1
|
Alves-Ferreira J, Vara MG, Catarino A, Martins I, Mourinha C, Fabião M, Costa MJ, Barbieri MV, de Alda ML, Palma P. Pesticide water variability and prioritization: The first steps towards improving water management strategies in irrigation hydro-agriculture areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170304. [PMID: 38278229 DOI: 10.1016/j.scitotenv.2024.170304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
The presence of pesticides in aquatic ecosystems poses significant risks to non-target organisms, necessitating monitoring and environmental risk assessment. This study aimed to evaluate the dynamics and environmental risk of pesticides in a hydro-agricultural area with intensive agricultural practices, in the Mediterranean region (South of Portugal). Seasonality and location influenced pesticide numbers and concentrations, with the highest levels observed during the dry season. Triazines, phenylureas, and organophosphates were the predominant pesticide classes, with terbuthylazine, bentazone, terbutryn, diazinon, and metolachlor exhibiting the highest detection frequencies (68 % to 72 %). Notably, 44 % of the quantified pesticides are no longer authorized in Portugal, with 33 % posing a high environmental risk. Some insecticides, including imidacloprid, methiocarb, and malathion, were occasionally detected at concentrations that posed high risks to the aquatic ecosystem (RQ ≥ 1). Irgarol, an algicide used in irrigation canals, presented a high risk in 91 % of the analysed samples. The study's distribution profile of pesticides revealed a significant transportation of these compounds from reservoirs to irrigation hydrants, establishing them as a secondary source of crop and environmental contamination. Additionally, the assessment of spatial distribution and environmental risk allowed for the identification of specific pollutants in different locations, prioritizing them based on their ecotoxicological risk to aquatic ecosystems. These findings reinforce the importance of implementing management measures at the level of hydro-agricultural areas, helping to stop the cycle of pesticide contamination. Only this type of strategy will make it possible to protect water quality, biodiversity and the health of citizens, contributing to the European Union's objectives of improving the condition of freshwater bodies and promoting the sustainable use of pesticides.
Collapse
Affiliation(s)
- Júnia Alves-Ferreira
- Escola Superior Agrária, Instituto Politécnico de Beja, R. Pedro Soares S/N, 7800-295 Beja, Portugal; Instituto de Ciências da Terra (ICT), Universidade de Évora, 7000-671 Évora, Portugal
| | - Manuel García Vara
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 080834 Barcelona, Spain
| | - Adriana Catarino
- Escola Superior Agrária, Instituto Politécnico de Beja, R. Pedro Soares S/N, 7800-295 Beja, Portugal; Instituto de Ciências da Terra (ICT), Universidade de Évora, 7000-671 Évora, Portugal
| | - Inês Martins
- Escola Superior Agrária, Instituto Politécnico de Beja, R. Pedro Soares S/N, 7800-295 Beja, Portugal
| | - Clarisse Mourinha
- Escola Superior Agrária, Instituto Politécnico de Beja, R. Pedro Soares S/N, 7800-295 Beja, Portugal
| | - Marta Fabião
- Centro Operativo e de Tecnologia de Regadio (COTR), Quinta da Saúde, Apartado 354, 7801-904 Beja, Portugal
| | - Maria João Costa
- Instituto de Ciências da Terra (ICT), Universidade de Évora, 7000-671 Évora, Portugal; Departamento de Física, Escola de Ciências e Tecnologia, and Earth Remote Sensing Laboratory - EaRSLab, Universidade de Évora, 7000-671 Évora, Portugal
| | - Maria Vittoria Barbieri
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 080834 Barcelona, Spain
| | - M Lopez de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 080834 Barcelona, Spain
| | - Patrícia Palma
- Escola Superior Agrária, Instituto Politécnico de Beja, R. Pedro Soares S/N, 7800-295 Beja, Portugal; Instituto de Ciências da Terra (ICT), Universidade de Évora, 7000-671 Évora, Portugal; GeoBioTec, NOVA School of Science and Technology, Campus da Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
2
|
Navarro I, de la Torre A, Sanz P, Baldi I, Harkes P, Huerta-Lwanga E, Nørgaard T, Glavan M, Pasković I, Pasković MP, Abrantes N, Campos I, Alcon F, Contreras J, Alaoui A, Hofman J, Vested A, Bureau M, Aparicio V, Mandrioli D, Sgargi D, Mol H, Geissen V, Silva V, Martínez MÁ. Occurrence of pesticide residues in indoor dust of farmworker households across Europe and Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167797. [PMID: 37838044 DOI: 10.1016/j.scitotenv.2023.167797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Pesticides are widely used as plant protection products (PPPs) in farming systems to preserve crops against pests, weeds, and fungal diseases. Indoor dust can act as a chemical repository revealing occurrence of pesticides in the indoor environment at the time of sampling and the (recent) past. This in turn provides information on the exposure of humans to pesticides in their homes. In the present study, part of the Horizon 2020 funded SPRINT project, the presence of 198 pesticide residues was assessed in 128 indoor dust samples from both conventional and organic farmworker households across Europe, and in Argentina. Mixtures of pesticide residues were found in all dust samples (25-121, min-max; 75, median). Concentrations varied in a wide range (<0.01 ng/g-206 μg/g), with glyphosate and its degradation product AMPA, permethrin, cypermethrin and piperonyl butoxide found in highest levels. Regarding the type of pesticides, insecticides showed significantly higher levels than herbicides and fungicides. Indoor dust samples related to organic farms showed a significantly lower number of residues, total and individual concentrations than those related to conventional farms. Some pesticides found in indoor dust were no longer approved ones (29 %), with acute/chronic hazards to human health (32 %) and with environmental toxicity (21 %).
Collapse
Affiliation(s)
- Irene Navarro
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain.
| | - Adrián de la Torre
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Paloma Sanz
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Isabelle Baldi
- University of Bordeaux, INSERM, BPH, U1219 Bordeaux, France
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Esperanza Huerta-Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Matjaž Glavan
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Igor Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Porec, Croatia
| | - Marija Polić Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Porec, Croatia
| | - Nelson Abrantes
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Isabel Campos
- Department of Environment and Planning and CESAM, University of Aveiro, Aveiro, Portugal
| | - Francisco Alcon
- Department of Business Economics, Universidad Politécnica de Cartagena, Spain
| | - Josefina Contreras
- Department Agricultural Engineering, Universidad Politécnica de Cartagena, Spain
| | - Abdallah Alaoui
- Institute of Geography, University of Bern, Bern, Switzerland
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Anne Vested
- Department of Public Health - Unit for Environment, Occupation, and Health, Danish Ramazzini Centre, Aarhus University, Denmark
| | | | | | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Hans Mol
- Wageningen Food Safety Research - part of Wageningen University & Research, Wageningen, Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - María Ángeles Martínez
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| |
Collapse
|
3
|
Li H, Yang Q, Wu H, Guo J, Tang Z, Liao J. Terbuthylazine exposure induces innate immune response and inflammation through activating cGAS-STING/NF-κB pathway in myocardium of broiler chicken (Gallus gallus). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105700. [PMID: 38072555 DOI: 10.1016/j.pestbp.2023.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023]
Abstract
Terbuthylazine (TBA), a triazine herbicide, is extensively employed in agriculture for its wide range of effectiveness. However, prolonged utilization of TBA can pose a potential hazard to animals and human health. Here, a total of 180 broiler chickens (Gallus gallus) were stochastically assigned to three groups (control group, 0.4 mg/kg TBA group, and 4 mg/kg TBA group) for investigating the impact of TBA on cardiotoxicity. The results revealed that TBA exposure resulted in pathological alterations in the myocardium. Moreover, TBA exposure activated cGAS-STING pathway and markedly elevated the mRNA and protein expression levels of innate immune response (cGAS, STING, TBK1, and IRF3) in myocardium. Additionally, NF-κB signal was also activated under TBA exposure, which was characterized by the increasing mRNA expression levels of NF-κB, IKKα and the protein expression levels of p-NF-κB/NF-κB, IKKα, p-IκBα/IκBα in the TBA treatment groups. Meanwhile, the expression of pro-inflammatory cytokines (TNF-α and IL-1β) were also significantly increased. In summary, our findings suggested that cGAS-STING/NF-κB pathway functionated in the innate immune response and inflammation in myocardium brought on by TBA exposure, which provided new insights into the TBA toxicology.
Collapse
Affiliation(s)
- Haoye Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingwen Yang
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, PR China
| | - Haitong Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
4
|
Ranjan N, Singh PK, Maurya NS. Pharmaceuticals in water as emerging pollutants for river health: A critical review under Indian conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114220. [PMID: 36332401 DOI: 10.1016/j.ecoenv.2022.114220] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The wastewaters from pharmaceutical manufacturing units, hospitals, and domestic sewage contaminated with excretal matters of medicine users are the prime sources of pharmaceutical pollutants (PPs) in natural water bodies. In the present study, PPs have been considered one of the emerging pollutants (EPs) and a cause of concern in river health assessment. Beyond the reported increase in antibiotic-resistant bacteria (ABRB), PPs have been found adversely affecting the biotic diversity in such water environments. Considering Algae, Macroinvertebrates, and Fishes as three distinct trophic level indicators, the present study puts forward a framework for showing River Health Condition (RHC) based on the calculation of a River Health Index (RHI). The RHI is calculated using six Indicator Group Scores (IGS) which individually reflect river health in a defined category of water quality characteristics. While Dissolved Oxygen Related Parameters (DORP), Nutrients (NT), and PPs are taken as causative agents affecting RHCs, scores of Algal-Bacterial (AB) symbiosis, Macroinvertebrates (MI), and Fishes (F) are considered as an effect of such environmental conditions. Current wastewater treatment technologies are also not very effective in the removal of PPs. The objective of the present study is to review the harmful effects of PPs on the aquatic environment, particularly on the chemical and biotic indicators of river health. Based on predicted no-effect concentrations (PNEC) for algae, macroinvertebrates, and fishes in the aquatic environment and measured environmental concentration (MEC) in the river, the estimated risk quotient (RQ) for norfloxacin in the Isakavagu-Nakkavagu stream of river Godavari, Hyderabad is found 293 for algae, 39 for MI, and 335 for fish. Among PPs, in Indian rivers, the presence of caffeine is the most frequent, with algae at the highest level of risk (RQmax= 24.5). Broadly six PPs, including azithromycin, caffeine, diclofenac, naproxen, norfloxacin, and sulfamethoxazole are found above PNEC values in Indian rivers. The application of IGS and RHI in understanding and presenting the river health condition (RHC) through colored hexagons has been demonstrated for the river Ganga near Varanasi (India) as an example. Identification of critical indicator groups, based on IGS provides a scientific basis for planned intervention for river health restoration to achieve an acceptable category.
Collapse
Affiliation(s)
- Nitin Ranjan
- Department of Civil Engineering, IIT(BHU), Varanasi 221005, India.
| | | | | |
Collapse
|
5
|
Villaverde JJ, Sevilla-Morán B, Alonso-Prados JL, Sandín-España P. A study using QSAR/QSPR models focused on the possible occurrence and risk of alloxydim residues from chlorinated drinking water, according to the EU Regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156000. [PMID: 35597336 DOI: 10.1016/j.scitotenv.2022.156000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Any active substance with phytosanitary capacity intended to be marketed in Europe must pass exhaustive controls to assess its risk before being marketed and used in European agriculture. Since the implementation of Regulation (EC) No 1107/2009, agrochemical companies have been obliged to study the formation of pesticide transformation products (TPs) during the treatment of drinking water containing pesticide residues. However, there is no consensus on how to address this requirement. In this research work, the open literature collection on alloxydim was used to propose potential chlorination paths from alloxydim isomers. Furthermore, several QSAR/QSPR models have been used to fill the of knowledge gap relative to some key parameters in the physico-chemical, environmental and ecotoxicological areas of potential alloxydim TPs from chlorinated water for which little information exists. In this way, it has been possible to estimate the state of aggregation of these TPs (they exist mainly as liquids) as well as their ease of transit between the different phases, to predict their possible behaviour in the three environmental compartments (e.g., thermophysical properties point to a change in their evolution with respect to the parent alloxydim isomers) and to anticipate their potential risk to human and animal health (e.g., all of them cause developmental toxicity). These and other results highlight that the hazards of several TPs, i.e., both chlorinated and nonchlorinated from parent alloxydim or from those obtained after cleavage of the N - O bond and the subsequent reaction with chlorine, should be seriously considered. The obtained results reopen the debate on the implications of the use of QSAR/QSPR models for pesticide risk assessment in the legislative framework.
Collapse
Affiliation(s)
- Juan José Villaverde
- Unit of Plant Protection Products, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - Beatriz Sevilla-Morán
- Unit of Plant Protection Products, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain.
| | - José Luis Alonso-Prados
- Unit of Plant Protection Products, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - Pilar Sandín-España
- Unit of Plant Protection Products, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| |
Collapse
|
6
|
Silva V, Alaoui A, Schlünssen V, Vested A, Graumans M, van Dael M, Trevisan M, Suciu N, Mol H, Beekmann K, Figueiredo D, Harkes P, Hofman J, Kandeler E, Abrantes N, Campos I, Martínez MÁ, Pereira JL, Goossens D, Gandrass J, Debler F, Lwanga EH, Jonker M, van Langevelde F, Sorensen MT, Wells JM, Boekhorst J, Huss A, Mandrioli D, Sgargi D, Nathanail P, Nathanail J, Tamm L, Fantke P, Mark J, Grovermann C, Frelih-Larsen A, Herb I, Chivers CA, Mills J, Alcon F, Contreras J, Baldi I, Pasković I, Matjaz G, Norgaard T, Aparicio V, Ritsema CJ, Geissen V, Scheepers PTJ. Collection of human and environmental data on pesticide use in Europe and Argentina: Field study protocol for the SPRINT project. PLoS One 2021; 16:e0259748. [PMID: 34780516 PMCID: PMC8592492 DOI: 10.1371/journal.pone.0259748] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Current farm systems rely on the use of Plant Protection Products (PPP) to secure high productivity and control threats to the quality of the crops. However, PPP use may have considerable impacts on human health and the environment. A study protocol is presented aiming to determine the occurrence and levels of PPP residues in plants (crops), animals (livestock), humans and other non-target species (ecosystem representatives) for exposure modelling and impact assessment. To achieve this, we designed a cross-sectional study to compare conventional and organic farm systems across Europe. Environmental and biological samples were/are being/will be collected during the 2021 growing season, at 10 case study sites in Europe covering a range of climate zones and crops. An additional study site in Argentina will inform the impact of PPP use on growing soybean which is an important European protein-source in animal feed. We will study the impact of PPP mixtures using an integrated risk assessment methodology. The fate of PPP in environmental media (soil, water and air) and in the homes of farmers will be monitored. This will be complemented by biomonitoring to estimate PPP uptake by humans and farm animals (cow, goat, sheep and chicken), and by collection of samples from non-target species (earthworms, fish, aquatic and terrestrial macroinvertebrates, bats, and farm cats). We will use data on PPP residues in environmental and biological matrices to estimate exposures by modelling. These exposure estimates together with health and toxicity data will be used to predict the impact of PPP use on environment, plant, animal and human health. The outcome of this study will then be integrated with socio-economic information leading to an overall assessment used to identify transition pathways towards more sustainable plant protection and inform decision makers, practitioners and other stakeholders regarding farming practices and land use policy.
Collapse
Affiliation(s)
- Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Abdallah Alaoui
- Institute of Geography, University of Bern, Bern, Switzerland
- Centre for Development and Environment, University of Bern, Bern, Switzerland
| | - Vivi Schlünssen
- Department of Public Health, Aarhus University, Aarhus, Denmark
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Anne Vested
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Martien Graumans
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, Netherlands
| | - Maurice van Dael
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, Netherlands
| | - Marco Trevisan
- Department for Sustainable Food Process (DISTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Nicoleta Suciu
- Department for Sustainable Food Process (DISTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Hans Mol
- Wageningen Food Safety Research, Wageningen, Wageningen University & Research, Wageningen, Netherlands
| | - Karsten Beekmann
- Wageningen Food Safety Research, Wageningen, Wageningen University & Research, Wageningen, Netherlands
| | - Daniel Figueiredo
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Jakub Hofman
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Nelson Abrantes
- Centre for Environmental and Marine Studies and Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Isabel Campos
- Centre for Environmental and Marine Studies and Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - María Ángeles Martínez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas–CIEMAT, Madrid, Spain
| | - Joana Luísa Pereira
- Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Dirk Goossens
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
- KU Leuven Department of Earth and Environmental Sciences, Geo-institute, Celestijnenlaan, Leuven, Belgium
| | - Juergen Gandrass
- Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Freya Debler
- Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Esperanza Huerta Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Frank van Langevelde
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Jerry M. Wells
- Host-Microbe Interactomics, Animal Sciences Group, Wageningen University & Research, Wageningen, Netherlands
| | - Jos Boekhorst
- Host-Microbe Interactomics, Animal Sciences Group, Wageningen University & Research, Wageningen, Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | | | | | - Lucius Tamm
- Research Institute of Organic Agriculture—FIBL, Frick, Switzerland
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Lyngby, Denmark
| | - Jennifer Mark
- Research Institute of Organic Agriculture—FIBL, Frick, Switzerland
| | | | | | | | - Charlotte-Anne Chivers
- Countryside and Community Research Institute, University of Gloucestershire, Cheltenham, United Kingdom
| | - Jane Mills
- Countryside and Community Research Institute, University of Gloucestershire, Cheltenham, United Kingdom
| | | | | | - Isabelle Baldi
- INSERM U1219, EPICENE Team, Bordeaux University, Nouvelle-Aquitaine, France
| | - Igor Pasković
- Institute of Agriculture and Tourism, Department of Agriculture and Nutrition, Poreč, Croatia
| | - Glavan Matjaz
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Trine Norgaard
- Department of Agroecology, Aarhus University, Aarhus, Denmark
| | - Virginia Aparicio
- Instituto Nacional de Tecnología Agropecuaria—INTA, Buenos Aires, Argentina
| | - Coen J. Ritsema
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | | |
Collapse
|
7
|
Palma P, Fialho S, Lima A, Catarino A, Costa MJ, Barbieri MV, Monllor-Alcaraz LS, Postigo C, de Alda ML. Occurrence and risk assessment of pesticides in a Mediterranean Basin with strong agricultural pressure (Guadiana Basin: Southern of Portugal). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148703. [PMID: 34214808 DOI: 10.1016/j.scitotenv.2021.148703] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The study aimed to assess the occurrence and the environmental risk of a group of 51 selected pesticides in the Guadiana Basin (a biodiversity hotspot, in the Mediterranean). The most abundant pesticides were bentazone and 2,4-D, while terbuthylazine together with terbutryn constituted the most ubiquitous pesticides. Eighteen out of the 38 pesticides detected are no longer approved in Europe, and 5 of them are included in the list of priority substances. The risk assessment showed that azinphos ethyl, diflufenican, irganol, imidacloprid, and oxadiazon occurred occasionally, but always in concentrations above their respective ecotoxicological threshold value. Contrary, bentazone, terbuthylazine, and terbutryn presented a high risk in most of the sampled locations and periods. The site-specific risk assessment showed a spatial and temporal pattern, with a higher risk occurring mainly in intermittent streams, in the drought period. The presence of pesticides banned from the EU market since 2009 showed the importance of improving the monitoring process, to identify the main sources of pollution and the fate of these emerging compounds. The results showed the need of implementing actions to improve the sustainable use of pesticides in agricultural areas, working with farmers and management entities to reduce the contamination of aquatic ecosystems. Transboundary water governance is also required to solve potential transboundary contamination problems.
Collapse
Affiliation(s)
- P Palma
- Department of Technologies and Applied Sciences, Polytechnic Institute of Beja, Beja, Portugal; ICT, Institute of Earth Sciences, University of Évora, Évora, Portugal.
| | - S Fialho
- Department of Technologies and Applied Sciences, Polytechnic Institute of Beja, Beja, Portugal
| | - A Lima
- Department of Technologies and Applied Sciences, Polytechnic Institute of Beja, Beja, Portugal
| | - A Catarino
- Department of Technologies and Applied Sciences, Polytechnic Institute of Beja, Beja, Portugal
| | - M J Costa
- ICT, Institute of Earth Sciences, University of Évora, Évora, Portugal; Science and Technology School, University of Évora, Évora, Portugal; Earth Remote Sensing Laboratory - EaRSLab, University of Évora, Évora, Portugal
| | - M V Barbieri
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - L S Monllor-Alcaraz
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - C Postigo
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - M Lopez de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| |
Collapse
|
8
|
Brêda-Alves F, de Oliveira Fernandes V, Cordeiro-Araújo MK, Chia MA. The combined effect of clethodim (herbicide) and nitrogen variation on allelopathic interactions between Microcystis aeruginosa and Raphidiopsis raciborskii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11528-11539. [PMID: 33128150 DOI: 10.1007/s11356-020-11367-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
The large-scale use of herbicides deteriorates water quality and threatens aquatic biodiversity. Unfortunately, there are few studies on the ecological effects of herbicides on toxin-producing strains of cyanobacteria under changing nutrient conditions. The objective of the present study was to investigate the effects of the herbicide clethodim and nitrogen variation on the allelopathic interactions and toxin production of Microcystis aeruginosa BCCUSP232 and Raphidiopsis raciborskii (formerly known as Cylindrospermopsis raciborskii) ITEPA1. M. aeruginosa had increased cell density when exposed to the clethodim (H +) (23.55 mg/L), whereas the highest cell density of R. raciborskii was observed in the treatment with clethodim plus limited nitrogen. Also, the cell-free exudate of R. raciborskii significantly stimulated the growth of M. aeruginosa on day 3 of the experiment. The concentration of chlorophyll-a in M. aeruginosa cultures generally increased in all the treatments, while in R. raciborskii cultures, the opposite occurred. Total microcystins (MCs) content of M. aeruginosa in the mixed cultures was 68% higher in nitrogen-enriched conditions than the control. A similar increase in MC content occurred in M. aeruginosa unialgal culture treated with R. raciborskii exudate. Total saxitoxin concentration was 81% higher in mixed cultures of R. raciborskii simultaneously exposed to high nitrogen and clethodim. Similarly, unialgal cultures of R. raciborskii exposed to either high nitrogen or clethodim had higher saxitoxins concentrations than the control. The intracellular H2O2 content of M. aeruginosa cultures decreased, whereas, in R. raciborskii cultures, it increased during exposure to high nitrogen and clethodim. Only R. raciborskii had a significant variation in peroxidase activity. The activities of glutathione S-transferase of both strains were higher in the presence of clethodim. These results revealed that nitrogen enrichment and the presence of clethodim might lead to the excessive proliferation of M. aeruginosa and R. raciborskii and increased production of cyanotoxins in aquatic environments.
Collapse
Affiliation(s)
- Fernanda Brêda-Alves
- Laboratório de Taxonomia e Ecologia de Algas Continentais, Departamento de Botânica, Universidade Federal do Espírito Santo, Av., Fernando Ferrari, Vitoria, 29075-015, Brasil.
| | - Valéria de Oliveira Fernandes
- Laboratório de Taxonomia e Ecologia de Algas Continentais, Departamento de Botânica, Universidade Federal do Espírito Santo, Av., Fernando Ferrari, Vitoria, 29075-015, Brasil
| | - Micheline Kézia Cordeiro-Araújo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
| | - Mathias Ahii Chia
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
- Department of Botany, Ahmadu Bello University, Zaria, 810001, Nigeria
| |
Collapse
|
9
|
García-Galán MJ, Monllor-Alcaraz LS, Postigo C, Uggetti E, López de Alda M, Díez-Montero R, García J. Microalgae-based bioremediation of water contaminated by pesticides in peri-urban agricultural areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114579. [PMID: 32806438 DOI: 10.1016/j.envpol.2020.114579] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/20/2020] [Accepted: 04/09/2020] [Indexed: 05/27/2023]
Abstract
The present study evaluated the capacity of a semi-closed, tubular horizontal photobioreactor (PBR) to remove pesticides from agricultural run-off. The study was carried out in summer (July) to study its efficiency under the best conditions (highest solar irradiation). A total of 51 pesticides, including 10 transformation products, were selected and investigated based on their consumption rate and environmental relevance. Sixteen of them were detected in the agricultural run-off, and the estimated removal efficiencies ranged from negative values, obtained for 3 compounds, namely terbutryn, diuron and imidacloprid, to 100%, achieved for 10 compounds. The acidic herbicide MCPA was removed by 88% in average, and the insecticides 2,4-D and diazinon showed variable removals, between 100% and negative values. The environmental risk associated to the compounds still present in the effluent of the PBR was evaluated using hazard quotients (HQs), calculated using the average and highest measured concentrations of the compounds. HQ values > 10 (meaning high risk) were obtained for imidacloprid (21), between 1 and 10 (meaning moderate risk) for 2,4-D (2.8), diazinon (4.6) and terbutryn (1.5), and <1 (meaning low risk) for the remaining compounds diuron, linuron and MCPA. The PBR treatment yielded variable removals depending on the compound, similarly to conventional wastewater treatment plants. This study provides new data on the capacity of microalgae-based treatment systems to eliminate a wide range of priority pesticides under real/environmental conditions.
Collapse
Affiliation(s)
- María Jesús García-Galán
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| | - Luis Simón Monllor-Alcaraz
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Cristina Postigo
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Enrica Uggetti
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Rubén Díez-Montero
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Joan García
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| |
Collapse
|
10
|
Land-Cover Patterns and Hydrogeomorphology of Tributaries: Are These Important Stressors for the Water Quality of Reservoirs in the Mediterranean Region? WATER 2020. [DOI: 10.3390/w12102665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Four streams in the Guadiana watershed were followed up to assess hydrogeomorphological and physicochemical characteristics, and to analyze its correlation with land use/land cover (LULC), analyzing their possible influence in reservoir water quality and possible influence in the reservoir water quality. The highest amounts of organic descriptors and nutrients were quantified in streams with the major percentage of olive groves and vineyards and urban land cover classes. Streams more influenced by agro-silvo-pastoral class presented better water quality, as this type of LULC acts as a buffer of the contamination runoff. The results highlighted that the hydrogeomorphology of the streams may influence the transfer of pollutants loads to reservoirs. Hence, in intermittent streams characterized by coarse particles in the sediment, high amounts of pollutants are accumulated when the flow ceases, and are further transported to the reservoirs when the flow retakes. On the contrary, streams with sediments characterized by a great percentage of fine particles and organic matter do not induce so much stress in reservoirs, since these allow the adsorption of nutrients and trace elements, without their transfer to reservoirs.
Collapse
|
11
|
Palma P, Fialho S, Lima A, Novais MH, Costa MJ, Montemurro N, Pérez S, de Alda ML. Pharmaceuticals in a Mediterranean Basin: The influence of temporal and hydrological patterns in environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136205. [PMID: 31905561 DOI: 10.1016/j.scitotenv.2019.136205] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 05/23/2023]
Abstract
Occurrence of pharmaceuticals in the aquatic environment is nowadays a well-established issue that has become a matter of both scientific and public concern. Tons of different classes of pharmaceuticals find their way to the environment at variable degrees, after their use and excretion through wastewater and sewage treatment systems. The main goal of this study was to correlate the dynamics and the environmental risk of pharmaceuticals with different temporal and hydrological patterns, at the Guadiana Basin (South of Portugal). Water samples were collected bimonthly during 2017 (classified as a drought year) and 2018 (post-drought year) in: Zebro, Álamos and Amieira (intermittent hydrological streams), and Lucefécit (perennial hydrological stream). The pharmaceuticals quantified in higher concentrations, out of 27 investigated, were diclofenac (up to 4806 ng L-1), ibuprofen (3161 ng L-1), hydrochlorothiazide (2726 ng L-1) and carbamazepine (3223 ng L-1). Zebro and Álamos presented the highest contamination by this group of environmental hazardous substances, which may be correlated with the presence of wastewater treatment plants upstream the sampling point of each stream. Furthermore, the highest concentrations occurred mainly during the dry period (2017), when the flow was nearly inexistent in Zebro, and in Álamos after the first heavy rainfalls. In specific periods, the high concentrations of pharmaceuticals detected may induce risk for the organisms of lowest trophic levels, damaging the balance of the ecosystems at these streams. The risk quotient optimised approach (RQf) integrating exposure, toxicity and persistence factors, ranks the pharmaceuticals investigated in terms of risk for the aquatic ecosystems as follows: diclofenac, ibuprofen and carbamazepine (high risk), clarithromycin (moderate risk), acetaminophen, ofloxacin and bezafibrate (endurable risk), and hydrochlorothiazide (negligible risk).
Collapse
Affiliation(s)
- Patrícia Palma
- Escola Superior Agrária, Instituto Politécnico de Beja, 7800-295 Beja, Portugal; Instituto de Ciências da Terra (ICT), Universidade de Évora, Évora, Portugal.
| | - Sofia Fialho
- Escola Superior Agrária, Instituto Politécnico de Beja, 7800-295 Beja, Portugal
| | - Ana Lima
- Escola Superior Agrária, Instituto Politécnico de Beja, 7800-295 Beja, Portugal
| | - Maria Helena Novais
- Instituto de Ciências da Terra (ICT), Universidade de Évora, Évora, Portugal
| | - Maria João Costa
- Instituto de Ciências da Terra (ICT), Universidade de Évora, Évora, Portugal; Science and Technology School, University of Évora, Évora, Portugal
| | - Nicola Montemurro
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Sandra Pérez
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Miren Lopez de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| |
Collapse
|
12
|
Brêda-Alves F, Militão FP, de Alvarenga BF, Miranda PF, de Oliveira Fernandes V, Cordeiro-Araújo MK, Chia MA. Clethodim (herbicide) alters the growth and toxins content of Microcystis aeruginosa and Raphidiopsis raciborskii. CHEMOSPHERE 2020; 243:125318. [PMID: 31995862 DOI: 10.1016/j.chemosphere.2019.125318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Increased agricultural intensification goes with the widespread use of herbicides that adversely affect aquatic biodiversity. The effects of herbicides on toxin-producing cyanobacteria have been poorly studied. The present study aimed to investigate the toxicological and physiological effects of the herbicide clethodim on Raphidiopsis raciborskii (a.k.a. Cylindrospermopsis raciborskii) ITEPA1 and Microcystis aeruginosa BCCUSP232. On day four of the experiment, the exposure to 25 mg/L clethodim resulted in the highest cell density of R. raciborskii. Similarly, exposure to the 1, 5, 20, and 50 mg/L clethodim treatments resulted in the highest cell densities of M. aeruginosa on day 4 of the experiment. Medium effect concentrations (EC50) after 96 h of exposure of both strains to clethodim were 192.98 mg/L and 168.73 mg/L for R. raciborskii and M. aeruginosa, respectively. The presence of clethodim significantly increased the total microcystin content of M. aeruginosa compared to the control cultures. At 400 mg/L, total saxitoxins content of R. raciborskii was 27% higher than that of the control cultures on day 4. In contrast, cultures exposed to 100 mg/L clethodim had the lowest saxitoxins levels per cell quota. There was an increase in the levels of intracellular hydrogen peroxide in both species during exposure to clethodim, which was followed by significant changes (p < 0.05) in the activity of antioxidant enzymes such as peroxidase and superoxide dismutase. These results revealed that the presence of low levels of clethodim in the aquatic environment might lead to the excessive proliferation of cyanobacteria and alteration of their cyanotoxins content.
Collapse
Affiliation(s)
- Fernanda Brêda-Alves
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil.
| | - Frederico Pacheco Militão
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil
| | - Brener Freitas de Alvarenga
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil
| | - Pamela Ferreira Miranda
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil
| | - Valéria de Oliveira Fernandes
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil
| | - Micheline Kézia Cordeiro-Araújo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, 13418-900, Piracicaba, SP, Brazil
| | - Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria, 810001, Nigeria; Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
13
|
A reliable LC-MS/MS-based method for trace level determination of 50 medium to highly polar pesticide residues in sediments and ecological risk assessment. Anal Bioanal Chem 2019; 411:7981-7996. [DOI: 10.1007/s00216-019-02188-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/16/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
|
14
|
Tasca AL, Puccini M, Clematis D, Panizza M. Electrochemical removal of Terbuthylazine:Boron-Doped Diamond anode coupled with solid polymer electrolyte. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:285-291. [PMID: 31082613 DOI: 10.1016/j.envpol.2019.04.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 05/24/2023]
Abstract
Terbuthylazine (TBA) has replaced atrazine in many EU countries, becoming one of the most frequently detected pesticides in natural waters. TBA is a compound of emerging concern, due to its persistence, toxicity and proven endocrine disruption activity to wildlife and humans. Techniques applied in water treatment plants remove only partially this herbicide and poor attention is given to the generation and fate of by-products, although some of them have demonstrated an estrogenic activity comparable to atrazine. This paper summarizes the environmental occurrence of TBA and its main metabolite desethylterbuthylazine and reports the performance of an innovative electrochemical cell equipped with a solid polymer electrolyte (SPE) sandwiched between a Ti/RuO2 cathode and a Boron-Doped Diamond anode, operating at constant current, in the treatment of an aqueous solution of TBA. The herbicide removal in the first 30 min of treatment increases from 42% to 92% as the applied current is increased from 100 to 500 mA. The rate of degradation at 500 mA decreases between 30 and 60 min, with a final abatement of 97%. An 89% removal was reached at 100 mA when the initial TBA concentration was raised from 0.1 to 4 mg L-1 and less than 1% of the herbicide was converted in desethylterbuthylazine and minor metabolites. No chemicals are needed, no sludge is produced. Further research is encouraged, as this technology may be promising for the achievement of a zero-discharge removal of different emerging pollutants as pesticides, pharmaceuticals and personal care products.
Collapse
Affiliation(s)
- Andrea Luca Tasca
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy.
| | - Monica Puccini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy.
| | - Davide Clematis
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy
| | - Marco Panizza
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy
| |
Collapse
|
15
|
Seasonal and Spatial Variation of Dissolved Oxygen and Nutrients in Padaviya Reservoir, Sri Lanka. J CHEM-NY 2019. [DOI: 10.1155/2019/5405016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lakes, reservoirs, rivers, and aquifers are important freshwater sources for basic human needs such as drinking, sanitation, and agriculture. The anthropogenic influences on the natural environment, especially on freshwater resources, have increased dramatically during the last few decades. Eutrophication and pollution are major threats to many of these water bodies. There are thousands of man-made reservoirs, which are centuries old in Sri Lanka, and only a handful of them have been extensively studied and monitored. This study investigates the spatial and seasonal variations of water quality in Padaviya Reservoir by studying the vertical distribution of physical parameters and inorganic nitrogen species: ammonia, nitrite and nitrate, reactive phosphate, and dissolved oxygen. Padaviya Reservoir, which is an ancient man-made irrigation reservoir, has never been studied in detail to assess its water quality. Sharp chemical gradients for ammonia, nitrite, nitrate, reactive phosphate, and dissolved oxygen were observed between surface and bottom waters of the reservoir, suggesting that it does not overturn completely. The temperature difference is between the surface and bottom waters of about 2°C, which is not large enough to cause thermal stratification. The most probable reason for the stratification is extensive photosynthesis at surface waters with subsequent decomposition of the organic material at the bottom.
Collapse
|
16
|
Transplacental transfer and metabolism of diuron in human placenta. Toxicol Lett 2018; 295:307-313. [PMID: 30010034 DOI: 10.1016/j.toxlet.2018.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 11/22/2022]
Abstract
Diuron is a broad-spectrum phenylurea derived herbicide which is commonly used across the globe. Diuron is toxic to the reproductive system of animals and carcinogenic to rat urothelium, and recently found to be genotoxic in human cells. In in vivo, it is metabolized predominately into 3-(3,4-dichlorophenyl)-1-methyl urea (DCPMU) in humans and 3-(3, 4-dichlorophenyl)urea (DCPU) in animals. Information on diuron toxicokinetics and related toxicity in human placenta is absent. We have investigated the toxicokinetics of diuron in ex vivo human placental perfusion and in in vitro human placental microsomes and human trophoblastic cancer cells (BeWo). Diuron crossed human placenta readily in placental perfusion. Furthermore, diuron was metabolized into DCPMU in perfused placenta and in in vitro incubations using microsomes from placentas of smokers. In incubations with placental microsomes from non-smokers, and in BeWo cells, metabolism to DCPMU was detected but only with the highest used diuron concentration (100 μM). Diuron metabolism was inhibited upon addition of α-naphthoflavone, a CYP1A1 inhibitor, underscoring the role of CYP1A1 in the metabolism. In conclusion, it is evident that diuron crosses human placenta and diuron can be metabolized in the placenta to a toxic metabolite via CYP1A1. This implicates in vivo fetal exposure to diuron if pregnant women are exposed to diuron, which may result in fetotoxicity.
Collapse
|
17
|
Tasca AL, Puccini M, Fletcher A. Terbuthylazine and desethylterbuthylazine: Recent occurrence, mobility and removal techniques. CHEMOSPHERE 2018; 202:94-104. [PMID: 29554512 DOI: 10.1016/j.chemosphere.2018.03.091] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The herbicide terbuthylazine (TBA) has displaced atrazine in most of EU countries, becoming one of the most regularly used pesticides and, therefore, frequently detected in natural waters. The affinity of TBA for soil organic matter suggests prolonged contamination; degradation leads to the release of the metabolite desethylterbuthylazine (DET), which has higher water solubility and binds more weakly to organic matter compared to the parent compound, resulting in higher associated risk for contamination of groundwater resources. Additionally, TBA and DET are chemicals of emerging concern because of their persistence and toxicity towards aquatic organisms; moreover, they are known to have significant endocrine disruption capacity to wildlife and humans. Conventional treatments applied during drinking water production do not lead to the complete removal of these chemicals; activated carbon provides the greatest efficiency, whereas ozonation can generate by-products with comparable oestrogenic activity to atrazine. Hydrogen peroxide alone is ineffective to degrade TBA, while UV/H2O2 advanced oxidation and photocatalysis are the most effective processes for oxidation of TBA. It has been determined that direct photolysis gives the highest degradation efficiency of all UV/H2O2 treatments, while most of the photocatalytic degradation is attributed to OH radicals, and TiO2 solar-photocatalytic ozonation can lead to almost complete TBA removal in ∼30 min. Constructed wetlands provide a valuable buffer capacity, protecting downstream surface waters from contaminated runoff. TBA and DET occurrence are summarized and removal techniques are critically evaluated and compared, to provide the reader with a comprehensive guide to state-of-the-art TBA removal and potential future treatments.
Collapse
Affiliation(s)
- Andrea Luca Tasca
- Civil and Industrial Engineering Department, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| | - Monica Puccini
- Civil and Industrial Engineering Department, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Ashleigh Fletcher
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK
| |
Collapse
|
18
|
Massei R, Busch W, Wolschke H, Schinkel L, Bitsch M, Schulze T, Krauss M, Brack W. Screening of Pesticide and Biocide Patterns As Risk Drivers in Sediments of Major European River Mouths: Ubiquitous or River Basin-Specific Contamination? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2251-2260. [PMID: 29353470 DOI: 10.1021/acs.est.7b04355] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Pesticides and biocides (PaB) are ubiquitously present in aquatic ecosystems due to their widespread application and have been detected in rivers at concentrations that may cause distress to aquatic life. Many of these compounds accumulate in sediments acting as long-term source for aquatic ecosystems. However, data on sediment contamination with current-use PaB in Europe are scarce. Thus, in this study, we elucidated PaB patterns and associated risks in sediments of seven major European rivers focusing on their last stretch as an integrative sink of particles transported by these rivers. Sediments were extracted with pressurized liquid extraction (PLE) using a broad-spectrum method recovering many compound classes with a wide range of physicochemical properties. Altogether 126 compounds were analyzed and 81 of them were detected with LC-HRMS and GC-NCI-MS/MS at least in one of the sediments. The highest number of compounds was detected (59) in River Elbe sediments close to Cuxhaven with outstanding concentrations ranging from 0.8 to 1691 mg/g organic carbon. Multivariate analysis identified a cluster with 3 ubiquitous compounds (cyhalothrin, carbendazim, fenpropimorph) and three clusters of chemicals with higher variability within and between rivers. Risk assessment indicates an acute toxic risk to benthic crustaceans at all investigated sites with the pyrethroids tefluthrin and cyfluthrin together with the fungicide carbendazim as the main drivers. Risks to algae were driven at most sites almost exclusively by photosynthesis inhibitors with estuary-specific herbicide mixtures, while in the rivers Po and Gironde cell division inhibitors played an important role at some sites. Mixtures of specific concern have been defined and suggested for integration in future monitoring programs.
Collapse
Affiliation(s)
- Riccardo Massei
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstr. 15, Leipzig, Germany
- Department of Ecosystem Analyses, RWTH Aachen University, Institute for Environmental Research , Worringerweg 1, Aachen, Germany
| | - Wibke Busch
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ , Permoserstr. 15, Leipzig, Germany
| | - Hendrik Wolschke
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research , Department for Environmental Chemistry, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Lena Schinkel
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstr. 15, Leipzig, Germany
| | - Maike Bitsch
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstr. 15, Leipzig, Germany
| | - Tobias Schulze
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstr. 15, Leipzig, Germany
| | - Martin Krauss
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstr. 15, Leipzig, Germany
| | - Werner Brack
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstr. 15, Leipzig, Germany
- Department of Ecosystem Analyses, RWTH Aachen University, Institute for Environmental Research , Worringerweg 1, Aachen, Germany
| |
Collapse
|
19
|
Villaverde JJ, Sevilla-Morán B, López-Goti C, Calvo L, Alonso-Prados JL, Sandín-España P. Photolysis of clethodim herbicide and a formulation in aquatic environments: Fate and ecotoxicity assessment of photoproducts by QSAR models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:643-651. [PMID: 28992491 DOI: 10.1016/j.scitotenv.2017.09.300] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
The photochemical fate of the herbicide clethodim in natural waters was investigated under simulated and natural sunlight radiation. This herbicide exhibited a rapid degradation rate in simulated aquatic environment with half-lives ranged from 27.9min to 4.6h. The commercial formulation of clethodim showed a faster degradation with half-lives from 19.3min to 1.4h. It has also been demonstrated that the photolytic behavior of clethodim was affected by the water composition and the radiation intensity. Nine major photoproducts were identified and their distribution was dependent on the experimental conditions. Photodegraded solutions of clethodim were shown to be more toxic to the bacteria Vibrio fischeri than the herbicide itself, reaching the maximum toxicity when the herbicide is completely degraded. QSAR analysis of the fate, ecotoxicological and physicochemical endpoints of the degradation products provided positive alerts for several identified by-products. Environmental fate and transport estimates showed that all photoproducts, unlike the active substance, are potential leachers. Moreover, predicted vapor pressures suggested that dermal contact and ingestion are the most probable exposure routes for workers and general population to both clethodim and its photoproducts. These results highlight the importance of the degradation products in attaining a complete knowledge of the fate and behavior of an herbicide in the environment. To our knowledge, this is the first study to report a detailed QSAR study on clethodim photoproducts under environmental conditions. These results provide a very valuable information that will guide further experimental studies leading to a better pesticide risk assessment.
Collapse
Affiliation(s)
- Juan José Villaverde
- Unit of Plant Protection Products, INIA, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - Beatriz Sevilla-Morán
- Unit of Plant Protection Products, INIA, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - Carmen López-Goti
- Unit of Plant Protection Products, INIA, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - Luisa Calvo
- Ingeniería Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | - Pilar Sandín-España
- Unit of Plant Protection Products, INIA, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain.
| |
Collapse
|
20
|
Buono DD, Pannacci E, Bartucca ML, Nasini L, Proietti P, Tei F. Use of two grasses for the phytoremediation of aqueous solutions polluted with terbuthylazine. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:885-891. [PMID: 26934386 DOI: 10.1080/15226514.2016.1156633] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The capacity of two grasses, tall fescue (Festuca arundinacea) and orchardgrass (Dactylis glomerata), to remove terbuthylazine (TBA) from polluted solutions has been assessed in hydroponic cultures. Different TBA concentrations (0.06, 0.31, 0.62, and 1.24 mg/L) were chosen to test the capacity of the two grasses to resist the chemical. Aerial biomass, effective concentrations (to cause reductions of 10, 50, and 90% of plant aerial biomass) and chlorophylls contents of orchardgrass were found to be more affected. Tall fescue was found to be more capable of removing the TBA from the growth media. Furthermore, enzymes involved both in the herbicide detoxification and in the response to herbicide-induced oxidative stress were investigated. Glutathione S-transferase (GST, EC. 2.5.1.18) and ascorbate peroxidase (APX, EC. 1.11.1.11) of tall fescue were found to be unaffected by the chemical. GST and APX levels of orchardgrass were decreased by the treatment. These negative modulations exerted by the TBA on the enzyme of orchardgrass explained its lower capacity to cope with the negative effects of the TBA.
Collapse
Affiliation(s)
- Daniele Del Buono
- a Department of Agricultural , Food and Environmental Sciences, University of Perugia Perugia , Italy
| | - Euro Pannacci
- a Department of Agricultural , Food and Environmental Sciences, University of Perugia Perugia , Italy
| | - Maria Luce Bartucca
- a Department of Agricultural , Food and Environmental Sciences, University of Perugia Perugia , Italy
| | - Luigi Nasini
- a Department of Agricultural , Food and Environmental Sciences, University of Perugia Perugia , Italy
| | - Primo Proietti
- a Department of Agricultural , Food and Environmental Sciences, University of Perugia Perugia , Italy
| | - Francesco Tei
- a Department of Agricultural , Food and Environmental Sciences, University of Perugia Perugia , Italy
| |
Collapse
|
21
|
Palma P, Ledo L, Alvarenga P. Ecotoxicological endpoints, are they useful tools to support ecological status assessment in strongly modified water bodies? THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:119-129. [PMID: 26402482 DOI: 10.1016/j.scitotenv.2015.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 06/05/2023]
Abstract
Although man-made reservoirs represent an important water supply source in countries where water scarcity has become a problem, little work has been done on the evaluation of their ecological status. Taking this in account, the general aim of this study was to assess the usefulness of ecotoxicological endpoints in the potential ecological status characterization of water reservoirs, with the purpose of their possible integration in evaluation programs developed under the Water Framework Directive (WFD). To achieve this purpose, a group of bioassays were selected to evaluate both water and sediment compartments at the Alqueva reservoir (the biggest from the Iberian Peninsula), with representative species from different taxonomic and functional groups: Vibrio fischeri, Thamnocephalus platyurus, Daphnia magna and Heterocypris incongruens. The ecotoxicological assessment showed that sublethal endpoints (e.g., luminescence, growth or reproduction), would be more useful and sensitive to identify toxicity patterns in this type of water body. In general, the results from this ecotoxicological toolbox agreed with the potential ecological status established according to the WFD, which indicates that the bioassays complement the ecological assessment. Furthermore, the use of an ecotoxicological approach can be extremely useful, especially in cases where the biotic indices are difficult to establish, such as in man-made reservoirs. However, when pollutant concentrations are very low, and/or when nutrients and organic matter concentrations are high, the two approaches do not fit, requiring further research to determine which organisms are more sensitive and the best biotic indices to use under those conditions.
Collapse
Affiliation(s)
- P Palma
- Departamento de Tecnologias e Ciências Aplicadas, Escola Superior Agrária, Instituto Politécnico de Beja, 7800-295 Beja, Portugal; CIMA - Centro de Investigação Marinha e Ambiental, CIMA, FCT, Edifício 7, Piso 1, Universidade do Algarve, Campus Universitário de Gambelas, 8005-139 Faro, Portugal.
| | - L Ledo
- Departamento de Tecnologias e Ciências Aplicadas, Escola Superior Agrária, Instituto Politécnico de Beja, 7800-295 Beja, Portugal
| | - P Alvarenga
- Departamento de Tecnologias e Ciências Aplicadas, Escola Superior Agrária, Instituto Politécnico de Beja, 7800-295 Beja, Portugal; LEAF - Centro de Investigação em Agronomia, Alimentos, Ambiente e Paisagem, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|