1
|
Doyle R, Gagnon A, Vanrolleghem PA, Bott C. Elucidating the impact of low DO on enhanced biological phosphorus removal under aerobic and anoxic conditions at full-scale. WATER RESEARCH 2025; 274:123098. [PMID: 39827520 DOI: 10.1016/j.watres.2025.123098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/22/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Research on low dissolved oxygen (DO) enhanced biological phosphorus removal (EBPR) at full-scale remains limited, a knowledge gap this study aims to fill by investigating EBPR performance and microbial community shifts at a Water Resource Recovery Facility (WRRF) transitioning to low DO conditions. Average DO concentrations decreased from 2.62 mg O2/L in 2019 to 0.80 mg O2/L in 2023. Simultaneously, average effluent orthophosphate concentrations decreased from 0.57 mg P/L to 0.29 mg P/L, despite the elimination of metal salt addition for chemical precipitation in 2023. Average effluent total phosphorus concentrations remained between 0.47 and 0.67 mg P/L across varying DO concentrations, which reached below 0.50 mg O2/L. Batch tests conducted over a four-year period indicated higher phosphorus release and aerobic uptake rates when full-scale DO concentrations were below 1 mg O2/L. Phosphorus release rates increased from 8.9 ± 1.0 to 12.1 ± 0.6 mg P/g MLVSS/hr, while aerobic phosphorus uptake rates increased from 3.6 ± 0.6 to 5.3 ± 0.4 mg P/g MLVSS/hr. Microbial analysis revealed a community shift toward taxa containing polyphosphate-accumulating organisms (PAOs) with estimated relative abundances between 0.12 % and 3.62 %. High rates of denitrification fueled by internally stored carbon during the anoxic phase were correlated with elevated aerobic phosphorus uptake rates. Batch tests in the latter two years indicated that anoxic phosphorus uptake rates accounted for 3 % to 40 % of the aerobic uptake rates, suggesting that the reduction in DO concentrations from 2019 to 2023 may have facilitated anoxic phosphorus uptake capacity.
Collapse
Affiliation(s)
- Riley Doyle
- modelEAU, Département de génie civil et de génie des eaux, Université Laval, Québec City, Québec, Canada; Hampton Roads Sanitation District, Virginia Beach, VA, USA.
| | - Alexandria Gagnon
- Hampton Roads Sanitation District, Virginia Beach, VA, USA; Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Peter A Vanrolleghem
- modelEAU, Département de génie civil et de génie des eaux, Université Laval, Québec City, Québec, Canada
| | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| |
Collapse
|
2
|
Bachmann M, Parsons M, Klaus S, Kurt H, Chandran K, Stockard D, Wells G, De Clippeleir H, Bott C. Comparing methanol and glycerol as carbon sources for mainstream partial denitrification/anammox in an IFAS process. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11017. [PMID: 38565318 DOI: 10.1002/wer.11017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
This study explored the implementation of mainstream partial denitrification with anammox (PdNA) in the second anoxic zone of a wastewater treatment process in an integrated fixed film activated sludge (IFAS) configuration. A pilot study was conducted to compare the use of methanol and glycerol as external carbon sources for an IFAS PdNA startup, with a goal to optimize nitrogen removal while minimizing carbon usage. The study also investigated the establishment of anammox bacteria on virgin carriers in IFAS reactors without the use of seeding, and it is the first IFAS PdNA startup to use methanol as an external carbon source. The establishment of anammox bacteria was confirmed in both reactors 102 days after startup. Although the glycerol-fed reactor achieved a higher steady-state maximum ammonia removal rate because of anammox bacteria (1.6 ± 0.3 g/m2/day) in comparison with the methanol-fed reactor (1.2 ± 0.2 g/m2/day), both the glycerol- and methanol-fed reactors achieved similar average in situ ammonia removal rates of 0.39 ± 0.2 g/m2/day and 0.40 ± 0.2 g/m2/day, respectively. Additionally, when the upstream ammonia versus NOx (AvN) control system maintained an ideal ratio of 0.40-0.50 g/g, the methanol-fed reactor attained a lower average effluent TIN concentration (3.50 ± 1.2 mg/L) than the glycerol-fed reactor (4.43 ± 1.6 mg/L), which was prone to elevated nitrite concentrations in the effluent. Overall, this research highlights the potential for PdNA in IFAS configurations as an efficient and cost-saving method for wastewater treatment, with methanol as a viable carbon source for the establishment of anammox bacteria. PRACTITIONER POINTS: Methanol is an effective external carbon source for an anammox startup that avoids the need for costly alternative carbon sources. The methanol-fed reactor demonstrated higher TIN removal compared with the glycerol-fed reactor because of less overproduction of nitrite. Anammox bacteria was established in an IFAS reactor without seeding and used internally stored carbon to reduce external carbon addition. Controlling the influent ammonia versus NOx (AvN) ratio between 0.40 and 0.50 g/g allowed for low and stable TIN effluent conditions.
Collapse
Affiliation(s)
- Megan Bachmann
- Hampton Roads Sanitation District, Virginia Beach, Virginia, USA
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Mike Parsons
- Hampton Roads Sanitation District, Virginia Beach, Virginia, USA
| | - Stephanie Klaus
- Hampton Roads Sanitation District, Virginia Beach, Virginia, USA
| | - Halil Kurt
- Department of Medical Biology, Hamidiye International Faculty of Medicine, University of Health Sciences, İstanbul, Turkey
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
| | - Daniel Stockard
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - George Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | | | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, Virginia, USA
| |
Collapse
|
3
|
Jian C, Hao Y, Liu R, Qi X, Chen M, Liu N. Mixotrophic denitrification process driven by lime sulfur and butanediol: Denitrification performance and metagenomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166654. [PMID: 37647948 DOI: 10.1016/j.scitotenv.2023.166654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Heterotrophic sulfur-based autotrophic denitrification is a promising biological denitrification technology for low COD/TN (C/N) wastewater due to its high efficiency and low cost. Compared to the conventional autotrophic denitrification process driven by elemental sulfur, the presence of polysulfide in the system can promote high-speed nitrogen removal. However, autotrophic denitrification mediated by polysulfide has not been reported. This study investigated the denitrification performance and microbial metabolic mechanism of heterotrophic denitrification, sulfur-based autotrophic denitrification, and mixotrophic denitrification using lime sulfur and butanediol as electron donors. When the influent C/N was 1, the total nitrogen removal efficiency of the mixotrophic denitrification process was 1.67 and 1.14 times higher than that of the heterotrophic and sulfur-based autotrophic denitrification processes, respectively. Microbial community alpha diversity and principal component analysis indicated different electron donors lead to different evolutionary directions in microbial communities. Metagenomic analysis showed the enriched denitrifying bacteria (Thauera, Pseudomonas, and Pseudoxanthomonas), dissimilatory nitrate reduction to ammonia bacteria (Hydrogenophaga), and sulfur oxidizing bacteria (Thiobacillus) can stably support nitrate reduction. Analysis of metabolic pathways revealed that complete denitrification, dissimilatory nitrate reduction to ammonia, and sulfur disproportionation are the main pathways of the N and S cycle. This study demonstrates the feasibility of a mixotrophic denitrification process driven by a combination of lime sulfur and butanediol as a cost-effective solution for treating nitrogen pollution in low C/N wastewater and elucidates the N and S metabolic pathways involved.
Collapse
Affiliation(s)
- Chuanqi Jian
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yanru Hao
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Rentao Liu
- School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiaochen Qi
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, Guangdong, China
| | - Minmin Chen
- Guangdong Environmental Protection Engineering Vocational College, Guangzhou 510655, Guangdong, China
| | - Na Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
4
|
Li L, Liao Q, Liu C, Zhang T, Liu C, Chen Z, Gao R, He Q. Enhanced biological wastewater treatment supplemented with anaerobic fermentation liquid of primary sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119086. [PMID: 37801945 DOI: 10.1016/j.jenvman.2023.119086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023]
Abstract
The wastewater treatment performance in an inverted A2/O reactor supplemented with fermentation liquid of primary sludge was explored comparing to commercial carbon sources sodium acetate and glucose. Similar COD removal rate was observed with the effluent COD stably reaching the discharge standard for those 3 carbon sources. However, the fermentation liquid distributed more carbon source in the anaerobic zone. Fermentation liquid and sodium acetate tests achieved better nitrogen removal rate than glucose test. The fermentation liquid test showed the best biological phosphorus removal performance with the effluent phosphorus barely reaching the discharge standard. The microbial community characterization revealed that the fermentation liquid test was dominated by phylum Proteobacter in all the anoxic, anaerobic and aerobic zones. Denitrifying phosphorus accumulating organisms (PAOs) (i.e., genera Dechloromonas and unclassified_f__Rhodocyclaceae) were selectively enriched with high abundances (over 20%), which resulted in improved phosphorus removal efficiency. Moreover, the predicted abundances of enzymes involved in nitrogen and phosphorus removal were also enhanced by the fermentation liquid.
Collapse
Affiliation(s)
- Lin Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiqi Liao
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Caihong Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Tanglong Zhang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Chang Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Ziwei Chen
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Rui Gao
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiang He
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
5
|
Liang Y, Huang Z, Pan Z, Zhang X, Xu M, Shen Y, Li J. A municipal wastewater treatment plant "drinking beer" for reduction of cost and carbon emission. RSC Adv 2023; 13:20113-20123. [PMID: 37416912 PMCID: PMC10321225 DOI: 10.1039/d3ra02213g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/25/2023] [Indexed: 07/08/2023] Open
Abstract
In wastewater treatment plants (WWTPs), external carbon sources are often required due to low C/N influent. However, the use of external carbon sources can increase treatment costs and cause large carbon emissions. Beer wastewater, which contains a substantial amount of carbon, is often treated separately in China, consuming significant energy and cost. However, most studies using beer wastewater as an external carbon source are still on a laboratory scale. To address this issue, this study proposes using beer wastewater as an external carbon source in an actual WWTP to reduce operating costs and carbon emissions while achieving a win-win situation. The denitrification rate of beer wastewater was found to be higher than that of sodium acetate , resulting in improved treatment efficiency of the WWTP. Specifically, COD, BOD5, TN, NH4+-N and TP increased by 3.4%, 1.6%, 10.8%, 1.1%, and 1.7%, respectively. Additionally, the treatment cost and carbon emission per 10 000 tons of wastewater treated were reduced by 537.31 yuan and 2.27 t CO2, respectively. These results indicate that beer wastewater has significant utilization potential and provide a reference for using different types of production wastewater in WWTPs. This study's findings demonstrate the feasibility of implementing this approach in an actual WWTP setting.
Collapse
Affiliation(s)
- Yifan Liang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology Hangzhou 310014 China
| | - Zuchao Huang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology Hangzhou 310014 China
| | - Zengrui Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology Hangzhou 310014 China
| | - Xubo Zhang
- Deqing Hengfeng Wastewater Treatment Co. Ltd Huzhou 313200 China
| | - Meng Xu
- Deqing Hengfeng Wastewater Treatment Co. Ltd Huzhou 313200 China
| | - Yunchang Shen
- Huzhou Deqing Ming Kang Biological Co. Ltd Huzhou 313200 China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
6
|
Wei Q, Zhang J, Luo F, Shi D, Liu Y, Liu S, Zhang Q, Sun W, Yuan J, Fan H, Wang H, Qi L, Liu G. Molecular mechanisms through which different carbon sources affect denitrification by Thauera linaloolentis: Electron generation, transfer, and competition. ENVIRONMENT INTERNATIONAL 2022; 170:107598. [PMID: 36395558 DOI: 10.1016/j.envint.2022.107598] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Characterizing the molecular mechanism through which different carbon sources affect the denitrification process would provide a basis for the proper selection of carbon sources, thus avoiding excessive carbon source dosing and secondary pollution while also improving denitrification efficiency. Here, we selected Thauera linaloolentis as a model organism of denitrification, whose genomic information was elucidated by draft genome sequencing and KEGG annotations, to investigate the growth kinetics, denitrification performances and characteristics of metabolic pathways under diverse carbon source conditions. We reconstructed a metabolic network of Thauera linaloolentis based on genomic analysis to help develop a systematic method of researching electron pathways. Our findings indicated that carbon sources with simple metabolic pathways (e.g., ethanol and sodium acetate) promoted the reproduction of Thauera linaloolentis, and its maximum growth density reached OD600 = 0.36 and maximum specific growth rate reached 0.145 h-1. These carbon sources also accelerated the denitrification process without the accumulation of intermediates. Nitrate could be reduced completely under any carbon source condition; but in the "glucose group", the maximum accumulation of nitrite was 117.00 mg/L (1.51 times more than that in the "ethanol group", which was 77.41 mg/L), the maximum accumulation of nitric oxide was 363.02 μg/L (7.35 times more than that in the "ethanol group", which was 49.40 μg/L), and the maximum accumulation of nitrous oxide was 22.58 mg/L (26.56 times more than that in the "ethanol group", which was 0.85 mg/L). Molecular biological analyses demonstrated that diverse types of carbon sources directly induced different carbon metabolic activities, resulting in variations in electron generation efficiency. Furthermore, the activities of the electron transport system were positively correlated with different carbon metabolic activities. Finally, these differences were reflected in the phenomenon of electronic competition between denitrifying reductases. Thus we concluded that this was the main molecular mechanism through which the carbon source type affected the denitrification process. In brief, carbon sources with simple metabolic pathways induced higher efficiency of electron generation, transfer, and competition, which promoted rapid proliferation and complete denitrification; otherwise Thauera linaloolentis would grow slowly and intermediate products would accumulate seriously. Our study established a method to evaluate and optimize carbon source utilization efficiency based on confirmed molecular mechanisms.
Collapse
Affiliation(s)
- Qi Wei
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Jinsen Zhang
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Fangzhou Luo
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Dinghuan Shi
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Yuchen Liu
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Shuai Liu
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Qian Zhang
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Wenzhuo Sun
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Junli Yuan
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Haitao Fan
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Hongchen Wang
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China.
| | - Lu Qi
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China.
| | - Guohua Liu
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| |
Collapse
|
7
|
Christensen ML, Jakobsen AH, Hansen CSK, Skovbjerg M, Andersen RBM, Jensen MD, Sundmark K. Pilot-scale hydrolysis of primary sludge for production of easily degradable carbon to treat biological wastewater or produce biogas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157532. [PMID: 35872189 DOI: 10.1016/j.scitotenv.2022.157532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Organic compounds in wastewater are required for the biological removal of nitrogen, but they can also be used for biogas production. Distribution of the internal organic carbon at the plant is therefore critical to ensure high quality of the treated water, reduce greenhouse gas emissions, and optimize biogas production. We describe a wastewater treatment plant designed to focus equally on energy production, water quality, and reduced emissions of greenhouse gases. A disk filter was installed to remove as much carbon as possible during primary treatment. Primary sludge was then hydrolyzed and centrifuged. The hydrolysate centrate contained volatile fatty acids and was used either for the secondary wastewater treatment or to produce biogas. The yield during hydrolysis was 30-35 g volatile fatty acid per kg dry material or 40-65 g soluble COD per kg total solid. The specific denitrification rate was 20-40 g/(g·min), which is on the same order of magnitude as that for commonly used external carbon sources. Hydrolysis at around 35 °C and pH 7 gave the best results. The hydrolysate centrate can be stored and added to the biological treatment to improve water quality and reduce emissions of nitrous oxide or it can be used to produce biogas to optimize the operation of the plant.
Collapse
Affiliation(s)
| | - Anne Højmark Jakobsen
- Department of Chemistry and Bioscience, Center for Membrane Technology, Aalborg University, Aalborg, Denmark
| | | | - Mads Skovbjerg
- Department of Chemistry and Bioscience, Center for Membrane Technology, Aalborg University, Aalborg, Denmark
| | - Rikke Bruun Munk Andersen
- Department of Chemistry and Bioscience, Center for Membrane Technology, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
8
|
Cui Y, Zhao B, Xie F, Zhang X, Zhou A, Wang S, Yue X. Study on the preparation and feasibility of a novel adding-type biological slow-release carbon source. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115236. [PMID: 35568017 DOI: 10.1016/j.jenvman.2022.115236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The development of slow-release carbon sources is an effective biological treatment to remove nutrients from wastewater with low carbon-to-nitrogen ratio (C/N). Most filling-type slow-release carbon could not fulfil the needs of current wastewater treatment plants (WWTPs) process. And most adding-type slow-release carbon sources were prepared using some expensive chemical materials. In this study, combining the advantages of the aforementioned types, a novel adding-type wastepaper-flora (AT-WF) slow-release carbon source was proposed, aiming to realise wastepaper recycling in WWTPs. The screening and identification of the mixed flora, AT-WF carbon source release behaviour, and denitrification performance were investigated. The results showed that through the proposed screening method, a considerable proportion of cellulose-degradation-related genera was enriched, and the cellulose degradation ability and ratio of readily available carbon sources of flora T4, S4 and S5 were effectively strengthened. AT-WF had significant carbon release ability and stability, with an average total organic carbon (TOC) release of 8.82 ± 2.36 mg/g. Kinetic analysis showed that the entire carbon release process was more consistent with the first-order equation. Piecewise fitting with the Ritger-Peppas equation exhibited that the rapid-release (RR) stage was skeleton dissolution and the slow-release (SR) stage was Fick diffusion. Denitrification efficiency can achieve a high average removal efficiency of 94.17%, which could theoretically contribute 11.2% more to the total inorganic nitrogen (TIN) removal. Thus, this study indicated that AT-WF could be utilised as an alternative carbon source in WWTPs.
Collapse
Affiliation(s)
- Ying Cui
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Bowei Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Fei Xie
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiao Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| |
Collapse
|
9
|
Bauhs KT, Gagnon AA, Bott CB. Investigating the use of anaerobically stored carbon in post-anoxic denitrification. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10749. [PMID: 35748310 PMCID: PMC9328143 DOI: 10.1002/wer.10749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Significant methanol savings are hypothesized to result from anaerobic storage of internal carbon that is used for post-anoxic denitrification. An investigation into this internal carbon-driven denitrification was performed via a series of batch tests using biomass from Hampton Roads Sanitation District's (HRSD's) water resource recovery facilities (WRRFs): the Virginia Initiative Plant (VIP), Nansemond Plant (NP), and Army Base (AB) Treatment Plant. Internal carbon specific denitrification rates (SDNRs) increased during winter, by as much as 1 mg N/g MLVSS/h for VIP. Increasing the aeration time by 2-4 h lowered the SDNR by an average of 0.21-0.35 mg N/g MLVSS/h. No internal carbon denitrification was observed for biomass from non-nitrifying/denitrifying, biological phosphorus removal (bio-P) WRRFs. The increase in internal carbon SDNRs when the anaerobic acetate dose increased from 20 to 100 mg COD/L ranged from 0.06 to 0.28 mg N/g MLVSS/h. Higher phosphorus uptake rates were found to correlate to higher internal carbon SDNRs, but no significant post-anoxic P uptake was observed. The first steps are taken towards developing a strategy for full-scale implementation of this relatively novel type of denitrification by evaluating how some factors affect its occurrence. PRACTITIONER POINTS: Significant methanol savings at a full-scale facility may result from use of internally stored carbon for post-anoxic denitrification. Short aerobic HRTs and high anaerobic zone VFA loading increase the post-anoxic internal carbon-driven denitrification. Non-nitrifying, bio-P biomass is not capable of internal carbon-driven denitrification. Internal carbon-driven denitrification is correlated with the activity of polyphosphate accumulating organisms.
Collapse
Affiliation(s)
| | - Alexandria A. Gagnon
- Department of Civil and Environmental EngineeringVirginia TechBlacksburgVirginiaUSA
- Hampton Roads Sanitation DistrictVirginia BeachVirginiaUSA
| | | |
Collapse
|
10
|
Fu X, Hou R, Yang P, Qian S, Feng Z, Chen Z, Wang F, Yuan R, Chen H, Zhou B. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153061. [PMID: 35026271 DOI: 10.1016/j.scitotenv.2022.153061] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The carbon source is essential as an electron donor in the heterotrophic denitrification process. When there is a lack of organic carbon sources in the system, an external carbon source is needed to improve denitrification efficiency. This review compiles the effects of liquid, solid and gaseous carbon sources on denitrification. Sodium acetate has better denitrification efficiency and is usually the first choice for external carbon sources. Fermentation by-products have been demonstrated to have the same denitrification efficiency as sodium acetate. Compared with cellulose-rich materials, biodegradable polymers have better and more stable denitrification performance in solid-phase nitrification, but their price is higher than the former. Methane as a gaseous carbon source is studied mainly by aerobic methane oxidation coupled with denitrification, which is feasible using methane as a carbon source. Liquid carbon sources are better controlled and utilized than solid carbon sources and gaseous carbon sources. In addition, high carbon to nitrogen ratio and hydraulic retention time can promote denitrification, while high dissolved oxygen (DO>2.0 mg L-1) will inhibit the denitrification process. At the same time, high temperature is conducive to the decomposition of carbon sources by microorganisms. This review also considers the advantages and disadvantages of different carbon sources and cost analysis to provide a reference for looking for more economical and effective external carbon sources in the future.
Collapse
Affiliation(s)
- Xinrong Fu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongrong Hou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Yang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Shengtao Qian
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuqing Feng
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha, Suchdol 165 00, Czech Republic
| | - Fei Wang
- School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, 100875, Beijing, China
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
11
|
Mahmoud A, Hamza RA, Elbeshbishy E. Enhancement of denitrification efficiency using municipal and industrial waste fermentation liquids as external carbon sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151578. [PMID: 34774960 DOI: 10.1016/j.scitotenv.2021.151578] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The addition of external carbon source for nitrogen removal from wastewater is an essential step in wastewater treatment. In this study, various external carbon sources from the fermentation of primary sludge (PS), thickened waste activated sludge (TWAS), food waste (FW), bakery processing & kitchen waste (BP + KW), fat, oil, & grease (FOG), and whey powder (WP) were successfully employed for wastewater denitrification. Methanol and acetate were also used as controls due to their common use as external carbon sources for wastewater denitrification. The denitrification performance and kinetics such as the specific denitrification rate (SDNR), denitrification potential (PDN), and the biomass yield were studied at a constant TVFA as COD/N ratio of 5 for all substrates. Complete denitrification was achieved with a NO3--N removal efficiency of 98-99%, and no NO2- accumulation was observed at the end of the experiments for all substrates. The results revealed that the liquid fermentation filtrates exhibited higher SDNRs than methanol and acetate. This indicates the high organic matter utilization efficiency and better denitrification ability of fermentation filtrates over conventional carbon sources. WP exhibited the highest SDNR of 17.6 mg NOx - N/g VSS/h, which is approximately four times that of methanol (4.6 mg NOx - N/g VSS/h). The other carbon sources had SDNRs two to three times higher than that of methanol. However, the fermentation filtrates exhibited higher biomass yields of 0.26-0.37 mg VSS/mg COD compared to methanol of 0.21 mg VSS/mg COD, which could lead to higher sludge handling costs. Moreover, methanol exhibited higher PDN of 0.25 g N/g COD compared to all the fermentation filtrates.
Collapse
Affiliation(s)
- Ali Mahmoud
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Rania Ahmed Hamza
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Elsayed Elbeshbishy
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
12
|
Chen X, Tang R, Qi S, A R, Ali IM, Luo H, Wang W, Hu ZH. Inhibitory effect of oil and fat on denitrification using food waste fermentation liquid as carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149111. [PMID: 34303253 DOI: 10.1016/j.scitotenv.2021.149111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/31/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Food waste fermentation liquid (FWFL) can be used as carbon source to enhance nitrogen removal in wastewater treatment. However, the influence of lipid, a common component of food waste, on denitrification remains unclear. In this study, the effect of oil and fat on denitrification process and the underlying mechanisms were investigated using synthetic oil- and fat-bearing carbon source and verified with real FWFL. In the batch experiment, oil and fat had no obvious influence on denitrification, but in the semi-continuous experiment, the denitrification rate in the oil- and fat-added assays decreased to 44% and 38% of that in the control, respectively, after 45 batches. Oil and fat caused sludge floatation, and the floating sludge thickness increased with the continuous operation. Oil/fat-sludge aggregates were observed in the floating sludge and limited gas release. Microbial community analysis indicated that oil and fat did not affect denitrifying bacteria abundance. Limitation of mass transfer might be the main reason for the inhibition of oil and fat on denitrification. In the real FWFL experiment, the denitrification rate in the original and emulsified oil-bearing FWFL decreased to 24% and 56% of that in the demulsifying FWFL, respectively, after 45 batches. These findings indicate the necessity of removing lipids when FWFL is used as denitrification carbon source.
Collapse
Affiliation(s)
- Xihong Chen
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Tang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shasha Qi
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rong A
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ibrahim Mohamed Ali
- Department of Soil and Water, Faculty of Agriculture, Benha University, Egypt
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
13
|
Abstract
With the development of economy and the improvement of people’s living standard, landfill leachate has been increasing year by year with the increase in municipal solid waste output. How to treat landfill leachate with high efficiency and low consumption has become a major problem, because of its high ammonia nitrogen and organic matter content, low carbon to nitrogen ratio and difficult degradation. In order to provide reference for future engineering application of landfill leachate treatment, this paper mainly reviews the biological treatment methods of landfill leachate, which focuses on the comparison of nitrogen removal processes combined with microorganisms, the biological nitrogen removal methods combined with ecology and the technology of direct application of microorganisms. In addition, the mechanism of biological nitrogen removal of landfill leachate and the factors affecting the microbial activity during the nitrogen removal process are also described. It is concluded that the treatment processes combined with microorganisms have higher nitrogen removal efficiency compared with the direct application of microorganisms. For example, the nitrogen removal efficiency of the combined process based on anaerobic ammonium oxidation (ANAMMOX) technology can reach more than 99%. Therefore, the treatment processes combined with microorganisms in the future engineering application of nitrogen removal in landfill leachate should be paid more attention to, and the efficiency of nitrogen removal should be improved from the aspects of microorganisms by considering factors affecting its activity.
Collapse
|
14
|
Wang Z, Young SD, Goldsmith BR, Singh N. Increasing electrocatalytic nitrate reduction activity by controlling adsorption through PtRu alloying. J Catal 2021. [DOI: 10.1016/j.jcat.2020.12.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Zhao J, Yuan Q, Sun Y, Zhang J, Zhang D, Bian R. Effect of fluoxetine on enhanced biological phosphorus removal using a sequencing batch reactor. BIORESOURCE TECHNOLOGY 2021; 320:124396. [PMID: 33212384 DOI: 10.1016/j.biortech.2020.124396] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
In this work, the potential impact of emerging pollutant Fluoxetine (FLX) on enhanced biological phosphorus removal (EBPR) was systematically investigated using the sequencing batch reactor. The experimental results showed that even 200 μg/L FLX had no significant effect on EBPR during the short-term exposure. However, in the long-term exposure test, high dosage of FLX inhibited EBPR. 200 μg/L FLX induced biological phosphorus removal efficiency dropped to 71.3 ± 2.1%, significantly lower than that of the blank. The mechanism investigation showed that high concentration of FLX reduced anaerobic phosphorus release and oxic phosphorus absorption, and the consumption of organic matter during the anaerobic period. In addition, FLX decreased the synthesis of intracellular polymer polyhydroxyalkanoates (PHA), but promoted the metabolism of glycogen and polyhydroxyvalerate. FLX reduced the activity of key enzymes in EBPR and the relative abundance of Accumulibacter, but improved the relative abundance of Candidatus Competibacter.
Collapse
Affiliation(s)
- Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao 266033, China.
| | - Qingjiang Yuan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao 266033, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao 266033, China
| | - Jing Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao 266033, China
| | - Dalei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao 266033, China
| | - Rongxing Bian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao 266033, China
| |
Collapse
|
16
|
Treatment of real deplating wastewater through an environmental friendly precipitation-electrodeposition-oxidation process: Recovery of silver and copper and reuse of wastewater. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117082] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Nawaz MZ, Bilal M, Tariq A, Iqbal HMN, Alghamdi HA, Cheng H. Bio-purification of sugar industry wastewater and production of high-value industrial products with a zero-waste concept. Crit Rev Food Sci Nutr 2020; 61:3537-3554. [PMID: 32820646 DOI: 10.1080/10408398.2020.1802696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, biorefinery approach with a zero-waste concept has gained a lot research impetus to boost the environment and bioeconomy in a sustainable manner. The wastewater from sugar industries contains miscellaneous compounds and need to be treated chemically or biologically before being discharged into water bodies. Efficient utilization of wastewater produced by sugar industries is a key point to improve its economy. Thus, interest in the sugar industry wastes has grown in both fundamental and applied research fields, over the years. Although, traditional methods being used to process such wastewaters are effective yet are tedious, laborious and time intensive. Considering the diverse nature of wastewaters from various sugar-manufacturing processes, the development of robust, cost-competitive, sustainable and clean technologies has become a challenging task. Under the recent scenario of cleaner production and consumption, the biorefinery and/or close-loop concept, though using different technologies and multi-step processes, namely, bio-reduction, bio-accumulation or biosorption using a variety of microbial strains, has stepped-up as the method of choice for a sustainable exploitation of a wide range of organic waste matter along with the production of high-value products of industrial interests. This review comprehensively describes the use of various microbial strains employed for eliminating the environmental pollutants from sugar industry wastewater. Moreover, the main research gaps are also critically discussed along with the prospects for the efficient purification of sugar industry wastewaters with the concomitant production of high-value products using a biorefinery approach. In this review, we emphasized that the biotransformation/biopurification of sugar industry waste into an array of value-added compounds such as succinic acid, L-arabinose, solvents, and xylitol is a need of hour and is futuristic approach toward achieving cleaner production and consumption.
Collapse
Affiliation(s)
- Muhammad Zohaib Nawaz
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Arslan Tariq
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Huda Ahmed Alghamdi
- Department of Biology, College of Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Suitability of SBR for Wastewater Treatment and Reuse: Pilot-Scale Reactor Operated in Different Anoxic Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051617. [PMID: 32131553 PMCID: PMC7084242 DOI: 10.3390/ijerph17051617] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/12/2023]
Abstract
The present study investigates the performance of a pilot-scale Sequencing Batch Reactor (SBR) process for the treatment of wastewater quality parameters, including turbidity, total suspended solids (TSS), total solids (TS), nitrogen (ammonia (NH3-N), nitrite (NO2-), and nitrate (NO3-), phosphate (PO43-), the chemical oxygen demand (COD), and the 5-day biological oxygen demand (BOD5), from municipal wastewater. Two scenarios, namely, pre-anoxic denitrification and post-anoxic denitrification, were investigated to examine the performance of a pilot-scale SBR on the wastewater quality parameters, particularly the nitrogen removal. The correlation statistic was applied to explain the effects of operational parameters on the performance of the SBR system. The results revealed that the post-anoxic denitrification scenario was more efficient for higher qualify effluent than the first scenario. The effluent concentrations of the targeted wastewater quality parameters obtained for the proposed SBR system were below those of the local standards, while its performance was better than that of the North Sewage Treatment Plant, Dharan, Eastern province, Kingdom of Saudi Arabia (KSA), in terms of the BOD5, COD, TN, and PO43- treatment efficiencies. These results indicated the suitability of SBR technology for wastewater treatment in remote areas in the KSA, with a high potential of reusability for sustainable wastewater management.
Collapse
|
19
|
Yang M, Wang X, Liu S, Wu C, Wang Q. Carbon release behaviour of polylactic acid/starch-based solid carbon and its influence on biodenitrification. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Zhao J, Xin M, Zhang J, Sun Y, Luo S, Wang H, Wang Y, Bi X. Diclofenac inhibited the biological phosphorus removal: Performance and mechanism. CHEMOSPHERE 2020; 243:125380. [PMID: 31760293 DOI: 10.1016/j.chemosphere.2019.125380] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
This work aims to evaluate the effect of new contaminant diclofenac (DCF) in sewage on the performance of Enhanced Biological Phosphorus Removal (EBPR) and its mechanism. The results showed that low-level DCF had no significant effect on EBPR. However, when the concentration of DCF was 2.0 mg/L, the removal efficiencies of chemical oxygen demand (COD), NH4+-N and soluble orthophosphate (SOP) decreased significantly to 71.2 ± 4.2%, 78.6 ± 2.9%, and 64.3 ± 4.2%, respectively. Mechanisms revealed that DCF promoted the ratio of protein to polysaccharide in activated sludge extracellular polymers and inhibited anaerobic phosphorus release and oxic phosphorus uptake. Intracellular polymer analysis showed that when the DCF content was 2.0 mg/L, the maximum content of polyhydroxyalkanoates (PHA) was only 2.5 ± 0.4 mmol-C/g VSS, which was significantly lower than that in the blank. Analysis of key enzyme activities indicated that the presence of DCF reduced the activities of exopolyphosphatase and polyphosphate kinase.
Collapse
Affiliation(s)
- Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, PR China.
| | - Mingxue Xin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, PR China
| | - Jing Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, PR China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, PR China
| | - Siyi Luo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Huawei Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, PR China
| | - Yanan Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, PR China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| |
Collapse
|
21
|
Xiao H, Wu J, Peng H, Jiang Z. Mixed carbon source improves deep denitrification performance in up-flow anaerobic sludge bed reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:763-772. [PMID: 32460279 DOI: 10.2166/wst.2020.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To investigate the advantages of mixed carbon source over a single one in deep denitrification, sodium acetate, glucose and their mixture were used as carbon sources in present study. Denitrification performance, effluent pH, microbial community and carbon source cost were taken into account. With the same influent NO3 --N concentration of 50 mg/L and the same C/N ratio of 1.5, the NO3 --N removal rate with the mixed carbon source (96.53%) was slightly lower than that with sodium acetate (98.15%), but significantly higher than that with glucose (74.69%). The specific denitrification rates of the sodium acetate, glucose and sodium acetate/glucose reactor were 47.7, 29.7 and 45.4 mg N/g VSS d, respectively. The effluent pH with sodium acetate varied in the range of 9.13-9.60, exceeding the discharge standard limit of 9.0, whereas the sodium acetate/glucose reactor could keep pH in the range of 7.80-8.23. The 16S rRNA gene-based high-throughput sequencing revealed that carbon sources determined the microbial community structure and the sludge Shannon index with the mixed carbon source was the highest. Furthermore, cost estimation indicated that the mixed carbon source was the cheapest. This study is significant as it tests reasonable selection of carbon sources for deep denitrification in practice.
Collapse
Affiliation(s)
- Hong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China E-mail:
| | - Jiaojiao Wu
- College of Environmental Sciences, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China E-mail:
| | - Hong Peng
- College of Environmental Sciences, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China E-mail:
| | - Zhongyao Jiang
- College of Environmental Sciences, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China E-mail:
| |
Collapse
|
22
|
Yao F, Yang Q, Zhong Y, Shu X, Chen F, Sun J, Ma Y, Fu Z, Wang D, Li X. Indirect electrochemical reduction of nitrate in water using zero-valent titanium anode: Factors, kinetics, and mechanism. WATER RESEARCH 2019; 157:191-200. [PMID: 30953854 DOI: 10.1016/j.watres.2019.03.078] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
In this study, indirect electrochemical reduction with zero-valent titanium (ZVT) as anode successfully achieved the selective nitrate removal from simulated groundwater. The maximum nitrate removal efficiency and N2 selectivity reached to 83.4% and 78.5% after 12 h, respectively. Experimental results demonstrated that the gaseous by-products (NO and N2O) were negligible and the nitrate reduction process could be well depicted by pseudo-first-order kinetic model. Decreasing the pH value of electrolyte was favorable to electrical energy utilization efficiency and nitrate removal. The chloride ultimately showed inhibitory effects on electrochemical reduction of nitrate. During the electrochemical reaction, the ZVT lost electrons to generate the reducing agents (Ti3+ and Ti2+), which could afford electrons for nitrate reduction and form the solid by-products TiO2.4Cl0.2N0.1. A 2-stage strategy, indirect electrochemical reduction + hypochlorite treatment (pre-reduction + post-oxidation), was developed to completely remove nitrate and the long-term performance of nitrate reduction was comprehensively evaluated. The effluent nitrate steadily kept at 8.8 mg N/L during 120 h continuous operation when the influent nitrate concentration was 25.9 mg N/L. Simultaneously, nitrite concentration was lower than 0.01 mg N/L, and ammonium and Ti ions were not detected in the effluent.
Collapse
Affiliation(s)
- Fubing Yao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yu Zhong
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha, 410004, PR China.
| | - Xiaoyu Shu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Fei Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jian Sun
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yinghao Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhiyan Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
23
|
Rollemberg SLDS, de Oliveira LQ, Barros ARM, Melo VMM, Firmino PIM, Dos Santos AB. Effects of carbon source on the formation, stability, bioactivity and biodiversity of the aerobic granule sludge. BIORESOURCE TECHNOLOGY 2019; 278:195-204. [PMID: 30703637 DOI: 10.1016/j.biortech.2019.01.071] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Three aerobic granular sludge systems were operated as sequencing batch reactors (SBR) with acetate, ethanol and glucose as carbon source. The SBR cycle was 6 h, with an anaerobic phase followed by an aerobic phase. The acetate granules (>1.5 mm) had the greatest microbial diversity and better results in terms of removal efficiency for carbon and nutrients (TN ≈ 72% and TP ≈ 42%) and also in the resistance tests. However, partial disintegration was observed. On the other hand, when ethanol was the substrate, the granules were stable, good nitrogen removal was achieved (TN ≈ 53%), but phosphorus removal was not favored (TP ≈ 31%). Glucose presented the lowest efficiency values for nitrogen (TN ≈ 44%) and phosphorous removal (TP ≈ 21%), and the granules formed (<1 mm) had the lowest microbial diversity. Therefore, the carbon source had a high impact on the characteristics of the granules.
Collapse
Affiliation(s)
| | - Lorayne Queiroz de Oliveira
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Paulo Igor Milen Firmino
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
24
|
Bashar R, Gungor K, Karthikeyan KG, Barak P. Cost effectiveness of phosphorus removal processes in municipal wastewater treatment. CHEMOSPHERE 2018; 197:280-290. [PMID: 29353678 DOI: 10.1016/j.chemosphere.2017.12.169] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Meeting stringent phosphorus (P) discharge standards remains one of the major challenges for wastewater utilities due to increased economic burdens associated with advanced (i.e., secondary, tertiary) treatment processes. In a trade-off between higher treatment cost and enhanced P removal, it is critical for the treatment plants to be able to select the most appropriate technology. To this end, established/emerging high performing P removal/recovery technologies (e.g., Modified University of Cape Towne process, Bardenpho process, membrane bioreactors, IFAS-EBPR, struvite recovery, tertiary reactive media filtration) were identified and full-scale treatment plant designs were developed. Using advanced mathematical modeling techniques, six different treatment configurations were evaluated in terms of performance and cost effectiveness ($/lb of P removed). Results show that the unit cost for P removal in different treatment alternatives range from $42.22 to $60.88 per lb of P removed. The MUCT BNR + tertiary reactive media filtration proved to be one of the most cost effective configurations ($44.04/lb P removed) delivering an effluent with total P (TP) concentration of only 0.05 mg/L. Although struvite recovery resulted in significant reduction in biosolids P, the decrease in effluent TP was not sufficient to meet very stringent discharge standards.
Collapse
Affiliation(s)
- Rania Bashar
- Department of Biological Systems Engineering, University of Wisconsin-Madison, WI 53706, USA
| | - Kerem Gungor
- Maine Department of Environmental Protection, Bureau of Land Resources, ME 04333, USA
| | - K G Karthikeyan
- Department of Biological Systems Engineering, University of Wisconsin-Madison, WI 53706, USA.
| | - Phillip Barak
- Department of Soil Science, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
25
|
Wang D, Fu Q, Xu Q, Liu Y, Hao Ngo H, Yang Q, Zeng G, Li X, Ni BJ. Free nitrous acid-based nitrifying sludge treatment in a two-sludge system enhances nutrient removal from low-carbon wastewater. BIORESOURCE TECHNOLOGY 2017; 244:920-928. [PMID: 28847081 DOI: 10.1016/j.biortech.2017.08.045] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
A new method to enhance nutrient removal from low carbon-wastewater was developed. The method consists of a two-sludge system (i.e., an anaerobic-anoxic-oxic reactor coupled to a nitrifying reactor (N-SBR)) and a nitrifying-sludge treatment unit using free nitrous acid (FNA). Initially, 65.1±2.9% in total nitrogen removal and 69.6±3.4% in phosphate removal were obtained without nitrite accumulation. When 1/16 of the nitrifying sludge was daily treated with FNA at 1.1mgN/L for 24h, ∼28.5% of nitrite was accumulated in the N-SBR, and total nitrogen and phosphate removal increased to 72.4±3.2% and 76.7±2.9%, respectively. About 67.8% of nitrite was accumulated at 1.9mgN/L FNA, resulting in 82.9±3.8% in total nitrogen removal and 87.9±3.5% in phosphate removal. Fluorescence in-situ hybridization analysis showed that FNA treatment reduced the abundance of nitrite oxidizing bacteria (NOB), especially that of Nitrospira sp.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Bing-Jie Ni
- Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
26
|
Liu Y, Ngo HH, Guo W, Zhou J, Peng L, Wang D, Chen X, Sun J, Ni BJ. Optimizing sulfur-driven mixotrophic denitrification process: System performance and nitrous oxide emission. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
27
|
Liu J, Yuan Y, Li B, Zhang Q, Wu L, Li X, Peng Y. Enhanced nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor with sludge fermentation products as carbon source. BIORESOURCE TECHNOLOGY 2017; 244:1158-1165. [PMID: 28869122 DOI: 10.1016/j.biortech.2017.08.055] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
An anaerobic-aerobic-anoxic sequencing batch reactor (AOA-SBR) using sludge fermentation products as carbon source was developed to enhance nitrogen and phosphorus removal in municipal wastewater with low C/N ratio (<4) and reduce sludge production. The AOA-SBR achieved simultaneous partial nitrification and denitrification (SND), aerobic phosphorus uptake and anoxic denitrification through the real-time control and the addition of sludge fermentation products. The average removal efficiencies of total nitrogen (TN), phosphorus (PO43--P) and chemical oxygen demand (COD) after 145-day operation were 88.8%, 99.3% and 81.2%, respectively. Nitrite accumulation ratio (NAR) reached 99.1% and sludge reduction rate reached 44.1-52.1%. Specifically, 34.4% of the TN removal was carried out by SND and 57.5% by denitrification. Illumina MiSeq sequencing indicated that ammonium-oxidizing bacteria (Nitrosomonas) were enriched and nitrite-oxidizing bacteria (Nitrospira) did not exist in AOA-SBR. The system demonstrated potential to solve the dual problem of insufficient carbon source and sludge reduction.
Collapse
Affiliation(s)
- Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yue Yuan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Baikun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China; Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
28
|
Liu J, Shi S, Ji X, Jiang B, Xue L, Li M, Tan L. Performance and microbial community dynamics of electricity-assisted sequencing batch reactor (SBR) for treatment of saline petrochemical wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17556-17565. [PMID: 28597382 DOI: 10.1007/s11356-017-9446-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
High-salinity wastewater is often difficult to treat by common biological technologies due to salinity stress on the bacterial community. Electricity-assisted anaerobic technologies have significantly enhanced the treatment performance by alleviating the impact of salinity stress on the bacterial community, but electricity-assisted aerobic technologies have less been reported. Herein, a novel bio-electrochemistry system has been designed and operated in which a pair of stainless iron mesh-graphite plate electrodes were installed into a sequencing batch reactor (SBR, designated as S1) to strengthen the performance of saline petrochemical wastewater under aerobic conditions. The removal efficiency of phenol and chemical oxygen demand (COD) in S1 were 94.1 and 91.2%, respectively, on day 45, which was clearly higher than the removal efficiency of a single SBR (S2) and an electrochemical reactor (S3), indicating that a coupling effect existed between the electrochemical process and biodegradation. A certain amount of salinity (≤8000 mg/L) could enhance the treatment performance in S1 but weaken that in S2. Illumina sequencing revealed that microbial communities in S1 on days 45 and 91 were richer and more diverse than in S2, which suggests that electrical stimulation could enhance the diversity and richness of the microbial community, and reduce the negative effect of salinity on the microorganisms and enrich some salt-adapted microorganisms, thus improve the ability of S1 to respond to salinity stress. This novel bio-electrochemistry system was shown to be an alternative technology for the high saline petrochemical wastewater.
Collapse
Affiliation(s)
- Jiaxin Liu
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian, 116081, China.
| | - Xiangyu Ji
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Bei Jiang
- School of Life Science, Liaoning Normal University, Dalian, 116081, China.
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| | - Lanlan Xue
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Meidi Li
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Liang Tan
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| |
Collapse
|
29
|
Wang D, Wang Y, Liu Y, Ngo HH, Lian Y, Zhao J, Chen F, Yang Q, Zeng G, Li X. Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants? BIORESOURCE TECHNOLOGY 2017; 234:456-465. [PMID: 28363395 DOI: 10.1016/j.biortech.2017.02.059] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 06/07/2023]
Abstract
With the world's increasing energy crisis, society is growingly considered that the operation of wastewater treatment plants (WWTPs) should be shifted in sustainable paradigms with low energy input, or energy-neutral, or even energy output. There is a lack of critical thinking on whether and how new paradigms can be implemented in WWTPs based on the conventional process. The denitrifying anaerobic methane oxidation (DAMO) process, which uses methane and nitrate (or nitrite) as electron donor and acceptor, respectively, has recently been discovered. Based on critical analyses of this process, DAMO-centered technologies can be considered as a solution for sustainable operation of WWTPs. In this review, a possible strategy with DAMO-centered technologies was outlined and illustrated how this applies for the existing WWTPs energy-saving and newly designed WWTPs energy-neutral (or even energy-producing) towards sustainable operations.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yali Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Yu Lian
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Fei Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
30
|
Ma H, Liu H, Zhang L, Yang M, Fu B, Liu H. Novel insight into the relationship between organic substrate composition and volatile fatty acids distribution in acidogenic co-fermentation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:137. [PMID: 28559928 PMCID: PMC5446719 DOI: 10.1186/s13068-017-0821-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/17/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND Co-fermentation is an attractive technology for improving volatile fatty acids (VFAs) production by treatment of solid organic wastes. However, it remains unclear how the composition of different organic matters in solid waste influences the VFAs distribution, microbial community structure, and metabolic pathway during acidogenic co-fermentation. In this study, different organic wastes were added into waste activated sludge (WAS) as co-fermentation substrates to explore the impact of organic matter composition on VFAs pattern and the microbiological mechanism . RESULTS Acetate was the most dominant VFA produced in all fermentation groups, making up 41.3-57.6% of the total VFAs produced during acidogenic co-fermentation under alkaline condition. With the increased addition of potato peel waste, the concentrations of propionate and valerate decreased dramatically, while ethanol and butyrate concentrations increased. The addition of food waste caused gradual decreases of valerate and propionate, but ethanol increased and butyrate was relatively stable. Some inconsistency was observed between hydrolysis efficiency and acidification efficiency. Our results revealed that starch was mainly responsible for butyrate and ethanol formation, while lipids and protein favored the synthesis of valerate and propionate. Microbial community analysis by high-throughput sequencing showed that Firmicutes had the highest relative abundance at phylum level in all fermentation groups. With 75% potato peel waste or 75% food waste addition to WAS, Bacilli (72.2%) and Clostridia (56.2%) were the dominant respective classes. In fermentation using only potato peel waste, the Bacilli content was 64.1%, while the Clostridia content was 53.6% in the food-only waste fermentation. CONCLUSIONS Acetate was always the dominant product in acidogenic co-fermentation, regardless of the substrate composition. The addition of carbon-rich substrates significantly enhanced butyrate and ethanol accumulation, while protein-rich substrate substantially benefited propionate and valerate generation. Potato peel waste substantially favored the enrichment of Bacilli, while food waste dramatically increased Clostridia content in the sludge.
Collapse
Affiliation(s)
- Huijun Ma
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122 China
| | - He Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122 China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122 China
| | - Lihui Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122 China
| | - Meng Yang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122 China
| | - Bo Fu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122 China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122 China
| | - Hongbo Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122 China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122 China
| |
Collapse
|
31
|
Willis JL, Al-Omari A, Bastian R, Brower B, DeBarbadillo C, Murthy S, Peot C, Yuan Z. A greenhouse gas source of surprising significance: anthropogenic CO 2 emissions from use of methanol in sewage treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:1997-2012. [PMID: 28498113 DOI: 10.2166/wst.2017.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The impact of methanol (CH3OH) as a source of anthropogenic carbon dioxide (CO2) in denitrification at wastewater treatment plants (WWTPs) has never been quantified. CH3OH is the most commonly purchased carbon source for sewage denitrification. Until recently, greenhouse gas (GHG) reporting protocols consistently ignored the liberation of anthropogenic CO2 attributable to CH3OH. This oversight can likely be attributed to a simplifying notion that CO2 produced through activated-sludge-process respiration is biogenic because most raw-sewage carbon is un-sequestered prior to entering a WWTP. Instead, a biogenic categorization cannot apply to fossil-fuel-derived carbon sources like CH3OH. This paper provides a summary of how CH3OH use at DC Water's Blue Plains Advanced Wastewater Treatment Plant (AWTP; Washington, DC, USA) amounts to 60 to 85% of the AWTP's Scope-1 emissions. The United States Environmental Protection Agency and Water Environment Federation databases suggest that CH3OH CO2 likely represents one quarter of all Scope-1 GHG emissions attributable to sewage treatment in the USA. Finally, many alternatives to CH3OH use exist and are discussed.
Collapse
Affiliation(s)
- John L Willis
- Advanced Water Management Center, The University of Queensland, Gehrmann Building - Level 4, St Lucia, Queensland 4072, Australia E-mail: ; Brown and Caldwell, 990 Hammond Dr. Suite 400, Atlanta GA 30326, USA
| | - Ahmed Al-Omari
- DC Water, 5000 Overlook Avenue, S.W., Washington, DC 20032, USA
| | - Robert Bastian
- US Environmental Protection Agency - Office of Wastewater Management, 1200 Pennsylvania Ave., NW, Washington, DC 20460, USA
| | - Bill Brower
- DC Water, 5000 Overlook Avenue, S.W., Washington, DC 20032, USA
| | | | - Sudhir Murthy
- DC Water, 5000 Overlook Avenue, S.W., Washington, DC 20032, USA
| | | | - Zhiguo Yuan
- Advanced Water Management Center, The University of Queensland, Gehrmann Building - Level 4, St Lucia, Queensland 4072, Australia E-mail:
| |
Collapse
|
32
|
Xie T, Mo C, Li X, Zhang J, An H, Yang Q, Wang D, Zhao J, Zhong Y, Zeng G. Effects of different ratios of glucose to acetate on phosphorus removal and microbial community of enhanced biological phosphorus removal (EBPR) system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4494-4505. [PMID: 27943155 DOI: 10.1007/s11356-016-7860-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/06/2016] [Indexed: 05/24/2023]
Abstract
In this study, the effects of different ratios of glucose to acetate on enhanced biological phosphorus removal (EBPR) were investigated with regard to the changes of intercellular polyhydroxyalkanoates (PHAs) and glycogen, as well as microbial community. The experiments were carried out in five sequencing batch reactors (SBRs) fed with glucose and/or acetate as carbon sources at the ratios of 0:100 %, 25:75 %, 50:50 %, 75:25 %, and 100:0 %. The experimental results showed that a highest phosphorus removal efficiency of 96.3 % was obtained with a mixture of glucose and acetate at the ratio of 50:50 %, which should be attributed to more glycogen and polyhydroxyvalerate (PHV) transformation in this reactor during the anaerobic condition. PCR-denaturing gradient gel electrophoresis (DGGE) analysis of sludge samples taken from different anaerobic/aerobic (A/O) SBRs revealed that microbial community structures were distinctively different with a low similarity between each other.
Collapse
Affiliation(s)
- Ting Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chuangrong Mo
- School of Environment, Guangxi University, Nanning, 530004, China.
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Jian Zhang
- Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Hongxue An
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yu Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
33
|
Xu R, Fan Y, Wei Y, Wang Y, Luo N, Yang M, Yuan X, Yu R. Influence of carbon sources on nutrient removal in A 2/O-MBRs: Availability assessment of internal carbon source. J Environ Sci (China) 2016; 48:59-68. [PMID: 27745672 DOI: 10.1016/j.jes.2015.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/12/2015] [Accepted: 12/18/2015] [Indexed: 06/06/2023]
Abstract
Both internal carbon source and some external carbon sources were used to improve the nutrient removal in Anaerobic-Anoxic-Oxic-Membrane Bioreactor (A2/O-MBRs), and their technical and cost analysis was investigated. The experimental results showed that the nutrient removals were improved by all the carbon source additions. The total nitrogen and phosphorus removal efficiency were higher in the experiments with external carbon source additions than that with internal carbon source addition. It was found that pathways of nitrogen and phosphorus transform were different dependent on different carbon source additions by the mass balance analysis. With external carbon source addition, the simultaneous nitrification and denitrification occurred in aerobic zone, and the P-uptake in aerobic phase was evident. Therefore, with addition of C-MHP (internal carbon source produced from sludge pretreatment by microwave-H2O2 process), the denitrification and phosphorus-uptake in anoxic zone was notable. Cost analysis showed that the unit nitrogen removal costs were 57.13CNY/kg N of C-acetate addition and 54.48CNY/kgN of C-MHP addition, respectively. The results indicated that the C-MHP has a good technical and economic feasibility to substitute external carbon sources partially for nutrient removal.
Collapse
Affiliation(s)
- Rongle Xu
- Scientific Research Academy of Guangxi Environmental Protection, Jiaoyu Road 5, QingXiu Distr., Nanning 530022, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian Distr., Beijing 100085, China.
| | - Yaobo Fan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian Distr., Beijing 100085, China.
| | - Yuansong Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian Distr., Beijing 100085, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian Distr., Beijing 100085, China
| | - Nan Luo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian Distr., Beijing 100085, China
| | - Min Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian Distr., Beijing 100085, China
| | - Xing Yuan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian Distr., Beijing 100085, China
| | - Rong Yu
- Scientific Research Academy of Guangxi Environmental Protection, Jiaoyu Road 5, QingXiu Distr., Nanning 530022, China
| |
Collapse
|
34
|
Zhang Y, Wang XC, Cheng Z, Li Y, Tang J. Effects of additional fermented food wastes on nitrogen removal enhancement and sludge characteristics in a sequential batch reactor for wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:12890-12899. [PMID: 26988362 DOI: 10.1007/s11356-016-6447-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
In order to enhance nitrogen removal from domestic wastewater with a carbon/nitrogen (C/N) ratio as low as 2.2:1, external carbon source was prepared by short-term fermentation of food wastes and its effect was evaluated by experiments using sequencing batch reactors (SBRs). The addition of fermented food wastes, with carbohydrate (42.8 %) and organic acids (24.6 %) as the main organic carbon components, could enhance the total nitrogen (TN) removal by about 25 % in contrast to the 20 % brought about by the addition of sodium acetate when the C/N ratio was equally adjusted to 6.6:1. The fermented food waste addition resulted in more efficient denitrification in the first anoxic stage of the SBR operation cycle than sodium acetate. In order to characterize the metabolic potential of microorganisms by utilizing different carbon sources, Biolog-ECO tests were conducted with activated sludge samples from the SBRs. As a result, in comparison with sodium acetate, the sludge sample by fermented food waste addition showed a greater average well color development (AWCD590), better utilization level of common carbon sources, and higher microbial diversity indexes. As a multi-organic mixture, fermented food wastes seem to be superior over mono-organic chemicals as an external carbon source.
Collapse
Affiliation(s)
- Yongmei Zhang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
- Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an, Shaanxi Province, 710055, People's Republic of China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, People's Republic of China.
| | - Zhe Cheng
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
- Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an, Shaanxi Province, 710055, People's Republic of China
| | - Yuyou Li
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Jialing Tang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
- Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an, Shaanxi Province, 710055, People's Republic of China
| |
Collapse
|
35
|
Li P, Zuo J, Wang Y, Zhao J, Tang L, Li Z. Tertiary nitrogen removal for municipal wastewater using a solid-phase denitrifying biofilter with polycaprolactone as the carbon source and filtration medium. WATER RESEARCH 2016; 93:74-83. [PMID: 26897042 DOI: 10.1016/j.watres.2016.02.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/31/2016] [Accepted: 02/06/2016] [Indexed: 06/05/2023]
Abstract
Tertiary nitrogen removal technologies are needed to reduce the excess nitrogen that is discharged into sensitive aquatic ecosystems. An integrated solid-phase denitrification biofilter (SDNF) was developed with dual media to remove nitrate and suspended solids (SS) from the secondary effluent of municipal wastewater treatment plants. Biodegradable polymer pellets of polycaprolactone (PCL) served as the biofiltration medium and carbon source for denitrification. Long-term continuous operation of the SDNF was conducted with real secondary effluent to evaluate the denitrification performance and effects of influent nitrate loading rates (NLR) and operating temperatures. The results indicated that both nitrate and SS were effectively removed. The SDNF had a strong tolerance for fluctuations in influent NLR, and a maximum denitrification rate of 3.80 g N/(L·d) was achieved. The low temperature had a significant impact on nitrogen removal, yet the denitrification rate was still maintained at a relative high level to as much as 1.23 g N/(L·d) even at approximately 8.0 °C in winter. Nitrite accumulation and excessive organics residue in the effluent were avoided throughout the whole experiment, except on occasional days in the lag phase. The observed biomass yield was calculated to be 0.44 kgVSS/kgPCL. The microbial diversity and community structure of the biofilm in the SDNF were revealed by Illumina high-throughput sequencing. The special carbon source led to an obvious succession of microbial community from the initial inoculum (activated sludge from aerobic tanks), and included a decrease in microbial diversity and a shift in the dominant groups, which were identified to be members of the family Comamonadaceae in the SDNF. The SDNF developed in this study was verified to be an efficient technology for tertiary nitrogen removal from secondary effluent.
Collapse
Affiliation(s)
- Peng Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Yajiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jian Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lei Tang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Zaixing Li
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| |
Collapse
|
36
|
Liu Y, Su X, Lu L, Ding L, Shen C. A novel approach to enhance biological nutrient removal using a culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (Rpf) in SBR process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4498-4508. [PMID: 26514565 DOI: 10.1007/s11356-015-5603-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
A culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (SRpf) was used to enhance the biological nutrient removal of potentially functional bacteria. The obtained results suggest that SRpf accelerated the start-up process and significantly enhanced the biological nutrient removal in sequencing batch reactor (SBR). PO4 (3-)-P removal efficiency increased by over 12 % and total nitrogen removal efficiency increased by over 8 % in treatment reactor acclimated by SRpf compared with those without SRpf addition. The Illumina high-throughput sequencing analysis showed that SRpf played an essential role in shifts in the composition and diversity of bacterial community. The phyla of Proteobacteria and Actinobacteria, which were closely related to biological nutrient removal, were greatly abundant after SRpf addition. This study demonstrates that SRpf acclimation or addition might hold great potential as an efficient and cost-effective alternative for wastewater treatment plants (WWTPs) to meet more stringent operation conditions and legislations.
Collapse
Affiliation(s)
- Yindong Liu
- Department of Environmental Engineering, Zhejiang University, Yuhangtang Road 866#, Hangzhou, 310058, People's Republic of China.
| | - Xiaomei Su
- Department of Environmental Engineering, Zhejiang University, Yuhangtang Road 866#, Hangzhou, 310058, People's Republic of China
| | - Lian Lu
- Department of Environmental Engineering, Zhejiang University, Yuhangtang Road 866#, Hangzhou, 310058, People's Republic of China
| | - Linxian Ding
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, Zhejiang University, Yuhangtang Road 866#, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
37
|
Yu J, Fan C, Zhong J, Zhang L, Zhang L, Wang C, Yao X. Effects of sediment dredging on nitrogen cycling in Lake Taihu, China: Insight from mass balance based on a 2-year field study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3871-3883. [PMID: 26499196 DOI: 10.1007/s11356-015-5517-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Sediment dredging can permanently remove pollutants from an aquatic ecosystem, which is considered an effective approach to aquatic ecosystem restoration. In this work, a 2-year field simulation test was carried out to investigate the effect of dredging on nitrogen cycling across the sediment-water interface (SWI) in Lake Taihu, China. The results showed that simulated dredging applied to an area rich in total organic carbon (TOC) and total nitrogen (TN) slightly reduced the NH4(+)-N release from sediments while temporarily enhanced the NH4(+)-N release in an area with lower TOC and/or TN (in the first 180 days), although the application had a limited effect on the fluxes of NO2(-)-N and NO3(-)-N in both areas. Further analysis indicated that dredging induced decreases in nitrification, denitrification, and anaerobic ammonium oxidation (anammox) in sediments, notably by 76.9, 49.0, and 89.9%, respectively, in the TOC and/or TN-rich area. Therefore, dredging slowed down nitrogen cycling rates in sediments but did not increase N loading to overlying water. The main reason for the above phenomenon could be attributed to the removal of the surface sediments enriched with more TOC and/or TN (compared with the bottom sediments). Overall, to minimize internal N pollution, dredging may be more applicable to nutrient-rich sediments.
Collapse
Affiliation(s)
- Juhua Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Number 73 Beijing East Road, 210008, Nanjing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengxin Fan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Number 73 Beijing East Road, 210008, Nanjing, People's Republic of China
| | - Jicheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Number 73 Beijing East Road, 210008, Nanjing, People's Republic of China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Number 73 Beijing East Road, 210008, Nanjing, People's Republic of China
| | - Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Number 73 Beijing East Road, 210008, Nanjing, People's Republic of China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Number 73 Beijing East Road, 210008, Nanjing, People's Republic of China
| | - Xiaolong Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Number 73 Beijing East Road, 210008, Nanjing, People's Republic of China
| |
Collapse
|