1
|
Pérez-Díaz AJ, Ros-Madrid I, Martínez-Sánchez MA, Rico-Chazarra S, Oliva-Bolarín A, Balaguer-Román A, Fernández-Ruiz VE, Martínez CM, Yuste JE, Ferrer-Gómez M, Llamoza-Torres CJ, Frutos MD, Núñez-Sánchez MÁ, Ramos-Molina B. Alterations in hepatic amino acid metabolism related to MASLD in individuals with obesity. J Physiol Biochem 2025:10.1007/s13105-025-01086-7. [PMID: 40335876 DOI: 10.1007/s13105-025-01086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/25/2025] [Indexed: 05/09/2025]
Abstract
Deregulation of amino acid (AA) metabolism has been reported in several pathological conditions, including metabolic diseases (e.g., obesity and diabetes), cardiovascular diseases, and cancer. However, the role of alterations in AA levels in chronic liver disorders such as metabolic dysfunction-associated steatotic liver disease (MASLD) remains largely unexplored. In this study we aimed to evaluate the hepatic AA composition in patients with different stages of MASLD, and their relationship with MASLD-related risk factors. A case-control study was conducted in 40 patients with obesity undergoing bariatric surgery at Virgen de la Arrixaca University Hospital (Murcia, Spain), where MASLD diagnosis was confirmed by histological analysis of liver biopsies, and hepatic AA levels were measured using ultra-performance liquid chromatography high-resolution time-of-flight mass spectrometry. Our results revealed that the hepatic AA profile was significantly altered in patients with MASLD. More specifically, comparison between MASLD patients revealed a significant increase in hepatic levels of arginine, glycine and cystine in MASH samples compared to steatotic livers. In addition, hepatic concentrations of arginine, lysine and cystine positively correlated with histopathological diagnosis and other MASLD-related parameters, including transaminases and CK-18 levels. These findings suggest that alterations in certain hepatic AA levels such as arginine, lysine, glycine and cystine in MASLD patients could have translational relevance in understanding the onset of this disease.
Collapse
Affiliation(s)
| | - Inmaculada Ros-Madrid
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
- Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - María A Martínez-Sánchez
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Sara Rico-Chazarra
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Alba Oliva-Bolarín
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Andrés Balaguer-Román
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Virginia E Fernández-Ruiz
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
- Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Carlos M Martínez
- Experimental Pathology Platform, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - José E Yuste
- Metabolomics Platform of CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Mercedes Ferrer-Gómez
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
- Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Camilo J Llamoza-Torres
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
- Division of Liver Diseases, Department of Gastroenterology and Hepatology, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - María D Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - María Á Núñez-Sánchez
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain.
- Biomedical Research Institute of Murcia (IMIB) Edificio LAIB, Carretera Buenavista s/n, Murcia, Spain.
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain.
- Biomedical Research Institute of Murcia (IMIB) Edificio LAIB, Carretera Buenavista s/n, Murcia, Spain.
| |
Collapse
|
2
|
Xiao M, Zhou N, Tian Z, Sun C. Endogenous Metabolites in Metabolic Diseases: Pathophysiologic Roles and Therapeutic Implications. J Nutr 2025:S0022-3166(25)00227-5. [PMID: 40250565 DOI: 10.1016/j.tjnut.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025] Open
Abstract
Breakthroughs in metabolomics technology have revealed the direct regulatory role of metabolites in physiology and disease. Recent data have highlighted the bioactive metabolites involved in the etiology and prevention and treatment of metabolic diseases such as obesity, nonalcoholic fatty liver disease, type 2 diabetes mellitus, and atherosclerosis. Numerous studies reveal that endogenous metabolites biosynthesized by host organisms or gut microflora regulate metabolic responses and disorders. Lipids, amino acids, and bile acids, as endogenous metabolic modulators, regulate energy metabolism, insulin sensitivity, and immune response through multiple pathways, such as insulin signaling cascade, chemical modifications, and metabolite-macromolecule interactions. Furthermore, the gut microbial metabolites short-chain fatty acids, as signaling regulators have a variety of beneficial impacts in regulating energy metabolic homeostasis. In this review, we will summarize information about the roles of bioactive metabolites in the pathogenesis of many metabolic diseases. Furthermore, we discuss the potential value of metabolites in the promising preventive and therapeutic perspectives of human metabolic diseases.
Collapse
Affiliation(s)
- Mengjie Xiao
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, Harbin, P. R. China
| | - Ning Zhou
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, Harbin, P. R. China
| | - Zhen Tian
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, Harbin, P. R. China.
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, Harbin, P. R. China.
| |
Collapse
|
3
|
Abbas SM, Hussain Z, Asghar N, Shabbir M, Akhlaq MA, Mughal HMF, Hussain A, Asif AE, Mzahri EUH. Schematic Assessment of Metabolic Signatures of Non-alcoholic Fatty Liver Disease by Bridging Endocrinology and Internal Medicine: A Precision Therapy-Based Meta-Analysis. Cureus 2025; 17:e83133. [PMID: 40438852 PMCID: PMC12118602 DOI: 10.7759/cureus.83133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2025] [Indexed: 06/01/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is seen as a health concern globally and is identified via complex interactions of metabolic dysfunctions. Metabolomic and lipidomic profiling has been emerged as a promising tool for non-invasive diagnosis and precision therapy. This systematic review and meta-analysis aimed to assess the affect of metabolic signatures associated with NAFLD progression and their utility in paving path for precision medicine. A comprehensive literature search was conducted in adherence to the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020. Appropriate data studies were pooled to check the disease progression using a random effects model. Risk of bias and certainty of evidence were assessed using the Cochrane risk of bias tool, ROBINS-I ("Risk Of Bias In Non-randomized Studies - of Interventions"), and the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) framework respectively. Studies found distinct metabolite patterns especially in amino acids, lipids, and gut-derived metabolites that correlated with the severity of NAFLD. The meta-analysis findings revealed a pooled hazard ratio of 0.98 (95% CI: 0.83-1.15) that indicated that no significant association was found between studies for assessment of metabolic signatures and their link to disease progression. High heterogeneity was observed (I² = 82%). Risk of bias was generally low to moderate, but overall certainty of evidence was rated low to moderate due to inconsistency and imprecision. Metabolic profiling offered valuable insights and discoveries into pathophysiology of NAFLD and stratification. However, high heterogeneity found across studies limited current clinical applicability. Standardized methodologies and longitudinal validation were needed to combine metabolic signatures into precision NAFLD care.
Collapse
Affiliation(s)
| | - Zeeshan Hussain
- Department of Underwater and Hyperbaric Medicine, PNS (Pakistan Navy Station) Shifa Hospital, Karachi, PAK
- Department of Diving Medicine, Armed Forces Aero Medical Center, King Abdulaziz Air Base, Dhahran, SAU
| | - Nimra Asghar
- Department of Biosciences, COMSATS (Commission on Science and Technology for Sustainable Development in the South) University Islamabad, Islamabad, PAK
| | - Mahnoor Shabbir
- Department of General Medicine, Foundation University of Health Sciences, Islamabad, PAK
| | | | | | - Asma Hussain
- Department of Medicine, Punjab Medical and Dental Clinic, Lahore, PAK
| | - Abdul Eizad Asif
- Department of Internal Medicine, Shalamar Medical and Dental College, Lahore, PAK
| | - Ehsan Ul Haq Mzahri
- Department of Health Sciences and Pathology, University of the Punjab, Lahore, PAK
- Department of Pathology and Oncology, Forman Christian College, Lahore, PAK
- Department of Pathology, University of Indonesia, Jakarta, IDN
| |
Collapse
|
4
|
Singh P, Singh R, Pasricha C, Kumari P. Navigating liver health with metabolomics: A comprehensive review. Clin Chim Acta 2025; 566:120038. [PMID: 39536895 DOI: 10.1016/j.cca.2024.120038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease worldwide, affecting one-fourth of the world's population. With more than half of the world's population, the Asia-Pacific region contributed 62.6 % of liver-related fatal incidents in 2015. Currently, liver imaging techniques such as computed tomography (CT), nuclear magnetic resonance (NMR) spectroscopy, and ultrasound are non-invasive imaging methods to diagnose the disease. A liver biopsy is the gold standard test for establishing the definite diagnosis of non-alcoholic steatohepatitis (NASH). However, there are still significant problems with sample variability and the procedure's invasiveness. Numerous studies have indicated various non-invasive biomarkers for both fibrosis and steatosis to counter the invasiveness of diagnostic procedures. Metabolomics could be a promising method for detecting early liver diseases, investigating pathophysiology, and developing drugs. Metabolomics, when utilized with other omics technologies, can result in a deeper understanding of biological systems. Metabolomics has emerged as a prominent research topic, offering extensive opportunities to investigate biomarkers for liver diseases that are both sensitive and specific. In this review, we have described the recent studies involving the use of a metabolomics approach in the diagnosis of liver diseases, which would be beneficial for the early detection and treatment of liver diseases.
Collapse
Affiliation(s)
- Preetpal Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Chirag Pasricha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
5
|
Zhao B, Zhang J, Zhao K, Wang B, Liu J, Wang C, Zeng L, Zeng X, Luo Y. Effect of rapamycin on hepatic metabolomics of non-alcoholic fatty liver rats based on non-targeted platform. J Pharm Biomed Anal 2025; 253:116541. [PMID: 39489928 DOI: 10.1016/j.jpba.2024.116541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Rapamycin (Rapa) is an inhibitor of mTOR complex, and its therapeutic effect on liver function was examined in non-alcoholic fatty liver disease (NAFLD) rats here. And the possible mechanism of Rapa in NAFLD was preliminarily elucidated based on the non-targeted metabolomics analysis. Adult male SD rats were fed with a high-fat and high-cholesterol diet (HFD) to establish NAFLD model. For Rapa group, 0.8 mg/(kg.d) Rapa was given to the HFD rats. Ultra-performance liquid chromatography and Q-Tof-mass spectrometry (UPLC and Q-TOF/MS) analysis were applied for the identification of metabolites in the serum of rats, which were annotated using Kyoto Encyclopedia of Genes and Genomes (KEGG). NAFLD rats presented with disturbed liver function, lipid metabolism and oxidative stress, but Rapa exerted a mitigating influence on the disorders. The metabolite profile data identified 579 metabolites that varied remarkably between the Rapa and HFD groups, with the main classes of amino acids and peptides, benzene, lipids and fatty acids. The differential metabolites were mainly involved in biosynthesis of cofactors, bile secretion, and glycerophospholipid metabolism were mainly enriched. In conclusion, Rapa has a potential protective effect against HFD-induced NAFLD, its hepatoprotective effect may achieved through mediating bile secretion and glycerophospholipid metabolism.
Collapse
Affiliation(s)
- Baiyun Zhao
- Drug Clinical Trial Institution, Hangzhou Normal University Affiliated Hospital, Hangzhou, China; Department of Pharmacy, Hangzhou Normal University Affiliated Hospital, Hangzhou, China
| | - Jing Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Kaiyue Zhao
- Medical Department, Hangzhou Normal University Affiliated Hospital, Hangzhou, China
| | - Bin Wang
- Department of Critical Care Medicine, Hangzhou Normal University Affiliated Hospital, Hangzhou, China
| | - Jing Liu
- Department of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Chaoxuan Wang
- Drug Clinical Trial Institution, Hangzhou Normal University Affiliated Hospital, Hangzhou, China
| | - Ling Zeng
- Drug Clinical Trial Institution, Hangzhou Normal University Affiliated Hospital, Hangzhou, China
| | - Xin Zeng
- Traditional Chinese Pharmacy, China Pharmaceutical University School, Nanjing, China
| | - Yan Luo
- Department of Translational Medicine Center, Hangzhou Normal University Affiliated Hospital, Hangzhou, China.
| |
Collapse
|
6
|
Wang LL, Lu YM, Wang YH, Wang YF, Fang RF, Sai WL, Yao DF, Yao M. Carnitine palmitoyltransferase-II inactivity promotes malignant progression of metabolic dysfunction-associated fatty liver disease via liver cancer stem cell activation. World J Gastroenterol 2024; 30:5055-5069. [PMID: 39713165 PMCID: PMC11612864 DOI: 10.3748/wjg.v30.i47.5055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/06/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the main chronic liver diseases. However, the roles of mitochondrial carnitine palmitoyl transferase-II (CPT-II) downregulation and liver cancer stem cell (LCSC) activation remain to be identified. AIM To investigate the dynamic alterations in CPT-II inactivity and LCSC activation during the malignant progression of MAFLD. METHODS Dynamic models of mouse MAFLD were generated via the consumption of a high-fat diet or the addition of 2-fluorenylacetamide for hepatocarcinogenesis. The mice were divided into groups on the basis of hematoxylin and eosin staining. Biochemistries, CPT-II, intrahepatic T cells, and LCSCs were determined and confirmed in clinical samples. The mitochondrial membrane potential (MMP) was analyzed. Differentially expressed genes were screened via RNA sequencing and enriched in KEGG pathways or GO functions. RESULTS Dynamic models of MAFLD malignant transformation were successfully generated on the basis of pathological examination. Hepatic lipid accumulation was associated with the loss of mitochondrial CPT-II activity and alterations in the MMP, with decreases in liver CD3+ or CD4+ T cells and increased AFP levels. In the lipid accumulation microenvironment, mitochondrial CPT-II was inactivated, followed by aberrant activation of CD44+ or CD24+ LCSCs, as validated in MAFLD or hepatocellular carcinoma patient samples. In terms of mechanism, the biological process category focused mainly on the metabolic regulation of cells in response to external stimuli. The enriched molecular functions included protein binding, cell apoptosis, and cell proliferation. CONCLUSION CPT-II inactivity promotes the malignant progression of MAFLD via the loss of innate immune function and abnormal LCSC activation.
Collapse
Affiliation(s)
- Ling-Ling Wang
- Department of Immunology, Medical School, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yu-Ming Lu
- Department of Immunology, Medical School, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yi-Han Wang
- Department of Immunology, Medical School, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yi-Fan Wang
- Department of Immunology, Medical School, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Rong-Fei Fang
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Li Sai
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Min Yao
- Department of Immunology, Medical School, Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
7
|
Beyoğlu D, Popov YV, Idle JR. Metabolomic Hallmarks of Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2024; 25:12809. [PMID: 39684520 DOI: 10.3390/ijms252312809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
From a detailed review of 90 experimental and clinical metabolomic investigations of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD), we have developed metabolomic hallmarks for both obesity and MASLD. Obesity studies were conducted in mice, rats, and humans, with consensus biomarker groups in plasma/serum being essential and nonessential amino acids, energy metabolites, gut microbiota metabolites, acylcarnitines and lysophosphatidylcholines (LPC), which formed the basis of the six metabolomic hallmarks of obesity. Additionally, mice and rats shared elevated cholesterol, humans and rats shared elevated fatty acids, and humans and mice shared elevated VLDL/LDL, bile acids and phosphatidylcholines (PC). MASLD metabolomic studies had been performed in mice, rats, hamsters, cows, geese, blunt snout breams, zebrafish, and humans, with the biomarker groups in agreement between experimental and clinical investigations being energy metabolites, essential and nonessential amino acids, fatty acids, and bile acids, which lay the foundation of the five metabolomic hallmarks of MASLD. Furthermore, the experimental group had higher LPC/PC and cholesteryl esters, and the clinical group had elevated acylcarnitines, lysophosphatidylethanolamines/phosphatidylethanolamines (LPE/PE), triglycerides/diglycerides, and gut microbiota metabolites. These metabolomic hallmarks aid in the understanding of the metabolic role played by obesity in MASLD development, inform mechanistic studies into underlying disease pathogenesis, and are critical for new metabolite-inspired therapies.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| | - Yury V Popov
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jeffrey R Idle
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| |
Collapse
|
8
|
Cesarini L, Grignaffini F, Alisi A, Pastore A. Alterations in Glutathione Redox Homeostasis in Metabolic Dysfunction-Associated Fatty Liver Disease: A Systematic Review. Antioxidants (Basel) 2024; 13:1461. [PMID: 39765791 PMCID: PMC11672975 DOI: 10.3390/antiox13121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Low molecular weight (LMW) thiols, particularly glutathione, play pathogenic roles in various multiorgan diseases. The liver is central for the production and systemic distribution of LMW thiols; thus, it is particularly susceptible to the imbalance of redox status that may determine increased oxidative stress and trigger the liver damage observed in metabolic dysfunction-associated steatotic liver disease (MASLD) models and humans. Indeed, increased LMW thiols at the cellular and extracellular levels may be associated with the severity of MASLD. Here, we present a systematic literature review of recent studies assessing the levels of LMW thiols in MASLD in in vivo and in vitro models and human subjects. Based on the PRISMA 2020 criteria, a search was conducted using PubMed and Scopus by applying inclusion/exclusion filters. The initial search returned 1012 documents, from which 165 eligible studies were selected, further described, and qualitatively analysed. Of these studies, most focused on animal and cellular models, while a minority used human fluids. The analysis of these studies revealed heterogeneity in the methods of sample processing and measurement of LMW thiol levels, which hinder cut-off values for diagnostic use. Standardisation of the analysis and measure of LMW thiol is necessary to facilitate future studies.
Collapse
Affiliation(s)
| | | | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.C.); (F.G.); (A.P.)
| | | |
Collapse
|
9
|
Masarone M, Motta BM, Torre P, Aquino M, Belladonna F, Lombardi M, Troisi J, Persico M. Evaluating cardiovascular risk in metabolic steatosis with precision medicine non-invasive approaches: insights from a cohort study. Intern Emerg Med 2024; 19:2293-2307. [PMID: 38753115 PMCID: PMC11582347 DOI: 10.1007/s11739-024-03626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/23/2024] [Indexed: 11/22/2024]
Abstract
Metabolic associated steatotic liver disease (MASLD) is the most common liver condition. It is associated with increased liver-related morbidity and mortality, and also with high risk of cardiovascular events (CVD), representing itself an independent risk factor for it. This makes MASLD a presentation of high interest for internal medicine, also because of its association with metabolic syndrome (MetS). It is crucial to assess its risks in a noninvasive way. With the aim of finding specific risk profiles for CVD development in MASLD by performing a noninvasive assessment of: (1) preclinical signs of endothelial dysfunction (ED); (2) clinical assessment of CVD risk by Framingham Heart Risk Score (FHRs); (3) genomic characterization of MASLD associated polymorphisms; (4) specific untargeted metabolomic profiles, we enrolled 466 MASLD patients non-invasively classified in 4 group of liver fibrosis severity (group-A: low-fibrosis risk, group-B: high-fibrosis risk, group-C: MASLD-cirrhosis, group-D: MASLD-HCC) and 73 healthy controls. FHRs was similar in controls and low-fibrosis group and significantly higher in high-fibrosis patients, cirrhosis, and HCC, increasing among classes. At a multivariable regression, FHRs was associated with liver disease severity and diabetes. 38.2% of patients had altered EndoPAT, resembling ED. Patients with high FHRs (> 40%) and ED had different metabolomics compared to those without ED. Our study reveals that a deep, non-invasive characterization of MASLD patients through precision medicine approaches (untargeted metabolomics, SNPs, ED assessment) was able to show a peculiar pattern in MASLD patients with increased CVD risk, mostly correlated with liver disease severity.
Collapse
Affiliation(s)
- Mario Masarone
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.
| | - Benedetta Maria Motta
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Pietro Torre
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Marco Aquino
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Federica Belladonna
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | | | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
- Theoreo srl, Montecorvino Pugliano, SA, Italy
| | - Marcello Persico
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| |
Collapse
|
10
|
Lin G, Chen JH, Yin YH, Zhao HN, Liu Z, Qi XS. Application of metabolomics in liver cirrhosis and its complications. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:561-568. [DOI: 10.11569/wcjd.v32.i8.561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
|
11
|
Czarnowski P, Mikula M, Ostrowski J, Żeber-Lubecka N. Gas Chromatography-Mass Spectrometry-Based Analyses of Fecal Short-Chain Fatty Acids (SCFAs): A Summary Review and Own Experience. Biomedicines 2024; 12:1904. [PMID: 39200366 PMCID: PMC11351285 DOI: 10.3390/biomedicines12081904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The gut microbiome, crucial to human health, changes with age and disease, and influences metabolic profiles. Gut bacteria produce short-chain fatty acids (SCFAs), essential for maintaining homeostasis and modulating inflammation. Dysbiosis, commonly due to poor diet or lifestyle, disrupts the integrity of the intestinal barrier and may contribute to conditions such as obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD). Analytical methods such as gas chromatography-mass spectrometry (GC/MS) are vital for SCFA analysis, with various preparation and storage techniques improving the accuracy. Advances in these methods have improved the reliability and sensitivity of SCFA quantification, which is crucial for the identification of disease biomarkers. Evidence from GC/MS-based studies has revealed that accurate SCFA quantification requires meticulous sample preparation and handling. The process begins with the extraction of SCFAs from biological samples using methods such as direct solvent extraction or solid-phase microextraction (SPME), both of which require optimization for maximum recovery. Derivatization, which chemically modifies SCFAs to enhance volatility and detectability, is a crucial step, typically involving esterification or silylation. Following this, the cleanup process removes impurities that might interfere with the analysis. Although recent advances in GC/MS technology have significantly improved SCFA-detection sensitivity and specificity, proper sample storage, with acid preservatives and the avoidance of repeated thawing, is essential for maintaining SCFA integrity.
Collapse
Affiliation(s)
- Paweł Czarnowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.M.); (J.O.); (N.Ż.-L.)
- Department of Biochemistry, Radioimmunology and Experimental Medicine, Children’s Memorial Health Institute, 04-736 Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.M.); (J.O.); (N.Ż.-L.)
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.M.); (J.O.); (N.Ż.-L.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Natalia Żeber-Lubecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.M.); (J.O.); (N.Ż.-L.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| |
Collapse
|
12
|
Mogna-Peláez P, Romo-Hualde A, Riezu-Boj JI, Milagro FI, Muñoz-Prieto D, Herrero JI, Elorz M, Benito-Boillos A, Monreal JI, Tur JA, Martínez A, Abete I, Zulet MA. Isoliquiritigenin in combination with visceral adipose tissue and related markers as a predictive tool for nonalcoholic fatty liver disease. J Physiol Biochem 2024; 80:639-653. [PMID: 37996653 PMCID: PMC11502611 DOI: 10.1007/s13105-023-00998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease in the world. New non-invasive diagnostic tools are needed to promptly treat this disease and avoid its complications. This study aimed to find key metabolites and related variables that could be used to predict and diagnose NAFLD. Ninety-eight subjects with NAFLD and 45 controls from the Fatty Liver in Obesity (FLiO) Study (NCT03183193) were analyzed. NAFLD was diagnosed and graded by ultrasound and classified into two groups: 0 (controls) and ≥ 1 (NAFLD). Hepatic status was additionally assessed through magnetic resonance imaging (MRI), elastography, and determination of transaminases. Anthropometry, body composition (DXA), biochemical parameters, and lifestyle factors were evaluated as well. Non-targeted metabolomics of serum was performed with high-performance liquid chromatography coupled to time-of-flight mass spectrometry (HPLC-TOF-MS). Isoliquiritigenin (ISO) had the strongest association with NAFLD out of the determinant metabolites. Individuals with higher concentrations of ISO had healthier metabolic and hepatic status and were less likely to have NAFLD (OR 0.13). Receiver operating characteristic (ROC) curves demonstrated the predictive power of ISO in panel combination with other NAFLD and IR-related variables, such as visceral adipose tissue (VAT) (AUROC 0.972), adiponectin (AUROC 0.917), plasmatic glucose (AUROC 0.817), and CK18-M30 (AUROC 0.810). Individuals with lower levels of ISO have from 71 to 82% more risk of presenting NAFLD compared to individuals with higher levels. Metabolites such as ISO, in combination with visceral adipose tissue, IR, and related markers, constitute a potential non-invasive tool to predict and diagnose NAFLD.
Collapse
Affiliation(s)
- Paola Mogna-Peláez
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
| | - Ana Romo-Hualde
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
| | - José I Riezu-Boj
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
| | - Fermin I Milagro
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - David Muñoz-Prieto
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
| | - José I Herrero
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Liver Unit, Clínica Universidad de Navarra, 31008, Pamplona, Spain
- Biomedical Research Centre Network in Hepatic and Digestive Diseases (CIBERehd), 28029, Madrid, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - J Ignacio Monreal
- Clinical Chemistry Department, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Josep A Tur
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122, Palma, Spain
| | - Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
| | - Itziar Abete
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - M Angeles Zulet
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
13
|
Thakral N, Desalegn H, Diaz LA, Cabrera D, Loomba R, Arrese M, Arab JP. A Precision Medicine Guided Approach to the Utilization of Biomarkers in MASLD. Semin Liver Dis 2024; 44:273-286. [PMID: 38991536 DOI: 10.1055/a-2364-2928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The new nomenclature of metabolic dysfunction-associated steatotic liver disease (MASLD) emphasizes a positive diagnosis based on cardiometabolic risk factors. This definition is not only less stigmatizing but also allows for subclassification and stratification, thereby addressing the heterogeneity of what was historically referred to as nonalcoholic fatty liver disease. The heterogeneity within this spectrum is influenced by several factors which include but are not limited to demographic/dietary factors, the amount of alcohol use and drinking patterns, metabolic status, gut microbiome, genetic predisposition together with epigenetic factors. The net effect of this dynamic and intricate system-level interaction is reflected in the phenotypic presentation of MASLD. Therefore, the application of precision medicine in this scenario aims at complex phenotyping with consequent individual risk prediction, development of individualized preventive strategies, and improvements in the clinical trial designs. In this review, we aim to highlight the importance of precision medicine approaches in MASLD, including the use of novel biomarkers of disease, and its subsequent utilization in future study designs.
Collapse
Affiliation(s)
- Nimish Thakral
- Division of Gastroenterology and Hepatology, University of Kentucky, Lexington, Kentucky
| | - Hailemichael Desalegn
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Luis Antonio Diaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Cabrera
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Escuela de Medicina, Facultad de Ciencias Medicas, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, MASLD Research Center, University of California San Diego, San Diego, California
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
14
|
Yang C, Zhou D, Yu H, Chen Y, Lin H, Wu H, Deng C. Multichannel Nanogenerator-Driven Collaborative Metabolic Fingerprint Diagnostic Strategy for Early Screening and Risk Evaluation of Nonalcoholic Fatty Liver Disease. Anal Chem 2024; 96:10841-10850. [PMID: 38889297 DOI: 10.1021/acs.analchem.4c02369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), along with its progressive forms nonalcoholic steatohepatitis (NASH) and NASH fibrosis, has emerged as a global health crisis. However, the absence of robust screening and risk evaluation tools contributes to the underdiagnosis of NAFLD. Herein, we reported a multichannel nanogenerator-assisted laser desorption/ionization mass spectrometry (LDI-MS) platform for early screening and risk evaluation of NAFLD. Specifically, titanium oxide nanosheets (TiNS) and covalent-organic framework nanosheets (COFNS) were employed as nanogenerators with excellent optical properties and exhibited efficient desorption/ionization during the LDI-MS process. Only ∼0.025 μL of serum without pretreatments and separation, serum metabolic fingerprints (SMFs) can be extracted within seconds. Notably, integrated SMFs from TiNS and COFNS significantly improved diagnostic performance and achieved the area under the curve (AUC) values of 1.000 with 100% sensitivity and 100% specificity for the validation sets of global diagnosis, early diagnosis, high-risk NASH, and NASH fibrosis evaluation. Additionally, four biomarker panels were identified, and their diagnostic AUC values were more than 0.944. Ultimately, key metabolic pathways indicating the change from simple NAFLD to high-risk NASH and NASH fibrosis were uncovered. This work provided a noninvasive and high-throughput screening and risk evaluation strategy for NAFLD healthcare management, thus contributing to the precise treatment of the NALFD.
Collapse
Affiliation(s)
- Chenjie Yang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Da Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hailong Yu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yijie Chen
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hairu Lin
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hao Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chunhui Deng
- Department of Chemistry, Fudan University, Shanghai 200433, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
15
|
Sørensen MB, Møller JK, Strube ML, Gotfredsen CH. Designing optimal experiments in metabolomics. Metabolomics 2024; 20:69. [PMID: 38941008 DOI: 10.1007/s11306-024-02122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/26/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Metabolomics data is often complex due to the high number of metabolites, chemical diversity, and dependence on sample preparation. This makes it challenging to detect significant differences between factor levels and to obtain accurate and reliable data. To address these challenges, the use of Design of Experiments (DoE) techniques in the setup of metabolomic experiments is crucial. DoE techniques can be used to optimize the experimental design space, ensuring that the maximum amount of information is obtained from a limited sample space. AIM OF REVIEW This review aims at providing a baseline workflow for applying DoE when generating metabolomics data. KEY SCIENTIFIC CONCEPTS OF REVIEW The review provides insights into the theory of DoE. The review showcases the theory being put into practice by highlighting different examples DoE being applied in metabolomics throughout the literature, considering both targeted and untargeted metabolomic studies in which the data was acquired using both nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry techniques. In addition, the review presents DoE concepts not currently being applied in metabolomics, highlighting these as potential future prospects.
Collapse
Affiliation(s)
- Mathies Brinks Sørensen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, 2800, Kongens Lyngby, Hovedstaden, Denmark
| | - Jan Kloppenborg Møller
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Asmussens Allé, 2800, Kongens Lyngby, Hovedstaden, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800, Kongens Lyngby, Hovedstaden, Denmark
| | - Charlotte Held Gotfredsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, 2800, Kongens Lyngby, Hovedstaden, Denmark.
| |
Collapse
|
16
|
Tinkov AA, Korobeinikova TV, Morozova GD, Aschner M, Mak DV, Santamaria A, Rocha JBT, Sotnikova TI, Tazina SI, Skalny AV. Association between serum trace element, mineral, and amino acid levels with non-alcoholic fatty liver disease (NAFLD) in adult women. J Trace Elem Med Biol 2024; 83:127397. [PMID: 38290269 DOI: 10.1016/j.jtemb.2024.127397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 02/01/2024]
Abstract
The objective of the present study is assessment of serum trace element and amino acid levels in non-alcoholic fatty liver disease (NAFLD) patients with subsequent evaluation of its independent associations with markers of liver injury and metabolic risk. MATERIALS AND METHODS 140 women aged 20-90 years old with diagnosed NAFLD and 140 healthy women with a respective age range were enrolled in the current study. Analysis of serum and hair levels of trace elements and minerals was performed with inductively-coupled plasma mass-spectrometry (ICP-MS). Serum amino acid concentrations were evaluated by high-pressure liquid chromatography (HPLC) with UV-detection. In addition, routine biochemical parameters including liver damage markers, alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT), were assessed spectrophotometrically. RESULTS The findings demonstrated that patients with NAFLD were characterized by higher ALT, GGT, lactate dehydrogenase (LDH) and cholinesterase (CE) activity, as well as increased levels of total cholesterol, low-density lipoprotein cholesterol, triglycerides, and uric acid. NAFLD patients were characterized by reduced serum and hair Co, Se, and Zn levels, as well as hair Cu content and serum Mn concentrations in comparison to controls. Circulating Ala, Cit, Glu, Gly, Ile, Leu, Phe, and Tyr levels in NAFLD patients exceeded those in the control group. Multiple linear regression demonstrated that serum and hair trace element levels were significantly associated with circulating amino acid levels after adjustment for age, BMI, and metabolic parameters including liver damage markers. CONCLUSION It is proposed that altered trace element handling may contribute to NAFLD pathogenesis through modulation of amino acid metabolism.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia.
| | - Tatiana V Korobeinikova
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Galina D Morozova
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10461 Bronx, NY, USA
| | - Daria V Mak
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Abel Santamaria
- Faculty of Sciencies, National Autonomous University of Mexico, 04510 Mexico City, Mexico
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria 97105-900 RS, Brazil
| | - Tatiana I Sotnikova
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; City Clinical Hospital n. a. S.P. Botkin of the Moscow City Health Department, 125284 Moscow, Russia
| | - Serafima Ia Tazina
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; City Clinical Hospital n. a. S.P. Botkin of the Moscow City Health Department, 125284 Moscow, Russia
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
17
|
Shi Z, Yang X, Shi X, Zhang D, Zhao D, Hao Y, Yang J, Bie X, Yan W, Chen G, Chen L, Liu X, Zheng H, Zhang K. Identification and verification of the role of key metabolites and metabolic pathways on ASFV replication. iScience 2024; 27:109345. [PMID: 38500823 PMCID: PMC10946325 DOI: 10.1016/j.isci.2024.109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/06/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
African swine fever virus (ASFV) infection usually causes viremia within a few days. However, the metabolic changes in pig serum after ASFV infection remain unclear. In this study, serum samples collected from ASFV-infected pigs at different times were analyzed using pseudotargeted metabolomics method. Metabolomic analysis revealed the dopaminergic synapse pathway has the highest rich factor in both ASFV5 and ASFV10 groups. By disrupting the dopamine synaptic pathway, dopamine receptor antagonists inhibited ASFV replication and L-dopa promoted ASFV replication. In addition, guanosine, one of the top20 changed metabolites in both ASFV5 and ASFV10 groups suppressed the replication of ASFV. Taken together, this study revealed the changed serum metabolite profiles of ASFV-infected pigs at various times after infection and verified the effect of the changed metabolites and metabolic pathways on ASFV replication. These findings may contribute to understanding the pathogenic mechanisms of ASFV and the development of target drugs to control ASF.
Collapse
Affiliation(s)
- Zunji Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xing Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xijuan Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Dajun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Dengshuai Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yu Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xintian Bie
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Wenqian Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Guohui Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Lingling Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Keshan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
18
|
Wang JL, Jiang SW, Hu AR, Zhou AW, Hu T, Li HS, Fan Y, Lin K. Non-invasive diagnosis of non-alcoholic fatty liver disease: Current status and future perspective. Heliyon 2024; 10:e27325. [PMID: 38449611 PMCID: PMC10915413 DOI: 10.1016/j.heliyon.2024.e27325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease throughout the world. Hepatocellular carcinoma (HCC) and liver cirrhosis can result from nonalcoholic steatohepatitis (NASH), the severe stage of NAFLD progression. By some estimates, NAFLD affects almost one-third of the world's population, which is completely new and serious public health issue. Unfortunately, NAFLD is diagnosed by exclusion, and the gold standard for identifying NAFLD/NASH and reliably measuring liver fibrosis remains liver biopsy, which is an invasive, costly, time-consuming procedure and involves variable inter-observer diagnosis. With the progress of omics and imaging techniques, numerous non-invasive serological assays have been generated and developed. On the basis of these developments, non-invasive biomarkers and imaging techniques have been combined to increase diagnostic accuracy. This review provides information for the diagnosis and assessment of NAFLD/NASH in clinical practice going forward and may assist the clinician in making an early and accurate diagnosis and in proposing a cost-effective patient surveillance. We discuss newly identified and validated non-invasive diagnostic methods from biopsy-confirmed NAFLD patient studies and their implementation in clinical practice, encompassing NAFLD/NASH diagnosis and differentiation, fibrosis assessment, and disease progression monitoring. A series of tests, including 20-carboxy arachidonic acid (20-COOH AA) and 13,14-dihydro-15-keto prostaglandin D2 (dhk PGD2), were found to be potentially the most accurate non-invasive tests for diagnosing NAFLD. Additionally, the Three-dimensional magnetic resonance imaging (3D-MRE), combination of the FM-fibro index and Liver stiffness measurement (FM-fibro LSM index) and the machine learning algorithm (MLA) tests are more accurate than other tests in assessing liver fibrosis. However, it is essential to use bigger cohort studies to corroborate a number of non-invasive diagnostic tests with extremely elevated diagnostic values.
Collapse
Affiliation(s)
- Jia-Lan Wang
- Graduate School of Wenzhou Medical University, Ningbo No. 2 Hospital, Ningbo, 315020, Zhejiang Province, China
| | - Su-Wen Jiang
- Precision Diagnosis and Treatment Center of Liver Diseases, Ningbo No. 2 Hospital, Ningbo, 315020, Zhejiang Province, China
| | - Ai-Rong Hu
- Precision Diagnosis and Treatment Center of Liver Diseases, Ningbo No. 2 Hospital, Ningbo, 315020, Zhejiang Province, China
| | - Ai-Wu Zhou
- Precision Diagnosis and Treatment Center of Liver Diseases, Ningbo No. 2 Hospital, Ningbo, 315020, Zhejiang Province, China
| | - Ting Hu
- Precision Diagnosis and Treatment Center of Liver Diseases, Ningbo No. 2 Hospital, Ningbo, 315020, Zhejiang Province, China
| | - Hong-Shan Li
- Precision Diagnosis and Treatment Center of Liver Diseases, Ningbo No. 2 Hospital, Ningbo, 315020, Zhejiang Province, China
| | - Ying Fan
- School of Medicine, Shaoxing University, Shaoxing, 31200, Zhejiang Province, China
| | - Ken Lin
- School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang Province, China
| |
Collapse
|
19
|
Yan X, Liu H, Huang M, Zhang Y, Zeng B. Integrative proteomics and metabolomics explore the effect and mechanism of Qiyin granules on improving nonalcoholic fatty liver disease. Heliyon 2024; 10:e27075. [PMID: 38444462 PMCID: PMC10912341 DOI: 10.1016/j.heliyon.2024.e27075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a prominent global health concern, representing a substantial burden within the spectrum of chronic liver diseases. Despite its escalating prevalence, a definitive therapeutic strategy or efficacious pharmacological intervention for NAFLD has yet to receive official approval to date. While Fu Fang Qiyin granules have exhibited efficacy in addressing NAFLD, the intricacies of their underlying mechanism of action remain inadequately elucidated. In this study, we substantiated the ameliorative impact of Qiyin on highfat diet (HFD)induced NAFLD in rat models. The results of metabonomics showed that 108 potential biomarkers in serum and urine related to amino acid metabolism, energy metabolism, and pyrimidine metabolism, have returned to normal levels compared to the model group. Hepatic transcriptomics further indicated that Qiyin potentially confers protective effects against NAFLD by mediating liver inflammation and fibrosis through lumican (LUM) and decorin (DCN). In summation, our investigation provides compelling evidence affirming the therapeutic promise of Qiyin for NAFLD. It elucidates the underlying mechanistic pathways, furnishing a compelling rationale for its prospective clinical application.
Collapse
Affiliation(s)
- Xuehua Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830017, People's Republic of China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Urumqi, Xinjiang, 830017, People's Republic of China
| | - Hongbing Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830017, People's Republic of China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Urumqi, Xinjiang, 830017, People's Republic of China
| | - Meng Huang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830017, People's Republic of China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Urumqi, Xinjiang, 830017, People's Republic of China
| | - Yujie Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Binfang Zeng
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830017, People's Republic of China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Urumqi, Xinjiang, 830017, People's Republic of China
| |
Collapse
|
20
|
Wang S, Qiu Y, Tang C, Tang H, Liu J, Chen J, Zhang L, Tang G. Early changes of bone metabolites and lymphocyte subsets may participate in osteoporosis onset: a preliminary study of a postmenopausal osteoporosis mouse model. Front Endocrinol (Lausanne) 2024; 15:1323647. [PMID: 38481438 PMCID: PMC10933021 DOI: 10.3389/fendo.2024.1323647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/05/2024] [Indexed: 11/02/2024] Open
Abstract
Purpose Metabolic and immune changes in the early stages of osteoporosis are not well understood. This study aimed to explore the changes in bone metabolites and bone marrow lymphocyte subsets and their relationship during the osteoporosis onset. Methods We established OVX and Sham mouse models. After 5, 15, and 40 days, five mice in each group were sacrificed. Humeri were analyzed by microCT. The bone marrow cells of the left femur and tibia were collected for flow cytometry analysis. The right femur and tibia were analyzed by LC-MS/MS for metabolomics analysis. Results Bone microarchitecture was significantly deteriorated 15 days after OVX surgery. Analysis of bone metabolomics showed that obvious metabolite changes had happened since 5 days after surgery. Lipid metabolism was significant at the early stage of the osteoporosis. The proportion of immature B cells was increased, whereas the proportion of mature B cells was decreased in the OVX group. Metabolites were significantly correlated with the proportion of lymphocyte subsets at the early stage of the osteoporosis. Conclusion Lipid metabolism was significant at the early stage of the osteoporosis. Bone metabolites may influence bone formation by interfering with bone marrow lymphocyte subsets.
Collapse
Affiliation(s)
- Sizhu Wang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yuyou Qiu
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cuisong Tang
- Department of Radiology, Clinical Medical College of Shanghai Tenth People’s Hospital of Nanjing Medical University, Shanghai, China
| | - Huan Tang
- Department of Radiology, Huadong Hospital of Fudan University, Shanghai, China
| | - Jinchuan Liu
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jieying Chen
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Zhang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Zhao J, Zeng J, Zhu C, Li X, Liu D, Zhang J, Li F, Targher G, Fan JG. Genetically predicted plasma levels of amino acids and metabolic dysfunction-associated fatty liver disease risk: a Mendelian randomization study. BMC Med 2023; 21:469. [PMID: 38017422 PMCID: PMC10685523 DOI: 10.1186/s12916-023-03185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Emerging metabolomics-based studies suggested links between amino acid metabolism and metabolic dysfunction-associated fatty liver disease (MAFLD) risk; however, whether there exists an aetiological role of amino acid metabolism in MAFLD development remains unknown. The aim of the present study was to assess the causal relationship between circulating levels of amino acids and MAFLD risk. METHODS We conducted a two-sample Mendelian randomization (MR) analysis using summary-level data from genome-wide association studies (GWAS) to evaluate the causal relationship between genetically predicted circulating levels of amino acids and the risk of MAFLD. In the discovery MR analysis, we used data from the largest MAFLD GWAS (8434 cases and 770,180 controls), while in the replication MR analysis, we used data from a GWAS on MAFLD (1483 cases and 17,781 controls) where MAFLD cases were diagnosed using liver biopsy. We used Wald ratios or inverse variance-weighted (IVW) methods in the MR main analysis and weighted median and MR-Egger regression analyses in sensitivity analyses. Furthermore, we performed a conservative MR analysis by restricting genetic instruments to those directly involved in amino acid metabolism pathways. RESULTS We found that genetically predicted higher alanine (OR = 1.43, 95% CI 1.13-1.81) and lower glutamine (OR = 0.83, 95% CI 0.73-0.96) levels were associated with a higher risk of developing MAFLD based on the results from the MR main and conservative analysis. The results from MR sensitivity analyses and complementary analysis using liver proton density fat fraction as a continuous outcome proxying for MAFLD supported the main findings. CONCLUSIONS Novel causal metabolites related to MAFLD development were uncovered through MR analysis, suggesting future potential for evaluating these metabolites as targets for MAFLD prevention or treatment.
Collapse
Affiliation(s)
- Jian Zhao
- The Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China.
- Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
| | - Jing Zeng
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Cairong Zhu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xuechao Li
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Dong Liu
- The Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Jun Zhang
- The Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
- Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Li
- The Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
- Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University, Shanghai, China
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Ospedale Sacro Cuore - Don Calabria, Negrar di Valpolicella, Italy
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China.
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
22
|
Xu J, Jin Y, Song C, Chen G, Li Q, Yuan H, Wei S, Yang M, Li S, Jin S. Comparative analysis of the synergetic effects of Diwuyanggan prescription on high fat diet-induced non-alcoholic fatty liver disease using untargeted metabolomics. Heliyon 2023; 9:e22151. [PMID: 38045182 PMCID: PMC10692813 DOI: 10.1016/j.heliyon.2023.e22151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver disorders worldwide and had no approved pharmacological treatments. Diwuyanggan prescription (DWYG) is a traditional Chinese medicine preparation composed of 5 kinds of herbs, which has been used for treating chronic liver diseases in clinic. Whereas, the synergistic mechanism of this prescription for anti-NAFLD remains unclear. In this study, we aimed to demonstrate the synergetic effect of DWYG by using the disassembled prescriptions and untargeted metabolomics research strategies. The therapeutic effects of the whole prescription of DWYG and the individual herb were divided into six groups according to the strategy of disassembled prescriptions, including DWYG, Artemisia capillaris Thunb. (AC), Curcuma longa L. (CL), Schisandra chinensis Baill. (SC), Rehmannia glutinosa Libosch. (RG) and Glycyrrhiza uralensis Fisch. (GU) groups. The high fat diets-induced NAFLD mice model was constructed to evaluate the efficacy effects of DWYG. An untargeted metabolomics based on the UPLC-QTOF-MS/MS approach was carried out to make clear the synergetic effect on the regulation of metabolites dissecting the united mechanisms. Experimental results on animals revealed that the anti-NAFLD effect of DWYG prescription was better than the individual herb group in reducing liver lipid deposition and restoring the abnormality of lipidemia. In addition, further metabolomics analysis indicated that 23 differential metabolites associated with the progression of NAFLD were identified and 19 of them could be improved by DWYG. Compared with five single herbs, DWYG showed the most extensive regulatory effects on metabolites and their related pathways, which were related to lipid and amino acid metabolisms. Besides, each individual herb in DWYG was found to show different degrees of regulatory effects on NAFLD and metabolic pathways. SC and CL possessed the highest relationship in the regulation of NAFLD. Altogether, these results provided an insight into the synergetic mechanisms of DWYG from the metabolic perspective, and also supported a scientific basis for the rationality of clinical use of this prescription.
Collapse
Affiliation(s)
- Jinlin Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Yuehui Jin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chengwu Song
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guangya Chen
- Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Qiaoyu Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Hao Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Sha Wei
- School of Basic Medicine Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Min Yang
- School of Basic Medicine Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Sen Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuna Jin
- School of Basic Medicine Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
23
|
Malesci R, Lombardi M, Abenante V, Fratestefano F, Del Vecchio V, Fetoni AR, Troisi J. A Systematic Review on Metabolomics Analysis in Hearing Impairment: Is It a Possible Tool in Understanding Auditory Pathologies? Int J Mol Sci 2023; 24:15188. [PMID: 37894867 PMCID: PMC10607298 DOI: 10.3390/ijms242015188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
With more than 466 million people affected, hearing loss represents the most common sensory pathology worldwide. Despite its widespread occurrence, much remains to be explored, particularly concerning the intricate pathogenic mechanisms underlying its diverse phenotypes. In this context, metabolomics emerges as a promising approach. Indeed, lying downstream from molecular biology's central dogma, the metabolome reflects both genetic traits and environmental influences. Furthermore, its dynamic nature facilitates well-defined changes during disease states, making metabolomic analysis a unique lens into the mechanisms underpinning various hearing impairment forms. Hence, these investigations may pave the way for improved diagnostic strategies, personalized interventions and targeted treatments, ultimately enhancing the clinical management of affected individuals. In this comprehensive review, we discuss findings from 20 original articles, including human and animal studies. Existing literature highlights specific metabolic changes associated with hearing loss and ototoxicity of certain compounds. Nevertheless, numerous critical issues have emerged from the study of the current state of the art, with the lack of standardization of methods, significant heterogeneity in the studies and often small sample sizes being the main limiting factors for the reliability of these findings. Therefore, these results should serve as a stepping stone for future research aimed at addressing the aforementioned challenges.
Collapse
Affiliation(s)
- Rita Malesci
- Department of Neuroscience, Reproductive Sciences and Dentistry (Audiology and Vestibology Service), University of Naples Federico II, 80138 Napoli, Italy; (V.D.V.); (A.R.F.)
| | - Martina Lombardi
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
- European Institute of Metabolomics (EIM) Foundation ETS, G. Puccini, 2, 84081 Baronissi, Italy
| | - Vera Abenante
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
| | - Federica Fratestefano
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
| | - Valeria Del Vecchio
- Department of Neuroscience, Reproductive Sciences and Dentistry (Audiology and Vestibology Service), University of Naples Federico II, 80138 Napoli, Italy; (V.D.V.); (A.R.F.)
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive Sciences and Dentistry (Audiology and Vestibology Service), University of Naples Federico II, 80138 Napoli, Italy; (V.D.V.); (A.R.F.)
| | - Jacopo Troisi
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
- European Institute of Metabolomics (EIM) Foundation ETS, G. Puccini, 2, 84081 Baronissi, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
24
|
Kakehashi A, Suzuki S, Wanibuchi H. Recent Insights into the Biomarkers, Molecular Targets and Mechanisms of Non-Alcoholic Steatohepatitis-Driven Hepatocarcinogenesis. Cancers (Basel) 2023; 15:4566. [PMID: 37760534 PMCID: PMC10527326 DOI: 10.3390/cancers15184566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (NASH) are chronic hepatic conditions leading to hepatocellular carcinoma (HCC) development. According to the recent "multiple-parallel-hits hypothesis", NASH could be caused by abnormal metabolism, accumulation of lipids, mitochondrial dysfunction, and oxidative and endoplasmic reticulum stresses and is found in obese and non-obese patients. Recent translational research studies have discovered new proteins and signaling pathways that are involved not only in the development of NAFLD but also in its progression to NASH, cirrhosis, and HCC. Nevertheless, the mechanisms of HCC developing from precancerous lesions have not yet been fully elucidated. Now, it is of particular importance to start research focusing on the discovery of novel molecular pathways that mediate alterations in glucose and lipid metabolism, which leads to the development of liver steatosis. The role of mTOR signaling in NASH progression to HCC has recently attracted attention. The goals of this review are (1) to highlight recent research on novel genetic and protein contributions to NAFLD/NASH; (2) to investigate how recent scientific findings might outline the process that causes NASH-associated HCC; and (3) to explore the reliable biomarkers/targets of NAFLD/NASH-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.S.); (H.W.)
| | | | | |
Collapse
|
25
|
Xu W, Dong Q, Zhao G, Han B. Analysis of metabolites of bactrain camel milk in Alxa of China before and after fermentation with fermenting agent TR1 based on untargeted LC-MS/MS based metabolomics. Heliyon 2023; 9:e18522. [PMID: 37554772 PMCID: PMC10404950 DOI: 10.1016/j.heliyon.2023.e18522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
Camel milk produces many beneficial functional compounds and affects body health through metabolism. The differential metabolites of bactrain camel milk in Alxa before and after fermentation were identified by liquid chromatography-tandem mass spectrometry based metabolomics (LC-MS/MS). The differential metabolite pathway types were also identified in this paper. We obtained the following results that 148 and 82 differential metabolites were detected in positive and negative ion mode respectively, 85 differential metabolites were shown a significant upward trend and 63 with downward trend after fermentation in positive ion mode. Meanwhile, 32 differential metabolites characterized upward trend and 50 characterized downward trend in negative ion mode. The differential metabolites were mainly organic acids, amino acids, esters, vitamins and other substances contained in camel milk. Among them, most up-regulated substances had the functions of lowering blood pressure, lowering blood sugar, treatment of inflammation, antibiosis and other effects. Many harmful substances were significantly down-regulated after camel milk fermentation. However, there were also some metabolites whose prebiotic functions have been weakened by camel milk fermentation, which may provide reference values for healthcare function, exploitation and application of camel milk.
Collapse
Affiliation(s)
| | | | - Guofen Zhao
- Key Lab of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010011, People's Republic of China
| | - Bing Han
- Key Lab of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010011, People's Republic of China
| |
Collapse
|
26
|
Demirel M, Köktaşoğlu F, Özkan E, Dulun Ağaç H, Gül AZ, Sharifov R, Sarıkaya U, Başaranoğlu M, Selek Ş. Mass spectrometry-based untargeted metabolomics study of non-obese individuals with non-alcoholic fatty liver disease. Scand J Gastroenterol 2023; 58:1344-1350. [PMID: 37337892 DOI: 10.1080/00365521.2023.2225667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is a disease characterized by the accumulation of excessive fat in the liver, which can lead to fibrosis and has an increasing prevalence. NAFLD requires non-invasive diagnostic biomarkers. While typically observed in overweight individuals, it can also occur in non-obese/non-overweight individuals. Comparative studies on non-obese NAFLD patients are scarce. This study aimed to conduct a using liquid chromatography-high resolution mass spectrometry (LC-MS/MS)-based metabolic profiling of non-obese NAFLD patients and healthy controls. MATERIALS AND METHODS The patient group consisted of 27 individuals with NAFLD, while the healthy control group included 39 individuals. Both groups were between 18 and 40 years old, had a BMI of less than 25 and had alcohol consumption less than 20 g/week for men and 10 g/week for women. Serum samples were collected and analyzed using LC-MS/MS. The data were analyzed using the TidyMass and MetaboAnalyst. RESULTS The LC-MS/MS analyses detected significant changes in D-amino acid metabolism, vitamin B6 metabolism, apoptosis, mTOR signaling pathway, lysine degradation, and phenylalanine metabolism pathways in non-obese NAFLD patients. Significant changes were also observed in the metabolites D-pantothenic acid, hypoxanthine, citric acid, citramalic acid, L-phenylalanine, glutamine, and histamine-trifluoromethyl-toluidide, β-hydroxymyristic acid, DL-Lactic acid, and 3-methyl-2-oxopentanoic. Overall, the study provides valuable insights into the metabolic changes associated with non-obese NAFLD patients and can contribute to the development of non-invasive diagnostic biomarkers for NAFLD. CONCLUSIONS This study sheds light on the metabolic changes in non-obese NAFLD patients. Further research is needed to better understand the metabolic changes associated with NAFLD and to develop effective treatment options.
Collapse
Affiliation(s)
- Metin Demirel
- Department of Medical Biochemistry, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey
- Health Sciences Institute, Bezmialem Vakif University, Istanbul, Turkey
| | - Fatmanur Köktaşoğlu
- Department of Medical Biochemistry, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey
| | - Esin Özkan
- Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Halime Dulun Ağaç
- Department of Medical Biochemistry, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey
| | - Ayşe Zehra Gül
- Department of Medical Biochemistry, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey
| | - Rasul Sharifov
- Department of Radiology, Department of Gastroenterology, Bezmialem Vakıf University, Istanbul, Turkey
| | - Ufuk Sarıkaya
- Health Sciences Institute, Bezmialem Vakif University, Istanbul, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Services, Bezmialem Vakıf University, Istanbul, Turkey
| | - Metin Başaranoğlu
- Department of Gastroenterology and Hepatology, Bezmialem Vakif University, Istanbul, Turkey
| | - Şahabettin Selek
- Department of Medical Biochemistry, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
27
|
Anwardeen NR, Diboun I, Mokrab Y, Althani AA, Elrayess MA. Statistical methods and resources for biomarker discovery using metabolomics. BMC Bioinformatics 2023; 24:250. [PMID: 37322419 DOI: 10.1186/s12859-023-05383-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 06/09/2023] [Indexed: 06/17/2023] Open
Abstract
Metabolomics is a dynamic tool for elucidating biochemical changes in human health and disease. Metabolic profiles provide a close insight into physiological states and are highly volatile to genetic and environmental perturbations. Variation in metabolic profiles can inform mechanisms of pathology, providing potential biomarkers for diagnosis and assessment of the risk of contracting a disease. With the advancement of high-throughput technologies, large-scale metabolomics data sources have become abundant. As such, careful statistical analysis of intricate metabolomics data is essential for deriving relevant and robust results that can be deployed in real-life clinical settings. Multiple tools have been developed for both data analysis and interpretations. In this review, we survey statistical approaches and corresponding statistical tools that are available for discovery of biomarkers using metabolomics.
Collapse
Affiliation(s)
- Najeha R Anwardeen
- Research and Graduate Studies, Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ilhame Diboun
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Younes Mokrab
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Asma A Althani
- Research and Graduate Studies, Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
- QU Health, Qatar University, Doha, Qatar
| | - Mohamed A Elrayess
- Research and Graduate Studies, Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar.
- QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
28
|
Bertran L, Capellades J, Abelló S, Durán-Bertran J, Aguilar C, Martinez S, Sabench F, Correig X, Yanes O, Auguet T, Richart C. LC/MS-Based Untargeted Metabolomics Study in Women with Nonalcoholic Steatohepatitis Associated with Morbid Obesity. Int J Mol Sci 2023; 24:9789. [PMID: 37372937 DOI: 10.3390/ijms24129789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigated the importance of a metabolomic analysis in a complex disease such as nonalcoholic steatohepatitis (NASH) associated with obesity. Using an untargeted metabolomics technique, we studied blood metabolites in 216 morbidly obese women with liver histological diagnosis. A total of 172 patients were diagnosed with nonalcoholic fatty liver disease (NAFLD), and 44 were diagnosed with normal liver (NL). Patients with NAFLD were classified into simple steatosis (n = 66) and NASH (n = 106) categories. A comparative analysis of metabolites levels between NASH and NL demonstrated significant differences in lipid metabolites and derivatives, mainly from the phospholipid group. In NASH, there were increased levels of several phosphatidylinositols and phosphatidylethanolamines, as well as isolated metabolites such as diacylglycerol 34:1, lyso-phosphatidylethanolamine 20:3 and sphingomyelin 38:1. By contrast, there were decreased levels of acylcarnitines, sphingomyelins and linoleic acid. These findings may facilitate identification studies of the main pathogenic metabolic pathways related to NASH and may also have a possible applicability in a panel of metabolites to be used as biomarkers in future algorithms of the disease diagnosis and its follow-up. Further confirmatory studies in groups with different ages and sexes are necessary.
Collapse
Affiliation(s)
- Laia Bertran
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Jordi Capellades
- Department of Electronic Engineering, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Sonia Abelló
- Servei de Recursos Científics i Tècnics, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Joan Durán-Bertran
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Salomé Martinez
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Fàtima Sabench
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
- Unitat de Cirurgia, Facultad de Medicina i Ciències de la Salut, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43204 Reus, Spain
| | - Xavier Correig
- Department of Electronic Engineering, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Oscar Yanes
- Department of Electronic Engineering, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| |
Collapse
|
29
|
Forlano R, Sigon G, Mullish BH, Yee M, Manousou P. Screening for NAFLD-Current Knowledge and Challenges. Metabolites 2023; 13:metabo13040536. [PMID: 37110194 PMCID: PMC10144613 DOI: 10.3390/metabo13040536] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of abnormal liver function tests worldwide, with an estimated prevalence ranging between 19-46% in the general population. Of note, NAFLD is also expected to become a leading cause of end-stage liver disease in the next decades. Given the high prevalence and severity of NAFLD, especially in high-risk populations (i.e., patients with type-2 diabetes mellitus and/or obesity), there is a major interest in early detection of the disease in primary care. Nevertheless, substantial uncertainties still surround the development of a screening policy for NAFLD, such as limitations in currently used non-invasive markers of fibrosis, cost-effectiveness and the absence of a licensed treatment. In this review, we summarise current knowledge and try to identify the limitations surrounding the screening policy for NAFLD in primary care.
Collapse
Affiliation(s)
- Roberta Forlano
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Giordano Sigon
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Benjamin H Mullish
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Michael Yee
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Pinelopi Manousou
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| |
Collapse
|
30
|
Metabolic Profile Reflects Stages of Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24043563. [PMID: 36834973 PMCID: PMC9961068 DOI: 10.3390/ijms24043563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease worldwide, with fibrosis stage being the main predictor for clinical outcomes. Here, we present the metabolic profile of NAFLD patients with regards to fibrosis progression. We included all consecutive new referrals for NAFLD services between 2011 and 2019. Demographic, anthropometric and clinical features and noninvasive markers of fibrosis were recorded at baseline and at follow-up. Significant and advanced fibrosis were defined using liver stiffness measurement (LSM) as LSM ≥ 8.1 kPa and LSM ≥ 12.1 kPa, respectively. Cirrhosis was diagnosed either histologically or clinically. Fast progressors of fibrosis were defined as those with delta stiffness ≥ 1.03 kPa/year (25% upper quartile of delta stiffness distribution). Targeted and untargeted metabolic profiles were analysed on fasting serum samples using Proton nuclear magnetic resonance (1H NMR). A total of 189 patients were included in the study; 111 (58.7%) underwent liver biopsy. Overall, 11.1% patients were diagnosed with cirrhosis, while 23.8% were classified as fast progressors. A combination of metabolites and lipoproteins could identify the fast fibrosis progressors (AUROC 0.788, 95% CI: 0.703-0.874, p < 0.001) and performed better than noninvasive markers. Specific metabolic profiles predict fibrosis progression in patients with nonalcoholic fatty liver disease. Algorithms combining metabolites and lipids could be integrated in the risk-stratification of these patients.
Collapse
|
31
|
Cozzolino R, De Giulio B, Martignetti A, Forte G, Dallio M, Romeo M, Scognamiglio F, Ventriglia L, Stocchero M, Federico A. Urinary volatile Organic compounds in non-alcoholic fatty liver disease (NAFLD), type two diabetes mellitus (T2DM) and NAFLD-T2DM coexistence. Metabolomics 2022; 18:98. [PMID: 36441279 DOI: 10.1007/s11306-022-01960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Accumulating evidence have shown a significant correlation between urinary volatile organic compounds (VOCs) profile and the manifestation of several physiological and pathological states, including liver diseases. Previous studies have investigated the urinary metabolic signature as a non-invasive tool for the early discrimination between non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH), which nowadays represents one of the most important challenges in this context, feasible only by carrying out liver biopsy. OBJECTIVES The aim of the study was to investigate the differences in the urinary VOCs profiles of non-alcoholic fatty liver disease (NAFLD) patients, diabetes mellitus (T2DM) subjects and NAFLD/T2DM patients. METHODS Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was applied to profile the urinary VOCs. Urine samples were analysed both under acid and alkaline conditions, to obtain a range of urinary volatiles with different physicochemical properties. RESULTS Urinary VOCs profiles of 13 NAFLD patients, 13 T2DM subjects and 13 NAFLD/T2DM patients were investigated by multivariate and univariate data analysis techniques which allowed to identify 21 volatiles under alkaline conditions able to describe the NAFLD/T2DM group concerning the other two groups. CONCLUSION Our results suggest that VOCs signatures can improve the knowledge of the pathological condition where NAFLD coexists with T2DM and discovering new features that are not simply the sum of the two diseases. These preliminary findings may be considered as hypothesis-generating, to be clearly confirmed by larger prospective investigations.
Collapse
Affiliation(s)
- Rosaria Cozzolino
- Institute of Food Science, National Research Council (CNR), via Roma 64, 83100, Avellino, Italy.
| | - Beatrice De Giulio
- Institute of Food Science, National Research Council (CNR), via Roma 64, 83100, Avellino, Italy.
| | - A Martignetti
- Institute of Food Science, National Research Council (CNR), via Roma 64, 83100, Avellino, Italy
| | - G Forte
- Institute of Food Science, National Research Council (CNR), via Roma 64, 83100, Avellino, Italy
| | - M Dallio
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138, Naples, Italy
| | - M Romeo
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138, Naples, Italy
| | - F Scognamiglio
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138, Naples, Italy
| | - L Ventriglia
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138, Naples, Italy
| | - M Stocchero
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - A Federico
- Institute of Food Science, National Research Council (CNR), via Roma 64, 83100, Avellino, Italy
| |
Collapse
|
32
|
Ramos-Lopez O. Multi-Omics Nutritional Approaches Targeting Metabolic-Associated Fatty Liver Disease. Genes (Basel) 2022; 13:2142. [PMID: 36421817 PMCID: PMC9690481 DOI: 10.3390/genes13112142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 10/29/2023] Open
Abstract
Currently, metabolic-associated fatty liver disease (MAFLD) is a leading global cause of chronic liver disease, and is expected to become one of the most common indications of liver transplantation. MAFLD is associated with obesity, involving multiple mechanisms such as alterations in lipid metabolism, insulin resistance, hyperinflammation, mitochondrial dysfunction, cell apoptosis, oxidative stress, and extracellular matrix formation. However, the onset and progression of MAFLD is variable among individuals, being influenced by intrinsic (personal) and external environmental factors. In this context, sequence structural variants across the human genome, epigenetic phenomena (i.e., DNA methylation, histone modifications, and long non-coding RNAs) affecting gene expression, gut microbiota dysbiosis, and metabolomics/lipidomic fingerprints may account for differences in MAFLD outcomes through interactions with nutritional features. This knowledge may contribute to gaining a deeper understanding of the molecular and physiological processes underlying MAFLD pathogenesis and phenotype heterogeneity, as well as facilitating the identification of biomarkers of disease progression and therapeutic targets for the implementation of tailored nutritional strategies. This comprehensive literature review highlights the potential of nutrigenetic, nutriepigenetic, nutrimetagenomic, nutritranscriptomics, and nutrimetabolomic approaches for the prevention and management of MAFLD in humans through the lens of precision nutrition.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
| |
Collapse
|
33
|
Baciu C, Xu C, Alim M, Prayitno K, Bhat M. Artificial intelligence applied to omics data in liver diseases: Enhancing clinical predictions. Front Artif Intell 2022; 5:1050439. [PMID: 36458100 PMCID: PMC9705954 DOI: 10.3389/frai.2022.1050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 08/30/2023] Open
Abstract
Rapid development of biotechnology has led to the generation of vast amounts of multi-omics data, necessitating the advancement of bioinformatics and artificial intelligence to enable computational modeling to diagnose and predict clinical outcome. Both conventional machine learning and new deep learning algorithms screen existing data unbiasedly to uncover patterns and create models that can be valuable in informing clinical decisions. We summarized published literature on the use of AI models trained on omics datasets, with and without clinical data, to diagnose, risk-stratify, and predict survivability of patients with non-malignant liver diseases. A total of 20 different models were tested in selected studies. Generally, the addition of omics data to regular clinical parameters or individual biomarkers improved the AI model performance. For instance, using NAFLD fibrosis score to distinguish F0-F2 from F3-F4 fibrotic stages, the area under the curve (AUC) was 0.87. When integrating metabolomic data by a GMLVQ model, the AUC drastically improved to 0.99. The use of RF on multi-omics and clinical data in another study to predict progression of NAFLD to NASH resulted in an AUC of 0.84, compared to 0.82 when using clinical data only. A comparison of RF, SVM and kNN models on genomics data to classify immune tolerant phase in chronic hepatitis B resulted in AUC of 0.8793-0.8838 compared to 0.6759-0.7276 when using various serum biomarkers. Overall, the integration of omics was shown to improve prediction performance compared to models built only on clinical parameters, indicating a potential use for personalized medicine in clinical setting.
Collapse
Affiliation(s)
- Cristina Baciu
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Cherry Xu
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Mouaid Alim
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Departments of Computer Science and Cell and System Biology, University of Toronto, Toronto, ON, Canada
| | | | - Mamatha Bhat
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Division of Gastroenterology and Hepatology, University Health Network and University of Toronto, Toronto, ON, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
34
|
Wang X, Rao B, Wang H, Liu C, Ren Z, Yu Z. Serum metabolome alterations in patients with early nonalcoholic fatty liver disease. Biosci Rep 2022; 42:BSR20220319. [PMID: 36124945 PMCID: PMC9583763 DOI: 10.1042/bsr20220319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Although metabolomic analysis for patients with nonalcoholic fatty liver disease (NAFLD) was a promising approach to identify novel biomarkers as targets for the diagnosis of NAFLD, the serum metabolomics profile of early-stage NAFLD patients from central China remain unknown. OBJECTIVE The aim of the present study was to explore the metabolic characteristics of patients with early-stage NAFLD based on the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology, to identify differential metabolites and perform functional analysis, and especially, to establish a novel early NAFLD clinical diagnostic tool. RESULTS Compared with healthy controls, serum metabolite species increased significantly in early stage NAFLD patients. Expression of 88 metabolites including 1-naphthylmethanol, rosavin, and theophylline were up-regulated in early NAFLD, while 68 metabolites including 2-hydroxyphenylacetic acid and lysophosphatidylcholine (24:1(15Z)) were down-regulated. The early NAFLD classifier achieved a strong diagnostic efficiency in the discovery phases (80.99%) and was successfully verified in the validation phases (75.23%). CONCLUSIONS These results advance our understanding about the composition and biological functions of serum metabolites of early NAFLD. In addition, serum metabolic markers can serve as an efficient diagnostic tool for the early-stage NAFLD.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Benchen Rao
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Haiyu Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chao Liu
- Shanghai Mobio Biomedical Technology Co., Ltd., Shanghai 201111, China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zujiang Yu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
35
|
Shao M, Lu Y, Xiang H, Wang J, Ji G, Wu T. Application of metabolomics in the diagnosis of non-alcoholic fatty liver disease and the treatment of traditional Chinese medicine. Front Pharmacol 2022; 13:971561. [PMID: 36091827 PMCID: PMC9453477 DOI: 10.3389/fphar.2022.971561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease around the world, and it often coexists with insulin resistance-related diseases including obesity, diabetes, hyperlipidemia, and hypertension, which seriously threatens human health. Better prevention and treatment strategies are required to improve the impact of NAFLD. Although needle biopsy is an effective tool for diagnosing NAFLD, this method is invasive and difficult to perform. Therefore, it is very important to develop more efficient approaches for the early diagnosis of NAFLD. Traditional Chinese medicine (TCM) can play a certain role in improving symptoms and protecting target organs, and its mechanism of action needs to be further studied. Metabolomics, the study of all metabolites that is thought to be most closely associated with the patients' characters, can provide useful clinically biomarkers that can be applied to NAFLD and may open up new methods for diagnosis. Metabolomics technology is consistent with the overall concept of TCM, and it can also be used as a potential mechanism to explain the effects of TCM by measuring biomarkers by metabolomics. Based on PubMed/MEDLINE and other databases, this paper retrieved relevant literature NAFLD and TCM intervention in NAFLD using metabolomics technology in the past 5 years were searched, and the specific metabolites associated with the development of NAFLD and the potential mechanism of Chinese medicine on improving symptoms were summarized.
Collapse
Affiliation(s)
- Mingmei Shao
- Baoshan District Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Baoshan District Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
36
|
Saffo S, Do A. Clinical Phenotyping and the Application of Precision Medicine in MAFLD. Clin Liver Dis (Hoboken) 2022; 19:227-233. [PMID: 35795621 PMCID: PMC9248929 DOI: 10.1002/cld.1199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 02/04/2023] Open
Abstract
Content available: Audio Recording.
Collapse
Affiliation(s)
- Saad Saffo
- Section of Digestive DiseasesYale University School of MedicineNew HavenCT
| | - Albert Do
- Section of Digestive DiseasesYale University School of MedicineNew HavenCT
| |
Collapse
|
37
|
Haam JH, Lee YK, Suh E, Kim YS. Characteristics of Urine Organic Acid Metabolites in Nonalcoholic Fatty Liver Disease Assessed Using Magnetic Resonance Imaging with Elastography in Korean Adults. Diagnostics (Basel) 2022; 12:diagnostics12051199. [PMID: 35626354 PMCID: PMC9140840 DOI: 10.3390/diagnostics12051199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
The liver is an essential organ that manufactures energy through various metabolic pathways; thus, exploring the intermediate metabolites in nonalcoholic fatty liver disease (NAFLD) may help discover novel parameters in hepatic steatosis or fibrosis. The present study aimed to investigate the traits of urine organic acid metabolites in participants with hepatic steatosis and fibrosis in nonalcoholic Korean adults. Hepatic steatosis and fibrosis, in 68 men and 65 women, were evaluated using quantification by proton density fat fraction with magnetic resonance (MR) imaging and MR elastography, respectively. Urine metabolites were obtained using a high-performance liquid chromatography–mass spectrometry analysis. The candidate metabolites were included in the logistic regression models for hepatic steatosis and fibrosis. The association between high p-hydroxyphenyllactate levels and hepatic steatosis was not independent of body mass index and Homeostatic Model Assessment-insulin resistance. High ethylmalonate, β-hydroxybutyrate, and sulfate levels were significantly related to a low probability of hepatic fibrosis, independent of covariates. In conclusion, urine metabolites were not related to hepatic steatosis independent of obesity and insulin resistance, while several metabolites were specifically associated with hepatic fibrosis. Further study is required to verify the diagnostic value of the metabolites in a population with wide-spectrum NAFLD.
Collapse
Affiliation(s)
- Ji-Hee Haam
- Chaum Life Center, CHA University, Seoul 06062, Korea; (J.-H.H.); (Y.K.L.); (E.S.)
| | - Yun Kyong Lee
- Chaum Life Center, CHA University, Seoul 06062, Korea; (J.-H.H.); (Y.K.L.); (E.S.)
| | - Eunkyung Suh
- Chaum Life Center, CHA University, Seoul 06062, Korea; (J.-H.H.); (Y.K.L.); (E.S.)
| | - Young-Sang Kim
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea
- Correspondence:
| |
Collapse
|
38
|
Imbery CA, Dieterle F, Ottka C, Weber C, Schlotterbeck G, Müller E, Lohi H, Giger U. Metabolomic serum abnormalities in dogs with hepatopathies. Sci Rep 2022; 12:5329. [PMID: 35351920 PMCID: PMC8964695 DOI: 10.1038/s41598-022-09056-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Hepatopathies can cause major metabolic abnormalities in humans and animals. This study examined differences in serum metabolomic parameters and patterns in left-over serum samples from dogs with either congenital portosystemic shunts (cPSS, n = 24) or high serum liver enzyme activities (HLEA, n = 25) compared to control dogs (n = 64). A validated targeted proton nuclear magnetic resonance spectroscopy platform was used to assess 123 parameters. Principal component analysis of the serum metabolome demonstrated distinct clustering among individuals in each group, with the cluster of HLEA being broader compared to the other groups, presumably due to the wider spectrum of hepatic diseases represented in these samples. While younger and older adult control dogs had very similar metabolomic patterns and clusters, there were changes in many metabolites in the hepatopathy groups. Higher phenylalanine and tyrosine concentrations, lower branched-chained amino acids (BCAAs) concentrations, and altered fatty acid parameters were seen in cPSS dogs compared to controls. In contrast, dogs with HLEA had increased concentrations of BCAAs, phenylalanine, and various lipoproteins. Machine learning based solely on the metabolomics data showed excellent group classification, potentially identifying a novel tool to differentiate hepatopathies. The observed changes in metabolic parameters could provide invaluable insight into the pathophysiology, diagnosis, and prognosis of hepatopathies.
Collapse
Affiliation(s)
- Carolin A Imbery
- Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland. .,Laboklin GmbH & Co. KG, 97688, Bad Kissingen, Germany.
| | - Frank Dieterle
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, 4132, Muttenz, Switzerland
| | - Claudia Ottka
- PetMeta Labs Oy, 00300, Helsinki, Finland.,University of Helsinki and Folkhälsan Research Center, 00250, Helsinki, Finland
| | - Corinna Weber
- Laboklin GmbH & Co. KG, 97688, Bad Kissingen, Germany
| | - Götz Schlotterbeck
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, 4132, Muttenz, Switzerland
| | | | - Hannes Lohi
- PetMeta Labs Oy, 00300, Helsinki, Finland.,University of Helsinki and Folkhälsan Research Center, 00250, Helsinki, Finland
| | - Urs Giger
- Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland. .,Section of Medical Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
39
|
Gupta H, Min BH, Ganesan R, Gebru YA, Sharma SP, Park E, Won SM, Jeong JJ, Lee SB, Cha MG, Kwon GH, Jeong MK, Hyun JY, Eom JA, Park HJ, Yoon SJ, Choi MR, Kim DJ, Suk KT. Gut Microbiome in Non-Alcoholic Fatty Liver Disease: From Mechanisms to Therapeutic Role. Biomedicines 2022; 10:550. [PMID: 35327352 PMCID: PMC8945462 DOI: 10.3390/biomedicines10030550] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered to be a significant health threat globally, and has attracted growing concern in the research field of liver diseases. NAFLD comprises multifarious fatty degenerative disorders in the liver, including simple steatosis, steatohepatitis and fibrosis. The fundamental pathophysiology of NAFLD is complex and multifactor-driven. In addition to viruses, metabolic syndrome and alcohol, evidence has recently indicated that the microbiome is related to the development and progression of NAFLD. In this review, we summarize the possible microbiota-based therapeutic approaches and highlight the importance of establishing the diagnosis of NAFLD through the different spectra of the disease via the gut-liver axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ki-Tae Suk
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Korea; (H.G.); (B.-H.M.); (R.G.); (Y.A.G.); (S.P.S.); (E.P.); (S.-M.W.); (J.-J.J.); (S.-B.L.); (M.-G.C.); (G.-H.K.); (M.-K.J.); (J.-Y.H.); (J.-A.E.); (H.-J.P.); (S.-J.Y.); (M.-R.C.); (D.-J.K.)
| |
Collapse
|
40
|
Martinou E, Pericleous M, Stefanova I, Kaur V, Angelidi AM. Diagnostic Modalities of Non-Alcoholic Fatty Liver Disease: From Biochemical Biomarkers to Multi-Omics Non-Invasive Approaches. Diagnostics (Basel) 2022; 12:407. [PMID: 35204498 PMCID: PMC8871470 DOI: 10.3390/diagnostics12020407] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is currently the most common cause of chronic liver disease worldwide, and its prevalence is increasing globally. NAFLD is a multifaceted disorder, and its spectrum includes steatosis to steatohepatitis, which may evolve to advanced fibrosis and cirrhosis. In addition, the presence of NAFLD is independently associated with a higher cardiometabolic risk and increased mortality rates. Considering that the vast majority of individuals with NAFLD are mainly asymptomatic, early diagnosis of non-alcoholic steatohepatitis (NASH) and accurate staging of fibrosis risk is crucial for better stratification, monitoring and targeted management of patients at risk. To date, liver biopsy remains the gold standard procedure for the diagnosis of NASH and staging of NAFLD. However, due to its invasive nature, research on non-invasive tests is rapidly increasing with significant advances having been achieved during the last decades in the diagnostic field. New promising non-invasive biomarkers and techniques have been developed, evaluated and assessed, including biochemical markers, imaging modalities and the most recent multi-omics approaches. Our article provides a comprehensive review of the currently available and emerging non-invasive diagnostic tools used in assessing NAFLD, also highlighting the importance of accurate and validated diagnostic tools.
Collapse
Affiliation(s)
- Eirini Martinou
- Hepatobiliary and Pancreatic Surgery Department, Royal Surrey County Hospital, Guildford GU2 7XX, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| | - Marinos Pericleous
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
- Department of Gastroenterology and Hepatology, Royal Surrey County Hospital, Guildford GU2 7XX, UK
| | - Irena Stefanova
- Department of General Surgery, Frimley Health NHS Foundation Trust, Camberley GU16 7UJ, UK;
| | - Vasha Kaur
- Department of Upper Gastrointestinal and Bariatric Surgery, St George’s Hospital, London SW17 0QT, UK;
| | - Angeliki M. Angelidi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
41
|
Understanding the Role of the Gut Microbiome and Microbial Metabolites in Non-Alcoholic Fatty Liver Disease: Current Evidence and Perspectives. Biomolecules 2021; 12:biom12010056. [PMID: 35053205 PMCID: PMC8774162 DOI: 10.3390/biom12010056] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD begins as a relatively benign hepatic steatosis which can evolve to non-alcoholic steatohepatitis (NASH); the risk of cirrhosis and hepatocellular carcinoma (HCC) increases when fibrosis is present. NAFLD represents a complex process implicating numerous factors—genetic, metabolic, and dietary—intertwined in a multi-hit etiopathogenetic model. Recent data have highlighted the role of gut dysbiosis, which may render the bowel more permeable, leading to increased free fatty acid absorption, bacterial migration, and a parallel release of toxic bacterial products, lipopolysaccharide (LPS), and proinflammatory cytokines that initiate and sustain inflammation. Although gut dysbiosis is present in each disease stage, there is currently no single microbial signature to distinguish or predict which patients will evolve from NAFLD to NASH and HCC. Using 16S rRNA sequencing, the majority of patients with NAFLD/NASH exhibit increased numbers of Bacteroidetes and differences in the presence of Firmicutes, resulting in a decreased F/B ratio in most studies. They also present an increased proportion of species belonging to Clostridium, Anaerobacter, Streptococcus, Escherichia, and Lactobacillus, whereas Oscillibacter, Flavonifaractor, Odoribacter, and Alistipes spp. are less prominent. In comparison to healthy controls, patients with NASH show a higher abundance of Proteobacteria, Enterobacteriaceae, and Escherichia spp., while Faecalibacterium prausnitzii and Akkermansia muciniphila are diminished. Children with NAFLD/NASH have a decreased proportion of Oscillospira spp. accompanied by an elevated proportion of Dorea, Blautia, Prevotella copri, and Ruminococcus spp. Gut microbiota composition may vary between population groups and different stages of NAFLD, making any conclusive or causative claims about gut microbiota profiles in NAFLD patients challenging. Moreover, various metabolites may be involved in the pathogenesis of NAFLD, such as short-chain fatty acids, lipopolysaccharide, bile acids, choline and trimethylamine-N-oxide, and ammonia. In this review, we summarize the role of the gut microbiome and metabolites in NAFLD pathogenesis, and we discuss potential preventive and therapeutic interventions related to the gut microbiome, such as the administration of probiotics, prebiotics, synbiotics, antibiotics, and bacteriophages, as well as the contribution of bariatric surgery and fecal microbiota transplantation in the therapeutic armamentarium against NAFLD. Larger and longer-term prospective studies, including well-defined cohorts as well as a multi-omics approach, are required to better identify the associations between the gut microbiome, microbial metabolites, and NAFLD occurrence and progression.
Collapse
|
42
|
Dorairaj V, Sulaiman SA, Abu N, Abdul Murad NA. Nonalcoholic Fatty Liver Disease (NAFLD): Pathogenesis and Noninvasive Diagnosis. Biomedicines 2021; 10:15. [PMID: 35052690 PMCID: PMC8773432 DOI: 10.3390/biomedicines10010015] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) or metabolic associated fatty liver disease (MAFLD), as it is now known, has gradually increased. NAFLD is a disease with a spectrum of stages ranging from simple fatty liver (steatosis) to a severe form of steatosis, nonalcoholic steatohepatitis (NASH), which could progress to irreversible liver injury (fibrosis) and organ failure, and in some cases hepatocellular carcinoma (HCC). Although a liver biopsy remains the gold standard for accurate detection of this condition, it is unsuitable for clinical screening due to a higher risk of death. There is thus an increased need to find alternative techniques or tools for accurate diagnosis. Early detection for NASH matters for patients because NASH is the marker for severe disease progression. This review summarizes the current noninvasive tools for NAFLD diagnosis and their performance. We also discussed potential and newer alternative tools for diagnosing NAFLD.
Collapse
Affiliation(s)
| | - Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (V.D.); (N.A.); (N.A.A.M.)
| | | | | |
Collapse
|
43
|
Passaro AP, Marzuillo P, Guarino S, Scaglione F, Miraglia del Giudice E, Di Sessa A. Omics era in type 2 diabetes: From childhood to adulthood. World J Diabetes 2021; 12:2027-2035. [PMID: 35047117 PMCID: PMC8696648 DOI: 10.4239/wjd.v12.i12.2027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/01/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Parallel to the dramatic rise of pediatric obesity, estimates reported an increased prevalence of type 2 diabetes (T2D) already in childhood. The close relationship between obesity and T2D in children is mainly sustained by insulin resistance (IR). In addition, the cardiometabolic burden of T2D including nonalcoholic fatty liver disease, cardiovascular disease and metabolic syndrome is also strictly related to IR. Although T2D pathophysiology has been largely studied in an attempt to improve therapeutic options, molecular mechanisms are still not fully elucidated. In this perspective, omics approaches (including lipidomics, metabolomics, proteomics and metagenomics) are providing the most attractive therapeutic options for T2D. In particular, distinct both lipids and metabolites are emerging as potential therapeutic tools. Of note, among lipid classes, the pathogenic role of ceramides in T2D context has been supported by several data. Thus, selective changes of ceramides expression might represent innovative therapeutic strategies for T2D treatment. More, distinct metabolomics pathways have been also found to be associated with higher T2D risk, by providing novel potential T2D biomarkers. Taken together, omics data are responsible for the expanding knowledge of T2D pathophysiology, by providing novel insights to improve therapeutic strategies for this tangled disease. We aimed to summarize the most recent evidence in the intriguing field of the omics approaches in T2D both in adults and children.
Collapse
Affiliation(s)
- Antonio Paride Passaro
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli 80138, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli 80138, Italy
| | - Stefano Guarino
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli 80138, Italy
| | - Federica Scaglione
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli 80138, Italy
| | - Emanuele Miraglia del Giudice
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli 80138, Italy
| | - Anna Di Sessa
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli 80138, Italy
| |
Collapse
|
44
|
Pinilla L, Benítez ID, Santamaria-Martos F, Targa A, Moncusí-Moix A, Dalmases M, Mínguez O, Aguilà M, Jové M, Sol J, Pamplona R, Barbé F, Sánchez-de-la-Torre M. Plasma profiling reveals a blood-based metabolic fingerprint of obstructive sleep apnea. Biomed Pharmacother 2021; 145:112425. [PMID: 34800782 DOI: 10.1016/j.biopha.2021.112425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) is a chronic, heterogeneous and multicomponent disorder with associated cardiovascular and metabolic alterations. Despite being the most common sleep-disordered breathing, it remains a significantly undiagnosed condition. OBJECTIVE We examined the plasma metabolome and lipidome of patients with suspected OSA, aiming to identify potential diagnosis biomarkers and to provide insights into the pathophysiological mechanisms underlying the disease. Additionally, we evaluated the impact of continuous positive airway pressure (CPAP) treatment on the circulating metabolomic and lipidomic profile. MATERIAL AND METHODS Observational-prospective-longitudinal study including 206 consecutive subjects referred to the sleep unit. OSA was defined as an apnea-hypopnoea index ≥ 15 events/h after polysomnography (PSG). Patients treated with CPAP were followed-up for 6 months. Untargeted plasma metabolomic and lipidomic profiling was performed using liquid chromatography coulpled to massspectrometry. RESULTS A plasma profile composed of 33 metabolites (mainly glycerophospholipids and bile acids) was identified in OSA vs. non-OSA patients. This profile correlated with specific PSG measures of OSA severity related to sleep fragmentation and hypoxemia. Machine learning analyses disclosed a 4-metabolites-signature that provided an accuracy (95% CI) of 0.98 (0.95-0.99) for OSA detection. CPAP treatment was associated with changes in 5 plasma metabolites previously altered by OSA. CONCLUSIONS This analysis of the circulating metabolome and lipidome reveals a molecular fingerprint of OSA, which was modulated after effective CPAP treatment. Our results suggest blood-based biomarker candidates with potential application in the personalized management of OSA and suggest the activation of adaptive mechanisms in response to OSA-derived hypoxia.
Collapse
Affiliation(s)
- Lucía Pinilla
- Group of Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa María, IRBLleida, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, Lleida, Spain.; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Iván D Benítez
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Group of Translational Research in Respiratory Medicine, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRB Lleida, Lleida, Spain
| | - Fernando Santamaria-Martos
- Group of Translational Research in Respiratory Medicine, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRB Lleida, Lleida, Spain
| | - Adriano Targa
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Group of Translational Research in Respiratory Medicine, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRB Lleida, Lleida, Spain
| | - Anna Moncusí-Moix
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Group of Translational Research in Respiratory Medicine, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRB Lleida, Lleida, Spain
| | - Mireia Dalmases
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Group of Translational Research in Respiratory Medicine, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRB Lleida, Lleida, Spain
| | - Olga Mínguez
- Group of Translational Research in Respiratory Medicine, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRB Lleida, Lleida, Spain
| | - Maria Aguilà
- Group of Translational Research in Respiratory Medicine, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRB Lleida, Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Spain; Institut Català de la Salut, Atenció Primària, Lleida, Spain; Research Support Unit Lleida, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Spain
| | - Ferran Barbé
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Group of Translational Research in Respiratory Medicine, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRB Lleida, Lleida, Spain
| | - Manuel Sánchez-de-la-Torre
- Group of Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa María, IRBLleida, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, Lleida, Spain.; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
45
|
Piras C, Noto A, Ibba L, Deidda M, Fanos V, Muntoni S, Leoni VP, Atzori L. Contribution of Metabolomics to the Understanding of NAFLD and NASH Syndromes: A Systematic Review. Metabolites 2021; 11:metabo11100694. [PMID: 34677409 PMCID: PMC8541039 DOI: 10.3390/metabo11100694] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
Several differential panels of metabolites have been associated with the presence of metabolic syndrome and its related conditions, namely non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). This study aimed to perform a systematic review to summarize the most recent finding in terms of circulating biomarkers following NAFLD/NASH syndromes. Hence, the research was focused on NAFLD/NASH studies analysed by metabolomics approaches. Following Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, a systematic search was conducted on the PubMed database. The inclusion criteria were (i) publication date between 2010 and 2021, (ii) presence of the combination of terms: metabolomics and NAFLD/NASH, and (iii) published in a scholarly peer-reviewed journal. Studies were excluded from the review if they were (i) single-case studies, (ii) unpublished thesis and dissertation studies, and (iii) not published in a peer-reviewed journal. Following these procedures, 10 eligible studies among 93 were taken into consideration. The metabolisms of amino acids, fatty acid, and vitamins were significantly different in patients affected by NAFLD and NASH compared to healthy controls. These findings suggest that low weight metabolites are an important indicator for NAFLD/NASH syndrome and there is a strong overlap between NAFLD/NASH and the metabolic syndrome. These findings may lead to new perspectives in early diagnosis, identification of novel biomarkers, and providing novel targets for pharmacological interventions.
Collapse
Affiliation(s)
- Cristina Piras
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (C.P.); (L.I.); (S.M.); (V.P.L.); (L.A.)
| | - Antonio Noto
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (C.P.); (L.I.); (S.M.); (V.P.L.); (L.A.)
- Correspondence:
| | - Luciano Ibba
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (C.P.); (L.I.); (S.M.); (V.P.L.); (L.A.)
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy;
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, 09042 Monserrato, Italy;
| | - Sandro Muntoni
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (C.P.); (L.I.); (S.M.); (V.P.L.); (L.A.)
| | - Vera Piera Leoni
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (C.P.); (L.I.); (S.M.); (V.P.L.); (L.A.)
| | - Luigi Atzori
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (C.P.); (L.I.); (S.M.); (V.P.L.); (L.A.)
| |
Collapse
|
46
|
Hliwa A, Ramos-Molina B, Laski D, Mika A, Sledzinski T. The Role of Fatty Acids in Non-Alcoholic Fatty Liver Disease Progression: An Update. Int J Mol Sci 2021; 22:ijms22136900. [PMID: 34199035 PMCID: PMC8269415 DOI: 10.3390/ijms22136900] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major public health problem worldwide. NAFLD (both simple steatosis and steatohepatitis) is characterized by alterations in hepatic lipid metabolism, which may lead to the development of severe liver complications including cirrhosis and hepatocellular carcinoma. Thus, an exhaustive examination of lipid disorders in the liver of NAFLD patients is much needed. Mass spectrometry-based lipidomics platforms allow for in-depth analysis of lipid alterations in a number of human diseases, including NAFLD. This review summarizes the current research on lipid alterations associated with NAFLD and related complications, with special emphasis on the changes in long-chain and short-chain fatty acids levels in both serum and liver tissue, as well as in the hepatic expression of genes encoding the enzymes catalyzing lipid interconversions.
Collapse
Affiliation(s)
- Aleksandra Hliwa
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (A.H.); (A.M.)
| | - Bruno Ramos-Molina
- Obesity and Metabolism Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain;
| | - Dariusz Laski
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland;
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (A.H.); (A.M.)
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (A.H.); (A.M.)
- Correspondence: ; Tel.: +48-58-3491479
| |
Collapse
|
47
|
Abstract
The clinical phenotypes of nonalcoholic fatty liver disease (NAFLD) encompass from simple steatosis to nonalcoholic steatohepatitis (NASH) with varying degrees of fibrosis or cirrhosis. Liver biopsy has been the standard to diagnose NASH. However, there has been strong need for precise and accurate noninvasive tests because of invasiveness and sampling variability of biopsy. Metabolomics has drawn attention as a promising diagnostic methodology in the field of NAFLD, particularly to unravel metabolic alterations which plays relevant roles in the progression of NASH. There have been numerous metabolomics researches to find new biomarker of NASH in the last decade, fueled by the recent advances in the metabolomics methodology. This review briefly covers recent research advances on the lipidomics, amino acids and bile acid metabolomics regarding continuing attempts to discover relevant biomarkers for NASH.
Collapse
Affiliation(s)
- Hwi Young Kim
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| |
Collapse
|
48
|
Hoozemans J, de Brauw M, Nieuwdorp M, Gerdes V. Gut Microbiome and Metabolites in Patients with NAFLD and after Bariatric Surgery: A Comprehensive Review. Metabolites 2021; 11:353. [PMID: 34072995 PMCID: PMC8227414 DOI: 10.3390/metabo11060353] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing, as are other manifestations of metabolic syndrome such as obesity and type 2 diabetes. NAFLD is currently the number one cause of chronic liver disease worldwide. The pathophysiology of NAFLD and disease progression is poorly understood. A potential contributing role for gut microbiome and metabolites in NAFLD is proposed. Currently, bariatric surgery is an effective therapy to prevent the progression of NAFLD and other manifestations of metabolic syndrome such as obesity and type 2 diabetes. This review provides an overview of gut microbiome composition and related metabolites in individuals with NAFLD and after bariatric surgery. Causality remains to be proven. Furthermore, the clinical effects of bariatric surgery on NAFLD are illustrated. Whether the gut microbiome and metabolites contribute to the metabolic improvement and improvement of NAFLD seen after bariatric surgery has not yet been proven. Future microbiome and metabolome research is necessary for elucidating the pathophysiology and underlying metabolic pathways and phenotypes and providing better methods for diagnostics, prognostics and surveillance to optimize clinical care.
Collapse
Affiliation(s)
- Jacqueline Hoozemans
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, AMC, 1105 AZ Amsterdam, The Netherlands; (M.N.); (V.G.)
- Department of Bariatric and General Surgery, Spaarne Hospital, 2134 TM Hoofddorp, The Netherlands;
| | - Maurits de Brauw
- Department of Bariatric and General Surgery, Spaarne Hospital, 2134 TM Hoofddorp, The Netherlands;
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, AMC, 1105 AZ Amsterdam, The Netherlands; (M.N.); (V.G.)
| | - Victor Gerdes
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, AMC, 1105 AZ Amsterdam, The Netherlands; (M.N.); (V.G.)
- Department of Internal Medicine, Spaarne Hospital, 2134 TM Hoofddorp, The Netherlands
| |
Collapse
|