti-pathogenic activity of PGPE against the gramnegative bacterial pathogen S. marcescens and identifying the molecular targets of this extract in the test bacterium. METHODS Effect of PGPE on S. marcescens growth and quorum sensing (QS)-regulated pigment production was assessed through broth dilution assay. In vivo anti-infective and prophylactic activity of PGPE was assessed employing the nematode worm Caenorhabditis elegans as a model host. Differential gene expression in PGPE-exposed S. marcescens was studied through a whole transcriptome approach. RESULTS PGPE was able to modulate QS-regulated pigment production in S. marcescens without exerting any heavy growth-inhibitory effect at concentrations as low as ≥2.5 μg/mL. It could attenuate the virulence of the test bacterium towards the worm host by 22-42% (p≤0.01) at even lower concentrations (≥0.5 μg/mL). PGPE also exerted a post-extract effect on S. marcescens. This extract was found to offer prophylactic benefit too, to the host worm, as PGPE-pre-fed worms scored better (34-51%; p≤0.001) survival in face of subsequent bacterial attack. Differential gene expression analysis revealed that PGPE affected the expression of a total of 66 genes in S. marcescens by ≥1.5 fold. CONCLUSION The anti-virulence effect of PGPE against S. marcescens is multifaceted, affecting stress-response machinery, efflux activity, iron homeostasis, and cellular energetics of this bacterium notably. Among the major molecular targets identified in this study are LPS export transporter permease (LptF), t-RNA pseudouridine synthase (TruB), etc.
Collapse
Affiliation(s)
- Chinmayi Joshi
- Institute of Science, Nirma University, Ahmedabad- 382481, India
| | - Pooja Patel
- Institute of Science, Nirma University, Ahmedabad- 382481, India
| | | | | | - Vijay Kothari
- Institute of Science, Nirma University, Ahmedabad- 382481, India
| |
Collapse
|
50
|
Borges AF, Cózar A, Patarata L, Gama LT, Alfaia CM, Fernandes MJ, Fernandes MH, Pérez HV, Fraqueza MJ. Effect of high hydrostatic pressure challenge on biogenic amines, microbiota, and sensory profile in traditional poultry- and pork-based semidried fermented sausage. J Food Sci 2020; 85:1256-1264. [PMID: 32222052 DOI: 10.1111/1750-3841.15101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/04/2020] [Accepted: 02/20/2020] [Indexed: 11/30/2022]
Abstract
The processing of traditional poultry- and pork-based semidried fermented smoked sausages needs to be modernized to improve product quality and further extend its shelf life. The aim of the present study was to apply different combinations of high pressure (300 to 600 MPa) and time (154 to 1,800 s) on the sausages using an experimental design based on response surface methodology. The chemical, microbial, and sensory characteristics of sausages treated with high-pressure processing (HPP) were investigated. HPP application to semidried fermented sausages resulted in color changes, which could be dependent on the ingredients, formulation, and smoking conditions used. Nevertheless, none of the HPP treatments applied resulted in detectable changes in sensory properties, as tested in a triangle test and confirmed by the analysis of focus groups assessment. Significant differences were detected for lactic acid bacteria (LAB) counts from 344 MPa and 1,530 s onward, with a marked decrease for the combination of 600 MPa and 960 s (P < 0.05). Coagulase-negative staphylococci showed higher tolerance to the increase in pressure than LAB. HPP induced a microbial reduction on Enterobacteriaceae, molds, and yeasts, minimizing the production of the main biogenic amines. However, the polyamines (spermine and spermidine) increased since their metabolic use by microorganisms did not occur. Given the reduction of the main spoilage microbial indicators with no detectable sensory changes observed with the binomial condition of 600 MPa and 960 s, this was chosen as the optimal combination to be further applied. PRACTICAL APPLICATION: The results from sensory analysis revealed that any of the HPP treatments applied resulted in detectable changes in sensory properties, as tested in a triangle test and confirmed by the analysis of the focus groups speeches.
Collapse
Affiliation(s)
- Ana F Borges
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, 1300-477, Portugal
| | - Almudena Cózar
- Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Albacete, 02071, Spain
| | - Luís Patarata
- CECAV, Universidade de Trás-os-Montes e Alto Douro, Vila Real, 5001-801, Portugal
| | - Luis T Gama
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, 1300-477, Portugal
| | - Cristina M Alfaia
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, 1300-477, Portugal
| | - Maria J Fernandes
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, 1300-477, Portugal
| | - Maria H Fernandes
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, 1300-477, Portugal
| | - Herminia Vergara Pérez
- Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Albacete, 02071, Spain
| | - Maria J Fraqueza
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, 1300-477, Portugal
| |
Collapse
|