1
|
Xiang K, Pan J, Yu J, Xiao L, Sun SK, Cheng R. A hemicyanine-based near-infrared fluorescent probe with large Stokes shift for non-invasive bioimaging of brown adipose tissue. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5272-5279. [PMID: 39016035 DOI: 10.1039/d4ay00658e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Brown adipose tissue (BAT), characterized by the presence of numerous mitochondria, plays a key role in metabolism and energy expenditure. Accurately reporting the presence and activation of BAT is beneficial to study obesity, diabetes, and other metabolic disorders. Near-infrared (NIR) fluorescence imaging has the advantages of high sensitivity, non-radioactivity, and simple operation. However, most NIR probes for BAT imaging exhibit small Stokes shifts, which may lead to self-quenching, reducing the signal-to-noise ratio, and introducing cross-talk. Herein, we rationally designed and synthesized a series of hemicyanine-based NIR fluorescent probes HCYBAT-1-3. Among them, HCYBAT-1 demonstrated favorable properties such as near-infrared emission (776 nm), large Stokes shift (139 nm), good biocompatibility and specific mitochondrial targeting (Pearson's colocalization coefficient of 0.87). Meanwhile, HCYBAT-1 was successfully employed to differentiate BAT from white adipose tissue (WAT). Quantitative analysis of NIR fluorescent images showed that HCYBAT-1 could be used for real-time monitoring of BAT activation in mice stimulated by norepinephrine (NE) and cold exposure. Overall, probe HCYBAT-1 showcased its efficacy in non-invasive evaluation of BAT metabolism in vivo with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Ke Xiang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China.
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jiaojiao Yu
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China.
| | - Lehui Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China.
| | - Ran Cheng
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
2
|
de Paula Faria D, da Silva Vera CC, Marques FLN, Sapienza MT. Repeatability of brown adipose tissue activation measured by [ 18F]FDG PET after beta3-adrenergic stimuli in a mouse model. Nucl Med Biol 2023; 126-127:108390. [PMID: 37804561 DOI: 10.1016/j.nucmedbio.2023.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
This study aimed to evaluate the repeatability of brown adipose tissue (BAT) activation measured by [18F]FDG-PET after beta3-adrenergic stimuli with CL316243 in mice. METHODS Male C57BL/6 mice underwent [18F]FDG-PET at baseline without stimulation (T0-NS), on three consecutive days after intravenous administration of the selective β3-adrenergic agonist CL316243 (T1-CL, T2-CL, T3-CL), and without stimuli after 1 and 2 weeks (T7-NS and T14-NS). The standardized uptake value (SUVmax), BAT metabolic volume (BMV), and total BAT glycolysis (TBG) were measured in each scanning session, with statistical groupwise comparisons by ANOVA and post hoc Tukey test. RESULTS SUVmax, BMV, and TBG values showed no significant differences between the three PET scans without stimuli, but were significantly higher after CL316243 administration (p < 0.0001). The mean coefficient of variation (CoV) of PET within individuals was 49 % at baseline but only 9 % with pharmacological stimulation. CONCLUSIONS The study demonstrated that administration of the selective β3-adrenergic receptor agonist CL316243 (CL) in mice leads to consistent metabolic activation of brown adipose tissue (BAT), as measured by [18F]FDG-PET. We also demonstrated metabolic activation by repeated pharmacological challenge, without evidence of hysteresis. Thus, the methods used in the current work should serve for further studies on BAT metabolism in experimental animals, with translational value for clinical research.
Collapse
Affiliation(s)
- Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Cleinando Clemente da Silva Vera
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fabio Luiz Navarro Marques
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Marcelo Tatit Sapienza
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
3
|
Ricci M, De Feo MS, Granese GM, Frantellizzi V, Carabellese B, Lubrano E, Cimini A. 18F-FDG PET/CT technology for the assessment of brown adipose tissue: an updated review. Expert Rev Med Devices 2023; 20:1143-1156. [PMID: 37965719 DOI: 10.1080/17434440.2023.2283618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
INTRODUCTION This review provides an update of 18 F-fluorodeoxyglucose ([18F] FDG) for Brown adipose tissue (BAT) activity quantification, whose role is not completely understood. AREAS COVERED We conducted an unstructured search of the literature for any studies employing the [18F] FDG PET in BAT assessment. We explored BAT quantification both in healthy individuals and in different pathologies, after cold exposure and as a metabolic biomarker. The assessment of possible BAT modulators by using [18F] FDG PET is shown. Further PET tracers and novel developments for BAT assessments are also described. EXPERT OPINION Further PET tracers and imaging modalities are under investigation, but the [18F] FDG PET is currently the method of choice for the evaluation of BAT and further multicentric trials are needed for a better understanding of the BAT physiopathology, also after cold stimuli. The modulation of BAT activity, assessed by [18F] FDG PET imaging, seems a promising tool for the management of conditions such as obesity and type 2 diabetes. Moreover, an interesting possible correlation of BAT activation with prognostic [18F] FDG PET indices in cancer patients should be assessed with further multicentric trials.
Collapse
Affiliation(s)
- Maria Ricci
- Nuclear Medicine Unit, Cardarelli Hospital, Campobasso, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences Oncology and Anatomo-Pathology, Sapienza University of Rome, Rome, Italy
| | - Giorgia Maria Granese
- Department of Radiological Sciences Oncology and Anatomo-Pathology, Sapienza University of Rome, Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences Oncology and Anatomo-Pathology, Sapienza University of Rome, Rome, Italy
| | | | - Ennio Lubrano
- Dipartimento di Medicina e Scienze della Salute, Università degli Studi del Molise, Italy
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Andrea Cimini
- Nuclear Medicine Unit, St. Salvatore Hospital, L'Aquila, Italy
| |
Collapse
|
4
|
de Paula Faria D, D'Arc Campeiro J, de Souza Junqueira M, Real CC, Marques FLN, Hayashi MAF, Sapienza MT. [ 18F]FDG and [ 11C]PK11195 PET imaging in the evaluation of brown adipose tissue - effects of cold and pharmacological stimuli and their association with crotamine intake in a male mouse model. Nucl Med Biol 2023; 122-123:108362. [PMID: 37356164 DOI: 10.1016/j.nucmedbio.2023.108362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
This study aimed to evaluate the role of positron emission tomography (PET) with [11C]PK11195 and [18F]FDG in the characterization of brown adipose tissue (BAT). METHODS Male C57BL/6 mice were studied with the glucose analogue [18F]FDG (n = 21) and the TSPO mitochondrial tracer [11C]PK11195 (n = 28), without stimulus and after cold (6-9 °C) or beta-agonist (CL316243) stimuli. PET studies were performed at baseline and after 21 days of daily treatment with crotamine, which is a peptide described to induce adipocyte tissue browning and to increase BAT metabolism. Tracer uptake (SUVmax) was measured in the interscapular BAT and translocator protein 18 kDa (TSPO) expression was evaluated by immunohistochemistry. RESULTS The cold stimulus increased [18F]FDG uptake compared to no-stimulus (5.21 ± 1.05 vs. 2.03 ± 0.21, p < 0.0001) and to beta-agonist stimulus (2.65 ± 0.39, p = 0.0003). After 21 days of treatment with crotamine, there was no significant difference in the [18F]FDG uptake compared to the baseline in the no-stimulus group and in the cold-stimulus group, with a significant increase in uptake after CL stimulus (baseline: 2.65 ± 0.39; 21 days crotamine: 4.77 ± 0.81, p = 0.0003). Evaluation of [11C]PK11195 at baseline shows that CL stimulus increases the BAT uptake compared to no-stimulus (4.47 ± 0.66 vs. 3.36 ± 0.68, p = 0.014). After 21 days of treatment with crotamine, there was no significant difference in the [11C]PK11195 uptake compared to the baseline in the no-stimulus group (2.94 ± 0.58, p = 0.7864) and also after CL stimulus (3.55 ± 0.79, p = 0.085). TSPO expression correlated with [11C]PK11195 uptake (r = 0.83, p = 0.018) but not with [18F]FDG uptake (r = 0.40, p = 0.516). CONCLUSIONS [11C]PK11195 allowed the identification of BAT under thermoneutral conditions or after beta3-adrenergic stimulation in a direct correlation with TSPO expression. The beta-adrenergic stimulus, despite presenting a lower intensity of glycolytic activation compared to cold at baseline, allowed the observation of an increase in BAT uptake of [18F]FDG after 21 days of crotamine administration. Although some limitations were observed for the metabolic changes induced by crotamine, this study reinforced the potential of using [11C]PK11195 and/or [18F]FDG-PET to monitor the activation of BAT.
Collapse
Affiliation(s)
- Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Joana D'Arc Campeiro
- Laboratory of Molecular Pharmacology, Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Mara de Souza Junqueira
- Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Caroline Cristiano Real
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Department of Nuclear Medicine and PET Center, Aarhus University Hospital, DK-8200 Aarhus, Denmark
| | - Fabio Luiz Navarro Marques
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Mirian Akemi Furuie Hayashi
- Laboratory of Molecular Pharmacology, Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Marcelo Tatit Sapienza
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
5
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
6
|
Vliora M, Ravelli C, Grillo E, Corsini M, Flouris AD, Mitola S. The impact of adipokines on vascular networks in adipose tissue. Cytokine Growth Factor Rev 2023; 69:61-72. [PMID: 35953434 DOI: 10.1016/j.cytogfr.2022.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023]
Abstract
Adipose tissue (AT) is a highly active and plastic endocrine organ. It secretes numerous soluble molecules known as adipokines, which act locally to AT control the remodel and homeostasis or exert pleiotropic functions in different peripheral organs. Aberrant production or loss of certain adipokines contributes to AT dysfunction associated with metabolic disorders, including obesity. The AT plasticity is strictly related to tissue vascularization. Angiogenesis supports the AT expansion, while regression of blood vessels is associated with AT hypoxia, which in turn mediates tissue inflammation, fibrosis and metabolic dysfunction. Several adipokines can regulate endothelial cell functions and are endowed with either pro- or anti-angiogenic properties. Here we address the role of adipokines in the regulation of angiogenesis. A better understanding of the link between adipokines and angiogenesis will open the way for novel therapeutic approaches to treat obesity and metabolic diseases.
Collapse
Affiliation(s)
- Maria Vliora
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece; Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy.
| |
Collapse
|
7
|
Zhu B, Liang SH, Ran C. Imaging Brown Adipose Tissue with TSPO PET Tracers in Preclinical Animal Studies. Methods Mol Biol 2023; 2662:147-156. [PMID: 37076678 DOI: 10.1007/978-1-0716-3167-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Brown adipose tissue (BAT) is closely associated with thermogenesis and related to numerous diseases, including type 2 diabetes, nonalcoholic fatty liver disease (NAFLD), and obesity. Using molecular imaging technologies to monitor BAT could facilitate etiology elucidation, disease diagnosis, and therapeutics development. Translocator protein (TSPO), an 18 kDa protein that mainly locates on the outer mitochondrial membrane, has been proven as a promising biomarker for monitoring BAT mass. Here, we lay out the steps for imaging BAT with TSPO PET tracer [18F]-DPA in mouse studies.
Collapse
Affiliation(s)
- Biyue Zhu
- Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chongzhao Ran
- Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Lee SY, Oh HR, Kim YH, Bae SH, Lee Y, Lee YS, Lee BC, Cheon GJ, Kang KW, Youn H. Cerenkov luminescence imaging of interscapular brown adipose tissue using a TSPO-targeting PET probe in the UCP1 ThermoMouse. Am J Cancer Res 2022; 12:6380-6394. [PMID: 36168637 PMCID: PMC9475450 DOI: 10.7150/thno.74828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/20/2022] [Indexed: 11/21/2022] Open
Abstract
Rationale: [18F]fluorodeoxyglucose-positron emission tomography ([18F]FDG-PET) has been widely used as an imaging technique to measure interscapular brown adipose tissue (iBAT) activity. However, it is challenging to obtain iBAT-specific images using [18F]FDG-PET because increased uptake of [18F]FDG is observed in tumors, muscle, and inflamed tissues. Uncoupling protein 1 (UCP1) in the mitochondrial membrane, a well-known molecular marker of BAT, has been proposed as a useful BAT imaging marker. Recently, the UCP1 ThermoMouse was developed as a reporter mouse for monitoring UCP1 expression and investigating BAT activation. In addition, Translocator protein-18 kDa (TSPO) located in the outer mitochondrial membrane is also overexpressed in BAT, suggesting that TSPO-targeting PET has potential for iBAT imaging. However, there are no studies monitoring BAT using TSPO-targeting PET probes in the UCP1 ThermoMouse. Moreover, the non-invasive Cerenkov luminescence imaging (CLI) using Cerenkov radiation from the PET probe has been proposed as an alternative option for PET as it is less expensive and user-friendly. Therefore, we selected [18F]fm-PBR28-d2 as a TSPO-targeting PET probe for iBAT imaging to evaluate the usefulness of CLI in the UCP1 ThermoMouse. Methods: UCP1 ThermoMouse was used to monitor UCP1 expression. Western blotting and immunohistochemistry were performed to measure the level of protein expression. [18F]fm-PBR28-d2 and [18F]FDG were used as radioactive probes for iBAT imaging. PET images were acquired with SimPET, and optical images were acquired with IVIS 100. Results: UCP1 ThermoMouse showed that UCP1 and TSPO expressions were correlated in iBAT. In both PET and CLI, the TSPO-targeting probe [18F]fm-PBR28-d2 was superior to [18F]FDG for acquiring iBAT images. The high molar activity of the probe was essential for CLI and PET imaging. We tested the feasibility of TSPO-targeting probe under cold exposure by imaging with TSPO-PET/CLI. Both signals of iBAT were clearly increased after cold stimulation. Under prolonged isoflurane anesthesia, TSPO-targeting images showed higher signals from iBAT in the short-term than in long-term groups. Conclusion: We demonstrated that TSPO-PET/CLI reflected UCP1 expression in iBAT imaging better than [18F]FDG-PET/CLI under the various conditions. Considering convenience and cost, TSPO-CLI could be used as an alternative TSPO-PET technique for iBAT imaging.
Collapse
Affiliation(s)
- Seok-Yong Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho Rim Oh
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young-Hwa Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hwan Bae
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yongseok Lee
- Cancer Imaging Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Imaging Center, Seoul National University Hospital, Seoul, Republic of Korea.,Radiation Medicine Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Imaging Center, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
9
|
Viviano M, Barresi E, Siméon FG, Costa B, Taliani S, Da Settimo F, Pike VW, Castellano S. Essential Principles and Recent Progress in the Development of TSPO PET Ligands for Neuroinflammation Imaging. Curr Med Chem 2022; 29:4862-4890. [PMID: 35352645 PMCID: PMC10080361 DOI: 10.2174/0929867329666220329204054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
The translocator protein 18kDa (TSPO) is expressed in the outer mitochondrial membrane and is implicated in several functions, including cholesterol transport and steroidogenesis. Under normal physiological conditions, TSPO is present in very low concentrations in the human brain but is markedly upregulated in response to brain injury and inflammation. This upregulation is strongly associated with activated microglia. Therefore, TSPO is particularly suited for assessing active gliosis associated with brain lesions following injury or disease. For over three decades, TSPO has been studied as a biomarker. Numerous radioligands for positron emission tomography (PET) that target TSPO have been developed for imaging inflammatory progression in the brain. Although [11C]PK11195, the prototypical first-generation PET radioligand, is still widely used for in vivo studies, mainly now as its single more potent R-enantiomer, it has severe limitations, including low sensitivity and poor amenability to quantification. Second-generation radioligands are characterized by higher TSPO specific signals but suffer from other drawbacks, such as sensitivity to the TSPO single nucleotide polymorphism (SNP) rs6971. Therefore, their applications in human studies have the burden of needing to genotype subjects. Consequently, recent efforts are focused on developing improved radioligands that combine the optimal features of the second generation with the ability to overcome the differences in binding affinities across the population. This review presents essential principles in the design and development of TSPO PET ligands and discusses prominent examples among the main chemotypes.
Collapse
Affiliation(s)
- Monica Viviano
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | | | - Fabrice G. Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | | | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| |
Collapse
|
10
|
van der Geest KSM, Sandovici M, Nienhuis PH, Slart RHJA, Heeringa P, Brouwer E, Jiemy WF. Novel PET Imaging of Inflammatory Targets and Cells for the Diagnosis and Monitoring of Giant Cell Arteritis and Polymyalgia Rheumatica. Front Med (Lausanne) 2022; 9:902155. [PMID: 35733858 PMCID: PMC9207253 DOI: 10.3389/fmed.2022.902155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are two interrelated inflammatory diseases affecting patients above 50 years of age. Patients with GCA suffer from granulomatous inflammation of medium- to large-sized arteries. This inflammation can lead to severe ischemic complications (e.g., irreversible vision loss and stroke) and aneurysm-related complications (such as aortic dissection). On the other hand, patients suffering from PMR present with proximal stiffness and pain due to inflammation of the shoulder and pelvic girdles. PMR is observed in 40-60% of patients with GCA, while up to 21% of patients suffering from PMR are also affected by GCA. Due to the risk of ischemic complications, GCA has to be promptly treated upon clinical suspicion. The treatment of both GCA and PMR still heavily relies on glucocorticoids (GCs), although novel targeted therapies are emerging. Imaging has a central position in the diagnosis of GCA and PMR. While [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) has proven to be a valuable tool for diagnosis of GCA and PMR, it possesses major drawbacks such as unspecific uptake in cells with high glucose metabolism, high background activity in several non-target organs and a decrease of diagnostic accuracy already after a short course of GC treatment. In recent years, our understanding of the immunopathogenesis of GCA and, to some extent, PMR has advanced. In this review, we summarize the current knowledge on the cellular heterogeneity in the immunopathology of GCA/PMR and discuss how recent advances in specific tissue infiltrating leukocyte and stromal cell profiles may be exploited as a source of novel targets for imaging. Finally, we discuss prospective novel PET radiotracers that may be useful for the diagnosis and treatment monitoring in GCA and PMR.
Collapse
Affiliation(s)
- Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pieter H. Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - William F. Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Shah S, Sinharay S, Patel R, Solomon J, Lee JH, Schreiber-Stainthorp W, Basuli F, Zhang X, Hagen KR, Reeder R, Wakim P, Huzella LM, Maric D, Johnson RF, Hammoud DA. PET imaging of TSPO expression in immune cells can assess organ-level pathophysiology in high-consequence viral infections. Proc Natl Acad Sci U S A 2022; 119:e2110846119. [PMID: 35385353 PMCID: PMC9169664 DOI: 10.1073/pnas.2110846119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/10/2022] [Indexed: 01/08/2023] Open
Abstract
Ebola virus (EBOV) disease is characterized by lymphopenia, breach in vascular integrity, cytokine storm, and multiorgan failure. The pathophysiology of organ involvement, however, is incompletely understood. Using [18F]-DPA-714 positron emission tomography (PET) imaging targeting the translocator protein (TSPO), an immune cell marker, we sought to characterize the progression of EBOV-associated organ-level pathophysiology in the EBOV Rhesus macaque model. Dynamic [18F]-DPA-714 PET/computed tomography imaging was performed longitudinally at baseline and at multiple time points after EBOV inoculation, and distribution volumes (Vt) were calculated as a measure of peripheral TSPO binding. Using a mixed-effect linear regression model, spleen and lung Vt decreased, while the bone marrow Vt increased over time after infection. No clear trend was found for liver Vt. Multiple plasma cytokines correlated negatively with lung/spleen Vt and positively with bone marrow Vt. Multiplex immunofluorescence staining in spleen and lung sections confirmed organ-level lymphoid and monocytic loss/apoptosis, thus validating the imaging results. Our findings are consistent with EBOV-induced progressive monocytic and lymphocytic depletion in the spleen, rather than immune activation, as well as depletion of alveolar macrophages in the lungs, with inefficient reactive neutrophilic activation. Increased bone marrow Vt, on the other hand, suggests hematopoietic activation in response to systemic immune cell depletion and leukocytosis and could have prognostic relevance. In vivo PET imaging provided better understanding of organ-level pathophysiology during EBOV infection. A similar approach can be used to delineate the pathophysiology of other systemic infections and to evaluate the effectiveness of newly developed treatment and vaccine strategies.
Collapse
Affiliation(s)
- Swati Shah
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD 20892
| | - Sanhita Sinharay
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD 20892
| | - Reema Patel
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD 20892
| | - Jeffrey Solomon
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Ji Hyun Lee
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | | | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD 20824
| | - Xiang Zhang
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD 20824
| | - Katie R. Hagen
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | - Rebecca Reeder
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, Clinical Center, NIH, Bethesda, MD 20892
| | - Louis M. Huzella
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892
| | - Reed F. Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | - Dima A. Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD 20892
| |
Collapse
|
12
|
Yang J, Zhang H, Parhat K, Xu H, Li M, Wang X, Ran C. Molecular Imaging of Brown Adipose Tissue Mass. Int J Mol Sci 2021; 22:ijms22179436. [PMID: 34502347 PMCID: PMC8431742 DOI: 10.3390/ijms22179436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Brown adipose tissue (BAT), a uniquely thermogenic tissue that plays an important role in metabolism and energy expenditure, has recently become a revived target in the fight against metabolic diseases, such as obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD). Different from white adipose tissue (WAT), the brown adipocytes have distinctive features including multilocular lipid droplets, a large number of mitochondria, and a high expression of uncoupling protein-1 (UCP-1), as well as abundant capillarity. These histologic characteristics provide an opportunity to differentiate BAT from WAT using imaging modalities, such as PET/CT, SPECT/CT, MRI, NIRF and Ultrasound. However, most of the reported imaging methods were BAT activation dependent, and the imaging signals could be affected by many factors, including environmental temperatures and the states of the sympathetic nervous system. Accurate BAT mass detection methods that are independent of temperature and hormone levels have the capacity to track the development and changes of BAT throughout the lifetime of mammals, and such methods could be very useful for the investigation of potential BAT-related therapies. In this review, we focus on molecular imaging modalities that can detect and quantify BAT mass. In addition, their detection mechanism and limitations will be discussed as well.
Collapse
Affiliation(s)
- Jing Yang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
- Correspondence: (J.Y.); (C.R.)
| | - Haili Zhang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Kadirya Parhat
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Hui Xu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Mingshuang Li
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Xiangyu Wang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
- Correspondence: (J.Y.); (C.R.)
| |
Collapse
|
13
|
Morrissey NA, Beall C, Ellacott KLJ. Absence of the mitochondrial translocator protein 18 kDa in mice does not affect body weight or food intake responses to altered energy availability. J Neuroendocrinol 2021; 33:e13027. [PMID: 34423477 PMCID: PMC11475361 DOI: 10.1111/jne.13027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022]
Abstract
Changes in mitochondrial function in a variety of cells/tissues are critical for orchestrating systemic energy homeostasis and are linked to the development of obesity and many of its comorbidities. The mitochondrial translocator protein of 18 kDa (TSPO) is expressed in organs throughout the body, including the brain, liver, adipose tissue, gonads and adrenal glands, where it is implicated in regulating steroidogenesis and cellular metabolism. Prior work from our group and others has shown that, in rodents, TSPO levels are altered in adipose tissue by obesity and that modulation of TSPO activity may impact systemic glucose homeostasis. Furthermore, in vitro studies in a variety of cell types have implicated TSPO in mediating cellular energetics and substrate utilisation. Although mice with germline global TSPO deficiency (TSPO-/- ) have no reported changes in body weight under standard husbandry conditions, we hypothesised that, given the roles of TSPO in regulating mitochondrial function and cellular metabolic flexibility, these animals may have alterations in their systemic response to altered energy availability, either nutritional excess or insufficiency. In agreement with published work, compared to wild-type (TSPO+/+ ) littermates, TSPO-/- mice of both sexes did not exhibit differences in body weight on standard chow. Furthermore, following a 12-hour overnight fast, there was no difference in weight loss or compensatory food intake during re-feeding. Five weeks of feeding a high-fat diet (HFD) did not reveal any impact of the absence of TSPO on body weight gain in either male or female mice. Basal blood glucose levels and glucose clearance in a glucose tolerance test were influenced by feeding a HFD diet but not by genotype. In conclusion, in the paradigms examined, germline global deletion of TSPO did not change the physiological response to deviations in systemic energy availability at the whole organism level.
Collapse
Affiliation(s)
- Nicole A. Morrissey
- Neuroendocrine Research GroupInstitute of Biomedical & Clinical SciencesCollege of Medicine & HealthUniversity of ExeterExeterUK
| | - Craig Beall
- Neuroendocrine Research GroupInstitute of Biomedical & Clinical SciencesCollege of Medicine & HealthUniversity of ExeterExeterUK
| | - Kate L. J. Ellacott
- Neuroendocrine Research GroupInstitute of Biomedical & Clinical SciencesCollege of Medicine & HealthUniversity of ExeterExeterUK
| |
Collapse
|
14
|
Crandall JP, Wahl RL. Perspectives on Brown Adipose Tissue Imaging: Insights from Preclinical and Clinical Observations from the Last and Current Century. J Nucl Med 2021; 62:34S-43S. [PMID: 34230071 DOI: 10.2967/jnumed.120.246991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Brown adipose tissue (BAT) was first described in the 16th century, but until late last century had mainly been considered a tissue with the function of nonshivering thermogenesis, maintaining body temperature in key organs in newborns who have high body surface areas relative to their weight and thus marked radiative heat loss. BAT was believed to have substantially disappeared by adulthood. Molecular imaging with 18F-FDG PET and PET combined with CT, as well as imaging with 131I-metaiodobenzylguanidine (MIBG) beginning late last century have shown BAT to be present and active well into adulthood. This review highlights key aspects of BAT biology, early empiric observations misidentifying BAT, pitfalls in image interpretation, and methods to intentionally reduce BAT uptake, and outlines multiple imaging methods used to identify BAT in vivo. The therapeutic potential of increasing the amount or activity of BAT for weight loss and improvement of glucose and lipid profiles is highlighted as a major opportunity. Molecular imaging can help dissect the physiology of this complex dynamic tissue and offers the potential for addressing challenges separating "active BAT" from "total BAT." Research in BAT has grown extensively, and 18F-FDG PET is the key imaging procedure against which all other BAT imaging methods must be compared. Given the multiple functions of BAT, it is reasonable to consider it a previously unrecognized endocrine tissue and thus an appropriate topic for review in this supplement to The Journal of Nuclear Medicine.
Collapse
Affiliation(s)
- John P Crandall
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
15
|
Niu N, Xing H, Wang X, Ding J, Hao Z, Ren C, Ba J, Zheng L, Fu C, Zhao H, Huo L. Comparative [ 18F]FDG and [ 18F]DPA714 PET imaging and time-dependent changes of brown adipose tissue in tumour-bearing mice. Adipocyte 2020; 9:542-549. [PMID: 32902340 PMCID: PMC7714432 DOI: 10.1080/21623945.2020.1814546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brown adipose tissue (BAT) is important in monitoring energy homeostasis and cancer cachexia. Different from white adipose tissue, BAT is characterized by the presence of a large number of mitochondria in adipocytes. Translocator protein 18 kDa (TSPO), a critical transporter, is expressed in the outer membrane of mitochondria. We speculated that [18F]DPA714, a specific TSPO tracer, may monitor BAT activity in tumor-bearing mice in vivo. We first analyzed the radioactive uptake of positron emission tomography (PET) tracers in BAT of CT26 xenograft mice with 18F-fluorodeoxyglucose ([18F]FDG) and [18F]DPA714. We also studied the BAT uptake of [18F]DPA714 in CT26, A549 and LLC tumor models. The dynamic distribution of [18F]FDG is quite variable among animals, even in mice of the same tumor model (%ID/g-mean: mean ± SDM, 8.61 ± 8.90, n = 16). Contrarily, [18F]DPA714 produced high-quality and stable BAT imaging in different tumor models and different animals of the same model. Interestingly, %ID/g-mean of [18F]DPA714 in BAT was significantly higher on day 26 than that on day 7 in CT26 xenograft model. Taken together, these results strongly indicate the potential feasibility of [18F]DPA714 PET imaging in investigating BAT and energy metabolism during tumor progression in preclinical and clinical study.
Collapse
Affiliation(s)
- Na Niu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Haiqun Xing
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xuezhu Wang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jie Ding
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Zhixin Hao
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Chao Ren
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jiantao Ba
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Chao Fu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Haiyan Zhao
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Li Huo
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
16
|
Oh C, Song IH, Lee W, Jeon M, Choi J, Baek S, Lee BC, Kim SE, Im HJ. Brown adipose tissue imaging using the TSPO tracer [ 18F]fluoromethyl-PBR28-d 2: A comparison with [ 18F]FDG. Nucl Med Biol 2020; 90-91:98-103. [PMID: 33189950 DOI: 10.1016/j.nucmedbio.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/02/2020] [Accepted: 10/17/2020] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Currently, the reference method of brown adipose tissue (BAT) imaging is 18F-fluorodeoxyglucose positron emission tomography ([18F]FDG PET). BAT imaging by [18F]FDG PET requires additional stimulation process, which is inconvenient and hard to be standardized. The translocator protein 18 kDa (TSPO) PET has been found to be effective for visualization of BAT. Herein, we evaluated the feasibility of [18F]fluoromethyl-PBR28-d2 ([18F]fmPBR28-d2), a TSPO PET tracer, for interscapular BAT imaging in comparison with [18F]FDG PET. METHODS C57BL/6 mice were used for the [18F]fmPBR28-d2 and [18F]FDG PET imaging. [18F]fmPBR28-d2 PET was performed in the thermoneutral condition (n = 5) and after cold exposure (4 °C for 4 h) on the next day using the same mice. [18F]FDG PET was performed in the thermoneutral and cold exposure conditions with the same method with [18F]fmPBR28-d2 PET. Ex vivo biodistribution study of [18F]fmPBR28-d2 was performed in ten C57BL/6 mice (5: thermoneutral, 5: cold exposure). TSPO immunohistochemistry was done in interscapular BAT. RESULTS The [18F]fmPBR28-d2 PET images showed prominent interscapular BAT uptakes under both thermoneutral and cold exposure conditions. While, the BAT uptake was significantly higher under the cold exposure condition than the thermoneutral condition (12.83 ± 5.06 vs. 22.50 ± 6.03, P = 0.007). Also, [18F]FDG PET imaging showed higher BAT uptake under the cold exposure condition than thermoneutral condition (8.40 ± 0.63 vs. 21.41 ± 4.03, P = 0.001). The interscapular BAT to background (thigh muscle) ratio was higher in [18F]fmPBR28-d2 PET than [18F]FDG PET under both thermoneutral and cold exposure conditions. Ex vivo biodistribution study using [18F]fmPBR28-d2 also showed higher BAT uptake under cold exposure than the thermoneutral condition (8.86 ± 1.74 vs.16.93 ± 4.74, P = 0.036). Also, IHC demonstrated that TSPO expression was significantly increased in the cold exposure group. CONCLUSIONS [18F]FmPBR28-d2 PET demonstrated prominent interscapular BAT uptakes regardless of additional stimulation, and showed a higher BAT to background ratio than [18F]FDG PET. Also, we found that [18F]fmPBR28-d2 PET uptake and TSPO expression of BAT increased under cold exposure condition. Further works are warranted to assess the clinical significance of TSPO PET uptake in BAT.
Collapse
Affiliation(s)
- Chiwoo Oh
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - In Ho Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Wooseung Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Miyeon Jeon
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinyeong Choi
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungki Baek
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea; Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea. http://tmtl.snu.ac.kr
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea; Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
17
|
Gliniak CM, Scherer PE. PHOSPHO1 puts the breaks on thermogenesis in brown adipocytes. Proc Natl Acad Sci U S A 2020; 117:16726-16728. [PMID: 32641502 PMCID: PMC7382279 DOI: 10.1073/pnas.2011052117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Christy M Gliniak
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549;
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549
| |
Collapse
|
18
|
Ron A, Deán-Ben XL, Reber J, Ntziachristos V, Razansky D. Characterization of Brown Adipose Tissue in a Diabetic Mouse Model with Spiral Volumetric Optoacoustic Tomography. Mol Imaging Biol 2020; 21:620-625. [PMID: 30387020 DOI: 10.1007/s11307-018-1291-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE Diabetes is associated with a deterioration of the microvasculature in brown adipose tissue (BAT) and with a decrease in its metabolic activity. Multispectral optoacoustic tomography has been recently proposed as a new tool capable of differentiating healthy and diabetic BAT by observing hemoglobin gradients and microvasculature density in cross-sectional (2D) views. We report on the use of spiral volumetric optoacoustic tomography (SVOT) for an improved characterization of BAT. PROCEDURES A streptozotocin-induced diabetes model and control mice were scanned with SVOT. Volumetric oxygen saturation (sO2) as well as total blood volume (TBV) in the subcutaneous interscapular BAT (iBAT) was quantified. Segmentation further enabled separating feeding and draining vessels from the BAT anatomical structure. RESULTS Scanning revealed a 46 % decrease in TBV and a 25 % decrease in sO2 in the diabetic iBAT with respect to the healthy control. CONCLUSIONS These results suggest that SVOT may serve as an effective tool for studying the effects of diabetes on BAT. The volumetric optoacoustic imaging probe used for the SVOT scans can be operated in a handheld mode, thus potentially providing a clinical translation route for BAT-related studies with this imaging technology.
Collapse
Affiliation(s)
- Avihai Ron
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Xosé Luís Deán-Ben
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Josephine Reber
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Daniel Razansky
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany.
| |
Collapse
|
19
|
Tanimoto Y, Yamasaki T, Nagoshi N, Nishiyama Y, Nori S, Nishimura S, Iida T, Ozaki M, Tsuji O, Ji B, Aoki I, Jinzaki M, Matsumoto M, Fujibayashi Y, Zhang MR, Nakamura M, Okano H. In vivo monitoring of remnant undifferentiated neural cells following human induced pluripotent stem cell-derived neural stem/progenitor cells transplantation. Stem Cells Transl Med 2020; 9:465-477. [PMID: 31904914 PMCID: PMC7103627 DOI: 10.1002/sctm.19-0150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/30/2019] [Indexed: 12/16/2022] Open
Abstract
Transplantation of human-induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs) is a promising treatment for a variety of neuropathological conditions. Although previous reports have indicated the effectiveness of hiPSC-NS/PCs transplantation into the injured spinal cord of rodents and nonhuman primates, long-term observation of hiPSC-NS/PCs post-transplantation suggested some "unsafe" differentiation-resistant properties, resulting in disordered overgrowth. These findings suggest that, even if "safe" NS/PCs are transplanted into the human central nervous system (CNS), the dynamics of cellular differentiation of stem cells should be noninvasively tracked to ensure safety. Positron emission tomography (PET) provides molecular-functional information and helps to detect specific disease conditions. The current study was conducted to visualize Nestin (an NS/PC marker)-positive undifferentiated neural cells in the CNS of immune-deficient (nonobese diabetic-severe combined immune-deficient) mice after hiPSC-NS/PCs transplantation with PET, using 18 kDa translocator protein (TSPO) ligands as labels. TSPO was recently found to be expressed in rodent NS/PCs, and its expression decreased with the progression of neuronal differentiation. We hypothesized that TSPO would also be present in hiPSC-NS/PCs and expressed strongly in residual immature neural cells after transplantation. The results showed high levels of TSPO expression in immature hiPSC-NS/PCs-derived cells, and decreased TSPO expression as neural differentiation progressed in vitro. Furthermore, PET with [18 F] FEDAC (a TSPO radioligand) was able to visualize the remnant undifferentiated hiPSC-NS/PCs-derived cells consisting of TSPO and Nestin+ cells in vivo. These findings suggest that PET with [18 F] FEDAC could play a key role in the safe clinical application of CNS repair in regenerative medicine.
Collapse
Affiliation(s)
- Yuji Tanimoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuichiro Nishiyama
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Nori
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Soraya Nishimura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Iida
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Ozaki
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Osahiko Tsuji
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Bin Ji
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Ichio Aoki
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasuhisa Fujibayashi
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Li W, Ma J, Jiang Q, Zhang T, Qi Q, Cheng Y. Fast Noninvasive Measurement of Brown Adipose Tissue in Living Mice by Near-Infrared Fluorescence and Photoacoustic Imaging. Anal Chem 2020; 92:3787-3794. [PMID: 32066237 DOI: 10.1021/acs.analchem.9b05162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aberrant brown adipose tissue (BAT) metabolism is linked to obesity as well as other metabolic disorders. However, the paucity of imaging tools limits the study of in vivo BAT metabolism in animal models. The current work evaluated a heptamethine dye (CyHF-8) in living mice as a dual-modality BAT-avid molecular probe for two imaging approaches, including near-infrared fluorescence imaging (NIRF) and photoacoustic imaging (PAI). CyHF-8 exhibited favorable spectral properties in the near-infrared window (786/787/805 nm) and accumulated in the subcellular mitochondria of brown adipocytes. After intravenous injection of CyHF-8, NIRF and PAI were both capable of noninvasively detecting interscapular BAT at early time points in living mice. Quantitative analysis of NIRF and PAI images showed that CyHF-8 signals respond to dynamic BAT changes in mice stimulated by norepinephrine (NE) and in diabetic mice induced by streptozotocin (STZ). In summary, dual-modality NIRF/PAI probe CyHF-8 can be used for both NIRF and PAI to noninvasively assess BAT metabolism in living animals.
Collapse
Affiliation(s)
- Wanyun Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing Ma
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qian Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qingrong Qi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan Cheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Frankl J, Sherwood A, Clegg DJ, Scherer PE, Öz OK. Imaging Metabolically Active Fat: A Literature Review and Mechanistic Insights. Int J Mol Sci 2019; 20:E5509. [PMID: 31694216 PMCID: PMC6862590 DOI: 10.3390/ijms20215509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Currently, obesity is one of the leading causes death in the world. Shortly before 2000, researchers began describing metabolically active adipose tissue on cancer-surveillance 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in adult humans. This tissue generates heat through mitochondrial uncoupling and functions similar to classical brown and beige adipose tissue in mice. Despite extensive research, human brown/beige fat's role in resistance to obesity in humans has not yet been fully delineated. FDG uptake is the de facto gold standard imaging technique when studying brown adipose tissue, although it has not been rigorously compared to other techniques. We, therefore, present a concise review of established and emerging methods to image brown adipose tissue activity in humans. Reviewed modalities include anatomic imaging with CT and magnetic resonance imaging (MRI); molecular imaging with FDG, fatty acids, and acetate; and emerging techniques. FDG-PET/CT is the most commonly used modality because of its widespread use in cancer imaging, but there are mechanistic reasons to believe other radiotracers may be more sensitive and accurate at detecting brown adipose tissue activity. Radiation-free modalities may help the longitudinal study of brown adipose tissue activity in the future.
Collapse
Affiliation(s)
- Joseph Frankl
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.F.); (A.S.)
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.F.); (A.S.)
| | - Deborah J. Clegg
- College of Nursing and Health Professions, Drexel University, 10th Floor, Room 1092, 1601 Cherry Street, Mail Stop 10501, Philadelphia, PA 19102, USA;
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA;
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.F.); (A.S.)
| |
Collapse
|
22
|
The 2019 World Molecular Imaging Congress (WMIC) and Molecular Imaging and Biology (MIB) Awards. Mol Imaging Biol 2019; 22:6-8. [PMID: 31667716 DOI: 10.1007/s11307-019-01444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Hartimath SV, Khanapur S, Boominathan R, Jiang L, Cheng P, Yong FF, Tan PW, Robins EG, Goggi JL. Imaging adipose tissue browning using the TSPO-18kDa tracer [ 18F]FEPPA. Mol Metab 2019; 25:154-158. [PMID: 31105057 PMCID: PMC6601022 DOI: 10.1016/j.molmet.2019.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 12/26/2022] Open
Abstract
Objectives The browning of white adipose tissue (WAT) into beige has been proposed as a strategy to enhance energy expenditure to combat the growing epidemic of obesity. Research into browning strategies are hampered by the lack of sensitive, translatable, imaging tools capable of detecting beige fat mass non-invasively. [18F]FDG is able to detect activated beige fat but provides little information on unstimulated beige fat mass. We have assessed the use of [18F]FEPPA, a tracer for the TSPO-18KDa found on the outer mitochondrial membrane, as an alternative imaging agent capable of detecting unstimulated brown fat (BAT) and beige fat. Methods Female Balb/c mice (n = 5) were treated for 7 days with the β3 adrenergic agonist CL-316,243 to induce the browning of inguinal WAT (beige fat). Animals were imaged longitudinally with [18F]FDG and [18F]FEPPA and uptake in interscapular BAT and inguinal WAT assessed. The browning of inguinal WAT was confirmed using H&E and immunohistochemical detection of UCP-1 and TSPO. Results Repeated dosing with β3-adrenergic agonist CL-316,243 caused a significant increase in [18F]FDG uptake in both interscapular BAT and inguinal WAT associated with the increased metabolic activity of brown and beige adipocytes respectively. [18F]FEPPA uptake was likewise increased in inguinal WAT but showed no increase in BAT uptake due to stimulation over the same time course. Furthermore, inguinal WAT uptake was unaffected by pharmacological blockade, indicating that [18F]FEPPA uptake is associated with the expression of mitochondria in BAT and beige adipocytes and independent of activation. Conclusion These data show that [18F]FEPPA can detect BAT and newly formed beige fat under non-stimulated, thermoneutral conditions and that uptake after stimulation is linked to mitochondrial expression as opposed to activation. TSPO-18kDa tracers can detect BAT under non-stimulated, thermoneutral conditions. TSPO-18kDa tracers can detect the formation of beige adipocytes in white adipose tissue. TSPO-18kDa tracers may aid in the development of new approaches to treat obesity.
Collapse
Affiliation(s)
- S V Hartimath
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* STAR), 11 Biopolis Way, #07-10, Helios, 138667, Singapore
| | - S Khanapur
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* STAR), 11 Biopolis Way, #07-10, Helios, 138667, Singapore
| | - R Boominathan
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* STAR), 11 Biopolis Way, #07-10, Helios, 138667, Singapore
| | - L Jiang
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* STAR), 11 Biopolis Way, #07-10, Helios, 138667, Singapore
| | - P Cheng
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* STAR), 11 Biopolis Way, #07-10, Helios, 138667, Singapore
| | - F F Yong
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* STAR), 11 Biopolis Way, #07-10, Helios, 138667, Singapore
| | - P W Tan
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* STAR), 11 Biopolis Way, #07-10, Helios, 138667, Singapore
| | - E G Robins
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* STAR), 11 Biopolis Way, #07-10, Helios, 138667, Singapore; Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
| | - J L Goggi
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* STAR), 11 Biopolis Way, #07-10, Helios, 138667, Singapore.
| |
Collapse
|
24
|
Ilkan Z, Akar FG. The Mitochondrial Translocator Protein and the Emerging Link Between Oxidative Stress and Arrhythmias in the Diabetic Heart. Front Physiol 2018; 9:1518. [PMID: 30416455 PMCID: PMC6212558 DOI: 10.3389/fphys.2018.01518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial translocator protein (TSPO) is a key outer mitochondrial membrane protein that regulates the activity of energy-dissipating mitochondrial channels in response to oxidative stress. In this article, we provide an overview of the role of TSPO in the systematic amplification of reactive oxygen species (ROS) through an autocatalytic process known as ROS-induced ROS-release (RIRR). We describe how this TSPO-driven process destabilizes the mitochondrial membrane potential leading to electrical instability at the cellular and whole heart levels. Finally, we provide our perspective on the role of TSPO in the pathophysiology of diabetes, in general and diabetes-related arrhythmias, in particular.
Collapse
Affiliation(s)
- Zeki Ilkan
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fadi G Akar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
25
|
Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE. Brown Adipose Tissue Energy Metabolism in Humans. Front Endocrinol (Lausanne) 2018; 9:447. [PMID: 30131768 PMCID: PMC6090055 DOI: 10.3389/fendo.2018.00447] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022] Open
Abstract
The demonstration of metabolically active brown adipose tissue (BAT) in humans primarily using positron emission tomography coupled to computed tomography (PET/CT) with the glucose tracer 18-fluorodeoxyglucose (18FDG) has renewed the interest of the scientific and medical community in the possible role of BAT as a target for the prevention and treatment of obesity and type 2 diabetes (T2D). Here, we offer a comprehensive review of BAT energy metabolism in humans. Considerable advances in methods to measure BAT energy metabolism, including nonesterified fatty acids (NEFA), chylomicron-triglycerides (TG), oxygen, Krebs cycle rate, and intracellular TG have led to very good quantification of energy substrate metabolism per volume of active BAT in vivo. These studies have also shown that intracellular TG are likely the primary energy source of BAT upon activation by cold. Current estimates of BAT's contribution to energy expenditure range at the lower end of what would be potentially clinically relevant if chronically sustained. Yet, 18FDG PET/CT remains the gold-standard defining method to quantify total BAT volume of activity, used to calculate BAT's total energy expenditure. Unfortunately, BAT glucose metabolism better reflects BAT's insulin sensitivity and blood flow. It is now clear that most glucose taken up by BAT does not fuel mitochondrial oxidative metabolism and that BAT glucose uptake can therefore be disconnected from thermogenesis. Furthermore, BAT thermogenesis is efficiently recruited upon repeated cold exposure, doubling to tripling its total oxidative capacity, with reciprocal reduction of muscle thermogenesis. Recent data suggest that total BAT volume may be much larger than the typically observed 50-150 ml with 18FDG PET/CT. Therefore, the current estimates of total BAT thermogenesis, largely relying on total BAT volume using 18FDG PET/CT, may underestimate the true contribution of BAT to total energy expenditure. Quantification of the contribution of BAT to energy expenditure begs for the development of more integrated whole body in vivo methods.
Collapse
Affiliation(s)
- André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Kirsi A. Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC, Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Éric E. Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
26
|
Suchacki KJ, Cawthorn WP. Molecular Interaction of Bone Marrow Adipose Tissue with Energy Metabolism. CURRENT MOLECULAR BIOLOGY REPORTS 2018; 4:41-49. [PMID: 29888168 PMCID: PMC5976678 DOI: 10.1007/s40610-018-0096-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The last decade has seen a resurgence in the study of bone marrow adipose tissue (BMAT) across diverse fields such as metabolism, haematopoiesis, skeletal biology and cancer. Herein, we review the most recent developments of BMAT research in both humans and rodents, including the distinct nature of BMAT; the autocrine, paracrine and endocrine interactions between BMAT and various tissues, both in physiological and pathological scenarios; how these interactions might impact energy metabolism; and the most recent technological advances to quantify BMAT. RECENT FINDINGS Though still dwarfed by research into white and brown adipose tissues, BMAT is now recognised as endocrine organ and is attracting increasing attention from biomedical researchers around the globe. SUMMARY We are beginning to learn the importance of BMAT both within and beyond the bone, allowing us to better appreciate the role of BMAT in normal physiology and disease.
Collapse
Affiliation(s)
- Karla J. Suchacki
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ UK
| | - William P. Cawthorn
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ UK
| |
Collapse
|