1
|
Tasca CI, Zuccarini M, Di Iorio P, Ciruela F. Lessons from the physiological role of guanosine in neurodegeneration and cancer: Toward a multimodal mechanism of action? Purinergic Signal 2025; 21:133-148. [PMID: 39004650 PMCID: PMC11958862 DOI: 10.1007/s11302-024-10033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Neurodegenerative diseases and brain tumours represent important health challenges due to their severe nature and debilitating consequences that require substantial medical care. Interestingly, these conditions share common physiological characteristics, namely increased glutamate, and adenosine transmission, which are often associated with cellular dysregulation and damage. Guanosine, an endogenous nucleoside, is safe and exerts neuroprotective effects in preclinical models of excitotoxicity, along with cytotoxic effects on tumour cells. However, the lack of well-defined mechanisms of action for guanosine hinders a comprehensive understanding of its physiological effects. In fact, the absence of specific receptors for guanosine impedes the development of structure-activity research programs to develop guanosine derivatives for therapeutic purposes. Alternatively, given its apparent interaction with the adenosinergic system, it is plausible that guanosine exerts its neuroprotective and anti-tumorigenic effects by modulating adenosine transmission through undisclosed mechanisms involving adenosine receptors, transporters, and purinergic metabolism. Here, several potential molecular mechanisms behind the protective actions of guanosine will be discussed. First, we explore its potential interaction with adenosine receptors (A1R and A2AR), including the A1R-A2AR heteromer. In addition, we consider the impact of guanosine on extracellular adenosine levels and the role of guanine-based purine-converting enzymes. Collectively, the diverse cellular functions of guanosine as neuroprotective and antiproliferative agent suggest a multimodal and complementary mechanism of action.
Collapse
Affiliation(s)
- Carla Inês Tasca
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
- Laboratory of Neurochemistry-4, Neuroscience Program/Biochemistry Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100, Chieti, Italy
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907L'Hospitalet de Llobregat, Bellvitge, Spain
| |
Collapse
|
2
|
Togni A, Piermartiri T, Tasca CI, Nedel CB. The intricate relationship between SUMOylation and gliomas: a review with a perspective on natural compounds. Nat Prod Res 2025:1-12. [PMID: 39849680 DOI: 10.1080/14786419.2025.2456093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Gliomas are tumours that affect the nervous system, with glioblastoma, also known as grade IV astrocytoma, being the most aggressive type, associated with poor prognosis. Glioblastoma is characterised by its highly invasive nature, rapid growth, and resistance to conventional chemotherapy and radiation treatments, resulting in a median survival of about 14 months. To improve patient outcomes, novel therapeutic approaches are needed. Targeting SUMOylation, a post-translational modification involving the attachment of Small Ubiquitin-like Modifier (SUMO) proteins to lysine residues in target proteins, is emerging as a promising strategy. SUMOylation regulates various biological processes, including the cell cycle, apoptosis, and senescence. Dysregulation of this pathway has been linked to glioblastoma tumorigenesis, as well as the invasion and proliferation of glioblastoma cells. Therefore, focusing on the SUMOylation pathway offers the potential for developing innovative therapeutic strategies, including the use of natural compounds as adjuvant therapies, to address glioblastoma more effectively.
Collapse
Affiliation(s)
- Anderson Togni
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tetsade Piermartiri
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Carla Inês Tasca
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Cláudia Beatriz Nedel
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
3
|
Montironi C, Jacobs CF, Cretenet G, Peters FS, Schomakers BV, van Weeghel M, Kater AP, Simon-Molas H, Eldering E. T-cell dysfunction by pseudohypoxia and autocrine purinergic signaling in chronic lymphocytic leukemia. Blood Adv 2023; 7:6540-6552. [PMID: 37552122 PMCID: PMC10632609 DOI: 10.1182/bloodadvances.2023010305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023] Open
Abstract
Acquired T-cell dysfunction is common in chronic B-cell malignancies. Given the strong connection between T-cell metabolism and function, we investigated metabolic alterations as the basis of T-cell dysfunction induced by malignant cells. Using B-cell malignant cell lines and human peripheral blood mononuclear cells, we first established a model that recapitulates major aspects of cancer-induced T-cell dysfunction. Cell lines derived from chronic lymphocytic leukemia (CLL) (PGA-1, CII, and Mec-1), but not from other B-cell malignancies, altered the T-cell metabolome by generating a pseudohypoxic state. T cells were retained in aerobic glycolysis and were not able to switch to oxidative phosphorylation (OXPHOS). Moreover, T cells produced immunosuppressive adenosine that negatively affected function by dampening the activation, which could be restored by the blocking of adenosine receptors. Subsequently, we uncovered a similar hypoxic-like signature in autologous T cells from primary CLL samples. Pseudohypoxia was reversible upon depletion of CLL cells ex vivo and, importantly, after the in vivo reduction of the leukemic burden with combination therapy (venetoclax and obinutuzumab), restoring T-cell function. In conclusion, we uncovered a pseudohypoxic program connected with T-cell dysfunction in CLL. Modulation of hypoxia and the purinergic pathway might contribute to therapeutic restoration of T-cell function.
Collapse
Affiliation(s)
- Chiara Montironi
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Chaja F. Jacobs
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Gaspard Cretenet
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Fleur S. Peters
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bauke V. Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Arnon P. Kater
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Helga Simon-Molas
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Chen Y, Joo J, Chu JMT, Chang RCC, Wong GTC. Downregulation of the glucose transporter GLUT 1 in the cerebral microvasculature contributes to postoperative neurocognitive disorders in aged mice. J Neuroinflammation 2023; 20:237. [PMID: 37858199 PMCID: PMC10588063 DOI: 10.1186/s12974-023-02905-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
INTRODUCTION Glucose transporter 1 (GLUT1) is essential for glucose transport into the brain and is predominantly expressed in the cerebral microvasculature. Downregulation of GLUT1 precedes the development of cognitive impairment in neurodegenerative conditions. Surgical trauma induces blood-brain barrier (BBB) disruption, neuroinflammation, neuronal mitochondria dysfunction, and acute cognitive impairment. We hypothesized that surgery reduces the expression of GLUT1 in the BBB that in turn disrupts its integrity and contributes to metabolic dysregulation in the brain that culminates in postoperative cognitive impairment. METHODOLOGY Using an abdominal surgery model in aged WT mice, we assessed the perioperative changes in cognitive performance, tight junction proteins expression, GLUT1 expression, and the associated metabolic effects in the hippocampus. Thereafter, we evaluated the effects of these parameters in aged mice with conditional overexpression of GLUT1, and then again in aged mice with conditional overexpression of GLUT1 with or without prior exposure to the GLUT1 inhibitor ST-31. RESULTS We showed a significant decline in cognitive performance, along with GLUT1 reduction and diminished glucose metabolism, especially in the ATP level in the postoperative mice compared with controls. Overexpression of GLUT1 expression alleviated postoperative cognitive decline and improved metabolic profiles, especially in adenosine, but did not directly restore ATP generation to control levels. GLUT1 inhibition ameliorated the postoperative beneficial effects of GLUT1 overexpression. CONCLUSIONS Surgery-induced GLUT1 reduction significantly contributes to postoperative cognitive deficits in aged mice by affecting glucose metabolism in the brain. It indicates the potential of targeting GLUT1 to ameliorate perioperative neurocognitive disorders.
Collapse
Affiliation(s)
- Ying Chen
- Department of Anaesthesiology, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room K424, 4Th Floor, K Block, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, L4-49, Laboratory Block, Faculty of Medicine Building, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jin Joo
- Department of Anaesthesiology, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room K424, 4Th Floor, K Block, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China
- Department of Anaesthesia and Pain Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodaero, Seocho-Gu, Seoul, 06591, Korea
| | - John Man-Tak Chu
- Department of Anaesthesiology, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room K424, 4Th Floor, K Block, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, L4-49, Laboratory Block, Faculty of Medicine Building, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China.
| | - Gordon Tin-Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room K424, 4Th Floor, K Block, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
5
|
Matsumura N, Aoyama K. Glutathione-Mediated Neuroprotective Effect of Purine Derivatives. Int J Mol Sci 2023; 24:13067. [PMID: 37685879 PMCID: PMC10487553 DOI: 10.3390/ijms241713067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Numerous basic studies have reported on the neuroprotective properties of several purine derivatives such as caffeine and uric acid (UA). Epidemiological studies have also shown the inverse association of appropriate caffeine intake or serum urate levels with neurodegenerative diseases such as Alzheimer disease (AD) and Parkinson's disease (PD). The well-established neuroprotective mechanisms of caffeine and UA involve adenosine A2A receptor antagonism and antioxidant activity, respectively. Our recent study found that another purine derivative, paraxanthine, has neuroprotective effects similar to those of caffeine and UA. These purine derivatives can promote neuronal cysteine uptake through excitatory amino acid carrier protein 1 (EAAC1) to increase neuronal glutathione (GSH) levels in the brain. This review summarizes the GSH-mediated neuroprotective effects of purine derivatives. Considering the fact that GSH depletion is a manifestation in the brains of AD and PD patients, administration of purine derivatives may be a new therapeutic approach to prevent or delay the onset of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Nobuko Matsumura
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| |
Collapse
|
6
|
Zuccarini M, Pruccoli L, Balducci M, Giuliani P, Caciagli F, Ciccarelli R, Di Iorio P. Influence of Guanine-Based Purines on the Oxidoreductive Reactions Involved in Normal or Altered Brain Functions. J Clin Med 2023; 12:jcm12031172. [PMID: 36769818 PMCID: PMC9917437 DOI: 10.3390/jcm12031172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The production of reactive oxygen species (ROS) in the brain is homeostatically controlled and contributes to normal neural functions. Inefficiency of control mechanisms in brain aging or pathological conditions leads to ROS overproduction with oxidative neural cell damage and degeneration. Among the compounds showing therapeutic potential against neuro-dysfunctions induced by oxidative stress are the guanine-based purines (GBPs), of which the most characterized are the nucleoside guanosine (GUO) and the nucleobase guanine (GUA), which act differently. Indeed, the administration of GUO to in vitro or in vivo models of acute brain injury (ischemia/hypoxia or trauma) or chronic neurological/neurodegenerative disorders, exerts neuroprotective and anti-inflammatory effects, decreasing the production of reactive radicals and improving mitochondrial function via multiple molecular signals. However, GUO administration to rodents also causes an amnesic effect. In contrast, the metabolite, GUA, could be effective in memory-related disorders by transiently increasing ROS production and stimulating the nitric oxide/soluble guanylate cyclase/cGMP/protein kinase G cascade, which has long been recognized as beneficial for cognitive function. Thus, it is worth pursuing further studies to ascertain the therapeutic role of GUO and GUA and to evaluate the pathological brain conditions in which these compounds could be more usefully used.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Letizia Pruccoli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy
| | - Martina Balducci
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Renata Ciccarelli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
- Correspondence:
| |
Collapse
|
7
|
Luo P, Li L, Huang J, Mao D, Lou S, Ruan J, Chen J, Tang R, Shi Y, Zhou S, Yang H. The role of SUMOylation in the neurovascular dysfunction after acquired brain injury. Front Pharmacol 2023; 14:1125662. [PMID: 37033632 PMCID: PMC10073463 DOI: 10.3389/fphar.2023.1125662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Acquired brain injury (ABI) is the most common disease of the nervous system, involving complex pathological processes, which often leads to a series of nervous system disorders. The structural destruction and dysfunction of the Neurovascular Unit (NVU) are prominent features of ABI. Therefore, understanding the molecular mechanism underlying NVU destruction and its reconstruction is the key to the treatment of ABI. SUMOylation is a protein post-translational modification (PTM), which can degrade and stabilize the substrate dynamically, thus playing an important role in regulating protein expression and biological signal transduction. Understanding the regulatory mechanism of SUMOylation can clarify the molecular mechanism of the occurrence and development of neurovascular dysfunction after ABI and is expected to provide a theoretical basis for the development of potential treatment strategies. This article reviews the role of SUMOylation in vascular events related to ABI, including NVU dysfunction and vascular remodeling, and puts forward therapeutic prospects.
Collapse
Affiliation(s)
- Pengren Luo
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Lin Li
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiashang Huang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Deqiang Mao
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Silong Lou
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jian Ruan
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jie Chen
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Ronghua Tang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - You Shi
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Shuai Zhou
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- *Correspondence: Shuai Zhou, ; Haifeng Yang,
| | - Haifeng Yang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
- *Correspondence: Shuai Zhou, ; Haifeng Yang,
| |
Collapse
|
8
|
Guanosine as a promising target for fast-acting antidepressant responses. Pharmacol Biochem Behav 2022; 218:173422. [PMID: 35732211 DOI: 10.1016/j.pbb.2022.173422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
Although the rapid-onset and sustained antidepressant responses elicited by ketamine have gained considerable attention in recent years, it has some knock-on effects that limit its widespread clinical use. Therefore, ketamine is considered the prototype for the new generation of glutamate-based rapid-acting antidepressants. Within this context, it has been demonstrated that guanosine, an endogenous guanine-based purine, has overlapping mechanisms of action with ketamine and is effective in eliciting fast antidepressant-like responses and even potentiating ketamine's actions in preclinical studies. Here, we review the recent findings regarding the ability of guanosine to produce rapid-acting antidepressant-like effects and we provide an overview of the molecular mechanisms underlying its antidepressant-like actions. Moreover, the neurobiological mechanisms underpinning the ability of guanosine in boosting the antidepressant-like and pro-synaptogenic effects elicited by ketamine are also reported. Taken together, this review opens perspectives for the use of guanosine alone or in combination with ketamine for the management of treatment-resistant depression.
Collapse
|
9
|
Conz A, Musi CA, Russo L, Borsello T, Colnaghi L. Super-resolution study of PIAS SUMO E3-ligases in hippocampal and cortical neurons. Eur J Histochem 2021; 65:3241. [PMID: 34459572 PMCID: PMC8419632 DOI: 10.4081/ejh.2021.3241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/22/2021] [Indexed: 11/30/2022] Open
Abstract
The SUMOylation machinery is a regulator of neuronal activity and synaptic plasticity. It is composed of SUMO isoforms and specialized enzymes named E1, E2 and E3 SUMO ligases. Recent studies have highlighted how SUMO isoforms and E2 enzymes localize with synaptic markers to support previous functional studies but less information is available on E3 ligases. PIAS proteins - belonging to the protein inhibitor of activated STAT (PIAS) SUMO E3-ligase family - are the best-characterized SUMO E3-ligases and have been linked to the formation of spatial memory in rodents. Whether however they exert their function co-localizing with synaptic markers is still unclear. In this study, we applied for the first time structured illumination microscopy (SIM) to PIAS ligases to investigate the co-localization of PIAS1 and PIAS3 with synaptic markers in hippocampal and cortical murine neurons. The results indicate partial co-localization of PIAS1 and PIAS3 with synaptic markers in hippocampal neurons and much rarer occurrence in cortical neurons. This is in line with previous super-resolution reports describing the co-localization with synaptic markers of other components of the SUMOylation machinery.
Collapse
Affiliation(s)
- Andrea Conz
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan.
| | - Clara Alice Musi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; Department of Pharmacological and Biomolecular Sciences, University of Milan.
| | - Luca Russo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan.
| | - Tiziana Borsello
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; Department of Pharmacological and Biomolecular Sciences, University of Milan.
| | | |
Collapse
|
10
|
Chojnowski K, Opielka M, Nazar W, Kowianski P, Smolenski RT. Neuroprotective Effects of Guanosine in Ischemic Stroke-Small Steps towards Effective Therapy. Int J Mol Sci 2021; 22:6898. [PMID: 34199004 PMCID: PMC8268871 DOI: 10.3390/ijms22136898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Guanosine (Guo) is a nucleotide metabolite that acts as a potent neuromodulator with neurotrophic and regenerative properties in neurological disorders. Under brain ischemia or trauma, Guo is released to the extracellular milieu and its concentration substantially raises. In vitro studies on brain tissue slices or cell lines subjected to ischemic conditions demonstrated that Guo counteracts destructive events that occur during ischemic conditions, e.g., glutaminergic excitotoxicity, reactive oxygen and nitrogen species production. Moreover, Guo mitigates neuroinflammation and regulates post-translational processing. Guo asserts its neuroprotective effects via interplay with adenosine receptors, potassium channels, and excitatory amino acid transporters. Subsequently, guanosine activates several prosurvival molecular pathways including PI3K/Akt (PI3K) and MEK/ERK. Due to systemic degradation, the half-life of exogenous Guo is relatively low, thus creating difficulty regarding adequate exogenous Guo distribution. Nevertheless, in vivo studies performed on ischemic stroke rodent models provide promising results presenting a sustained decrease in infarct volume, improved neurological outcome, decrease in proinflammatory events, and stimulation of neuroregeneration through the release of neurotrophic factors. In this comprehensive review, we discuss molecular signaling related to Guo protection against brain ischemia. We present recent advances, limitations, and prospects in exogenous guanosine therapy in the context of ischemic stroke.
Collapse
Affiliation(s)
- Karol Chojnowski
- Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland; (K.C.); (W.N.)
| | - Mikolaj Opielka
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
- International Research Agenda 3P—Medicine Laboratory, Medical University of Gdańsk, 3A Sklodowskiej-Curie Street, 80-210 Gdansk, Poland
| | - Wojciech Nazar
- Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland; (K.C.); (W.N.)
| | - Przemyslaw Kowianski
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki Street, 80-211 Gdańsk, Poland;
- Institute of Health Sciences, Pomeranian University of Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| |
Collapse
|
11
|
Mao Y, Xing Y, Li J, Dong D, Zhang S, Zhao Z, Xie J, Wang R, Li H. Guanosine ameliorates positive symptoms of schizophrenia via modulating 5-HT 1A and 5-HT 2A receptors. Am J Transl Res 2021; 13:4040-4054. [PMID: 34149997 PMCID: PMC8205766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Schizophrenia is a serious mental disorder characterized by hallucinations, delusions, and extremely disordered thinking and behavior. There are several hypotheses of pathogenesis in schizophrenia: dopaminergic, glutamatergic, or serotonergic hyperfunction. Guanosine reportedly protects the central nervous system by modulating the glutamatergic system. Thus, we assumed that guanosine may exert a positive effect on the pathophysiology of schizophrenia. Herein, we demonstrated that guanosine significantly reduced MK-801-induced hyperlocomotion and stereotyped behaviors, but showed no effect on hyperlocomotion induced by d-amphetamine, indicating that guanosine may directly affect the glutamatergic system. Guanosine dose-dependently reduced 5-HTP-induced wet dog shakes (WDS) and other serotonin syndromes (SS) behaviors, indicating that it might block serotonin 5-HT1A or 5-HT2A receptors. Finally, we confirm that that guanosine modulates serotonin 5-HT1A and 5-HT2A receptors and it might be anti-schizophrenic partly through pertussis toxin-sensitive Gi/o-coupled PI3K/Akt signaling. Collectively, this study provides possible compounds and mechanisms for therapeutic effects on schizophrenia.
Collapse
Affiliation(s)
- Yu Mao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Yao Xing
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Jie Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Dong Dong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Shoude Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Pharmacy, Medical College of Qinghai University, Qinghai UniversityQinghai 810016, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science & TechnologyShanghai 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| |
Collapse
|
12
|
Massari CM, Zuccarini M, Di Iorio P, Tasca CI. Guanosine Mechanisms of Action: Toward Molecular Targets. Front Pharmacol 2021; 12:653146. [PMID: 33867993 PMCID: PMC8044438 DOI: 10.3389/fphar.2021.653146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/26/2021] [Indexed: 01/02/2023] Open
Affiliation(s)
- Caio M Massari
- Laboratório De Neuroquímica-4, Departamento De Bioquímica, Centro De Ciências Biológicas, Universidade Federal De Santa Catarina, Florianópolis, Brazil
| | - Mariachiara Zuccarini
- Department of Biomedical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Biomedical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Carla I Tasca
- Laboratório De Neuroquímica-4, Departamento De Bioquímica, Centro De Ciências Biológicas, Universidade Federal De Santa Catarina, Florianópolis, Brazil
| |
Collapse
|