1
|
Kersbergen CJ, Bergles DE. Priming central sound processing circuits through induction of spontaneous activity in the cochlea before hearing onset. Trends Neurosci 2024; 47:522-537. [PMID: 38782701 PMCID: PMC11236524 DOI: 10.1016/j.tins.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Sensory systems experience a period of intrinsically generated neural activity before maturation is complete and sensory transduction occurs. Here we review evidence describing the mechanisms and functions of this 'spontaneous' activity in the auditory system. Both ex vivo and in vivo studies indicate that this correlated activity is initiated by non-sensory supporting cells within the developing cochlea, which induce depolarization and burst firing of groups of nearby hair cells in the sensory epithelium, activity that is conveyed to auditory neurons that will later process similar sound features. This stereotyped neural burst firing promotes cellular maturation, synaptic refinement, acoustic sensitivity, and establishment of sound-responsive domains in the brain. While sensitive to perturbation, the developing auditory system exhibits remarkable homeostatic mechanisms to preserve periodic burst firing in deaf mice. Preservation of this early spontaneous activity in the context of deafness may enhance the efficacy of later interventions to restore hearing.
Collapse
Affiliation(s)
- Calvin J Kersbergen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Vlajkovic SM, Housley GD, Thorne PR. Auckland hearing science discovery and translation in purinergic signaling and inner ear therapeutics. J R Soc N Z 2024; 55:405-423. [PMID: 40144810 PMCID: PMC11938756 DOI: 10.1080/03036758.2024.2359945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/22/2024] [Indexed: 03/28/2025]
Abstract
The inner ear is a complex sensory organ responsible for hearing and balance. It is deeply embedded in the temporal bone with challenging access for diagnostic and therapeutic purposes. Stress and injury to the peripheral hearing organ (cochlea) lead to temporary or permanent sensorineural hearing loss (SNHL), which is the most common form of hearing loss resulting from cellular and molecular damage to the sensory hair cells and primary auditory neurons in the spiral ganglion. These cells cannot regenerate, and their loss leads to hearing disability. Hearing aids can amplify sound and improve residual hearing ability but cannot restore function; therefore, alternative therapies are urgently needed. The pharmacological approach to treating SNHL has been our mainstream research over the past two decades. This review describes our studies investigating the purinergic signalling system in the cochlea and its implications for inner ear therapies. Using animal models of SNHL, we have established that purinergic P1 (adenosine) and P2 (ATP) receptors can prevent or mitigate cochlear injury by reducing cochlear sensitivity to loud sound and improving the survival of sensorineural tissues. Here, we highlight our research investigating the therapeutic potential of P1 and P2 receptor agonists and antagonists in inner ear disorders.
Collapse
Affiliation(s)
- Srdjan M. Vlajkovic
- Department of Physiology, Section of Audiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Peter R. Thorne
- Department of Physiology, Section of Audiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Hool SA, Jeng J, Jagger DJ, Marcotti W, Ceriani F. Age-related changes in P2Y receptor signalling in mouse cochlear supporting cells. J Physiol 2023; 601:4375-4395. [PMID: 37715703 PMCID: PMC10952729 DOI: 10.1113/jp284980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 09/18/2023] Open
Abstract
Our sense of hearing depends on the function of a specialised class of sensory cells, the hair cells, which are found in the organ of Corti of the mammalian cochlea. The unique physiological environment in which these cells operate is maintained by a syncitium of non-sensory supporting cells, which are crucial for regulating cochlear physiology and metabolic homeostasis. Despite their importance for cochlear function, the role of these supporting cells in age-related hearing loss, the most common sensory deficit in the elderly, is poorly understood. Here, we investigated the age-related changes in the expression and function of metabotropic purinergic receptors (P2Y1 , P2Y2 and P2Y4 ) in the supporting cells of the cochlear apical coil. Purinergic signalling in supporting cells is crucial during the development of the organ of Corti and purinergic receptors are known to undergo changes in expression during ageing in several tissues. Immunolabelling and Ca2+ imaging experiments revealed a downregulation of P2Y receptor expression and a decrease of purinergic-mediated calcium responses after early postnatal stages in the supporting cells. An upregulation of P2Y receptor expression was observed in the aged cochlea when compared to 1 month-old adults. The aged mice also had significantly larger calcium responses and displayed calcium oscillations during prolonged agonist applications. We conclude that supporting cells in the aged cochlea upregulate P2Y2 and P2Y4 receptors and display purinergic-induced Ca2+ responses that mimic those observed during pre-hearing stages of development, possibly aimed at limiting or preventing further damage to the sensory epithelium. KEY POINTS: Age-related hearing loss is associated with lower hearing sensitivity and decreased ability to understand speech. We investigated age-related changes in the expression and function of metabotropic purinergic (P2Y) receptors in cochlear non-sensory supporting cells of mice displaying early-onset (C57BL/6N) and late-onset (C3H/HeJ) hearing loss. The expression of P2Y1 , P2Y2 and P2Y4 receptors in the supporting cells decreased during cochlear maturation, but that of P2Y2 and P2Y4 was upregulated in the aged cochlea. P2Y2 and P2Y4 receptors were primarily responsible for the ATP-induced Ca2+ responses in the supporting cells. The degree of purinergic expression upregulation in aged supporting cells mirrored hearing loss progression in the different mouse strains. We propose that the upregulation of purinergic-mediated signalling in the aged cochlea is subsequent to age-related changes in the hair cells and may act as a protective mechanism to limit or to avoid further damage to the sensory epithelium.
Collapse
Affiliation(s)
- Sarah A. Hool
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Jing‐Yi Jeng
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | - Walter Marcotti
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | | |
Collapse
|
4
|
Liu W, Ming S, Zhao X, Zhu X, Gong Y. Developmental expression of high-mobility group box 1 (HMGB1) in the mouse cochlea. Eur J Histochem 2023; 67:3704. [PMID: 37667832 PMCID: PMC10518653 DOI: 10.4081/ejh.2023.3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
The expression changes of high-mobility group box 1 (HMGB1) in the mouse cochlea have recently been implicated in noise-induced hearing loss, suggesting that HMGB1 participates in regulating cochlear function. However, the precise role of HMGB1 in the auditory system remains largely unclear. This study aimed to investigate its function in the developing mouse cochlea by examining the expression pattern of HMGB1 in the mouse cochlea from embryonic day (E) 18.5 to postnatal day (P) 28 using double immunofluorescence on frozen sections. Our findings revealed that HMGB1 was extensively expressed in the cell nucleus across various regions of the mouse cochlea, including the organ of Corti. Furthermore, its expression underwent developmental regulation during mouse cochlear development. Specifically, HMGB1 was found to be localized in the tympanic border cells at each developmental stage, coinciding with the gradual anatomical in this region during development. In addition, HMGB1 was expressed in the greater epithelial ridge (GER) and supporting cells of the organ of Corti, as validated by the supporting cell marker Sox2 at P1 and P8. However, at P14, the expression of HMGB1 disappeared from the GER, coinciding with the degeneration of the GER into the inner sulcus cells. Moreover, we observed that HMGB1 co-localized with Ki-67-positive proliferating cells in several cochlear regions during late embryonic and early postnatal stages, including the GER, the tympanic border cells, cochlear lateral wall, and cochlear nerves. Furthermore, by dual-staining Ki-67 with neuronal marker TUJ1 and glial marker Sox10, we determined the expression of Ki-67 in the neonatal glial cells. Our spatial-temporal analysis demonstrated that HMGB1 exhibited distinct expression patterns during mouse cochlear development. The co-localization of HMGB1 with Ki-67-positive proliferating cells suggested that HMGB1 may play a role in cochlear development.
Collapse
Affiliation(s)
- Wenjing Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing.
| | - Shanshan Ming
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing.
| | - Xiaobing Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing.
| | - Xin Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing.
| | - Yuxiang Gong
- Department of Nephrology, Zhongda Hospital, Southeast University, Nanjing.
| |
Collapse
|
5
|
Vélez-Ortega AC, Stepanyan R, Edelmann SE, Torres-Gallego S, Park C, Marinkova DA, Nowacki JS, Sinha GP, Frolenkov GI. TRPA1 activation in non-sensory supporting cells contributes to regulation of cochlear sensitivity after acoustic trauma. Nat Commun 2023; 14:3871. [PMID: 37391431 PMCID: PMC10313773 DOI: 10.1038/s41467-023-39589-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 06/13/2023] [Indexed: 07/02/2023] Open
Abstract
TRPA1 channels are expressed in nociceptive neurons, where they detect noxious stimuli, and in the mammalian cochlea, where their function is unknown. Here we show that TRPA1 activation in the supporting non-sensory Hensen's cells of the mouse cochlea causes prolonged Ca2+ responses, which propagate across the organ of Corti and cause long-lasting contractions of pillar and Deiters' cells. Caged Ca2+ experiments demonstrated that, similar to Deiters' cells, pillar cells also possess Ca2+-dependent contractile machinery. TRPA1 channels are activated by endogenous products of oxidative stress and extracellular ATP. Since both these stimuli are present in vivo after acoustic trauma, TRPA1 activation after noise may affect cochlear sensitivity through supporting cell contractions. Consistently, TRPA1 deficiency results in larger but less prolonged noise-induced temporary shift of hearing thresholds, accompanied by permanent changes of latency of the auditory brainstem responses. We conclude that TRPA1 contributes to the regulation of cochlear sensitivity after acoustic trauma.
Collapse
Affiliation(s)
- A Catalina Vélez-Ortega
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA.
| | - Ruben Stepanyan
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Stephanie E Edelmann
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Sara Torres-Gallego
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Channy Park
- Department of Head & Neck Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Desislava A Marinkova
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Joshua S Nowacki
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Ghanshyam P Sinha
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Gregory I Frolenkov
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
6
|
Wang Y, Jin Y, Zhang Q, Xiong Y, Gu X, Zeng S, Chen W. Research progress in delineating the pathological mechanisms of GJB2-related hearing loss. Front Cell Neurosci 2023; 17:1208406. [PMID: 37333892 PMCID: PMC10272732 DOI: 10.3389/fncel.2023.1208406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Hearing loss is the most common congenital sensory impairment. Mutations or deficiencies of the GJB2 gene are the most common genetic cause of congenital non-syndromic deafness. Pathological changes such as decreased potential in the cochlea, active cochlear amplification disorders, cochlear developmental disorders and macrophage activation have been observed in various GJB2 transgenic mouse models. In the past, researchers generally believed that the pathological mechanisms underlying GJB2-related hearing loss comprised a K+ circulation defect and abnormal ATP-Ca2+ signals. However, recent studies have shown that K+ circulation is rarely associated with the pathological process of GJB2-related hearing loss, while cochlear developmental disorders and oxidative stress play an important, even critical, role in the occurrence of GJB2-related hearing loss. Nevertheless, these research has not been systematically summarized. In this review, we summarize the pathological mechanisms of GJB2-related hearing loss, including aspects of K+ circulation, developmental disorders of the organ of Corti, nutrition delivery, oxidative stress and ATP-Ca2+ signals. Clarifying the pathological mechanism of GJB2-related hearing loss can help develop new prevention and treatment strategies.
Collapse
Affiliation(s)
- Yujun Wang
- Department of Intensive Care Unit, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Jin
- Department of Otorhinolaryngology–Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhang
- Department of Otorhinolaryngology–Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xiong
- Department of Otorhinolaryngology–Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Gu
- Department of Otorhinolaryngology–Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Zeng
- Department of Otorhinolaryngology–Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Chen
- Department of Otorhinolaryngology–Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Vlajkovic SM, Thorne PR. Purinergic Signalling in the Cochlea. Int J Mol Sci 2022; 23:ijms232314874. [PMID: 36499200 PMCID: PMC9741428 DOI: 10.3390/ijms232314874] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
The mammalian cochlea is the sensory organ of hearing with a delicate, highly organised structure that supports unique operating mechanisms. ATP release from the secretory tissues of the cochlear lateral wall (stria vascularis) triggers numerous physiological responses by activating P2 receptors in sensory, supporting and neural tissues. Two families of P2 receptors, ATP-gated ion channels (P2X receptors) and G protein-coupled P2Y receptors, activate intracellular signalling pathways that regulate cochlear development, homeostasis, sensory transduction, auditory neurotransmission and response to stress. Of particular interest is a purinergic hearing adaptation, which reflects the critical role of the P2X2 receptor in adaptive cochlear response to elevated sound levels. Other P2 receptors are involved in the maturation of neural processes and frequency selectivity refinement in the developing cochlea. Extracellular ATP signalling is regulated by a family of surface-located enzymes collectively known as "ectonucleotidases" that hydrolyse ATP to adenosine. Adenosine is a constitutive cell metabolite with an established role in tissue protection and regeneration. The differential activation of A1 and A2A adenosine receptors defines the cochlear response to injury caused by oxidative stress, inflammation, and activation of apoptotic pathways. A1 receptor agonism, A2A receptor antagonism, and increasing adenosine levels in cochlear fluids all represent promising therapeutic tools for cochlear rescue from injury and prevention of hearing loss.
Collapse
Affiliation(s)
- Srdjan M. Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Correspondence: ; Tel.: +64-9-9239782
| | - Peter R. Thorne
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Section of Audiology, School of Population Health, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
8
|
Ma X, Guo J, Fu Y, Shen C, Jiang P, Zhang Y, Zhang L, Yu Y, Fan J, Chai R. G protein-coupled receptors in cochlea: Potential therapeutic targets for hearing loss. Front Mol Neurosci 2022; 15:1028125. [PMID: 36311029 PMCID: PMC9596917 DOI: 10.3389/fnmol.2022.1028125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
The prevalence of hearing loss-related diseases caused by different factors is increasing worldwide year by year. Currently, however, the patient’s hearing loss has not been effectively improved. Therefore, there is an urgent need to adopt new treatment measures and treatment techniques to help improve the therapeutic effect of hearing loss. G protein-coupled receptors (GPCRs), as crucial cell surface receptors, can widely participate in different physiological and pathological processes, particularly play an essential role in many disease occurrences and be served as promising therapeutic targets. However, no specific drugs on the market have been found to target the GPCRs of the cochlea. Interestingly, many recent studies have demonstrated that GPCRs can participate in various pathogenic process related to hearing loss in the cochlea including heredity, noise, ototoxic drugs, cochlear structure, and so on. In this review, we comprehensively summarize the functions of 53 GPCRs known in the cochlea and their relationships with hearing loss, and highlight the recent advances of new techniques used in cochlear study including cryo-EM, AI, GPCR drug screening, gene therapy vectors, and CRISPR editing technology, as well as discuss in depth the future direction of novel GPCR-based drug development and gene therapy for cochlear hearing loss. Collectively, this review is to facilitate basic and (pre-) clinical research in this area, and provide beneficial help for emerging GPCR-based cochlear therapies.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Jiamin Guo
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yaoyang Fu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cangsong Shen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Jiang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yuan Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Lei Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yafeng Yu
- First Affiliated Hospital of Soochow University, Soochow, China
- *Correspondence: Yafeng Yu,
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Jiangang Fan,
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Renjie Chai,
| |
Collapse
|
9
|
Zhang Z, Chai R. Hear the sounds: The role of G Protein-Coupled Receptors in the cochlea. Am J Physiol Cell Physiol 2022; 323:C1088-C1099. [PMID: 35938679 DOI: 10.1152/ajpcell.00453.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sound is converted by hair cells in the cochlea into electrical signals, which are transmitted by spiral ganglion neurons (SGNs) and heard by the auditory cortex. G protein-coupled receptors (GPCRs) are crucial receptors that regulate a wide range of physiological functions in different organ and tissues. The research of GPCRs in the cochlea is essential for the understanding of the cochlea development, hearing disorders, and the treatment for hearing loss. Recently, several GPCRs have been found to play important roles in the cochlea. Frizzleds and Lgrs are dominant GPCRs that regulate stem cell self-renew abilities. Moreover, Frizzleds and Celsrs have been demonstrated to play core roles in the modulation of cochlear planar cell polarity (PCP). In addition, hearing loss can be caused by mutations of certain GPCRs, such as Vlgr1, Gpr156, S1P2 and Gpr126. And A1, A2A and CB2 activation by agonists have protective functions on noise- or drug-induced hearing loss. Here, we review the key findings of GPCR in the cochlea, and discuss the role of GPCR in the cochlea, such as stem cell fate, PCP, hearing loss, and hearing protection.
Collapse
Affiliation(s)
- Zhong Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Liu W, Chen H, Zhu X, Yu H. Expression of Calbindin-D28K in the Developing and Adult Mouse Cochlea. J Histochem Cytochem 2022; 70:583-596. [PMID: 35975307 PMCID: PMC9393511 DOI: 10.1369/00221554221119543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Herein, we aimed to use double-labeling immunofluorescence to describe the expression pattern of Calbindin-D28K (CaBP28K) in the mouse cochlea from late embryonic (E) stages to the adulthood. CaBP28K was expressed in the inner hair cells (IHCs) and the greater epithelial ridge (GER) at E17. In addition, its expression was observed in the interdental cells. On postnatal day 1 (P1), CaBP28K immunoreactivity was observed in the IHCs and outer hair cells (OHCs) and was also specifically expressed in the nucleus and the cytoplasm of spiral ganglion neurons (SGNs). At P8, CaBP28K labeling disappeared from the interdental cells, and the CaBP28K-positive domain within the GER shifted from the entire cytoplasm to only the apical and basal regions. At P14, CaBP28K immunoreactivity was lost from the GER; however, its expression in the IHCs and OHCs, as well as the SGNs, persisted into adulthood. The identification of CaBP28K in the hair cells (HCs) and cuticular plates, as well as SGNs, was confirmed by its colocalization with several markers for Sox2, Myosin VIIa, Phalloidin, and Tuj1. We also detected colocalization with calmodulin in the cytoplasm of both HCs and SGNs. Western blot revealed an increase in CaBP28K postnatal expression in the mouse cochlea.
Collapse
Affiliation(s)
- Wenjing Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Huijun Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xin Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Hao Yu
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| |
Collapse
|
11
|
Jang MW, Lim J, Park MG, Lee JH, Lee CJ. Active role of glia-like supporting cells in the organ of Corti: Membrane proteins and their roles in hearing. Glia 2022; 70:1799-1825. [PMID: 35713516 DOI: 10.1002/glia.24229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022]
Abstract
The organ of Corti, located in the cochlea in the inner ear, is one of the major sensory organs involved in hearing. The organ of Corti consists of hair cells, glia-like supporting cells, and the cochlear nerve, which work in harmony to receive sound from the outer ear and transmit auditory signals to the cochlear nucleus in the auditory ascending pathway. In this process, maintenance of the endocochlear potential, with a high potassium gradient and clearance of electrolytes and biochemicals in the inner ear, is critical for normal sound transduction. There is an emerging need for a thorough understanding of each cell type involved in this process to understand the sophisticated mechanisms of the organ of Corti. Hair cells have long been thought to be active, playing a primary role in the cochlea in actively detecting and transmitting signals. In contrast, supporting cells are thought to be silent and function to support hair cells. However, growing lines of evidence regarding the membrane proteins that mediate ionic movement in supporting cells have demonstrated that supporting cells are not silent, but actively play important roles in normal signal transduction. In this review, we summarize studies that characterize diverse membrane proteins according to the supporting cell subtypes involved in cochlear physiology and hearing. This review contributes to a better understanding of supporting cell functions and facilitates the development of potential therapeutic tools for hearing loss.
Collapse
Affiliation(s)
- Minwoo Wendy Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
12
|
Kitcher SR, Pederson AM, Weisz CJC. Diverse identities and sites of action of cochlear neurotransmitters. Hear Res 2021; 419:108278. [PMID: 34108087 DOI: 10.1016/j.heares.2021.108278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022]
Abstract
Accurate encoding of acoustic stimuli requires temporally precise responses to sound integrated with cellular mechanisms that encode the complexity of stimuli over varying timescales and orders of magnitude of intensity. Sound in mammals is initially encoded in the cochlea, the peripheral hearing organ, which contains functionally specialized cells (including hair cells, afferent and efferent neurons, and a multitude of supporting cells) to allow faithful acoustic perception. To accomplish the demanding physiological requirements of hearing, the cochlea has developed synaptic arrangements that operate over different timescales, with varied strengths, and with the ability to adjust function in dynamic hearing conditions. Multiple neurotransmitters interact to support the precision and complexity of hearing. Here, we review the location of release, action, and function of neurotransmitters in the mammalian cochlea with an emphasis on recent work describing the complexity of signaling.
Collapse
Affiliation(s)
- Siân R Kitcher
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Alia M Pederson
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
13
|
Functional P2X 7 Receptors in the Auditory Nerve of Hearing Rodents Localize Exclusively to Peripheral Glia. J Neurosci 2021; 41:2615-2629. [PMID: 33563723 DOI: 10.1523/jneurosci.2240-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/03/2020] [Accepted: 01/09/2021] [Indexed: 11/21/2022] Open
Abstract
P2X7 receptors (P2X7Rs) are associated with numerous pathophysiological mechanisms, and this promotes them as therapeutic targets for certain neurodegenerative conditions. However, the identity of P2X7R-expressing cells in the nervous system remains contentious. Here, we examined P2X7R functionality in auditory nerve cells from rodents of either sex, and determined their functional and anatomic expression pattern. In whole-cell recordings from rat spiral ganglion cultures, the purinergic agonist 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP) activated desensitizing currents in spiral ganglion neurons (SGNs) but non-desensitizing currents in glia that were blocked by P2X7R-specific antagonists. In imaging experiments, BzATP gated sustained Ca2+ entry into glial cells. BzATP-gated uptake of the fluorescent dye YO-PRO-1 was reduced and slowed by P2X7R-specific antagonists. In rats, P2X7Rs were immuno-localized predominantly within satellite glial cells (SGCs) and Schwann cells (SCs). P2X7R expression was not detected in the portion of the auditory nerve within the central nervous system. Mouse models allowed further exploration of the distribution of cochlear P2X7Rs. In GENSAT reporter mice, EGFP expression driven via the P2rx7 promoter was evident in SGCs and SCs but was undetectable in SGNs. A second transgenic model showed a comparable cellular distribution of EGFP-tagged P2X7Rs. In wild-type mice the discrete glial expression was confirmed using a P2X7-specific nanobody construct. Our study shows that P2X7Rs are expressed by peripheral glial cells, rather than by afferent neurons. Description of functional signatures and cellular distributions of these enigmatic proteins in the peripheral nervous system (PNS) will help our understanding of ATP-dependent effects contributing to hearing loss and other sensory neuropathies.SIGNIFICANCE STATEMENT P2X7 receptors (P2X7Rs) have been the subject of much scrutiny in recent years. They have been promoted as therapeutic targets in a number of diseases of the nervous system, yet the specific cellular location of these receptors remains the subject of intense debate. In the auditory nerve, connecting the inner ear to the brainstem, we show these multimodal ATP-gated channels localize exclusively to peripheral glial cells rather than the sensory neurons, and are not evident in central glia. Physiologic responses in the peripheral glia display classical hallmarks of P2X7R activation, including the formation of ion-permeable and also macromolecule-permeable pores. These qualities suggest these proteins could contribute to glial-mediated inflammatory processes in the auditory periphery under pathologic disease states.
Collapse
|
14
|
Purinergic Signaling Controls Spontaneous Activity in the Auditory System throughout Early Development. J Neurosci 2020; 41:594-612. [PMID: 33303678 DOI: 10.1523/jneurosci.2178-20.2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Spontaneous bursts of electrical activity in the developing auditory system arise within the cochlea before hearing onset and propagate through future sound-processing circuits of the brain to promote maturation of auditory neurons. Studies in isolated cochleae revealed that this intrinsically generated activity is initiated by ATP release from inner supporting cells (ISCs), resulting in activation of purinergic autoreceptors, K+ efflux, and subsequent depolarization of inner hair cells. However, it is unknown when this activity emerges or whether different mechanisms induce activity during distinct stages of development. Here we show that spontaneous electrical activity in mouse cochlea from both sexes emerges within ISCs during the late embryonic period, preceding the onset of spontaneous correlated activity in inner hair cells and spiral ganglion neurons, which begins at birth and follows a base to apex developmental gradient. At all developmental ages, pharmacological inhibition of P2Y1 purinergic receptors dramatically reduced spontaneous activity in these three cell types. Moreover, in vivo imaging within the inferior colliculus revealed that auditory neurons within future isofrequency zones exhibit coordinated neural activity at birth. The frequency of these discrete bursts increased progressively during the postnatal prehearing period yet remained dependent on P2RY1. Analysis of mice with disrupted cholinergic signaling in the cochlea indicate that this efferent input modulates, rather than initiates, spontaneous activity before hearing onset. Thus, the auditory system uses a consistent mechanism involving ATP release from ISCs and activation of P2RY1 autoreceptors to elicit coordinated excitation of neurons that will process similar frequencies of sound.SIGNIFICANCE STATEMENT In developing sensory systems, groups of neurons that will process information from similar sensory space exhibit highly correlated electrical activity that is critical for proper maturation and circuit refinement. Defining the period when this activity is present, the mechanisms responsible and the features of this activity are crucial for understanding how spontaneous activity influences circuit development. We show that, from birth to hearing onset, the auditory system relies on a consistent mechanism to elicit correlate firing of neurons that will process similar frequencies of sound. Targeted disruption of this activity will increase our understanding of how these early circuits mature and may provide insight into processes responsible for developmental disorders of the auditory system.
Collapse
|
15
|
Jovanovic S, Milenkovic I. Purinergic Modulation of Activity in the Developing Auditory Pathway. Neurosci Bull 2020; 36:1285-1298. [PMID: 33040238 DOI: 10.1007/s12264-020-00586-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Purinergic P2 receptors, activated by endogenous ATP, are prominently expressed on neuronal and non-neuronal cells during development of the auditory periphery and central auditory neurons. In the mature cochlea, extracellular ATP contributes to ion homeostasis, and has a protective function against noise exposure. Here, we focus on the modulation of activity by extracellular ATP during early postnatal development of the lower auditory pathway. In mammals, spontaneous patterned activity is conveyed along afferent auditory pathways before the onset of acoustically evoked signal processing. During this critical developmental period, inner hair cells fire bursts of action potentials that are believed to provide a developmental code for synaptic maturation and refinement of auditory circuits, thereby establishing a precise tonotopic organization. Endogenous ATP-release triggers such patterned activity by raising the extracellular K+ concentration and contributes to firing by increasing the excitability of auditory nerve fibers, spiral ganglion neurons, and specific neuron types within the auditory brainstem, through the activation of diverse P2 receptors. We review recent studies that provide new models on the contribution of purinergic signaling to early development of the afferent auditory pathway. Further, we discuss potential future directions of purinergic research in the auditory system.
Collapse
Affiliation(s)
- Sasa Jovanovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Ivan Milenkovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
16
|
Schade-Mann T, Münkner S, Eckrich T, Engel J. Calcium signaling in interdental cells during the critical developmental period of the mouse cochlea. Hear Res 2020; 389:107913. [PMID: 32120242 DOI: 10.1016/j.heares.2020.107913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 11/18/2022]
Abstract
The tectorial membrane (TM), a complex acellular structure that covers part of the organ of Corti and excites outer hair cells, is required for normal hearing. It consists of collagen fibrils and various glycoproteins, which are synthesized in embryonic and postnatal development by different cochlear cell types including the interdental cells (IDCs). At its modiolar side, the TM is fixed to the apical surfaces of IDCs, which form the covering epithelium of the spiral limbus. We performed confocal membrane imaging and Ca2+ imaging in IDCs of the developing mouse cochlea from birth to postnatal day 18 (P18). Using the fluorescent membrane markers FM 4-64 and CellMask™ Deep Red on explanted whole-mount cochlear epithelium, we identified the morphology of IDCs at different z-levels of the spiral limbus. Ca2+ imaging of Fluo-8 AM-loaded cochlear epithelia revealed spontaneous intracellular Ca2+ transients in IDCs at P0/1, P4/5, and P18. Their relative frequency was lowest on P0/1, increased by a factor of 12.5 on P4/5 and decreased to twice the initial value on P18. At all three ages, stimulation of IDCs with the trinucleotides ATP and UTP at 1 and 10 μM elicited Ca2+ transients of varying amplitude and shape. Before the onset of hearing, IDCs responded with robust Ca2+ oscillations. At P18, after the onset of hearing, ATP stimulation either caused Ca2+ oscillations or an initial Ca2+ peak followed by a plateau while the UTP response was unchanged from that at pre-hearing stage. Parameters of spontaneous and nucleotide-evoked Ca2+ transients such as amplitude, decay time and duration were markedly reduced during cochlear development, whereas the kinetics of the Ca2+ rise did not show relevant changes. Whether low-frequency spontaneous Ca2+ transients are necessary for the formation and maintenance of the tectorial membrane e.g. by regulating gene transcription needs to be elucidated in further studies.
Collapse
Affiliation(s)
- Thore Schade-Mann
- Dept. of Biophysics & CIPMM, Hearing Research, Saarland University, Homburg, Germany; Department of Otolaryngology, Head and Neck Surgery, Tübingen University Medical Centre, Germany
| | - Stefan Münkner
- Dept. of Biophysics & CIPMM, Hearing Research, Saarland University, Homburg, Germany
| | - Tobias Eckrich
- Dept. of Biophysics & CIPMM, Hearing Research, Saarland University, Homburg, Germany
| | - Jutta Engel
- Dept. of Biophysics & CIPMM, Hearing Research, Saarland University, Homburg, Germany.
| |
Collapse
|
17
|
Babola TA, Kersbergen CJ, Wang HC, Bergles DE. Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space. eLife 2020; 9:e52160. [PMID: 31913121 PMCID: PMC7015667 DOI: 10.7554/elife.52160] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/07/2020] [Indexed: 11/13/2022] Open
Abstract
Neurons in developing sensory pathways exhibit spontaneous bursts of electrical activity that are critical for survival, maturation and circuit refinement. In the auditory system, intrinsically generated activity arises within the cochlea, but the molecular mechanisms that initiate this activity remain poorly understood. We show that burst firing of mouse inner hair cells prior to hearing onset requires P2RY1 autoreceptors expressed by inner supporting cells. P2RY1 activation triggers K+ efflux and depolarization of hair cells, as well as osmotic shrinkage of supporting cells that dramatically increased the extracellular space and speed of K+ redistribution. Pharmacological inhibition or genetic disruption of P2RY1 suppressed neuronal burst firing by reducing K+ release, but unexpectedly enhanced their tonic firing, as water resorption by supporting cells reduced the extracellular space, leading to K+ accumulation. These studies indicate that purinergic signaling in supporting cells regulates hair cell excitability by controlling the volume of the extracellular space.
Collapse
Affiliation(s)
- Travis A Babola
- The Solomon Snyder Department of NeuroscienceJohns Hopkins UniversityBaltimoreUnited States
| | - Calvin J Kersbergen
- The Solomon Snyder Department of NeuroscienceJohns Hopkins UniversityBaltimoreUnited States
| | - Han Chin Wang
- The Solomon Snyder Department of NeuroscienceJohns Hopkins UniversityBaltimoreUnited States
| | - Dwight E Bergles
- The Solomon Snyder Department of NeuroscienceJohns Hopkins UniversityBaltimoreUnited States
- Department of Otolaryngology Head and Neck SurgeryJohns Hopkins UniversityBaltimoreUnited States
- Kavli Neuroscience Discovery InstituteJohns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
18
|
Berekméri E, Fekete Á, Köles L, Zelles T. Postnatal Development of the Subcellular Structures and Purinergic Signaling of Deiters' Cells along the Tonotopic Axis of the Cochlea. Cells 2019; 8:cells8101266. [PMID: 31627326 PMCID: PMC6830339 DOI: 10.3390/cells8101266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 01/04/2023] Open
Abstract
Exploring the development of the hearing organ helps in the understanding of hearing and hearing impairments and it promotes the development of the regenerative approaches-based therapeutic efforts. The role of supporting cells in the development of the organ of Corti is much less elucidated than that of the cochlear sensory receptor cells. The use of our recently published method of single-cell electroporation loading of a fluorescent Ca2+ probe in the mouse hemicochlea preparation provided an appropriate means to investigate the Deiters’ cells at the subcellular level in two different cochlear turns (apical, middle). Deiters’ cell’s soma and process elongated, and the process became slimmer by maturation without tonotopic preference. The tonotopically heterogeneous spontaneous Ca2+ activity less frequently occurred by maturation and implied subcellular difference. The exogenous ATP- and UTP-evoked Ca2+ responses were maturation-dependent and showed P2Y receptor dominance in the apical turn. By monitoring the basic structural dimensions of this supporting cell type as well as its spontaneous and evoked purinergic Ca2+ signaling in the hemicochlea preparation in different stages in the critical postnatal P5-25 developmental period for the first time, we showed that the soma and the phalangeal process of the Deiters’ cells go through age- and tonotopy-dependent changes in the morphometric parameters and purinergic signaling.
Collapse
Affiliation(s)
- Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary.
- Department of Ecology, University of Veterinary Medicine, Rottenbiller u. 50., 1077 Budapest, Hungary.
| | - Ádám Fekete
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada.
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary.
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary.
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43., 1083 Budapest, Hungary.
| |
Collapse
|
19
|
Köles L, Szepesy J, Berekméri E, Zelles T. Purinergic Signaling and Cochlear Injury-Targeting the Immune System? Int J Mol Sci 2019; 20:ijms20122979. [PMID: 31216722 PMCID: PMC6627352 DOI: 10.3390/ijms20122979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Hearing impairment is the most common sensory deficit, affecting more than 400 million people worldwide. Sensorineural hearing losses currently lack any specific or efficient pharmacotherapy largely due to the insufficient knowledge of the pathomechanism. Purinergic signaling plays a substantial role in cochlear (patho)physiology. P2 (ionotropic P2X and the metabotropic P2Y) as well as adenosine receptors expressed on cochlear sensory and non-sensory cells are involved mostly in protective mechanisms of the cochlea. They are implicated in the sensitivity adjustment of the receptor cells by a K+ shunt and can attenuate the cochlear amplification by modifying cochlear micromechanics. Cochlear blood flow is also regulated by purines. Here, we propose to comprehend this field with the purine-immune interactions in the cochlea. The role of harmful immune mechanisms in sensorineural hearing losses has been emerging in the horizon of cochlear pathologies. In addition to decreasing hearing sensitivity and increasing cochlear blood supply, influencing the immune system can be the additional avenue for pharmacological targeting of purinergic signaling in the cochlea. Elucidating this complexity of purinergic effects on cochlear functions is necessary and it can result in development of new therapeutic approaches in hearing disabilities, especially in the noise-induced ones.
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Ecology, University of Veterinary Medicine, H-1078 Budapest, Hungary.
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary.
| |
Collapse
|
20
|
Lin SCY, Thorne PR, Housley GD, Vlajkovic SM. Purinergic Signaling and Aminoglycoside Ototoxicity: The Opposing Roles of P1 (Adenosine) and P2 (ATP) Receptors on Cochlear Hair Cell Survival. Front Cell Neurosci 2019; 13:207. [PMID: 31156393 PMCID: PMC6529511 DOI: 10.3389/fncel.2019.00207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/24/2019] [Indexed: 01/12/2023] Open
Abstract
Purinergic signaling regulates important physiological processes and the homeostatic response to stress in the cochlea via extracellular nucleosides (adenosine) and nucleotides (ATP, UTP). Using a previously established organotypic culture model, the current study investigated the effect of purinergic P1 (adenosine) and P2 (ATP) receptor activation on the survival of the sensory hair cell population in the cochlea exposed to the ototoxic aminoglycoside neomycin. Organ of Corti explants were obtained from C57BL/6 mice at postnatal day 3 (P3) and maintained in normal culture medium (with or without purine receptor agonists or analogs) for 19.5 h prior to neomycin exposure (1 mM, 3 h) followed by a further incubation for 19.5 h in culture medium. The cochlear explants were then fixed in 4% paraformaldehyde (PFA) and sensory hair cells labeled with Alexa 488-phalloidin. Neomycin induced a substantial loss of the sensory hair cells, mostly in the middle segment of the cochlea. This neomycin-induced ototoxicity was unaffected by the addition of P2 receptor agonists (ATP and UTP) in the culture medium, whilst the addition of their slowly-hydrolyzable analogs (ATPγS, UTPγS) aggravated neomycin-induced sensory hair cell loss. In contrast, the activation of P1 receptors by adenosine or adenosine amine congener (ADAC) conferred partial protection from neomycin ototoxicity. This study demonstrates a pro-survival effect of P1 receptor stimulation, whilst prolonged activation of P2 receptors has an opposite effect. Based on these findings, we postulate that P1 and P2 receptors orchestrate differential responses to cochlear injury and that the balance of these receptors is important for maintaining cochlear homeostasis following ototoxic injury.
Collapse
Affiliation(s)
- Shelly C Y Lin
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Peter R Thorne
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Gary D Housley
- Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Srdjan M Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Berekméri E, Szepesy J, Köles L, Zelles T. Purinergic signaling in the organ of Corti: Potential therapeutic targets of sensorineural hearing losses. Brain Res Bull 2019; 151:109-118. [PMID: 30721767 DOI: 10.1016/j.brainresbull.2019.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/10/2019] [Accepted: 01/25/2019] [Indexed: 01/04/2023]
Abstract
Purinergic signaling is deeply involved in the development, functions and protective mechanisms of the cochlea. Release of ATP and activation of purinergic receptors on sensory and supporting/epithelial cells play a substantial role in cochlear (patho)physiology. Both the ionotropic P2X and the metabotropic P2Y receptors are widely distributed on the inner and outer hair cells as well as on the different supporting cells in the organ of Corti and on other epithelial cells in the scala media. Among others, they are implicated in the sensitivity adjustment of the receptor cells by a K+ shunt and can attenuate the cochlear amplification by modifying cochlear micromechanics acting on outer hair cells and supporting cells. Cochlear blood flow is also regulated by purines. Sensorineural hearing losses currently lack any specific or efficient pharmacotherapy. Decreasing hearing sensitivity and increasing cochlear blood supply by pharmacological targeting of purinergic signaling in the cochlea are potential new therapeutic approaches in these hearing disabilities, especially in the noise-induced ones.
Collapse
Affiliation(s)
- Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
22
|
Sirko P, Gale JE, Ashmore JF. Intercellular Ca 2+ signalling in the adult mouse cochlea. J Physiol 2018; 597:303-317. [PMID: 30318615 PMCID: PMC6312409 DOI: 10.1113/jp276400] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/12/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Intercellular Ca2+ waves are increases in cytoplasmic Ca2+ levels that propagate between cells. Periodic Ca2+ waves have been linked to gene regulation and are thought to play a crucial role in the development of our hearing epithelium, the organ of Corti and the acquisition of hearing. We observed regular periodic intercellular Ca2+ waves in supporting cells of an ex vivo preparation of the adult mouse organ of Corti, and these waves were found to propagate independently of extracellular ATP and were inhibited by the gap junction blockers 1-octanol and carbenoxolone. Our results establish that the existence of periodic Ca2+ waves in the organ of Corti is not restricted to the prehearing period. ABSTRACT We have investigated wave-like cytoplasmic calcium (Ca2+ ) signalling in an ex vivo preparation of the adult mouse organ of Corti. Two types of intercellular Ca2+ waves that differ in propagation distance and speed were observed. One type was observed to travel up to 100 μm with an average velocity of 7 μm/s. Such waves were initiated by local tissue damage in the outer hair cell region. The propagation distance was decreased when the purinergic receptor antagonists pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS; 50 μm) or suramin (150 μm) were added to the extracellular buffer. Immunocytochemical analysis and experiments with calcium indicator dyes showed that both P2X and P2Y receptors were present in supporting cells. A second class of waves identified to travel longitudinally along the organ of Corti propagated at a lower velocity of 1-3 μm/s. These 'slow' Ca2+ waves were particularly evident in the inner sulcus and Deiters' cells. They travelled for distances of up to 500 μm. The slow Ca2+ signalling varied periodically (approximately one wave every 10 min) and was maintained for more than 3 h. The slow waves were not affected by apyrase, or by the P2 receptor agonists suramin (150 μm) or PPADS (50 μm) but were blocked by the connexin channel blockers octanol (1 mm) and carbenoxolone (100 μm). It is proposed that the observed Ca2+ waves might be a physiological response to a change in extracellular environment and may be involved in critical gene regulation activities in the supporting cells of the cochlea.
Collapse
Affiliation(s)
- Piotr Sirko
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Jonathan E Gale
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.,Department of Cell & Developmental Biology, UCL, Gower St., London, WC1E 6BT, UK
| | - Jonathan F Ashmore
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.,Department of Neuroscience, Physiology & Pharmacology, UCL, Gower St., London, WC1E 6BT, UK
| |
Collapse
|
23
|
Liu B, Cao W, Li J, Liu J. Lysosomal exocytosis of ATP is coupled to P2Y 2 receptor in marginal cells in the stria vascular in neonatal rats. Cell Calcium 2018; 76:62-71. [PMID: 30273839 DOI: 10.1016/j.ceca.2018.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/09/2018] [Accepted: 09/20/2018] [Indexed: 01/06/2023]
Abstract
Adenosine triphosphate (ATP) is stored as lysosomal vesicles in marginal cells of the stria vascular in neonatal rats, but the mechanisms of ATP release are unclear. Primary cultures of marginal cells from 1-day-old Sprague-Dawley rats were established. P2Y2 receptor and inositol 1,4,5-trisphosphate (IP3) receptor were immunolabelled in marginal cells of the stria vascular. We found that 30 μM ATP and 30 μM uridine triphosphate (UTP) evoked comparable significant increases in the intracellular Ca2+ concentration ([Ca2+]i) in the absence of extracellular Ca2+, whereas the response was suppressed by 100 μM suramin, 10 μM 1-(6-(17β-3-methoxyester-1,3,5(10)-trien-17-yl)amino)-hexyl)-1H-pyrrole-2,5-dione(U-73122), 100 μM 2-aminoethoxydiphenyl borate (2-APB) and 5 μM thapsigargin (TG), thus indicating that ATP coupled with the P2Y2R-PLC-IP3 pathway to evoke Ca2+ release from the endoplasmic reticulum (ER). Incubation with 200 μM Gly-Phe-β-naphthylamide (GPN) selectively disrupted lysosomes and caused significant increases in [Ca2+]I; this effect was partly inhibited by P2Y2R-PLC-IP3 pathway antagonists. After pre-treatment with 5 μM TG, [Ca2+]i was significantly lower than that after treatment with P2Y2R-PLC-IP3 pathway antagonists under the same conditions, thus indicating that lysosomal Ca2+ triggers Ca2+ release from ER Ca2+ stores. Baseline [Ca2+]i declined after treatment with the Ca2+ chelator 50 μM bis-(aminophenolxy) ethane-N,N,N',N'-tetra-acetic acid acetoxyme-thyl ester (BAPTA-AM) and 4 IU/ml apyrase. 30 μM ATP decrease of the number of quinacrine-positive vesicles via lysosome exocytosis, whereas the number of lysosomes did not change. However, lysosome exocytosis was significantly suppressed by pre-treatment with 5 μM vacuolin-1. Release of ATP and β-hexosaminidase both increased after treatment with 200 μM GPN and 5 μM TG, but decreased after incubation with 50 μM BAPTA-AM, 4 IU/ml apyrase and 5 μM vacuolin-1. We suggest that ATP triggers Ca2+ release from the ER, thereby contributing to secretion of lysosomal ATP via lysosomal exocytosis. Lysosomal stored Ca2+ triggers Ca2+ release from the ER directly though the IP3 receptors, and lysosomal ATP evokes Ca2+ signals indirectly via the P2Y2R-PLC-IP3 pathway.
Collapse
Affiliation(s)
- Bin Liu
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wanxin Cao
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiping Li
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Jun Liu
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
24
|
Eckrich T, Blum K, Milenkovic I, Engel J. Fast Ca 2+ Transients of Inner Hair Cells Arise Coupled and Uncoupled to Ca 2+ Waves of Inner Supporting Cells in the Developing Mouse Cochlea. Front Mol Neurosci 2018; 11:264. [PMID: 30104958 PMCID: PMC6077211 DOI: 10.3389/fnmol.2018.00264] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/12/2018] [Indexed: 01/29/2023] Open
Abstract
Before the onset of hearing, which occurs around postnatal day 12 (P12) in mice, inner hair cells (IHCs) of the immature cochlea generate sound-independent Ca2+ action potentials (APs), which stimulate the auditory pathway and guide maturation of neuronal circuits. During these early postnatal days, intercellular propagating Ca2+ waves elicited by ATP-induced ATP release are found in inner supporting cells (ISCs). It is debated whether IHCs are able to fire Ca2+ APs independently or require a trigger by an ISC Ca2+ wave. To identify the Ca2+ transients of IHCs underlying Ca2+ APs and to analyze their dependence on ISC Ca2+ waves, we performed fast Ca2+ imaging of Fluo-8 AM-loaded organs of Corti at P4/P5. Fast Ca2+ transients (fCaTs) generated by IHCs were simultaneously imaged with Ca2+ waves in ISCs. ISC Ca2+ waves frequently evoked bursts consisting of >5 fCaTs in multiple adjacent IHCs. Although Ca2+ elevations of small amplitude appeared to be triggered by ISC Ca2+ waves in IHCs of Cav1.3 knockout mice we never observed fCaTs, indicating their requirement for Ca2+ influx through Cav1.3 channels. The Ca2+ wave-triggered Ca2+ upstroke in wildtype IHCs occurred 0.52 ± 0.27 s later than the rise of the Ca2+ signal in the adjacent ISCs. In comparison, superfusion of 1 μM ATP elicited bursts of fCaTs in IHCs starting 0.99 ± 0.34 s prior to Ca2+ elevations in adjacent ISCs. PPADS irreversibly abolished Ca2+ waves in ISCs and reversibly reduced fCaTs in IHCs indicating differential involvement of P2 receptors. IHC and ISC Ca2+ signals were however unaltered in P2X2R/P2X3R double knockout or in P2X7R knockout mice. Together, our data revealed a fairly similar occurrence of fCaTs within a burst (56.5%) compared with 43.5% as isolated single fCaTs or in groups of 2–5 fCaTs (minibursts). We provide evidence that IHCs autonomously generate single fCaTs and minibursts whereas bursts synchronized between neighboring IHCs were mostly triggered by ISC Ca2+ waves. Neonatal IHCs thus spontaneously generate electrical and Ca2+ activity, which is enhanced and largely synchronized by activity of ISCs of Kölliker’s organ indicating two sources of spontaneous activity in the developing auditory system.
Collapse
Affiliation(s)
- Tobias Eckrich
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, School of Medicine, Homburg, Germany
| | - Kerstin Blum
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, School of Medicine, Homburg, Germany
| | - Ivan Milenkovic
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, School of Medicine, Homburg, Germany
| |
Collapse
|
25
|
Wang HC, Lin CC, Chong R, Zhang-Hooks Y, Agarwal A, Ellis-Davies G, Rock J, Bergles DE. Spontaneous Activity of Cochlear Hair Cells Triggered by Fluid Secretion Mechanism in Adjacent Support Cells. Cell 2015; 163:1348-59. [PMID: 26627734 PMCID: PMC4671825 DOI: 10.1016/j.cell.2015.10.070] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/10/2015] [Accepted: 10/19/2015] [Indexed: 12/27/2022]
Abstract
Spontaneous electrical activity of neurons in developing sensory systems promotes their maturation and proper connectivity. In the auditory system, spontaneous activity of cochlear inner hair cells (IHCs) is initiated by the release of ATP from glia-like inner supporting cells (ISCs), facilitating maturation of central pathways before hearing onset. Here, we find that ATP stimulates purinergic autoreceptors in ISCs, triggering Cl(-) efflux and osmotic cell shrinkage by opening TMEM16A Ca(2+)-activated Cl(-) channels. Release of Cl(-) from ISCs also forces K(+) efflux, causing transient depolarization of IHCs near ATP release sites. Genetic deletion of TMEM16A markedly reduces the spontaneous activity of IHCs and spiral ganglion neurons in the developing cochlea and prevents ATP-dependent shrinkage of supporting cells. These results indicate that supporting cells in the developing cochlea have adapted a pathway used for fluid secretion in other organs to induce periodic excitation of hair cells.
Collapse
Affiliation(s)
- Han Chin Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, WBSB 1001, Baltimore, MD 21205, USA
| | - Chun-Chieh Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, WBSB 1001, Baltimore, MD 21205, USA
| | - Rockie Chong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, WBSB 1001, Baltimore, MD 21205, USA
| | - YingXin Zhang-Hooks
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, WBSB 1001, Baltimore, MD 21205, USA
| | - Amit Agarwal
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, WBSB 1001, Baltimore, MD 21205, USA
| | - Graham Ellis-Davies
- Department of Neuroscience, Mount Sinai School of Medicine, One Gustave Levy Place Box 1065, New York, NY 10029, USA
| | - Jason Rock
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Ave, Box 0452, San Francisco, CA 94143, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, WBSB 1001, Baltimore, MD 21205, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
26
|
Liu C, Glowatzki E, Fuchs PA. Unmyelinated type II afferent neurons report cochlear damage. Proc Natl Acad Sci U S A 2015; 112:14723-7. [PMID: 26553995 PMCID: PMC4664349 DOI: 10.1073/pnas.1515228112] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the mammalian cochlea, acoustic information is carried to the brain by the predominant (95%) large-diameter, myelinated type I afferents, each of which is postsynaptic to a single inner hair cell. The remaining thin, unmyelinated type II afferents extend hundreds of microns along the cochlear duct to contact many outer hair cells. Despite this extensive arbor, type II afferents are weakly activated by outer hair cell transmitter release and are insensitive to sound. Intriguingly, type II afferents remain intact in damaged regions of the cochlea. Here, we show that type II afferents are activated when outer hair cells are damaged. This response depends on both ionotropic (P2X) and metabotropic (P2Y) purinergic receptors, binding ATP released from nearby supporting cells in response to hair cell damage. Selective activation of P2Y receptors increased type II afferent excitability by the closure of KCNQ-type potassium channels, a potential mechanism for the painful hypersensitivity (that we term "noxacusis" to distinguish from hyperacusis without pain) that can accompany hearing loss. Exposure to the KCNQ channel activator retigabine suppressed the type II fiber's response to hair cell damage. Type II afferents may be the cochlea's nociceptors, prompting avoidance of further damage to the irreparable inner ear.
Collapse
MESH Headings
- Adenosine Triphosphate/pharmacology
- Animals
- Cochlea/innervation
- Cochlea/pathology
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/pathology
- Ion Channel Gating/drug effects
- Ions
- KCNQ Potassium Channels/metabolism
- Nerve Fibers, Unmyelinated/drug effects
- Nerve Fibers, Unmyelinated/pathology
- Neurons, Afferent/drug effects
- Neurons, Afferent/pathology
- Potassium/metabolism
- Rats, Sprague-Dawley
- Receptors, Glutamate/metabolism
- Receptors, Purinergic P2Y/metabolism
Collapse
Affiliation(s)
- Chang Liu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Elisabeth Glowatzki
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Paul Albert Fuchs
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
27
|
Burnstock G, Dale N. Purinergic signalling during development and ageing. Purinergic Signal 2015; 11:277-305. [PMID: 25989750 PMCID: PMC4529855 DOI: 10.1007/s11302-015-9452-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 01/28/2023] Open
Abstract
Extracellular purines and pyrimidines play major roles during embryogenesis, organogenesis, postnatal development and ageing in vertebrates, including humans. Pluripotent stem cells can differentiate into three primary germ layers of the embryo but may also be involved in plasticity and repair of the adult brain. These cells express the molecular components necessary for purinergic signalling, and their developmental fates can be manipulated via this signalling pathway. Functional P1, P2Y and P2X receptor subtypes and ectonucleotidases are involved in the development of different organ systems, including heart, blood vessels, skeletal muscle, urinary bladder, central and peripheral neurons, retina, inner ear, gut, lung and vas deferens. The importance of purinergic signalling in the ageing process is suggested by changes in expression of A1 and A2 receptors in old rat brains and reduction of P2X receptor expression in ageing mouse brain. By contrast, in the periphery, increases in expression of P2X3 and P2X4 receptors are seen in bladder and pancreas.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
28
|
Putative role of border cells in generating spontaneous morphological activity within Kölliker's organ. Hear Res 2015; 330:90-7. [PMID: 26119178 DOI: 10.1016/j.heares.2015.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/21/2015] [Accepted: 06/23/2015] [Indexed: 11/21/2022]
Abstract
Kölliker's organ is a transient epithelial structure, comprising a major part of the organ of Corti during pre-hearing stages of development. The auditory system is spontaneously active during development, which serves to retain and refine neural connections. Kölliker's organ is considered a key candidate for generating such spontaneous activity, most likely through purinergic (P2 receptor) signalling and inner hair cell (IHC) activation. Associated with the spontaneous neural activity, ATP released locally by epithelial cells induces rhythmic morphological changes within Kölliker's organ, the purpose of which is not understood. These changes are accompanied by a shift in cellular refractive index, allowing optical detection of this activity in real-time. Using this principle, we investigated the origin of spontaneous morphological activity within Kölliker's organ. Apical turns of Wistar rat cochleae (P9-11) were dissected, and the purinergic involvement was studied following acute tissue exposure to a P2 receptor agonist (ATPγS) and antagonist (suramin). ATPγS induced a sustained darkening throughout Kölliker's organ, reversed by suramin. This effect was most pronounced in the region closest to the inner hair cells, which also displayed the highest frequency of intrinsic morphological events. Additionally, suramin alone induced swelling of this region, suggesting a tight regulation of cell volume by ATP-mediated mechanisms. Histological analysis of cochlear tissues demonstrates the most profound volume changes in the border cell region immediately adjacent to the IHCs. Together, these results underline the role of purinergic signalling in initiating morphological events within Kölliker's organ, and suggest a key involvement of border cells surrounding IHCs in regulating this spontaneous activity.
Collapse
|
29
|
Kölliker's organ and the development of spontaneous activity in the auditory system: implications for hearing dysfunction. BIOMED RESEARCH INTERNATIONAL 2014; 2014:367939. [PMID: 25210710 PMCID: PMC4156998 DOI: 10.1155/2014/367939] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/07/2014] [Indexed: 11/25/2022]
Abstract
Prior to the “onset of hearing,” developing cochlear inner hair cells (IHCs) and primary auditory neurons undergo experience-independent activity, which is thought to be important in retaining and refining neural connections in the absence of sound. One of the major hypotheses regarding the origin of such activity involves a group of columnar epithelial supporting cells forming Kölliker's organ, which is only present during this critical period of auditory development. There is strong evidence for a purinergic signalling mechanism underlying such activity. ATP released through connexin hemichannels may activate P2 purinergic receptors in both Kölliker's organ and the adjacent IHCs, leading to generation of electrical activity throughout the auditory system. However, recent work has suggested an alternative origin, by demonstrating the ability of IHCs to generate this spontaneous activity without activation by ATP. Regardless, developmental abnormalities of Kölliker's organ may lead to congenital hearing loss, considering that mutations in ion channels (hemichannels, gap junctions, and calcium channels) involved in Kölliker's organ activity share strong links with such types of deafness.
Collapse
|
30
|
Thiede BR, Corwin JT. Permeation of fluorophore-conjugated phalloidin into live hair cells of the inner ear is modulated by P2Y receptors. J Assoc Res Otolaryngol 2013; 15:13-30. [PMID: 24263968 DOI: 10.1007/s10162-013-0425-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/23/2013] [Indexed: 12/18/2022] Open
Abstract
Phalloidin, a toxin isolated from the death cap mushroom, Amanita phalloides, binds to filamentous actin with high affinity, and this has made fluorophore-conjugated phalloidin a useful tool in cellular imaging. Hepatocytes take up phalloidin via the liver-specific organic anion transporting polypeptide 1b2, but phalloidin does not permeate most living cells. Rapid entry of styryl dyes into live hair cells has been used to evaluate function, but the usefulness of those fluorescence dyes is limited by broad and fixed absorption spectra. Since phalloidin can be conjugated to fluorophores with various spectra, we investigated whether it would permeate living hair cells. When we incubated mouse utricles in 66 nM phalloidin-CF488A and followed that by washes in phalloidin-free medium, we observed that it entered a subset of hair cells and labeled entire hair bundles fluorescently after 20 min. Incubations of 90 min labeled nearly all the hair bundles. When phalloidin-treated utricles were cultured for 24 h after washout, the label disappeared from the hair cells and progressively but heterogeneously labeled filamentous actin in the supporting cells. We investigated how phalloidin may enter hair cells and found that P2 receptor antagonists, pyridoxalphosphate-6-azophenyl-2', 4'-disulfonic acid and suramin, blocked phalloidin entry, while the P2Y receptor ligands, uridine-5'-diphosphate and uridine-5'-triphosphaste, stimulated uptake. Consistent with that, the P2Y6 receptor antagonist, MRS 2578, decreased phalloidin uptake. The results show that phalloidin permeates live hair cells through a pathway that requires metabotropic P2Y receptor signaling and suggest that phalloidin can be transferred from hair cells to supporting cells in culture.
Collapse
Affiliation(s)
- Benjamin R Thiede
- Department of Neuroscience, University of Virginia School of Medicine, 409 Lane Rd, PO Box 801392, Charlottesville, VA, 22908, USA
| | | |
Collapse
|
31
|
Abstract
The very large G protein coupled receptor (Vlgr1) is a member of adhesion receptors or large N-terminal family B-7 transmembrane helixes (LNB7TM) receptors within the seven trans-membrane receptor superfamily. Vlgr1 is the largest GPCR identified to date; its mRNA spans 19 kb and encodes 6,300 amino acids. Vlgr1 is a core component of ankle-link complex in inner ear hair cells. Knock-out and mutation mouse models show that loss of Vlgr1 function leads to abnormal stereociliary development and hearing loss, indicating crucial roles of Vlgr1 in hearing transduction or auditory system development. Over the past 10 or so years, human genetics data suggested that Vlgr1 mutations cause Usher syndromes and seizures. Although significant progresses have been made, the details of Vlgr1's function in hair cells, its signaling cascade, and the mechanisms underlying causative effects of Vlgr1 mutations in human diseases remain elusive and ask for further investigation.
Collapse
|
32
|
Abstract
In the developing nervous system, spontaneous neuronal activity arises independently of experience or any environmental input. This activity may play a major role in axonal pathfinding, refinement of topographic maps, dendritic morphogenesis, and the segregation of axonal terminal arbors. In the auditory system, endogenously released ATP in the cochlea activates inner hair cells to trigger bursts of action potentials (APs), which are transferred to the central auditory system. Here we show the modulatory role of purinergic signaling beyond the cochlea, i.e., the developmentally regulated and cell-type-specific depolarizing effects on auditory brainstem neurons of Mongolian gerbil. We assessed the effects of P2X receptors (P2XRs) on neuronal excitability from prehearing to early stages of auditory signal processing. Our results demonstrate that in neurons expressing P2XRs, extracellular ATP can evoke APs in sync with Ca(2+) signals. In cochlear nucleus (CN) bushy cells, ATP increases spontaneous and also acoustically evoked activity in vivo, but these effects diminish with maturity. Moreover, ATP not only augmented glutamate-driven firing, but it also evoked APs in the absence of glutamatergic transmission. In vivo recordings also revealed that endogenously released ATP in the CN contributes to neuronal firing activity by facilitating AP generation and prolonging AP duration. Given the enhancing effect of ATP on AP firing and confinement of P2XRs to certain auditory brainstem nuclei, and to distinct neurons within these nuclei, it is conceivable that purinergic signaling plays a specific role in the development of neuronal brainstem circuits.
Collapse
|
33
|
Deiters cells tread a narrow path--the Deiters cells-basilar membrane junction. Hear Res 2012; 290:13-20. [PMID: 22633942 DOI: 10.1016/j.heares.2012.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/26/2012] [Accepted: 05/10/2012] [Indexed: 01/13/2023]
Abstract
Deiters cells extend from the basilar membrane to the reticular lamina and, together with pillar cells and outer hair cells, structurally define the micro-architecture of the organ of Corti. Studying vibrotome sections of the mouse organ of Corti with confocal and scanning electron microscopy we found that the basal pole of every Deiters cell, independently of their position in the organ of Corti and along the cochlear spiral, attached to the basilar membrane within a 15.1 ± 0.3 μm-wide stripe running the length of the cochlear spiral adjacent to the row of outer pillar cells. All Deiters cells' basal poles had similar diameter and general morphology, and distributed on the stripe in a precise arrangement with a center-to-center distance of 7.1 ± 0.3 μm between neighbor cells of the same row and 5.9 ± 0.4 μm for neighbor cells in adjacent rows. Complete detachment of Deiters cells revealed an elliptical imprint on the top surface of the basilar membrane consisting of a smaller central structure with a very smooth surface surrounded by a rougher area, suggesting the presence of two different anchoring junctions. These previously unidentified morphological features of Deiters cells could be critical for the mechanical response of the organ of Corti.
Collapse
|
34
|
Wong ACY, Velamoor S, Skelton MR, Thorne PR, Vlajkovic SM. Expression and distribution of creatine transporter and creatine kinase (brain isoform) in developing and mature rat cochlear tissues. Histochem Cell Biol 2012; 137:599-613. [PMID: 22307408 DOI: 10.1007/s00418-012-0922-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2012] [Indexed: 02/07/2023]
Abstract
Physiological processes in the cochlea associated with sound transduction and maintenance of the unique electrochemical environment are metabolically demanding. Creatine maintains ATP homeostasis by providing high-energy phosphates for ATP regeneration which is catalyzed by creatine kinase (CK). Cellular uptake of creatine requires a specific high affinity sodium- and chloride-dependent creatine transporter (CRT). This study postulates that this CRT is developmentally regulated in the rat cochlea. CRT expression was measured by quantitative real-time RT-PCR and immunohistochemistry in the postnatal (P0-P14) and adult (P22-P56) rat cochlea. The maximum CRT expression was reached at the onset of hearing (P12), and this level was maintained through to adulthood. CRT immunoreactivity was strongest in the sensory inner hair cells, supporting cells and the spiral ganglion neurons. Cochlear distribution of the CK brain isoform (CKB) was also assessed by immunohistochemistry and compared with the distribution of CRT in the developing and adult cochlea. CKB was immunolocalized in the organ of Corti supporting cells, and the lateral wall tissues involved in K(+) cycling, including stria vascularis and spiral ligament fibrocytes. Similar to CRT, CKB reached peak expression after the onset of hearing. Differential spatial and temporal expression of CRT and CK in cochlear tissues during development may reflect differential requirements for creatine-phosphocreatine buffering to replenish ATP consumed during energy-dependent metabolic processes, especially around the period when the cochlea becomes responsive to airborne sound.
Collapse
Affiliation(s)
- Ann Chi Yan Wong
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, Australia.
| | | | | | | | | |
Collapse
|
35
|
Using antibodies against P2Y and P2X receptors in purinergic signaling research. Purinergic Signal 2011; 8:61-79. [PMID: 22086554 PMCID: PMC3265709 DOI: 10.1007/s11302-011-9278-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/13/2011] [Indexed: 01/07/2023] Open
Abstract
The broad expression pattern of the G protein-coupled P2Y receptors has demonstrated that these receptors are fundamental determinants in many physiological responses, including neuromodulation, vasodilation, inflammation, and cell migration. P2Y receptors couple either G(q) or G(i) upon activation, thereby activating different signaling pathways. Ionotropic ATP (P2X) receptors bind extracellular nucleotides, a signal which is transduced within the P2X protein complex into a cation channel opening, which usually leads to intracellular calcium concentration elevation. As such, this family of proteins initiates or shapes several cellular processes including synaptic transmission, gene expression, proliferation, migration, and apoptosis. The ever-growing range of applications for antibodies in the last 30 years attests to their major role in medicine and biological research. Antibodies have been used as therapeutic tools in cancer and inflammatory diseases, as diagnostic reagents (flow cytometry, ELISA, and immunohistochemistry, to name a few applications), and in widespread use in biological research, including Western blot, immunoprecipitation, and ELISPOT. In this article, we will showcase several of the advances that scientists around the world have achieved using the line of antibodies developed at Alomone Labs for P2Y and P2X receptors.
Collapse
|
36
|
Vlajkovic SM, Guo CX, Dharmawardana N, Wong ACY, Boison D, Housley GD, Thorne PR. Role of adenosine kinase in cochlear development and response to noise. J Neurosci Res 2011; 88:2598-609. [PMID: 20648650 DOI: 10.1002/jnr.22421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adenosine signalling has an important role in cochlear protection from oxidative stress. In most tissues, intracellular adenosine kinase (ADK) is the primary route of adenosine metabolism and the key regulator of intracellular and extracellular adenosine levels. The present study provides the first evidence for ADK distribution in the adult and developing rat cochlea. In the adult cochlea, ADK was localized to the nuclear or perinuclear region of spiral ganglion neurons, lateral wall tissues, and epithelial cells lining scala media. In the developing cochlea, ADK was strongly expressed in multiple cell types at birth and reached its peak level of expression at postnatal day 21 (P21). Ontogenetic changes in ADK expression were evident in the spiral ganglion, organ of Corti, and stria vascularis. In the spiral ganglion, ADK showed a shift from predominantly satellite cell immunolabelling at P1 to neuronal expression from P14 onward. In contrast to the role of ADK in various aspects of cochlear development, the ADK contribution to the cochlear response to noise stress was less obvious. Transcript and protein levels of ADK were unaltered in the cochlea exposed to broadband noise (90-110 dBSPL, 24 hr), and the selective inhibition of ADK in the cochlea with ABT-702 failed to restore hearing thresholds after exposure to traumatic noise. This study indicates that ADK is involved in purine salvage pathways for nucleotide synthesis in the adult cochlea, but its role in the regulation of adenosine signalling under physiological and pathological conditions has yet to be established.
Collapse
Affiliation(s)
- Srdjan M Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Aukland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
37
|
Tritsch NX, Zhang YX, Ellis-Davies G, Bergles DE. ATP-induced morphological changes in supporting cells of the developing cochlea. Purinergic Signal 2010; 6:155-66. [PMID: 20806009 DOI: 10.1007/s11302-010-9189-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 05/23/2010] [Indexed: 01/20/2023] Open
Abstract
The developing cochlea of mammals contains a large group of columnar-shaped cells, which together form a structure known as Kölliker's organ. Prior to the onset of hearing, these inner supporting cells periodically release adenosine 5'-triphosphate (ATP), which activates purinergic receptors in surrounding supporting cells, inner hair cells and the dendrites of primary auditory neurons. Recent studies indicate that purinergic signaling between inner supporting cells and inner hair cells initiates bursts of action potentials in auditory nerve fibers before the onset of hearing. ATP also induces prominent effects in inner supporting cells, including an increase in membrane conductance, a rise in intracellular Ca(2+), and dramatic changes in cell shape, although the importance of ATP signaling in non-sensory cells of the developing cochlea remains unknown. Here, we review current knowledge pertaining to purinergic signaling in supporting cells of Kölliker's organ and focus on the mechanisms by which ATP induces changes in their morphology. We show that these changes in cell shape are preceded by increases in cytoplasmic Ca(2+), and provide new evidence indicating that elevation of intracellular Ca(2+) and IP(3) are sufficient to initiate shape changes. In addition, we discuss the possibility that these ATP-mediated morphological changes reflect crenation following the activation of Ca(2+)-activated Cl(-) channels, and speculate about the possible functions of these changes in cell morphology for maturation of the cochlea.
Collapse
|