1
|
Illes P, Rubini P, Ulrich H, Yin H, Tang Y. Dysregulation of Astrocytic ATP/Adenosine Release in the Hippocampus Cause Cognitive and Affective Disorders: Molecular Mechanisms, Diagnosis, and Therapy. MedComm (Beijing) 2025; 6:e70177. [PMID: 40255917 PMCID: PMC12006733 DOI: 10.1002/mco2.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/22/2025] Open
Abstract
The gliotransmitter adenosine 5'-triphosphate (ATP) and its enzymatic degradation product adenosine play a major role in orchestrating in the hippocampus cognitive and affective functions via P2 purinoceptors (P2X, P2Y) and P1 adenosine receptors (A1, A2A). Although numerous reviews exist on purinoceptors that modulate these functions, there is an apparent gap relating to the involvement of astrocyte-derived extracellular ATP. Our review focuses on the following issues: An impeded release of ATP from hippocampal astrocytes through vesicular mechanisms or connexin hemichannels and pannexin channels interferes with spatial working memory in rodents. The pharmacological blockade of P2Y1 receptors (P2Y1Rs) reverses the deficits in learning/memory performance in mouse models of familial Alzheimer's disease (AD). Similarly, in mouse models of major depressive disorder (MDD), based on acute or chronic stress-induced development of depressive-like behavior, a reduced exocytotic/channel-mediated ATP release from hippocampal astrocytes results in the deterioration of these behavioral responses. However, on the opposite, the increased stimulation of the microglial/astrocytic P2X7R-channel by ATP causes neuroinflammation and in consequence depressive-like behavior. In conclusion, there is strong evidence for the assumption that gliotransmitter ATP is intimately involved in the pathophysiology of cognitive and affective neuron/astrocyte-based human illnesses opening new diagnostic and therapeutic vistas for AD and MDD.
Collapse
Affiliation(s)
- Peter Illes
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Rudolf Boehm Institute for Pharmacology and ToxicologyUniversity of Leipzig Germany
- Acupuncture and Chronobiology Key Laboratory of Sichuan ProvinceChengduChina
| | - Patrizia Rubini
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Acupuncture and Chronobiology Key Laboratory of Sichuan ProvinceChengduChina
| | - Henning Ulrich
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Department of BiochemistryInstitute of ChemistryUniversity of São PauloSão PauloBrazil
| | - Hai‐Yan Yin
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Acupuncture and Chronobiology Key Laboratory of Sichuan ProvinceChengduChina
| | - Yong Tang
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Acupuncture and Chronobiology Key Laboratory of Sichuan ProvinceChengduChina
- School of Health and RehabilitationChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
2
|
Zhang C, Yang X, Xue Y, Li H, Zeng C, Chen M. The Role of Solute Carrier Family Transporters in Hepatic Steatosis and Hepatic Fibrosis. J Clin Transl Hepatol 2025; 13:233-252. [PMID: 40078199 PMCID: PMC11894391 DOI: 10.14218/jcth.2024.00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 03/14/2025] Open
Abstract
Solute carrier (SLC) family transporters are crucial transmembrane proteins responsible for transporting various molecules, including amino acids, electrolytes, fatty acids, and nucleotides. To date, more than fifty SLC transporter subfamilies have been identified, many of which are linked to the progression of hepatic steatosis and fibrosis. These conditions are often caused by factors such as non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, which are major contributors to the global liver disease burden. The activity of SLC members regulates the transport of substrates across biological membranes, playing key roles in lipid synthesis and metabolism, mitochondrial function, and ferroptosis. These processes, in turn, influence the function of hepatocytes, hepatic stellate cells, and macrophages, thereby contributing to the development of hepatic steatosis and fibrosis. Additionally, some SLC transporters are involved in drug transport, acting as critical regulators of drug-induced hepatic steatosis. Beyond substrate transport, certain SLC members also exhibit additional functions. Given the pivotal role of the SLC family in hepatic steatosis and fibrosis, this review aimed to summarize the molecular mechanisms through which SLC transporters influence these conditions.
Collapse
Affiliation(s)
| | | | - Yi Xue
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Tsuruno Y, Nagano A, Sugita K, Onishi S, Tabata Y, Kedoin C, Murakami M, Yano K, Kawano T, Hasuzawa N, Nomura M, Kaji T, Bitoh Y, Ieiri S. Favorable inhibitory effect of clodronate on hepatic steatosis in short bowel syndrome model rats. Pediatr Surg Int 2024; 40:307. [PMID: 39537943 PMCID: PMC11561034 DOI: 10.1007/s00383-024-05858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE This study investigated the anti-inflammatory effect of clodronate, a vesicular nucleotide transporter (VNUT) inhibitor, on intestinal-failure-associated liver disease (IFALD) in a rat model of short bowel syndrome (SBS). METHODS The rats underwent jugular vein catheterization for continuous total parenteral nutrition (TPN) and 90% small bowel resection. The animals were divided into the following groups: TPN/SBS (Control group), TPN/SBS/intravenous administration of low-dose clodronate (20 mg/kg twice per week; Low group), or TPN/SBS/intravenous administration of high-dose clodronate (60 mg/kg twice per week; High group). On day 7, the rats were euthanized. Hepatic steatosis and hepatocellular injury were also assessed. RESULTS Hepatic steatosis and lobular inflammation in the liver were observed in all groups. The High group showed histologically reduced hepatic steatosis compared with the Control group. IL-6 and Nlrp3 expression in the High group was significantly suppressed compared to that in the Control group. The expression of other inflammatory cytokines tended to be lower in the High dose group than in the control group. The lipid metabolism gene expression in the liver specimens showed no significant differences among the groups. CONCLUSION The high-dose administration of clodronate may, therefore, inhibit hepatic steatosis and inflammation associated with IFALD in patients with SBS.
Collapse
Affiliation(s)
- Yudai Tsuruno
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
- Division of Pediatric Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ayaka Nagano
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Koshiro Sugita
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan.
| | - Shun Onishi
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Yumiko Tabata
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Chihiro Kedoin
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Masakazu Murakami
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Keisuke Yano
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Takafumi Kawano
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tatsuru Kaji
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Yuko Bitoh
- Division of Pediatric Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Ieiri
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| |
Collapse
|
4
|
Tokumaru T, Apolinario MEC, Shimizu N, Umeda R, Honda K, Shikano K, Teranishi H, Hikida T, Hanada T, Ohta K, Li Y, Murakami K, Hanada R. Hepatic extracellular ATP/adenosine dynamics in zebrafish models of alcoholic and metabolic steatotic liver disease. Sci Rep 2024; 14:7813. [PMID: 38565862 PMCID: PMC10987586 DOI: 10.1038/s41598-024-58043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Steatotic liver disease (SLD) is a burgeoning health problem predominantly associated with excessive alcohol consumption, which causes alcohol-related liver disease (ALD), and high caloric intake, which results in metabolic dysfunction-associated SLD (MASLD). The pathogenesis of ALD and MASLD, which can progress from steatohepatitis to more severe conditions such as liver fibrosis, cirrhosis, and hepatocellular carcinoma, is complicated by several factors. Recently, extracellular ATP and adenosine (Ado), as damage-associated molecular patterns, were reported to promote inflammation and liver fibrosis, contributing to SLD pathogenesis. Here, we explored the in vivo dynamics of hepatic extracellular ATP and Ado during the progression of steatohepatitis using a genetically encoded GPCR-activation-based sensor (GRAB) in zebrafish models. We established hepatocyte-specific GRABATP and GRABAdo in zebrafish and investigated the changes in in vivo hepatic extracellular ATP and Ado levels under ALD or MASLD conditions. Disease-specific changes in hepatocyte extracellular ATP and Ado levels were observed, clearly indicating a correlation between hepatocyte extracellular ATP/Ado dynamics and disease progression. Furthermore, clodronate, a vesicular nucleotide transporter inhibitor, alleviated the MASLD phenotype by reducing the hepatic extracellular ATP and Ado content. These findings provide deep insights into extracellular ATP/Ado dynamics in disease progression, suggesting therapeutic potential for ALD and MASLD.
Collapse
Affiliation(s)
- Tomoko Tokumaru
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | | | - Nobuyuki Shimizu
- Department of Cell Biology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Ryohei Umeda
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
- Department of Advanced Medical Science, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Koichi Honda
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Kenshiro Shikano
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Hitoshi Teranishi
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University, Kurume, Japan
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Kazunari Murakami
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan.
| |
Collapse
|
5
|
Moriyama Y, Hasuzawa N, Nomura M. María Teresa Miras Portugal: a pioneer for vesicular nucleotide storage. Purinergic Signal 2024; 20:93-98. [PMID: 36525101 PMCID: PMC10997567 DOI: 10.1007/s11302-022-09912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Chromaffin granules are secretory granules present in adrenal medulla chromaffin cells. They contain high contents of catecholamines and nucleotides and have been regarded as a model system for the study of vesicular transmitter uptake and release. In 1988, Dr. María Teresa Miras Portugal, when studying catecholamine biosynthesis, detected a novel group of nucleotides, the diadenosine polyphosphates, in the adrenal chromaffin granules. Based on this finding, she unraveled the existence of diadenosine polyphosphate-mediated chemical transmission, leading to a paradigm shift in the field of purinergic signaling. She is also a pioneer in the studies on vesicular nucleotide storage. First, María Teresa and her group characterized nucleotide transport in chromaffin granules and synaptic vesicles using fluorescent nucleotide derivatives such as 1, N6-ethenoadenosine triphosphates. Then, they revealed the presence of a hypothetical vesicular nucleotide transporter with unique properties in terms of substrate specificity. In this article, we will describe her contributions to vesicular nucleotide storage and the foundations she laid for future studies.
Collapse
Affiliation(s)
- Yoshinori Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan.
| | - Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
6
|
Orimoto A, Kitamura C, Ono K. Lipopolysaccharide-mediated ATP signaling regulates interleukin-6 mRNA expression via the P2-purinoceptor in human dental pulp cells. Cell Biol Int 2024; 48:369-377. [PMID: 38225667 DOI: 10.1002/cbin.12120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Dental pulp cells play a crucial role in maintaining the balance of the pulp tissue. They actively respond to bacterial inflammation by producing proinflammatory cytokines, particularly interleukin-6 (IL-6). While many cell types release adenosine triphosphate (ATP) in response to various stimuli, the mechanisms and significance of ATP release in dental pulp cells under inflammatory conditions are not well understood. This study aimed to investigate ATP release and its relationship with IL-6 during the inflammatory response in immortalized human dental pulp stem cells (hDPSC-K4DT) following lipopolysaccharide (LPS) stimulation. We found that hDPSC-K4DT cells released ATP extracellularly when exposed to LPS concentrations above 10 μg/mL. ATP release was exclusively attenuated by N-ethylmaleimide, whereas other inhibitors, including clodronic acid (a vesicular nucleotide transporter inhibitor), probenecid (a selective pannexin-1 channel inhibitor), meclofenamic acid (a selective connexin 43 inhibitor), suramin (a nonspecific P2 receptor inhibitor), and KN-62 (a specific P2X7 antagonist), did not exhibit any effect. Additionally, LPS increased IL-6 mRNA expression, which was mitigated by the ATPase apyrase enzyme, N-ethylmaleimide, and suramin, but not by KN-62. Moreover, exogenous ATP induced IL-6 mRNA expression, whereas ATPase apyrase, N-ethylmaleimide, and suramin, but not KN-62, diminished ATP-induced IL-6 mRNA expression. Overall, our findings suggest that LPS-induced ATP release stimulates the IL-6 pathway through P2-purinoceptor, indicating that ATP may function as an anti-inflammatory signal, contributing to the maintenance of dental pulp homeostasis.
Collapse
Affiliation(s)
- Ai Orimoto
- Division of Endodontics and Restorative Dentistry, Kyushu Dental University, Fukuoka, Japan
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Kyushu Dental University, Fukuoka, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| |
Collapse
|
7
|
He J, Xiu F, Chen Y, Yang Y, Liu H, Xi Y, Liu L, Li X, Wu Y, Luo H, Chen L, Ding N, Hu J, Chen E, You X. Aerobic glycolysis of bronchial epithelial cells rewires Mycoplasma pneumoniae pneumonia and promotes bacterial elimination. Infect Immun 2024; 92:e0024823. [PMID: 38205952 PMCID: PMC10863416 DOI: 10.1128/iai.00248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
The immune response to Mycoplasma pneumoniae infection plays a key role in clinical symptoms. Previous investigations focused on the pro-inflammatory effects of leukocytes and the pivotal role of epithelial cell metabolic status in finely modulating the inflammatory response have been neglected. Herein, we examined how glycolysis in airway epithelial cells is affected by M. pneumoniae infection in an in vitro model. Additionally, we investigated the contribution of ATP to pulmonary inflammation. Metabolic analysis revealed a marked metabolic shift in bronchial epithelial cells during M. pneumoniae infection, characterized by increased glucose uptake, enhanced aerobic glycolysis, and augmented ATP synthesis. Notably, these metabolic alterations are orchestrated by adaptor proteins, MyD88 and TRAM. The resulting synthesized ATP is released into the extracellular milieu via vesicular exocytosis and pannexin protein channels, leading to a substantial increase in extracellular ATP levels. The conditioned medium supernatant from M. pneumoniae-infected epithelial cells enhances the secretion of both interleukin (IL)-1β and IL-18 by peripheral blood mononuclear cells, partially mediated by the P2X7 purine receptor (P2X7R). In vivo experiments confirm that addition of a conditioned medium exacerbates pulmonary inflammation, which can be attenuated by pre-treatment with a P2X7R inhibitor. Collectively, these findings highlight the significance of airway epithelial aerobic glycolysis in enhancing the pulmonary inflammatory response and aiding pathogen clearance.
Collapse
Affiliation(s)
- Jun He
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Feichen Xiu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Yiwen Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Yan Yang
- Department of Clinical Laboratory, Shanghai Putuo People's Hospital, Tongji University, Shanghai, China
| | - Hongwei Liu
- Department of Epidemiology and Health Statistics, School of Public Health, University of South China, Hengyang, China
| | - Yixuan Xi
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Lu Liu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Xinru Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Yueyue Wu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Haodang Luo
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Liesong Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Nan Ding
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Jun Hu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - En Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoxing You
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| |
Collapse
|
8
|
Wang K, Huang S, Fu D, Yang X, Ma L, Zhang T, Zhao W, Deng D, Ding Y, Zhang Y, Huang L, Chen X. The neurobiological mechanisms and therapeutic prospect of extracellular ATP in depression. CNS Neurosci Ther 2024; 30:e14536. [PMID: 38375982 PMCID: PMC10877668 DOI: 10.1111/cns.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Depression is a prevalent psychiatric disorder with high long-term morbidities, recurrences, and mortalities. Despite extensive research efforts spanning decades, the cellular and molecular mechanisms of depression remain largely unknown. What's more, about one third of patients do not have effective anti-depressant therapies, so there is an urgent need to uncover more mechanisms to guide the development of novel therapeutic strategies. Adenosine triphosphate (ATP) plays an important role in maintaining ion gradients essential for neuronal activities, as well as in the transport and release of neurotransmitters. Additionally, ATP could also participate in signaling pathways following the activation of postsynaptic receptors. By searching the website PubMed for articles about "ATP and depression" especially focusing on the role of extracellular ATP (eATP) in depression in the last 5 years, we found that numerous studies have implied that the insufficient ATP release from astrocytes could lead to depression and exogenous supply of eATP or endogenously stimulating the release of ATP from astrocytes could alleviate depression, highlighting the potential therapeutic role of eATP in alleviating depression. AIM Currently, there are few reviews discussing the relationship between eATP and depression. Therefore, the aim of our review is to conclude the role of eATP in depression, especially focusing on the evidence and mechanisms of eATP in alleviating depression. CONCLUSION We will provide insights into the prospects of leveraging eATP as a novel avenue for the treatment of depression.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Xinxin Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Yanyan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Li Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| |
Collapse
|
9
|
Maesawa S, Yokoyama T, Sakanoue W, Yamamoto Y, Hirakawa M, Shiraishi H, Sato K, Saino T. ADP-mediated Modulation of Intracellular Calcium Responses in Chromaffin Cells: The Role of Ectonucleoside Triphosphate Diphosphohydrolase 2 on Rat Adrenal Medulla Function. J Histochem Cytochem 2024; 72:41-60. [PMID: 38158780 PMCID: PMC10795562 DOI: 10.1369/00221554231221872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
The present study investigated the localization and the adenosine 5'-triphosphate (ATP)-degrading function of the plasma membrane-bound ecto-nucleotidase, ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2), in the rat adrenal medulla. The effect of ATP degradation product, adenosine 5'-diphosphate (ADP), on carbachol (CCh)-induced intracellular Ca2+ ([Ca2+]i) responses in adrenal chromaffin cells was examined using calcium imaging. NTPDase2-immunoreactive cells were distributed between chromaffin cells. NTPDase2-immunoreactive cells were immunoreactive for glial fibrillary acidic protein and S100B, suggesting that they were sustentacular cells. NTPDase2-immunoreactive cells surrounded chromaffin cells immunoreactive for vesicular nucleotide transporter and P2Y12 ADP-selective purinoceptors. In ATP bioluminescence assays using adrenal medullary slices, ATP was rapidly degraded and its degradation was attenuated by the NTPDase inhibitors sodium polyoxotungstate (POM-1) and 6-N, N-diethyl-d-β,γ-dibromomethylene ATP (ARL67156). ADP inhibited CCh-induced [Ca2+]i increases of chromaffin cells in adrenal medullary slices. The inhibition of CCh-induced [Ca2+]i increases by ADP was blocked by the P2Y12 purinoceptor antagonist AZD1283. CCh-induced [Ca2+]i increases were also inhibited by the P2Y1, P2Y12, and P2Y13 purinoceptor agonist 2-methylthioadenosine diphosphate trisodium (2MeSADP), in combination with the P2Y1 purinoceptor antagonist MRS2179. These results suggest that sustentacular cells express NTPDase2 to degrade ATP released from adrenal chromaffin cells, and ADP modulates the excitability of chromaffin cells via P2Y12 purinoceptors to regulate catecholamine release during preganglionic sympathetic stimuli. (J Histochem Cytochem 72: 41-60, 2024).
Collapse
Affiliation(s)
- Satsuki Maesawa
- Division of Dental Anesthesiology, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, Yahaba, Japan
| | - Takuya Yokoyama
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Wakana Sakanoue
- Division of Dental Anesthesiology, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, Yahaba, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Masato Hirakawa
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Hirohisa Shiraishi
- Division of Pharmaceutical Education, Department of Clinical Pharmacy, School of Pharmacy, Iwate Medical University, Yahaba, Japan
| | - Kenichi Sato
- Division of Dental Anesthesiology, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, Yahaba, Japan
| | - Tomoyuki Saino
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| |
Collapse
|
10
|
Zaib S, Areeba, Khan I. Purinergic Signaling and its Role in the Stem Cell Differentiation. Mini Rev Med Chem 2024; 24:863-883. [PMID: 37828668 DOI: 10.2174/0113895575261206231003151416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Abstract
Purinergic signaling is a mechanism in which extracellular purines and pyrimidines interact with specialized cell surface receptors known as purinergic receptors. These receptors are divided into two families of P1 and P2 receptors, each responding to different nucleosides and nucleotides. P1 receptors are activated by adenosine, while P2 receptors are activated by pyrimidine and purines. P2X receptors are ligand-gated ion channels, including seven subunits (P2X1-7). However, P2Y receptors are the G-protein coupled receptors comprising eight subtypes (P2Y1/2/4/6/11/12/13/14). The disorder in purinergic signaling leads to various health-related issues and diseases. In various aspects, it influences the activity of non-neuronal cells and neurons. The molecular mechanism of purinergic signaling provides insight into treating various human diseases. On the contrary, stem cells have been investigated for therapeutic applications. Purinergic signaling has shown promising effect in stem cell engraftment. The immune system promotes the autocrine and paracrine mechanisms and releases the significant factors essential for successful stem cell therapy. Each subtype of purinergic receptor exerts a beneficial effect on the damaged tissue. The most common effect caused by purinergic signaling is the proliferation and differentiation that treat different health-related conditions.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Areeba
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
11
|
Jia S, Mai L, Yang H, Huang F, He H, Fan W. Cross-species gene expression patterns of purinergic signaling in the human and mouse trigeminal ganglion. Life Sci 2023; 332:122130. [PMID: 37769809 DOI: 10.1016/j.lfs.2023.122130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Purinergic signaling system plays a pivotal role in the trigeminal ganglion (TG) which is a primary sensory tissue in vertebrate nervous systems involving orofacial nociception and peripheral sensitization. Despite previous efforts to reveal the expression patterns of purinergic components in the mouse TG, it is still unknown the interspecies differences between human and mouse. In this study, we provide a comprehensive transcriptome profile of the purinergic signaling system across diverse cell types and neuronal subpopulations within the human TG, systematically comparing it with mouse TG. In addition, the evolutionary conservation and species-specific expression patterns of the purinergic components are also discussed. We propose that the data can improve our understanding of purinergic signaling in the peripheral nervous system and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Shilin Jia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lijia Mai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hui Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
12
|
O'Grady SM, Kita H. ATP functions as a primary alarmin in allergen-induced type 2 immunity. Am J Physiol Cell Physiol 2023; 325:C1369-C1386. [PMID: 37842751 PMCID: PMC10861152 DOI: 10.1152/ajpcell.00370.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Environmental allergens that interact with the airway epithelium can activate cellular stress pathways that lead to the release of danger signals known as alarmins. The mechanisms of alarmin release are distinct from damage-associated molecular patterns (DAMPs), which typically escape from cells after loss of plasma membrane integrity. Oxidative stress represents a form of allergen-induced cellular stress that stimulates oxidant-sensing mechanisms coupled to pathways, which facilitate alarmin mobilization and efflux across the plasma membrane. In this review, we highlight examples of alarmin release and discuss their roles in the initiation of type 2 immunity and allergic airway inflammation. In addition, we discuss the concept of alarmin amplification, where "primary" alarmins, which are directly released in response to a specific cellular stress, stimulate additional signaling pathways that lead to secretion of "secondary" alarmins that include proinflammatory cytokines, such as IL-33, as well as genomic and mitochondrial DNA that coordinate or amplify type 2 immunity. Accordingly, allergen-evoked cellular stress can elicit a hierarchy of alarmin signaling responses from the airway epithelium that trigger local innate immune reactions, impact adaptive immunity, and exacerbate diseases including asthma and other chronic inflammatory conditions that affect airway function.
Collapse
Affiliation(s)
- Scott M O'Grady
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hirohito Kita
- Division of Allergy, Asthma and Immunology, Mayo Clinic, Scottsdale, Arizona, United States
| |
Collapse
|
13
|
Maruyama K. Senso-immunology: The Emerging Connection between Pain and Immunity. Keio J Med 2023; 72:77-87. [PMID: 37460327 DOI: 10.2302/kjm.2022-0037-ir] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The sensory and immune systems have been studied independently for a long time, whereas the interaction between the two has received little attention. We have carried out research to understand the interaction between the sensory and immune systems and have found that inflammation and bone destruction caused by fungal infection are suppressed by nociceptors. Furthermore, we have elucidated the molecular mechanism whereby fungal receptors are expressed on nociceptors and skin epithelium, how they cooperate to generate fungal pain, and how colitis and bone metabolism are regulated by mechanosensors expressed on the gut epithelium. Recently, we found that nociceptors prevent septic death by inhibiting microglia via nociceptor-derived hormones. This review summarizes our current state of knowledge on pain biology and outlines the mechanisms whereby pain and immunity interact. Our findings indicate that the sensory and immune systems share a variety of molecules and interact with each other to regulate our pathological and homeostatic conditions. This prompted us to advocate the interdisciplinary science named "senso-immunology," and this emerging field is expected to generate new ideas in both physiology and immunology, leading to the development of novel drugs to treat pain and inflammation.
Collapse
Affiliation(s)
- Kenta Maruyama
- National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
14
|
Torres-Rodríguez O, Rivera-Escobales Y, Castillo-Ocampo Y, Velazquez B, Colón M, Porter JT. Purinergic P2X7 receptor-mediated inflammation precedes PTSD-related behaviors in rats. Brain Behav Immun 2023; 110:107-118. [PMID: 36822379 PMCID: PMC10106407 DOI: 10.1016/j.bbi.2023.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/25/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Clinical evidence has linked increased peripheral pro-inflammatory cytokines with post-traumatic stress disorder (PTSD) symptoms. However, whether inflammation contributes to or is a consequence of PTSD is still unclear. Previous research shows that stress can activate purinergic P2X7 receptors (P2X7Rs) on microglia to induce inflammation and behavioral changes. In this investigation, we examined whether P2X7Rs contribute to the development of PTSD-like behaviors induced by single prolonged stress (SPS) exposure in rats. Consistent with the literature, exposing adult male and female rats to SPS produced a PTSD-like phenotype of impaired fear extinction and extinction of cue-induced center avoidance one week after exposure. Next, we examined if inflammation precedes the behavioral manifestations. Three days after SPS exposure, increased inflammatory cytokines were found in the blood and hippocampal microglia showed increased expression of the P2X7R, IL-1β, and TNF-α, suggesting increased peripheral and central inflammation before the onset of impaired fear extinction. In addition, SPS-exposed animals with impaired fear extinction recall also had more Iba1-positive microglia expressing the P2X7R in the ventral hippocampus. To determine whether P2X7Rs contribute to the PTSD-related behaviors induced by SPS exposure, we gave ICV infusions of the P2X7R antagonist, A-438079, for one week starting the day of SPS exposure. Blocking P2X7Rs prevented the SPS-induced impaired fear extinction and extinction of cue-induced center avoidance in male and female rats, suggesting that SPS activates P2X7Rs which increase inflammation to produce a PTSD-like phenotype.
Collapse
Affiliation(s)
- Orlando Torres-Rodríguez
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico, 00732
| | - Yesenia Rivera-Escobales
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico, 00732
| | - Yesenia Castillo-Ocampo
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico, 00732
| | - Bethzaly Velazquez
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico, 00732
| | - María Colón
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico, 00732
| | - James T Porter
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico, 00732.
| |
Collapse
|
15
|
The Effects of SGLT2 Inhibitors on Liver Cirrhosis Patients with Refractory Ascites: A Literature Review. J Clin Med 2023; 12:jcm12062253. [PMID: 36983252 PMCID: PMC10056954 DOI: 10.3390/jcm12062253] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Decompensated liver cirrhosis is often complicated by refractory ascites, and intractable ascites are a predictor of poor prognosis in patients with liver cirrhosis. The treatment of ascites in patients with cirrhosis is based on the use of aldosterone blockers and loop diuretics, and occasionally vasopressin receptor antagonists are also used. Recent reports suggest that sodium–glucose cotransporter 2 (SGLT2) inhibitors may be a new treatment for refractory ascites with a different mechanism with respect to conventional agents. The main mechanisms of ascites reduction with SGLT2 inhibitors appear to be natriuresis and osmotic diuresis. However, other mechanisms, including improvements in glucose metabolism and nutritional status, hepatoprotection by ketone bodies and adiponectin, amelioration of the sympathetic nervous system, and inhibition of the renin–angiotensin–aldosterone system, may also contribute to the reduction of ascites. This literature review describes previously reported cases in which SGLT2 inhibitors were used to effectively treat ascites caused by liver cirrhosis. The discussion of the mechanisms involved is expected to contribute to establishing SGLT2 therapy for ascites in the future.
Collapse
|
16
|
Donoso MV, Hernández F, Barra R, Huidobro-Toro JP. Nanomolar clodronate induces adenosine accumulation in the perfused rat mesenteric bed and mesentery-derived endothelial cells. Front Pharmacol 2023; 13:1031223. [PMID: 36744214 PMCID: PMC9895365 DOI: 10.3389/fphar.2022.1031223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
The vesicular nucleotide transporter (VNUT) is critical for sympathetic co-transmission and purinergic transmission maintenance. To examine this proposal, we assessed whether the bisphosphonate clodronate, claimed as a potent in vitro VNUT blocker, modified spontaneous and/or the electrically evoked overflow of ATP/metabolites and NA from mesentery sympathetic perivascular nerve terminals. Additionally, in primary endothelial cell cultures derived from this tissue, we also evaluated whether clodronate interfered with ATP/metabolite cell outflow and metabolism of N6-etheno adenosine 5'-triphosphate (eATP), N6-etheno adenosine (eADO), and adenosine deaminase enzyme activity. Rat mesenteries were perfused in the absence or presence of .01-1,000 nM clodronate, 1-1,000 nM Evans blue (EB), and 1-10 µM DIDS; tissue perfusates were collected to determine ATP/metabolites and NA before, during, and after perivascular electrical nerve terminal depolarization. An amount of 1-1,000 nM clodronate did not modify the time course of ATP or NA overflow elicited by nerve terminal depolarization, and only 10 nM clodronate significantly augmented perfusate adenosine. Electrical nerve terminal stimulation increased tissue perfusion pressure that was significantly reduced only by 10 nM clodronate [90.0 ± 18.6 (n = 8) to 35.0 ± 10.4 (n = 7), p = .0277]. As controls, EB, DIDS, or reserpine treatment reduced the overflow of ATP/metabolites and NA in a concentration-dependent manner elicited by nerve terminal depolarization. Moreover, mechanical stimulation of primary endothelial cell cultures from the rat mesentery added with 10 or 100 nM clodronate increased adenosine in the cell media. eATP was metabolized by endothelial cells to the same extent with and without 1-1,000 nM clodronate, suggesting the bisphosphonate did not interfere with nucleotide ectoenzyme metabolism. In contrast, extracellular eADO remained intact, indicating that this nucleoside is neither metabolized nor transported intracellularly. Furthermore, only 10 nM clodronate inhibited (15.5%) adenosine metabolism to inosine in endothelial cells as well as in a commercial crude adenosine deaminase enzyme preparation (12.7%), and both effects proved the significance (p < .05). Altogether, present data allow inferring that clodronate inhibits adenosine deaminase activity in isolated endothelial cells as in a crude extract preparation, a finding that may account for adenosine accumulation following clodronate mesentery perfusion.
Collapse
Affiliation(s)
- M. Verónica Donoso
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Hernández
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Rafael Barra
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - J. Pablo Huidobro-Toro
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile,Centro de Nanociencia y Nanotecnología, Universidad de Santiago de Chile, Santiago, Chile,*Correspondence: J. Pablo Huidobro-Toro,
| |
Collapse
|
17
|
Moriyama Y, Hasuzawa N, Nomura M. Is the vesicular nucleotide transporter a molecular target of eicosapentaenoic acid? Front Pharmacol 2022; 13:1080189. [PMID: 36569286 PMCID: PMC9768625 DOI: 10.3389/fphar.2022.1080189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Vesicular nucleotide transporter (VNUT), an active transporter for nucleotides in secretory vesicles, is responsible for the vesicular storage of ATP and plays an essential role in purinergic chemical transmission. Inhibition of VNUT decreases the concentration of ATP in the luminal space of secretory vesicles, followed by decreased vesicular ATP release, resulting in the blockade of purinergic chemical transmission. Very recently, Miyaji and colleagues reported that eicosapentaenoic acid (EPA) is a potent VNUT inhibitor and effective in treating neuropathic and inflammatory pain and insulin resistance through inhibition of vesicular storage and release of ATP. However, our validation study indicated that, in bovine adrenal chromaffin granule membrane vesicles, EPA inhibited the formation of an electrochemical gradient of protons across the membrane with the concentration of 50% inhibition (IC50) being 1.0 μM without affecting concanamycin B-sensitive ATPase activity. Essentially, similar results were obtained with proteoliposomes containing purified vacuolar H+-ATPase. Consistent with these observations, EPA inhibited the ATP-dependent uptakes of ATP and dopamine by chromaffin granule membrane vesicles, with ID50 being 1.2 and 1.0 μM, respectively. Furthermore, EPA inhibited ATP-dependent uptake of L-glutamate by mouse brain synaptic vesicles with ID50 being 0.35 μM. These results indicate that EPA at sub-μM acts as a proton conductor and increases proton permeability across the membrane, regardless of the presence or absence of VNUT, thereby inhibiting non-specifically the vesicular storage of neurotransmitters. Thus, EPA may affect a broader range of chemical transmission than proposed.
Collapse
|
18
|
Yokoyama T, Saito H, Nakamuta N, Yamamoto Y. Immunohistochemical localization of vesicular nucleotide transporter in small intensely fluorescent (SIF) cells of the rat superior cervical ganglion. Tissue Cell 2022; 79:101924. [DOI: 10.1016/j.tice.2022.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
|
19
|
Ley-Ngardigal S, Bertolin G. Approaches to monitor ATP levels in living cells: where do we stand? FEBS J 2022; 289:7940-7969. [PMID: 34437768 DOI: 10.1111/febs.16169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023]
Abstract
ATP is the most universal and essential energy molecule in cells. This is due to its ability to store cellular energy in form of high-energy phosphate bonds, which are extremely stable and readily usable by the cell. This energy is key for a variety of biological functions such as cell growth and division, metabolism, and signaling, and for the turnover of biomolecules. Understanding how ATP is produced and hydrolyzed with a spatiotemporal resolution is necessary to understand its functions both in physiological and in pathological contexts. In this review, first we will describe the organization of the electron transport chain and ATP synthase, the main molecular motor for ATP production in mitochondria. Second, we will review the biochemical assays currently available to estimate ATP quantities in cells, and we will compare their readouts, strengths, and weaknesses. Finally, we will explore the palette of genetically encoded biosensors designed for microscopy-based approaches, and show how their spatiotemporal resolution opened up the possibility to follow ATP levels in living cells.
Collapse
Affiliation(s)
- Seyta Ley-Ngardigal
- CNRS, Univ Rennes, IGDR (Genetics and Development Institute of Rennes), Rennes, France.,LVMH Research Perfumes and Cosmetics, Saint-Jean-de-Braye, France
| | - Giulia Bertolin
- CNRS, Univ Rennes, IGDR (Genetics and Development Institute of Rennes), Rennes, France
| |
Collapse
|
20
|
Cancer Stem Cell Formation Induced and Regulated by Extracellular ATP and Stanniocalcin-1 in Human Lung Cancer Cells and Tumors. Int J Mol Sci 2022; 23:ijms232314770. [PMID: 36499099 PMCID: PMC9740946 DOI: 10.3390/ijms232314770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer stem cells (CSCs) are closely associated with metastasis and epithelial mesenchymal transition (EMT). We previously reported that extracellular ATP (eATP) induces and regulates EMT in cancer cells. We recently found that the gene stanniocalcin 1 (STC1) is significantly upregulated by eATP in human non-small lung cancer (NSCLC) A549 cells; however, the relationships among eATP, CSCs, and STC1 were largely unknown. In this study, we performed gene knockdown and knockout, and a wide variety of functional assays to determine if and how eATP and STC1 induce CSCs in NSCLC A549 and H1299 cells. Our data show that, in both cultured cells and tumors, eATP increased the number of CSCs in the cancer cell population and upregulated CSC-related genes and protein markers. STC1 deletion led to drastically slower cell and tumor growth, reduced intracellular ATP levels and CSC markers, and metabolically shifted STC1-deficient cells from an energetic state to a quiescent state. These findings indicate that eATP induces and regulates CSCs at transcriptional, translational, and metabolic levels, and these activities are mediated through STC1 via mitochondria-associated ATP synthesis. These novel findings offer insights into eATP-induced CSCs and identify new targets for inhibiting CSCs.
Collapse
|
21
|
Ramos-Levi A, Barabash A, Valerio J, García de la Torre N, Mendizabal L, Zulueta M, de Miguel MP, Diaz A, Duran A, Familiar C, Jimenez I, del Valle L, Melero V, Moraga I, Herraiz MA, Torrejon MJ, Arregi M, Simón L, Rubio MA, Calle-Pascual AL. Genetic variants for prediction of gestational diabetes mellitus and modulation of susceptibility by a nutritional intervention based on a Mediterranean diet. Front Endocrinol (Lausanne) 2022; 13:1036088. [PMID: 36313769 PMCID: PMC9612917 DOI: 10.3389/fendo.2022.1036088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Hypothesis Gestational diabetes mellitus (GDM) entails a complex underlying pathogenesis, with a specific genetic background and the effect of environmental factors. This study examines the link between a set of single nucleotide polymorphisms (SNPs) associated with diabetes and the development of GDM in pregnant women with different ethnicities, and evaluates its potential modulation with a clinical intervention based on a Mediterranean diet. Methods 2418 women from our hospital-based cohort of pregnant women screened for GDM from January 2015 to November 2017 (the San Carlos Cohort, randomized controlled trial for the prevention of GDM ISRCTN84389045 and real-world study ISRCTN13389832) were assessed for evaluation. Diagnosis of GDM was made according to the International Association of Diabetes and Pregnancy Study Groups (IADPSG) criteria. Genotyping was performed by IPLEX MassARRAY PCR using the Agena platform (Agena Bioscience, SanDiego, CA). 110 SNPs were selected for analysis based on selected literature references. Statistical analyses regarding patients' characteristics were performed in SPSS (Chicago, IL, USA) version 24.0. Genetic association tests were performed using PLINK v.1.9 and 2.0 software. Bioinformatics analysis, with mapping of SNPs was performed using STRING, version 11.5. Results Quality controls retrieved a total 98 SNPs and 1573 samples, 272 (17.3%) with GDM and 1301 (82.7%) without GDM. 1104 (70.2%) were Caucasian (CAU) and 469 (29.8%) Hispanic (HIS). 415 (26.4%) were from the control group (CG), 418 (26.6%) from the nutritional intervention group (IG) and 740 (47.0%) from the real-world group (RW). 40 SNPs (40.8%) presented some kind of significant association with GDM in at least one of the genetic tests considered. The nutritional intervention presented a significant association with GDM, regardless of the variant considered. In CAU, variants rs4402960, rs7651090, IGF2BP2; rs1387153, rs10830963, MTNR1B; rs17676067, GLP2R; rs1371614, DPYSL5; rs5215, KCNJ1; and rs2293941, PDX1 were significantly associated with an increased risk of GDM, whilst rs780094, GCKR; rs7607980, COBLL1; rs3746750, SLC17A9; rs6048205, FOXA2; rs7041847, rs7034200, rs10814916, GLIS3; rs3783347, WARS; and rs1805087, MTR, were significantly associated with a decreased risk of GDM, In HIS, variants significantly associated with increased risk of GDM were rs9368222, CDKAL1; rs2302593, GIPR; rs10885122, ADRA2A; rs1387153, MTNR1B; rs737288, BACE2; rs1371614, DPYSL5; and rs2293941, PDX1, whilst rs340874, PROX1; rs2943634, IRS1; rs7041847, GLIS3; rs780094, GCKR; rs563694, G6PC2; and rs11605924, CRY2 were significantly associated with decreased risk for GDM. Conclusions We identify a core set of SNPs in their association with diabetes and GDM in a large cohort of patients from two main ethnicities from a single center. Identification of these genetic variants, even in the setting of a nutritional intervention, deems useful to design preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Ana Ramos-Levi
- Endocrinology and Nutrition Department, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Barabash
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Facultad de Medicina. Medicina II Department, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Johanna Valerio
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Nuria García de la Torre
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | | | | - Maria Paz de Miguel
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Facultad de Medicina. Medicina II Department, Universidad Complutense de Madrid, Madrid, Spain
| | - Angel Diaz
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Facultad de Medicina. Medicina II Department, Universidad Complutense de Madrid, Madrid, Spain
| | - Alejandra Duran
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Facultad de Medicina. Medicina II Department, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Familiar
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Inés Jimenez
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Laura del Valle
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Veronica Melero
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Inmaculada Moraga
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Miguel A. Herraiz
- Gynecology and Obstetrics Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - María José Torrejon
- Clinical Laboratory Department Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Maddi Arregi
- Patia Europe, Clinical Laboratory, San Sebastián, Spain
| | | | - Miguel A. Rubio
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Facultad de Medicina. Medicina II Department, Universidad Complutense de Madrid, Madrid, Spain
| | - Alfonso L. Calle-Pascual
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Facultad de Medicina. Medicina II Department, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
22
|
Mechanical Disturbance of Osteoclasts Induces ATP Release That Leads to Protein Synthesis in Skeletal Muscle through an Akt-mTOR Signaling Pathway. Int J Mol Sci 2022; 23:ijms23169444. [PMID: 36012713 PMCID: PMC9408906 DOI: 10.3390/ijms23169444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Muscle and bone are tightly integrated through mechanical and biochemical signals. Osteoclasts are cells mostly related to pathological bone loss; however, they also start physiological bone remodeling. Therefore, osteoclast signals released during bone remodeling could improve both bone and skeletal muscle mass. Extracellular ATP is an autocrine/paracrine signaling molecule released by bone and muscle cells. Then, in the present work, it was hypothesized that ATP is a paracrine mediator released by osteoclasts and leads to skeletal muscle protein synthesis. RAW264.7-derived osteoclasts were co-cultured in Transwell® chambers with flexor digitorum brevis (FDB) muscle isolated from adult BalbC mice. The osteoclasts at the upper chamber were mechanically stimulated by controlled culture medium perturbation, resulting in a two-fold increase in protein synthesis in FDB muscle at the lower chamber. Osteoclasts released ATP to the extracellular medium in response to mechanical stimulation, proportional to the magnitude of the stimulus and partly dependent on the P2X7 receptor. On the other hand, exogenous ATP promoted Akt phosphorylation (S473) in isolated FDB muscle in a time- and concentration-dependent manner. ATP also induced phosphorylation of proteins downstream Akt: mTOR (S2448), p70S6K (T389) and 4E-BP1 (T37/46). Exogenous ATP increased the protein synthesis rate in FDB muscle 2.2-fold; this effect was blocked by Suramin (general P2X/P2Y antagonist), LY294002 (phosphatidylinositol 3 kinase inhibitor) and Rapamycin (mTOR inhibitor). These blockers, as well as apyrase (ATP metabolizing enzyme), also abolished the induction of FDB protein synthesis evoked by mechanical stimulation of osteoclasts in the co-culture model. Therefore, the present findings suggest that mechanically stimulated osteoclasts release ATP, leading to protein synthesis in isolated FDB muscle, by activating the P2-PI3K-Akt-mTOR pathway. These results open a new area for research and clinical interest in bone-to-muscle crosstalk in adaptive processes related to muscle use/disuse or in musculoskeletal pathologies.
Collapse
|
23
|
Zuccarini M, Giuliani P, Ronci M, Caciagli F, Caruso V, Ciccarelli R, Di Iorio P. Purinergic Signaling in Oral Tissues. Int J Mol Sci 2022; 23:ijms23147790. [PMID: 35887132 PMCID: PMC9318746 DOI: 10.3390/ijms23147790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
The role of the purinergic signal has been extensively investigated in many tissues and related organs, including the central and peripheral nervous systems as well as the gastrointestinal, cardiovascular, respiratory, renal, and immune systems. Less attention has been paid to the influence of purines in the oral cavity, which is the first part of the digestive apparatus and also acts as the body’s first antimicrobial barrier. In this review, evidence is provided of the presence and possible physiological role of the purinergic system in the different structures forming the oral cavity including teeth, tongue, hard palate, and soft palate with their annexes such as taste buds, salivary glands, and nervous fibers innervating the oral structures. We also report findings on the involvement of the purinergic signal in pathological conditions affecting the oral apparatus such as Sjögren’s syndrome or following irradiation for the treatment of head and neck cancer, and the use of experimental drugs interfering with the purine system to improve bone healing after damage. Further investigations are required to translate the results obtained so far into the clinical setting in order to pave the way for a wider application of purine-based treatments in oral diseases.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy; (M.R.); (F.C.)
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy; (M.R.); (F.C.)
| | - Maurizio Ronci
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy; (M.R.); (F.C.)
- Department of Pharmacy, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy; (M.R.); (F.C.)
| | - Vanni Caruso
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Renata Ciccarelli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy; (M.R.); (F.C.)
- Stem TeCh Group, Via L. Polacchi, 66100 Chieti, Italy
- Correspondence:
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy; (M.R.); (F.C.)
| |
Collapse
|
24
|
Oliveira LM, Fernandes-Junior SA, Cabral LMC, Miranda NCS, Czeisler CM, Otero JJ, Moreira TS, Takakura AC. Regulation of blood vessels by ATP in the ventral medullary surface in a rat model of Parkinson's disease. Brain Res Bull 2022; 187:138-154. [PMID: 35777704 DOI: 10.1016/j.brainresbull.2022.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/26/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) patients often experience impairment of autonomic and respiratory functions. These include conditions such as orthostatic hypotension and sleep apnea, which are highly correlated with dysfunctional central chemoreception. Blood flow is a fundamental determinant of tissue CO2/H+, yet the extent to which blood flow regulation within chemoreceptor regions contributes to respiratory behavior during neurological disease remains unknown. Here, we tested the hypothesis that 6-hydroxydopamine injection to inducing a known model of PD results in dysfunctional vascular homeostasis, biochemical dysregulation, and glial morphology of the ventral medullary surface (VMS). We show that hypercapnia (FiCO2 = 10%) induced elevated VMS pial vessel constriction in PD animals through a P2-receptor dependent mechanism. Similarly, we found a greater CO2-induced vascular constriction after ARL67156 (an ectonucleotidase inhibitor) in control and PD-induced animals. In addition, we also report that weighted gene correlational network analysis of the proteomic data showed a protein expression module differentially represented between both groups. This module showed that gene ontology enrichment for components of the ATP machinery were reduced in our PD-model compared to control animals. Altogether, our data indicate that dysfunction in purinergic signaling, potentially through altered ATP bioavailability in the VMS region, may compromise the RTN neuroglial vascular unit in a PD animal model.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Silvio A Fernandes-Junior
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil; The Ohio State University College of Medicine, Department of Pathology, USA
| | - Laís M C Cabral
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Nicole C S Miranda
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | | | - José J Otero
- The Ohio State University College of Medicine, Department of Pathology, USA
| | - Thiago S Moreira
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Ana C Takakura
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
25
|
Soeda M, Ohka S, Nishizawa D, Hasegawa J, Nakayama K, Ebata Y, Fukuda KI, Ikeda K. Single-nucleotide polymorphisms of the SLC17A9 and P2RY12 genes are significantly associated with phantom tooth pain. Mol Pain 2022; 18:17448069221089592. [PMID: 35266813 PMCID: PMC9003655 DOI: 10.1177/17448069221089592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Phantom tooth pain (PTP) is a rare and specific neuropathic pain that occurs after pulpectomy and tooth extraction, but its cause is not understood. We hypothesized that there is a genetic contribution to PTP. We focused on solute carrier family 17 member 9 (SLC17A9)/vesicular nucleotide transporter (VNUT) and purinergic receptor P2Y12 (P2RY12), both of which have been associated with neuropathic pain and pain transduction signaling in the trigeminal ganglion in rodents. We sought to corroborate these associations in humans. We investigated gene polymorphisms that contribute to PTP. We statistically examined the association between genetic polymorphisms and PTP vulnerability in 150 patients with orofacial pain, including PTP, and 500 healthy subjects. We found that the rs735055 polymorphism of the SLC17A9 gene and rs3732759 polymorphism of the P2RY12 gene were associated with the development of PTP. Carriers of the minor allele of rs735055 and individuals who were homozygous for the major allele of rs3732759 had a higher rate of PTP. Carriers of the minor allele of rs735055 reportedly had high SLC17A9 mRNA expression in the spinal cord, which may increase the storage and release of adenosine triphosphate. Individuals who were homozygous for the major allele of rs3732759 may have higher P2RY12 expression that is more active in microglia. Therefore, these carriers may be more susceptible to PTP. These results suggest that specific genetic polymorphisms of the SLC17A9 and P2RY12 genes are involved in PTP. This is the first report on genes that are associated with PTP in humans.
Collapse
Affiliation(s)
- Moe Soeda
- 13931Tokyo Metropolitan Institute of Medical Science
| | - Seii Ohka
- 13931Tokyo Metropolitan Institute of Medical Science
| | | | | | | | - Yuko Ebata
- 13931Tokyo Metropolitan Institute of Medical Science
| | | | - Kazutaka Ikeda
- Department of Psychiatry and Behavioral Sciences13931Tokyo Metropolitan Institute of Medical Science
| |
Collapse
|
26
|
Lysosomal ATP Transporter SLC17A9 Controls Cell Viability via Regulating Cathepsin D. Cells 2022; 11:cells11050887. [PMID: 35269509 PMCID: PMC8909234 DOI: 10.3390/cells11050887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
SLC17A9 (solute carrier family 17 member 9) functions as an ATP transporter in lysosomes as well as other secretory vesicles. SLC17A9 inhibition or silence leads to cell death. However, the molecular mechanisms causing cell death are unclear. In this study, we report that cell death induced by SLC17A9 deficiency is rescued by the transcription factor EB (TFEB), a master gene for lysosomal protein expression, suggesting that SLC17A9 deficiency may be the main cause of lysosome dysfunction, subsequently leading to cell death. Interestingly, Cathepsin D, a lysosomal aspartic protease, is inhibited by SLC17A9 deficiency. Heterologous expression of Cathepsin D successfully rescues lysosomal dysfunction and cell death induced by SLC17A9 deficiency. On the other hand, the activity of Cathepsin B, a lysosomal cysteine protease, is not altered by SLC17A9 deficiency, and Cathepsin B overexpression does not rescue lysosomal dysfunction and cell death induced by SLC17A9 deficiency. Our data suggest that lysosomal ATP and SLC17A9 play critical roles in lysosomal function and cell viability by regulating Cathepsin D activity.
Collapse
|
27
|
Savio LEB, Leite-Aguiar R, Alves VS, Coutinho-Silva R, Wyse ATS. Purinergic signaling in the modulation of redox biology. Redox Biol 2021; 47:102137. [PMID: 34563872 PMCID: PMC8479832 DOI: 10.1016/j.redox.2021.102137] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
Purinergic signaling is a cell communication pathway mediated by extracellular nucleotides and nucleosides. Tri- and diphosphonucleotides are released in physiological and pathological circumstances activating purinergic type 2 receptors (P2 receptors): P2X ion channels and P2Y G protein-coupled receptors. The activation of these receptors triggers the production of reactive oxygen and nitrogen species and alters antioxidant defenses, modulating the redox biology of cells. The activation of P2 receptors is controlled by ecto-enzymes named ectonucleotidases, E-NTPDase1/CD39 and ecto-5'-nucleotidase/CD73) being the most relevant. The first enzyme hydrolyzes adenosine triphosphate (ATP) and adenosine diphosphate (ADP) into adenosine monophosphate (AMP), and the second catalyzes the hydrolysis of AMP to adenosine. The activity of these enzymes is diminished by oxidative stress. Adenosine actives P1 G-coupled receptors that, in general, promote the maintenance of redox hemostasis by decreasing reactive oxygen species (ROS) production and increase antioxidant enzymes. Intracellular purine metabolism can also contribute to ROS generation via xanthine oxidase activity, which converts hypoxanthine into xanthine, and finally, uric acid. In this review, we describe the mechanisms of redox biology modulated by purinergic signaling and how this signaling may be affected by disturbances in the redox homeostasis of cells.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
28
|
Hasuzawa N, Moriyama S, Wang L, Nagayama A, Ashida K, Moriyama Y, Nomura M. Quinacrine is not a vital fluorescent probe for vesicular ATP storage. Purinergic Signal 2021; 17:725-735. [PMID: 34713379 DOI: 10.1007/s11302-021-09820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022] Open
Abstract
Quinacrine, a fluorescent amphipathic amine, has been used as a vital fluorescent probe to visualize vesicular storage of ATP in the field of purinergic signaling. However, the mechanism(s) by which quinacrine represents vesicular ATP storage remains to be clarified. The present study investigated the validity of the use of quinacrine as a vial fluorescent probe for ATP-storing organelles. Vesicular nucleotide transporter (VNUT), an essential component for vesicular storage and ATP release, is present in very low density lipoprotein (VLDL)-containing secretory vesicles in hepatocytes. VNUT gene knockout (Vnut-/-) or clodronate treatment, a VNUT inhibitor, disappeared vesicular ATP release (Tatsushima et al., Biochim Biophys Acta Molecular Basis of Disease 2021, e166013). Upon incubation of mice's primary hepatocytes, quinacrine accumulates in a granular pattern into the cytoplasm, sensitive to 0.1-μM bafilomycin A1, a vacuolar ATPase (V-ATPase) inhibitor. Neither Vnut-/- nor treatment of clodronate affected quinacrine granular accumulation. In vitro, quinacrine is accumulated into liposomes upon imposing inside acidic transmembranous pH gradient (∆pH) irrespective of the presence or absence of ATP. Neither ATP binding on VNUT nor VNUT-mediated uptake of ATP was affected by quinacrine. Consistently, VNUT-mediated uptake of quinacrine was negligible or under the detection limit. From these results, it is concluded that vesicular quinacrine accumulation is not due to a consequence of its interaction with ATP but due to ∆pH-driven concentration across the membranes as an amphipathic amine. Thus, quinacrine is not a vital fluorescent probe for vesicular ATP storage.
Collapse
Affiliation(s)
- Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Sawako Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Lixiang Wang
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Ayako Nagayama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Kenji Ashida
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Yoshinori Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| |
Collapse
|
29
|
Sanders KM, Mutafova-Yambolieva VN. Neurotransmitters responsible for purinergic motor neurotransmission and regulation of GI motility. Auton Neurosci 2021; 234:102829. [PMID: 34146957 DOI: 10.1016/j.autneu.2021.102829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Classical concepts of peripheral neurotransmission were insufficient to explain enteric inhibitory neurotransmission. Geoffrey Burnstock and colleagues developed the idea that ATP or a related purine satisfies the criteria for a neurotransmitter and serves as an enteric inhibitory neurotransmitter in GI muscles. Cloning of purinergic receptors and development of specific drugs and transgenic mice have shown that enteric inhibitory responses depend upon P2Y1 receptors in post-junctional cells. The post-junctional cells that transduce purinergic neurotransmitters in the GI tract are PDGFRα+ cells and not smooth muscle cells (SMCs). PDGFRα+ cells express P2Y1 receptors, are activated by enteric inhibitory nerve stimulation and generate Ca2+ oscillations, express small-conductance Ca2+-activated K+ channels (SK3), and generate outward currents when exposed to P2Y1 agonists. These properties are consistent with post-junctional purinergic responses, and similar responses and effectors are not functional in SMCs. Refinements in methodologies to measure purines in tissue superfusates, such as high-performance liquid chromatography (HPLC) coupled with etheno-derivatization of purines and fluorescence detection, revealed that multiple purines are released during stimulation of intrinsic nerves. β-NAD+ and other purines, better satisfy criteria for the purinergic neurotransmitter than ATP. HPLC has also allowed better detection of purine metabolites, and coupled with isolation of specific types of post-junctional cells, has provided new concepts about deactivation of purine neurotransmitters. In spite of steady progress, many unknowns about purinergic neurotransmission remain and require additional investigation to understand this important regulatory mechanism in GI motility.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Violeta N Mutafova-Yambolieva
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
30
|
Sabirov RZ, Islam MR, Okada T, Merzlyak PG, Kurbannazarova RS, Tsiferova NA, Okada Y. The ATP-Releasing Maxi-Cl Channel: Its Identity, Molecular Partners and Physiological/Pathophysiological Implications. Life (Basel) 2021; 11:life11060509. [PMID: 34073084 PMCID: PMC8229958 DOI: 10.3390/life11060509] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022] Open
Abstract
The Maxi-Cl phenotype accounts for the majority (app. 60%) of reports on the large-conductance maxi-anion channels (MACs) and has been detected in almost every type of cell, including placenta, endothelium, lymphocyte, cardiac myocyte, neuron, and glial cells, and in cells originating from humans to frogs. A unitary conductance of 300-400 pS, linear current-to-voltage relationship, relatively high anion-to-cation selectivity, bell-shaped voltage dependency, and sensitivity to extracellular gadolinium are biophysical and pharmacological hallmarks of the Maxi-Cl channel. Its identification as a complex with SLCO2A1 as a core pore-forming component and two auxiliary regulatory proteins, annexin A2 and S100A10 (p11), explains the activation mechanism as Tyr23 dephosphorylation at ANXA2 in parallel with calcium binding at S100A10. In the resting state, SLCO2A1 functions as a prostaglandin transporter whereas upon activation it turns to an anion channel. As an efficient pathway for chloride, Maxi-Cl is implicated in a number of physiologically and pathophysiologically important processes, such as cell volume regulation, fluid secretion, apoptosis, and charge transfer. Maxi-Cl is permeable for ATP and other small signaling molecules serving as an electrogenic pathway in cell-to-cell signal transduction. Mutations at the SLCO2A1 gene cause inherited bone and gut pathologies and malignancies, signifying the Maxi-Cl channel as a perspective pharmacological target.
Collapse
Affiliation(s)
- Ravshan Z. Sabirov
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Correspondence: (R.Z.S.); (Y.O.); Tel.: +81-46-858-1501 (Y.O.); Fax: +81-46-858-1542 (Y.O.)
| | - Md. Rafiqul Islam
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Department of Biochemistry and Molecular Biology, Jagannath University, Dhaka 1100, Bangladesh
| | - Toshiaki Okada
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Veneno Technologies Co. Ltd., Tsukuba 305-0031, Japan
| | - Petr G. Merzlyak
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Ranokhon S. Kurbannazarova
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Nargiza A. Tsiferova
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Yasunobu Okada
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Japan
- Correspondence: (R.Z.S.); (Y.O.); Tel.: +81-46-858-1501 (Y.O.); Fax: +81-46-858-1542 (Y.O.)
| |
Collapse
|
31
|
Clodronate, an inhibitor of the vesicular nucleotide transporter, ameliorates steatohepatitis and acute liver injury. Sci Rep 2021; 11:5192. [PMID: 33664289 PMCID: PMC7933178 DOI: 10.1038/s41598-021-83144-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
The vesicular nucleotide transporter (VNUT) is responsible for the vesicular storage and release of ATP from various ATP-secreting cells, and it plays an essential role in purinergic signaling. Although extracellular ATP and its degradation products are known to mediate various inflammatory responses via purinoceptors, whether vesicular ATP release affects steatohepatitis and acute liver injury is far less understood. In the present study, we investigated the effects of clodronate, a potent and selective VNUT inhibitor, on acute and chronic liver inflammation in mice. In a model of methionine/choline-deficient diet-induced non-alcoholic steatohepatitis (NASH), the administration of clodronate reduced hepatic inflammation, fibrosis, and triglyceride accumulation. Clodronate also protected mice against high-fat/high-cholesterol diet-induced steatohepatitis. Moreover, prophylactic administration of clodronate prevented d-galactosamine and lipopolysaccharide-induced acute liver injury by reducing inflammatory cytokines and hepatocellular apoptosis. In vitro, clodronate inhibited glucose-induced vesicular ATP release mediated by VNUT and reduced the intracellular level and secretion of triglycerides in isolated hepatocytes. These results suggest that VNUT-dependent vesicular ATP release plays a crucial role in the recruitment of immune cells, cytokine production, and the aggravation of steatosis in the liver. Pharmacological inhibition of VNUT may provide therapeutic benefits in liver inflammatory disorders, including NASH and acute toxin-induced injury.
Collapse
|
32
|
Tatsushima K, Hasuzawa N, Wang L, Hiasa M, Sakamoto S, Ashida K, Sudo N, Moriyama Y, Nomura M. Vesicular ATP release from hepatocytes plays a role in the progression of nonalcoholic steatohepatitis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166013. [PMID: 33212187 DOI: 10.1016/j.bbadis.2020.166013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is becoming a growing public health problem along with the increase of metabolic syndrome worldwide. Extracellular nucleotides are known to serve as a danger signal by initiating purinergic signaling in many inflammatory disorders, although the role of purinergic signaling in the progression of NASH remains to be clarified. Vesicular nucleotide transporter (VNUT) is a key molecule responsible for vesicular ATP release to initiate purinergic signaling. Here, we studied the role of VNUT in the progression of nonalcoholic steatohepatitis. VNUT was expressed in mouse hepatocytes and associated, at least in part, with apolipoprotein B (apoB)-containing vesicles. High glucose stimulation evoked release of appreciable amount of ATP from hepatocytes, which disappeared in hepatocytes of Vnut knockout (Vnut-/-) mice. Glucose treatment also stimulated triglyceride secretion from hepatocytes, which was inhibited by PPADS and MRS211, antagonists of P2Y receptors, and clodronate, a VNUT inhibitor, and was significantly reduced in Vnut-/- mice. In vivo, postprandial secretion of triglyceride from hepatocytes was observed, while the serum triglyceride level was significantly reduced in Vnut-/- mice. On a high-fat diet, the liver of wild type mice exhibited severe inflammation, fibrosis, and macrophage infiltration, which is similar to NASH in humans, while this NASH pathology was not observed in Vnut-/- mice. These results suggest that VNUT-mediated vesicular ATP release regulates triglyceride secretion and involves in chronic inflammation in hepatocytes. Since blockade of vesicular ATP release protects against progression of steatohepatitis, VNUT may be a pharmacological target for NASH.
Collapse
Affiliation(s)
- Keita Tatsushima
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Endocrine Center, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Nao Hasuzawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Lixiang Wang
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Miki Hiasa
- Department of Membrane Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Shohei Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenji Ashida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Nobuyuki Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinori Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; Department of Membrane Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan.
| |
Collapse
|
33
|
Wu Z, Xu J, Liang C, Meng Q, Hua J, Wang W, Zhang B, Liu J, Yu X, Shi S. Emerging roles of the solute carrier family in pancreatic cancer. Clin Transl Med 2021; 11:e356. [PMID: 33783998 PMCID: PMC7989705 DOI: 10.1002/ctm2.356] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a gastrointestinal tumor with a high mortality rate, and advances in surgical procedures have only resulted in limited improvements in the prognosis of patients. Solute carriers (SLCs), which rank second among membrane transport proteins in terms of abundance, regulate cellular functions, including tumor biology. An increasing number of studies focusing on the role of SLCs in tumor biology have indicated their relationship with pancreatic cancer. The mechanism of SLC transporters in tumorigenesis has been explored to identify more effective therapies and improve survival outcomes. These transporters are significant biomarkers for pancreatic cancer, the functions of which include mainly proliferative signaling, cell death, angiogenesis, tumor invasion and metastasis, energy metabolism, chemotherapy sensitivity and other functions in tumor biology. In this review, we summarize the different roles of SLCs and explain their potential applications in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Zijian Wu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Jin Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Chen Liang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Qingcai Meng
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Jie Hua
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Wei Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Bo Zhang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Jiang Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Si Shi
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| |
Collapse
|
34
|
Giuliani AL, Sarti AC, Di Virgilio F. Ectonucleotidases in Acute and Chronic Inflammation. Front Pharmacol 2021; 11:619458. [PMID: 33613285 PMCID: PMC7887318 DOI: 10.3389/fphar.2020.619458] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Ectonucleotidases are extracellular enzymes with a pivotal role in inflammation that hydrolyse extracellular purine and pyrimidine nucleotides, e.g., ATP, UTP, ADP, UDP, AMP and NAD+. Ectonucleotidases, expressed by virtually all cell types, immune cells included, either as plasma membrane-associated or secreted enzymes, are classified into four main families: 1) nucleoside triphosphate diphosphohydrolases (NTPDases), 2) nicotinamide adenine dinucleotide glycohydrolase (NAD glycohydrolase/ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1), 3) ecto-5′-nucleotidase (NT5E), and 4) ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs). Concentration of ATP, UTP and NAD+ can be increased in the extracellular space thanks to un-regulated, e.g., cell damage or cell death, or regulated processes. Regulated processes include secretory exocytosis, connexin or pannexin hemichannels, ATP binding cassette (ABC) transporters, calcium homeostasis modulator (CALMH) channels, the ATP-gated P2X7 receptor, maxi-anion channels (MACs) and volume regulated ion channels (VRACs). Hydrolysis of extracellular purine nucleotides generates adenosine, an important immunosuppressant. Extracellular nucleotides and nucleosides initiate or dampen inflammation via P2 and P1 receptors, respectively. All these agents, depending on their level of expression or activation and on the agonist concentration, are potent modulators of inflammation and key promoters of host defences, immune cells activation, pathogen clearance, tissue repair and regeneration. Thus, their knowledge is of great importance for a full understanding of the pathophysiology of acute and chronic inflammatory diseases. A selection of these pathologies will be briefly discussed here.
Collapse
Affiliation(s)
- Anna Lisa Giuliani
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alba Clara Sarti
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
35
|
Hasuzawa N, Tatsushima K, Tokubuchi R, Kabashima M, Nomura M. [VNUT Is a Therapeutic Target for Type 2 Diabetes and NASH]. YAKUGAKU ZASSHI 2021; 141:517-526. [PMID: 33790119 DOI: 10.1248/yakushi.20-00204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP, used in cells as an energy currency, also acts as an extracellular signaling molecule. Studies of purinergic receptor subtypes have revealed that purinergic chemical transmission plays important roles in various cell types. The vesicular nucleotide transporter (VNUT), the ninth transporter in the SLC17 organic anion transporter family, is essential for vesicular ATP storage and its subsequent release. The VNUT is localized on the membrane of secretory vesicles and actively transports ATP into vesicles using an electrochemical gradient of protons supplied by vacuolar proton ATPase (V-ATPase) as a driving force. ATP acts as a damage-associated molecular pattern (DAMPs), contributing to the persistence of chronic inflammation. Chronic inflammation induces systemic insulin resistance, which is the underlying pathology of type 2 diabetes and non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). We previously demonstrated that ATP transported in insulin granules via the VNUT negatively regulates insulin secretion. We also found that hepatocytes release ATP in a VNUT-dependent manner, which elicits hepatic insulin resistance and inflammation. VNUT-knockout mice exhibited improved glucose tolerance and were resistant to the development of high fat diet-induced NAFLD. In this article, we summarize recent advances in our understanding of the mechanism of the VNUT, the development of inhibitors, and its pathological involvement in type 2 diabetes and NAFLD. The pharmacological inhibition of the VNUT may represent a potential therapeutic approach for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| | | | - Rie Tokubuchi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| | - Masaharu Kabashima
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| |
Collapse
|
36
|
Vesicular neurotransmitter transporters in Drosophila melanogaster. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183308. [PMID: 32305263 DOI: 10.1016/j.bbamem.2020.183308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
Drosophila melanogaster express vesicular transporters for the storage of neurotransmitters acetylcholine, biogenic amines, GABA, and glutamate. The large array of powerful molecular-genetic tools available in Drosophila enhances the use of this model organism for studying transporter function and regulation.
Collapse
|
37
|
Novak I, Yu H, Magni L, Deshar G. Purinergic Signaling in Pancreas-From Physiology to Therapeutic Strategies in Pancreatic Cancer. Int J Mol Sci 2020; 21:E8781. [PMID: 33233631 PMCID: PMC7699721 DOI: 10.3390/ijms21228781] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
The purinergic signaling has an important role in regulating pancreatic exocrine secretion. The exocrine pancreas is also a site of one of the most serious cancer forms, the pancreatic ductal adenocarcinoma (PDAC). Here, we explore how the network of purinergic and adenosine receptors, as well as ecto-nucleotidases regulate normal pancreatic cells and various cells within the pancreatic tumor microenvironment. In particular, we focus on the P2X7 receptor, P2Y2 and P2Y12 receptors, as well as A2 receptors and ecto-nucleotidases CD39 and CD73. Recent studies indicate that targeting one or more of these candidates could present new therapeutic approaches to treat pancreatic cancer. In pancreatic cancer, as much as possible of normal pancreatic function should be preserved, and therefore physiology of purinergic signaling in pancreas needs to be considered.
Collapse
MESH Headings
- 5'-Nucleotidase/genetics
- 5'-Nucleotidase/immunology
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Apyrase/genetics
- Apyrase/immunology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Clinical Trials as Topic
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunotherapy/methods
- Pancreas/drug effects
- Pancreas/immunology
- Pancreas/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Stellate Cells/drug effects
- Pancreatic Stellate Cells/immunology
- Pancreatic Stellate Cells/pathology
- Receptors, Adenosine A2/genetics
- Receptors, Adenosine A2/immunology
- Receptors, Purinergic P2X7/genetics
- Receptors, Purinergic P2X7/immunology
- Receptors, Purinergic P2Y12/genetics
- Receptors, Purinergic P2Y12/immunology
- Receptors, Purinergic P2Y2/genetics
- Receptors, Purinergic P2Y2/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark; (H.Y.); (L.M.); (G.D.)
| | | | | | | |
Collapse
|
38
|
Extracellular ATP: A Feasible Target for Cancer Therapy. Cells 2020; 9:cells9112496. [PMID: 33212982 PMCID: PMC7698494 DOI: 10.3390/cells9112496] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022] Open
Abstract
Adenosine triphosphate (ATP) is one of the main biochemical components of the tumor microenvironment (TME), where it can promote tumor progression or tumor suppression depending on its concentration and on the specific ecto-nucleotidases and receptors expressed by immune and cancer cells. ATP can be released from cells via both specific and nonspecific pathways. A non-regulated release occurs from dying and damaged cells, whereas active release involves exocytotic granules, plasma membrane-derived microvesicles, specific ATP-binding cassette (ABC) transporters and membrane channels (connexin hemichannels, pannexin 1 (PANX1), calcium homeostasis modulator 1 (CALHM1), volume-regulated anion channels (VRACs) and maxi-anion channels (MACs)). Extracellular ATP acts at P2 purinergic receptors, among which P2X7R is a key mediator of the final ATP-dependent biological effects. Over the years, P2 receptor- or ecto-nucleotidase-targeting for cancer therapy has been proposed and actively investigated, while comparatively fewer studies have explored the suitability of TME ATP as a target. In this review, we briefly summarize the available evidence suggesting that TME ATP has a central role in determining tumor fate and is, therefore, a suitable target for cancer therapy.
Collapse
|
39
|
Trapero C, Martín-Satué M. Purinergic Signaling in Endometriosis-Associated Pain. Int J Mol Sci 2020; 21:E8512. [PMID: 33198179 PMCID: PMC7697899 DOI: 10.3390/ijms21228512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is an estrogen-dependent gynecological disease, with an associated chronic inflammatory component, characterized by the presence of endometrial tissue outside the uterine cavity. Its predominant symptom is pain, a condition notably altering the quality of life of women with the disease. This review is intended to exhaustively gather current knowledge on purinergic signaling in endometriosis-associated pain. Altered extracellular ATP hydrolysis, due to changes in ectonucleotidase activity, has been reported in endometriosis; the resulting accumulation of ATP in the endometriotic microenvironment points to sustained activation of nucleotide receptors (P2 receptors) capable of generating a persistent pain message. P2X3 receptor, expressed in sensory neurons, mediates nociceptive, neuropathic, and inflammatory pain, and is enrolled in endometriosis-related pain. Pharmacological inhibition of P2X3 receptor is under evaluation as a pain relief treatment for women with endometriosis. The role of other ATP receptors is also discussed here, e.g., P2X4 and P2X7 receptors, which are involved in inflammatory cell-nerve and microglia-nerve crosstalk, and therefore in inflammatory and neuropathic pain. Adenosine receptors (P1 receptors), by contrast, mainly play antinociceptive and anti-inflammatory roles. Purinome-targeted drugs, including nucleotide receptors and metabolizing enzymes, are potential non-hormonal therapeutic tools for the pharmacological management of endometriosis-related pain.
Collapse
Affiliation(s)
- Carla Trapero
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Campus Bellvitge, Universitat de Barcelona, 08907 Barcelona, Spain;
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, 08908 Barcelona, Spain
| | - Mireia Martín-Satué
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Campus Bellvitge, Universitat de Barcelona, 08907 Barcelona, Spain;
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, 08908 Barcelona, Spain
| |
Collapse
|
40
|
Robb JL, Morrissey NA, Weightman Potter PG, Smithers HE, Beall C, Ellacott KLJ. Immunometabolic Changes in Glia - A Potential Role in the Pathophysiology of Obesity and Diabetes. Neuroscience 2020; 447:167-181. [PMID: 31765625 PMCID: PMC7567742 DOI: 10.1016/j.neuroscience.2019.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022]
Abstract
Chronic low-grade inflammation is a feature of the pathophysiology of obesity and diabetes in the CNS as well as peripheral tissues. Glial cells are critical mediators of the response to inflammation in the brain. Key features of glia include their metabolic flexibility, sensitivity to changes in the CNS microenvironment, and ability to rapidly adapt their function accordingly. They are specialised cells which cooperate to promote and preserve neuronal health, playing important roles in regulating the activity of neuronal networks across the brain during different life stages. Increasing evidence points to a role of glia, most notably astrocytes and microglia, in the systemic regulation of energy and glucose homeostasis in the course of normal physiological control and during disease. Inflammation is an energetically expensive process that requires adaptive changes in cellular metabolism and, in turn, metabolic intermediates can also have immunomodulatory actions. Such "immunometabolic" changes in peripheral immune cells have been implicated in contributing to disease pathology in obesity and diabetes. This review will discuss the evidence for a role of immunometabolic changes in glial cells in the systemic regulation of energy and glucose homeostasis, and how this changes in the context of obesity and diabetes.
Collapse
Affiliation(s)
- Josephine L Robb
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Nicole A Morrissey
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Paul G Weightman Potter
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Hannah E Smithers
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Craig Beall
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Kate L J Ellacott
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
41
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Wu J, Yang Y, Song J. Expression of SLC17A9 in hepatocellular carcinoma and its clinical significance. Oncol Lett 2020; 20:182. [PMID: 32934749 PMCID: PMC7471742 DOI: 10.3892/ol.2020.12043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to investigate the expression and clinical significance of solute carrier family 17 member 9 (SLC17A9) in cancer tissues of patients with hepatocellular carcinoma (HCC). Ninety-eight patients with HCC were admitted to our hospital from January 2010 to December 2014. Their clinical data was retrospectively analyzed. The expression of SLC17A9 in HCC cancer tissues was detected by immunohistochemistry. Kaplan-Meier curve, log-rank test and Cox proportional hazard model analysis were used to analyze the tumor-free survival rate and overall survival rate. SLC17A9 expression was associated with Edmondson grade (P=0.04) and distant metastasis (P=0.03). The tumor-free survival (P=0.03) and overall survival (P=0.01) of SLC17A9-high expression patients were significantly lower than those in SLC17A9-low expression patients. Multivariate analysis revealed that SLC17A9 expression (HR, 0.77; 95% CI, 0.27–2.47, P=0.02) was an independent risk factor for tumor-free survival in patients with HCC, and the expression of SLC17A9 (HR, 1.81; 95% CI, 0.99–3.77, P=0.04) was an independent risk factor for overall survival in patients with HCC. In conclusion, SLC17A9 can be used as a new molecular marker to predict the poor prognosis of patients with HCC.
Collapse
Affiliation(s)
- Jingdong Wu
- Department of Emergency Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430010, P.R. China
| | - Yongfei Yang
- Department of Emergency Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430010, P.R. China
| | - Jiansheng Song
- Department of Emergency Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430010, P.R. China
| |
Collapse
|
43
|
Ahn Y, Seo J, Lee EJ, Kim JY, Park MY, Hwang S, Almurayshid A, Lim BJ, Yu JW, Oh SH. ATP-P2X7-Induced Inflammasome Activation Contributes to Melanocyte Death and CD8 + T-Cell Trafficking to the Skin in Vitiligo. J Invest Dermatol 2020; 140:1794-1804.e4. [PMID: 32035094 DOI: 10.1016/j.jid.2019.12.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 01/16/2023]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) is a well-known inflammasome-activating signal. Emerging evidence demonstrates a critical role for inflammasome activation in vitiligo pathogenesis. However, the specific molecular mechanism of inflammasome-dependent melanocyte degeneration in vitiligo is still not clear. This study presents how extracellular ATP, released from keratinocytes by oxidative stress, affects melanocyte survival in vitiligo skin. H2O2-induced oxidative injury increased ATP release from keratinocytes and skin tissues. The high concentration of extracellular ATP induced both ROS production and cell death in melanocytes. Treatment with ATP caused the activation of caspase-1 as well as the production of active forms of IL-1β and IL-18 via P2X7 receptor in keratinocytes and melanocytes. Lesional and perilesional skin of vitiligo showed higher levels of ATP as well as upregulation of active caspase-1 compared with nonlesional skin, suggesting its possible role in inflammasome activation in vitiligo. Moreover, the elevated expression of CXCL9 in keratinocytes, mediated through ATP/P2X7 receptor-dependent inflammasome activation, was responsible for CLA+CD8+ T-cell chemotaxis into the skin. These results demonstrate that extracellular ATP as a danger signal activates the inflammasome pathway and increases cutaneous chemotaxis of CD8+ T cells via CXCL9 in vitiligo. Therefore, targeting ATP-P2X7 signaling may be a potential strategy for vitiligo treatment.
Collapse
Affiliation(s)
- Yuri Ahn
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jimyung Seo
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Engineering, Daejeon, Korea
| | - Eun Jung Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Young Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Young Park
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Shinwon Hwang
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Abdurrahman Almurayshid
- Department of Medicine, College of Medicine, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Beom Jin Lim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Je-Wook Yu
- Department of Microbiology, Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
44
|
Inoue A, Nakao-Kuroishi K, Kometani-Gunjigake K, Mizuhara M, Shirakawa T, Ito-Sago M, Yasuda K, Nakatomi M, Matsubara T, Tada-Shigeyama Y, Morikawa K, Kokabu S, Kawamoto T. VNUT/SLC17A9, a vesicular nucleotide transporter, regulates osteoblast differentiation. FEBS Open Bio 2020; 10:1612-1623. [PMID: 32592329 PMCID: PMC7396442 DOI: 10.1002/2211-5463.12918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoblasts release adenosine triphosphate (ATP) out of the cell following mechanical stress. Although it is well established that extracellular ATP affects bone metabolism via P2 receptors [such as purinergic receptor P2X7 (P2X7R) and purinergic receptor P2Y2 (P2Y2R)], the mechanism of ATP release from osteoblasts remains unknown. Recently, a vesicular nucleotide transporter [VNUT, solute carrier family 17 member 9 (SLC17A9)] that preserves ATP in vesicles has been identified. The purpose of this study was to elucidate the role of VNUT in osteoblast bone metabolism. mRNA and protein expression of VNUT were confirmed in mouse bone and in osteoblasts by quantitative real-time PCR (qPCR) and immunohistochemistry. Next, when compressive force was applied to MC3T3-E1 cells by centrifugation, the expression of Slc17a9, P2x7r, and P2y2r was increased concomitant with an increase in extracellular ATP levels. Furthermore, compressive force decreased the osteoblast differentiation capacity of MC3T3-E1 cells. shRNA knockdown of Slc17a9 in MC3T3-E1 cells reduced levels of extracellular ATP and also led to increased osteoblast differentiation after the application of compressive force as assessed by qPCR analysis of osteoblast markers such as Runx2, Osterix, and alkaline phosphatase (ALP) as well as ALP activity. Consistent with these observations, knockdown of P2x7r or P2y2r by siRNA partially rescued the downregulation of osteoblast differentiation markers, caused by mechanical loading. In conclusion, our results demonstrate that VNUT is expressed in osteoblasts and that VNUT inhibits osteoblast differentiation in response to compressive force by mechanisms related to ATP release and P2X7R and/or P2Y2R activity.
Collapse
Affiliation(s)
- Asako Inoue
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Kayoko Nakao-Kuroishi
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Kaori Kometani-Gunjigake
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Masahiro Mizuhara
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Tomohiko Shirakawa
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Misa Ito-Sago
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Kazuma Yasuda
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Yukiyo Tada-Shigeyama
- Division of Dental Anesthesiology, Department of Science of Physical Functions, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Kazumasa Morikawa
- Division of Pediatric and Special Care Dentistry, Department of Developmental Oral Health Science, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| |
Collapse
|
45
|
Hasuzawa N, Moriyama S, Moriyama Y, Nomura M. Physiopathological roles of vesicular nucleotide transporter (VNUT), an essential component for vesicular ATP release. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183408. [PMID: 32652056 DOI: 10.1016/j.bbamem.2020.183408] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
Vesicular nucleotide transporter (VNUT) is the last identified member of the SLC17 organic anion transporter family, which plays a central role in vesicular storage in ATP-secreting cells. The discovery of VNUT demonstrated that, despite having been neglected for a long time, vesicular ATP release represents a major pathway for purinergic chemical transmission, which had been mainly attributed to ATP permeation channels. This article summarizes recent advances in our understanding of the mechanism of VNUT and its physiopathological roles as well as the development of inhibitors. Regulating the activity and/or the expression of VNUT represents a new and promising therapeutic strategy for the treatment of multiple diseases.
Collapse
Affiliation(s)
- Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan.
| | - Sawako Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Yoshinori Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| |
Collapse
|
46
|
Verkhratsky A, Zimmermann H, Abbracchio MP, Illes P, DiVirgilio F. In Memoriam Geoffrey Burnstock: Creator of Purinergic Signaling. FUNCTION 2020. [PMCID: PMC8788863 DOI: 10.1093/function/zqaa006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Geoff Burnstock (1929–2020) discovered purinergic signaling in a fastidious research that started in early 1960 and culminated in a concept of purinergic nerves in 1972. Subsequently, Geoff developed the concept of purinergic transmission and demonstrated ATP storage, release, and degradation in the context of cotransmission, which was another fundamental concept developed by him. Purinergic transmission contributes to the most fundamental physiological functions such as sensory transduction, regulation of heart rate, smooth muscle contraction, bile secretion, endocrine regulation, immune responses, as well as to various pathophysiological conditions, including inflammation, cancer, neuropathic pain, diabetes, and kidney failure.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Achucarro Centre for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain
| | - Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe-University, Frankfurt am Main, Germany
| | - Maria P Abbracchio
- Department of Pharmacological Sciences, Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, University of Milan, Milan, Italy
| | - Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Germany
| | | |
Collapse
|
47
|
Abstract
Purinergic signaling was proposed in 1972, after it was demonstrated that adenosine 5'-triphosphate (ATP) was a transmitter in nonadrenergic, noncholinergic inhibitory nerves supplying the guinea-pig taenia coli. Later, ATP was identified as an excitatory cotransmitter in sympathetic and parasympathetic nerves, and it is now apparent that ATP acts as a cotransmitter in most, if not all, nerves in both the peripheral nervous system and central nervous system (CNS). ATP acts as a short-term signaling molecule in neurotransmission, neuromodulation, and neurosecretion. It also has potent, long-term (trophic) roles in cell proliferation, differentiation, and death in development and regeneration. Receptors to purines and pyrimidines have been cloned and characterized: P1 adenosine receptors (with four subtypes), P2X ionotropic nucleotide receptors (seven subtypes) and P2Y metabotropic nucleotide receptors (eight subtypes). ATP is released from different cell types by mechanical deformation, and after release, it is rapidly broken down by ectonucleotidases. Purinergic receptors were expressed early in evolution and are widely distributed on many different nonneuronal cell types as well as neurons. Purinergic signaling is involved in embryonic development and in the activities of stem cells. There is a growing understanding about the pathophysiology of purinergic signaling and there are therapeutic developments for a variety of diseases, including stroke and thrombosis, osteoporosis, pain, chronic cough, kidney failure, bladder incontinence, cystic fibrosis, dry eye, cancer, and disorders of the CNS, including Alzheimer's, Parkinson's. and Huntington's disease, multiple sclerosis, epilepsy, migraine, and neuropsychiatric and mood disorders.
Collapse
|
48
|
Tozzi M, Hansen JB, Novak I. Pannexin-1 mediated ATP release in adipocytes is sensitive to glucose and insulin and modulates lipolysis and macrophage migration. Acta Physiol (Oxf) 2020; 228:e13360. [PMID: 31400255 DOI: 10.1111/apha.13360] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022]
Abstract
AIM Extracellular ATP signalling is involved in many physiological and pathophysiological processes in several tissues, including adipose tissue. Adipocytes have crucial functions in lipid and glucose metabolism and they express purinergic receptors. However, the sources of extracellular ATP in adipose tissue are not well characterized. In the present study, we investigated the mechanism and regulation of ATP release in white adipocytes, and evaluated the role of extracellular ATP as potential autocrine and paracrine signal. METHODS Online ATP release was monitored in C3H10T1/2 cells and freshly isolated murine adipocytes. The ATP release mechanism and its regulation were tested in cells exposed to adrenergic agonists, insulin, glucose load and pharmacological inhibitors. Cell metabolism was monitored using Seahorse respirometry and expression analysis of pannexin-1 was performed on pre- and mature adipocytes. The ATP signalling was evaluated in live cell imaging (Ca2+ , pore formation), glycerol release and its effect on macrophages was tested in co-culture and migration assays. RESULTS Here, we show that upon adrenergic stimulation white murine adipocytes release ATP through the pannexin-1 pore that is regulated by a cAMP-PKA-dependent pathway. The ATP release correlates with increased cell metabolism and is sensitive to glucose. Extracellular ATP induces Ca2+ signalling and lipolysis in adipocytes and promotes macrophage migration. Importantly, ATP release is markedly inhibited by insulin, which operates via the activation of phosphodiesterase 3. CONCLUSIONS Our findings reveal an insulin-pannexin-1-purinergic signalling crosstalk in adipose tissue and we propose that deregulation of this signalling may contribute to adipose tissue inflammation and type 2 diabetes.
Collapse
Affiliation(s)
- Marco Tozzi
- Section for Cell Biology and Physiology, Department of Biology University of Copenhagen Copenhagen Denmark
| | - Jacob B. Hansen
- Section for Cell Biology and Physiology, Department of Biology University of Copenhagen Copenhagen Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology University of Copenhagen Copenhagen Denmark
| |
Collapse
|
49
|
Moriyama Y, Hatano R, Moriyama S, Uehara S. Vesicular polyamine transporter as a novel player in amine-mediated chemical transmission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183208. [PMID: 32004521 DOI: 10.1016/j.bbamem.2020.183208] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023]
Abstract
The solute carrier 18B1 (SLC18B1) is the most recently identified gene of the vesicular amine transporter family and is conserved in the animal kingdom from insects to humans. Proteoliposomes containing the purified human SLC18B1 protein transport not only monoamines, but also polyamines, such as spermidine (Spd) and spermine (Spm), using an electrochemical gradient of H+ established by vacuolar H+-ATPase (V-ATPase) as the driving force. SLC18B1 gene knockdown abolished the exocytosis of polyamines from mast cells, which affected the secretion of histamine. SLC18B1 gene knockout decreased polyamine levels by ~20% in the brain, and impaired short- and long-term memory. Thus, the SLC18B1 protein is responsible for the vesicular storage and release of polyamines, and functions as a vesicular polyamine transporter (VPAT). VPAT may define when, where, and how polyamine-mediated chemical transmission occurs, providing insights into the more versatile and complex features of amine-mediated chemical transmission than currently considered.
Collapse
Affiliation(s)
- Yoshinori Moriyama
- Department of Biochemistry, Matsumoto Dental University, Shiojiri 399-0781, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; CYRIC Tohoku University, Sendai 980-8578, Japan.
| | - Ryo Hatano
- Department of Medicinal Physiology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Satomi Moriyama
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara 634-8521, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Shiojiri 399-0781, Japan
| |
Collapse
|
50
|
Cserép C, Pósfai B, Lénárt N, Fekete R, László ZI, Lele Z, Orsolits B, Molnár G, Heindl S, Schwarcz AD, Ujvári K, Környei Z, Tóth K, Szabadits E, Sperlágh B, Baranyi M, Csiba L, Hortobágyi T, Maglóczky Z, Martinecz B, Szabó G, Erdélyi F, Szipőcs R, Tamkun MM, Gesierich B, Duering M, Katona I, Liesz A, Tamás G, Dénes Á. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 2019; 367:528-537. [PMID: 31831638 DOI: 10.1126/science.aax6752] [Citation(s) in RCA: 423] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/14/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Microglia are the main immune cells in the brain and have roles in brain homeostasis and neurological diseases. Mechanisms underlying microglia-neuron communication remain elusive. Here, we identified an interaction site between neuronal cell bodies and microglial processes in mouse and human brain. Somatic microglia-neuron junctions have a specialized nanoarchitecture optimized for purinergic signaling. Activity of neuronal mitochondria was linked with microglial junction formation, which was induced rapidly in response to neuronal activation and blocked by inhibition of P2Y12 receptors. Brain injury-induced changes at somatic junctions triggered P2Y12 receptor-dependent microglial neuroprotection, regulating neuronal calcium load and functional connectivity. Thus, microglial processes at these junctions could potentially monitor and protect neuronal functions.
Collapse
Affiliation(s)
- Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Rebeka Fekete
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Zsófia I László
- Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary.,Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Barbara Orsolits
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Molnár
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Steffanie Heindl
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, Munich, Germany
| | - Anett D Schwarcz
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katinka Ujvári
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna Környei
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztina Tóth
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Eszter Szabadits
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - László Csiba
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, Debrecen, Hungary
| | - Tibor Hortobágyi
- Institute of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, Stavanger, Norway
| | - Zsófia Maglóczky
- Human Brain Research Laboratory, Institute of Experimental Medicine, Budapest, Hungary
| | - Bernadett Martinecz
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Szabó
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Ferenc Erdélyi
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Róbert Szipőcs
- Institute for Solid State Physics and Optics of Wigner RCP, Budapest, Hungary
| | - Michael M Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Benno Gesierich
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, Munich, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Gábor Tamás
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|